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A finite element method with mass-lumping and flux upwinding is formulated for solving the immiscible two-phase flow problem in porous media. The method approximates directly the wetting phase pressure and saturation, which are the primary unknowns. The discrete saturation satisfies a maximum principle.

Stability of the scheme and existence of a solution are established.

Introduction

This work discretizes on a suitable mesh a degenerate two-phase flow system set in a polyhedral domain by a finite element scheme that directly approximates the wetting phase pressure and saturation, similar to the formulation proposed in [START_REF] Forsyth | A control volume finite element approach to NAPL groundwater contamination[END_REF]. Mass lumping is used to compute the integrals and a suitable upwinding is used to compute the flux, guaranteeing that the discrete saturation satisfies a maximum principle. The resulting system of discrete equations is a finite element analogue of the finite volume scheme introduced and analyzed by Eymard et al. in the seminal work [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF].

Finite volume methods are popular discretization methods for solving porous media flow problems because they approximate the unknowns by piecewise constants, they are locally mass conservative and they satisfy the maximum principle. From the point of view of implementation, the advantage of finite elements is that they only use nodal values and a single simplicial mesh. In particular, no orthogonality property is required between the faces and the lines joining the centers of control volumes, as is the case with finite volume methods.

From a theoretical point of view, owing that the finite element scheme is based on functions, some steps in its numerical analysis are simpler, but nevertheless the major difficulty in the analysis consists in proving sufficient a priori estimates in spite of the degeneracy. By following closely [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF], the degeneracy is remediated by reintroducing in the proofs discrete artificial pressures. But the complete analysis is intricate and lengthy and because of its length it is split into two parts. This paper is part one, dedicated to well-posedness of this discrete scheme: stability and existence. The second part, see [START_REF] Girault | A finite element method for degenerate two-phase flow in porous media. Part II: Convergence[END_REF], establishes the convergence of the numerical solutions via a compactness argument.

Incompressible two-phase flow is a popular and important multiphase flow model in reservoirs for the oil and gas industry. Based on conservation laws at the continuum scale, the model assumes the existence of a representative elementary volume. Each wetting phase and non-wetting phase saturation satisfies a mass balance equation and each phase velocity follows the generalized Darcy law [START_REF] Aziz | Petroleum Reservoir Simulation[END_REF][START_REF] Peaceman | Fundamentals of Numerical Reservoir Simulation[END_REF]. The equations of the mathematical model read ∂ t (φs w ) -∇ ⋅ (η w (s w )∇p w ) = f w (s in )q -f w (s w )q

∂ t (φs o ) -∇ ⋅ (η o (s w )∇p o ) = f o (s in )q -f o (s w )q p c (s w ) = p o -p w , s w + s o = 1 (1.1)
complemented by initial and boundary conditions. Here p w , s w , η w , f w (respectively, p o , s o , η o , f o ) are the pressure, saturation, mobility, and fractional flow of the wetting (respectively non-wetting) phase, φ is the porosity, s in is a given input saturation, and q, q are given flow rates. The capillary pressure, p c , is a given function that depends nonlinearly on the saturation. This problem is referred to as the degenerate two-phase flow problem because the coefficients (phase mobilities) are allowed to vanish in some regions of the domain.

This degeneracy makes the theoretical analysis problematic because it creates a loss of ellipticity in these regions. As the phase mobilities are degenerate when they are evaluated at certain values of the saturation (see (1.8)) and moreover the derivative of the capillary pressure may be unbounded, this system of two coupled nonlinear partial differential equations requires not only a carefully designed discretization preserving the maximum principle, but also a delicate analysis to circumvent the loss of ellipticity and the unboundedness of some coefficients. The discretization relies on mass lumping and upwinding. The use of mass lumping and upwinding with finite elements of degree one was introduced in [START_REF] Forsyth | A control volume finite element approach to NAPL groundwater contamination[END_REF] for porous media flows. Under the assumption that the pressure is known (which simplifies the problem to one equation with saturation as unknown), the maximum principle is proved for the saturation but no convergence analysis is obtained in [START_REF] Forsyth | A control volume finite element approach to NAPL groundwater contamination[END_REF].

The effects of gravity have been neglected in problem (1.1) as the gravity term further complicates the numerical analysis of the scheme.

At the continuous level, problem (1.1) has several equivalent formulations, linked to the choice of primary unknowns selected among wetting phase and non-wetting phase pressure and saturation, or capillary pressure [START_REF] Bastian | A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure[END_REF][START_REF] Helmig | Multiphase Flow and Transport Processes in the Subsurface: a Contribution to the Modeling of Hydrosystems[END_REF]. A good state of the art can be found in the reference [START_REF] Arbogast | The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow[END_REF]. Up to our knowledge, the mathematical analysis of the system of equations was first done in [START_REF] Alt | Nonsteady flow of water and oil through inhomogeneous porous media[END_REF][START_REF] Kroener | Flow of oil and water in a porous medium[END_REF]. A formulation of the model, based on Chavent's global pressure [START_REF] Chavent | A new formulation of diphasic incompressible flows in porous media[END_REF] that removes the degeneracy, was analyzed in [START_REF] Chen | Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution[END_REF][START_REF] Chen | Mathematical analysis for reservoir models[END_REF]. Since then, the global pressure formulation has been discretized and analyzed in many references [START_REF] Chen | Degenerate two-phase incompressible flow, III. Sharp error estimates[END_REF][START_REF] Michel | A finite volume scheme for two-phase incompressible flow in porous media[END_REF][START_REF] Ohlberger | Convergence of a mixed finite element: Finite volume method for the two phase flow in porous media[END_REF], but unfortunately, this formulation is not equivalent to the original problem and it is not used in engineering practice because the global pressure is not a physical quantity that can be measured. Otherwise, with one exception, the numerical analysis of the discrete version of (1.1), has always been done under unrealistic assumptions that cannot be checked at the discrete level [START_REF] Douglas | Finite difference methods for two-phase incompressible flow in porous media[END_REF][START_REF] Epshteyn | Analysis of hp discontinuous Galerkin methods for incompressible two-phase flow[END_REF]. Related to this line of work, the discretization of a degenerate parabolic equation has been studied in the literature [START_REF] Arbogast | A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media[END_REF][START_REF] Eymard | A combined finite volume-nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems[END_REF][START_REF] Woodward | Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media[END_REF][START_REF] Yotov | A mixed finite element discretization on non-matching multiblock grids for a degenerate parabolic equation arising in porous media flow[END_REF]. As far as we know, the only publication that performs the complete numerical analysis of the discrete degenerate two-phase flow system written as above (i.e., in the form used by engineers) is the analysis on finite volumes done in reference [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF]. This motivates our extension of this work to finite elements.

The remaining part of this introduction makes precise problem (1.1) by introducing notation and the weak variational formulation. The numerical scheme is developed in Section 2 and is written in two equivalent forms: the first one is discrete and directly involves the nodal values of the unknowns and the second one is variational and uses the finite element test and trial functions. Because of the nonlinearity and degeneracy of its equations, existence of a discrete solution requires that the discrete wetting phase saturation satisfies a maximum principle. This is the first object of Section 3, the second one being basic a priori pressure estimates, after which existence is shown in Section 4. Numerical results are presented in Section 5. The basic a priori pressure estimates in Section 3.2 are not strong enough to show convergence of the numerical solution to the weak solution. Tighter bounds are obtained in the following work [START_REF] Girault | A finite element method for degenerate two-phase flow in porous media. Part II: Convergence[END_REF].

Model problem

Let Ω ⊂ ℝ d , d = 2 or 3, be a bounded connected Lipschitz domain with boundary ∂Ω and unit exterior normal n, and let T be a final time. The primary unknowns are the wetting phase pressure and saturation. With the last relation in (1.1), s w is the only unknown saturation; so we set s = s w , and rewrite (1.1) almost everywhere

in Ω× ]0, T[ as

∂ t (φs) -∇ ⋅ (η w (s)∇p w ) = f w (s in )q -f w (s)q (1.2) -∂ t (φs) -∇ ⋅ (η o (s)∇p o ) = f o (s in )q -f o (s)q (1.3)
complemented by a natural boundary condition almost everywhere on ∂Ω× ]0, T[:

η w (s)∇p w ⋅ n = 0, η o (s)∇p o ⋅ n = 0 (1.4)
and an initial condition almost everywhere in Ω:

s(⋅, 0) = s 0 := s 0 w , 0 ⩽ s 0 w ⩽ 1. (1.5)
The fractional flows are related to the mobilities by

∀ 0 ⩽ s ⩽ 1, f w (s) = η w (s) η w (s) + η o (s) , f o (s) = 1 -f w (s). (1.6)
Recall that the phase saturations sum up to 1 and the phase pressures are related by the capillary pressure, p c , which is a function of the saturation:

∀ 0 ⩽ s ⩽ 1, p c (s) = p o -p w . (1.7)
This work is done under the following basic assumptions.

Assumption 1.1.

-The porosity φ is piecewise constant in space, independent of time, positive, bounded, and uniformly bounded away from zero.

-The mobility of the wetting phase η w ⩾ 0 is continuous and increasing on the interval [0, 1]. The mobility of the non-wetting phase η o ⩾ 0 is continuous and decreasing on the interval [0, 1]. This implies that the function f w is increasing and the function f o is decreasing on [0, 1]. We also recall that these functions are degenerate, indeed they satisfy:

η w (0) = 0, η o (1) = 0. (1.8)
-There is a positive constant η * such that

η w (s) + η o (s) ⩾ η * ∀s ∈ [0, 1]. (1.9) 
-The capillary pressure p c is a continuous, strictly decreasing function in W 1,1 (0, 1).

-The flow rates at the injection and production wells, q, q ∈ L 2 (Ω× ]0, T[) satisfy

q ⩾ 0, q ⩾ 0, ∫ Ω q = ∫ Ω q.
(1.10)

-The prescribed input saturation s in satisfies almost everywhere in Ω× ]0, T[

0 ⩽ s in ⩽ 1. (1.11)
Since p c , η α , f α , α = w, o are bounded above and below, it is convenient to extend them continuously by constants to ℝ.

Although the numerical scheme studied below does not discretize the global pressure, following [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF], its convergence proof uses a number of auxiliary functions related to the global pressure. First, we introduce the

primitive g c of p c , ∀x ∈ [0, 1], g c (x) = ∫ 1 x p c (s) ds. (1.12)
Since p c is a continuous function on [0, 1], the function g c belongs to C 1 ([0, 1]). Next, we introduce the auxiliary pressures p wg , p wo , and g,

∀x ∈ [0, 1], p wg (x) = ∫ x 0 f o (s)p 󸀠 c (s) ds, p og (x) = ∫ x 0 f w (s)p 󸀠 c (s) ds (1.13) ∀x ∈ [0, 1], g(x) = -∫ x 0 η w (s)η o (s) η w (s) + η o (s) p 󸀠 c (s) ds. (1.14)
Owing to (1.6),

∀x ∈ [0, 1], p wg (x) + p og (x) = ∫ x 0 p 󸀠 c (s) ds = p c (x) -p c (0). (1.15)
Moreover, the derivative of g satisfies formally the identities

∀x ∈ [0, 1], η α (x)p 󸀠 αg (x) + g 󸀠 (x) = 0, α = w, o.
(1.16)

Weak variational formulation

By multiplying (1.2) and (1.3) with a smooth function v, say v ∈ C 1 (Ω × [0, T]) that vanishes at t = T, applying Green's formula in time and space, and using the boundary and initial conditions (1.4) and (1.5), we formally derive a weak variational formulation

-∫ T 0 ∫ Ω φ s ∂ t v + ∫ T 0 ∫ Ω η w (s)∇ p w ⋅ ∇ v = ∫ Ω φ s 0 v(0) + ∫ T 0 ∫ Ω (f w (s in )q -f w (s)q)v ∫ T 0 ∫ Ω φ s ∂ t v + ∫ T 0 ∫ Ω η o (s)∇ p o ⋅ ∇ v = -∫ Ω φ s 0 v(0) + ∫ T 0 ∫ Ω (f o (s in )q -f o (s)q)v.
But in general, the pressures are not sufficiently smooth to make this formulation meaningful and following [START_REF] Chavent | Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase and Multicomponent Flows Through Porous Media[END_REF], by using (1.16), it is rewritten in terms of the artificial pressures,

-∫ T 0 ∫ Ω φ s ∂ t v + ∫ T 0 ∫ Ω (η w (s)∇(p w + p wg (s)) + ∇ g(s)) ⋅ ∇ v = ∫ Ω φ s 0 v(0) + ∫ T 0 ∫ Ω (f w (s in )q -f w (s)q)v ∫ T 0 ∫ Ω φ s ∂ t v + ∫ T 0 ∫ Ω (η o (s)∇(p o -p og (s)) -∇ g(s)) ⋅ ∇ v = -∫ Ω φ s 0 v(0) + ∫ T 0 ∫ Ω (f o (s in )q -f o (s)q)v.
(1.17)

With the above assumptions, problem (1.17) has been analyzed in reference [START_REF] Alt | Nonsteady flow of water and oil through inhomogeneous porous media[END_REF], where it is shown that

it has a solution s in L ∞ (Ω× ]0, T[) with g(s) in L 2 (0, T; H 1 (Ω)), p α , α = w, o, in L 2 (Ω× ]0, T[) with both p w + p wg (s) and p o -p og (s) in L 2 (0, T; H 1 (Ω)).

Scheme

From now on, we assume that Ω is a polygon (d = 2) or Lipschitz polyhedron (d = 3) so it can be entirely meshed.

Meshes and discretization spaces

The mesh T h is a regular family of simplices K, with a constraint on the angle that will be used to enforce the maximum principle: each angle is not larger than π/2, see [START_REF] Casado-Diaz | Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L 1[END_REF]. This is easily constructed in 2D. In 3D, since we only investigate convergence we can embed the domain in a triangulated box. Moreover, since the porosity φ is a piecewise constant, to simplify we also assume that the mesh is such that φ is a constant per element. The parameter h denotes the mesh size, i.e., the maximum diameter of the simplices. On this mesh, we consider the standard finite element space of order one

X h = {v h ∈ C 0 ( Ω); ∀K ∈ T h , v h | K ∈ ℙ 1 }. (2.1)
Thus the dimension of X h is the number of nodes, say M, of T h . Let φ i be the Lagrange basis function, that is piecewise linear, and takes the value 1 at node i and the value 0 at all other nodes. As usual, the Lagrange

interpolation operator I h ∈ L(C 0 ( Ω); X h ) is defined by ∀v ∈ C 0 ( Ω), I h (v) = M ∑ i=1 v i φ i (2.2)
where v i is the value of v at the node of index i. It is easy to see that under the mesh condition, we have

∀K, ∫ K ∇φ i ⋅ ∇φ j ⩽ 0 ∀i ̸ = j. (2.3)
For a given node i, we denote by ∆ i the union of elements sharing the node i and by N(i) the set of indices of all the nodes in ∆ i . In the spirit of [START_REF] Guermond | Invariant domains and first-order continuous finite element approximations for hyperbolic systems[END_REF], we define

c ij = ∫ ∆ i ∩∆ j |∇φ i ⋅ ∇φ j | ∀i, j. (2.4)
Recall that the trapezoidal rule on a triangle or a tetrahedron K is

∫ K f ≈ 1 d + 1 |K| d+1 ∑ ℓ=1 f i ℓ
where f i ℓ is the value of the function f at the ℓth node (vertex), with global number i ℓ , of K. For any region O, the notation |O| means the measure (volume) of O.

We define

m i = 1 d + 1 ∑ K∈∆ i |K| = 1 d + 1 |∆ i |
and taking into account the porosity φ, we define more generally

mi (φ) = 1 d + 1 ∑ K∈∆ i φ| K |K| so that m i = mi (1)
. It is well-known that the trapezoidal rule defines a norm on X h , ‖⋅‖ h , uniformly equivalent to L 2 norm. Let U h ∈ X h and write

U h = M ∑ i=1 U i φ i .
The discrete L 2 norm associated with the trapezoidal rule is

‖U h ‖ h = ( M ∑ i=1 m i |U i | 2 ) 1/2 .
There exist positive constants C and C, independent of h and M, such that

∀U h ∈ X h , C ‖U h ‖ 2 L 2 (Ω) ⩽ ‖U h ‖ 2 h ⩽ C ‖U h ‖ 2 L 2 (Ω) . (2.5)
This is also true for other piecewise polynomial functions, but with possibly different constants. The scalar product associated with this norm is denoted by

(⋅, ⋅) h , ∀U h , V h ∈ X h , (U h , V h ) h = M ∑ i=1 m i U i V i . (2.6)
By analogy, we introduce the notation

∀U h , V h ∈ X h , (U h , V h ) φ h = M ∑ i=1 mi (φ)U i V i . (2.7)
The assumptions on the porosity φ imply that (2.7) defines a weighted scalar product associated with the

weighted norm ‖ ⋅ ‖ φ h , ∀U h ∈ X h , ‖U h ‖ φ h = ((U h , U h ) φ h ) 1/2
that satisfies the analogue of (2.5), with the same constants C and C,

∀U h ∈ X h , C (min Ω φ) ‖U h ‖ 2 L 2 (Ω) ⩽ (‖U h ‖ φ h ) 2 ⩽ C (max Ω φ) ‖U h ‖ 2 L 2 (Ω) . (2.8)

Motivation of the space discretization

While discretizing the time derivative is fairly straightforward, discretizing the space derivatives is more delicate because we need a scheme that is consistent and satisfies the maximum principle for the saturation.

For the moment, we freeze the time variable and focus on consistency in space. First, we recall a standard property of functions of X h on meshes satisfying (2.3).

Proposition 2.1. Under condition (2.3), the following identities holds for all U h and V h in X h , with c ij defined in (2.4):

∫ Ω ∇ U h ⋅ ∇ V h = - M ∑ i=1 U i ∑ j ̸ =i,j∈N(i) c ij (V j -V i ) = 1 2 M ∑ i=1 ∑ j ̸ =i,j∈N(i) c ij (U j -U i )(V j -V i ). (2.9) 
Proof. The first equality is obtained by using (2.3), (2.4) and the fact that

M ∑ j=1 φ j = 1
as in [18, Sect. 12.1].

For the second part, we use the symmetry of c ij and the anti-symmetry of V j -V i to deduce that

- M ∑ i=1 U i ∑ j ̸ =i,j∈N(i) c ij (V j -V i ) = 1 2 M ∑ i=1 ∑ j ̸ =i,j∈N(i) c ij (U j -U i )(V j -V i )
which is the desired result.

Note that c ij vanishes when j ∉ N(i). Therefore, when there is no ambiguity it is convenient to write the above double sums on i and j with i and j running from 1 to M.

As an immediate consequence of Proposition 2.1, we have, by taking

V h = U h , ∀U h ∈ X h , ‖∇ U h ‖ L 2 (Ω) = 1 √ 2 ( M ∑ i,j=1 c ij |U j -U i | 2 ) 1/2 . (2.10)
Now, we consider the case of the product of the gradients by a third function. Beforehand, we introduce the following notation: for indices i and j of two neighboring interior nodes, ∆ i ∩ ∆ j in two dimensions is the union of two triangles and in three dimensions the union of a number of tetrahedra bounded by a fixed constant, say L, determined by the regularity of the mesh. We shall use the following notation

c ij,K = ∫ K |∇ φ i ⋅ ∇ φ j |, w K = 1 |K] ∫ K w. (2.11)
Note that

∑ K⊂∆ i ∩∆ j c ij,K = c ij .
(2.12)

Then we have the following proposition.

Proposition 2.2. Let (2.3) hold. With the notation (2.11), the following identity holds for all w in L 1 (Ω):

∀U h , V h ∈ X h , ∫ Ω w(∇ U h ⋅ ∇ V h ) = - M ∑ i=1 U i M ∑ j=1 ( ∑ K⊂∆ i ∩∆ j c ij,K w K ) (V j -V i ). (2.13)
Proof. It is easy to prove that

∫ Ω w(∇ U h ⋅ ∇ V h ) = M ∑ i,j=1 d ij U i V j (2.14)
where

d ij = ∫ ∆ i ∩∆ j w(∇ φ i ⋅ ∇ φ j ) = ∫ Ω w(∇ φ i ⋅ ∇ φ j ).
(2.15)

Again, we have for any i,

M ∑ j=1 d ij = 0, d ii = -∑ 1⩽j⩽M,j ̸ =i d ij
and by substituting this equality into (2.14), we obtain

∫ Ω w(∇ U h ⋅ ∇ V h ) = M ∑ i,j=1 U i d ij (V j -V i ). (2.16)
But, in view of (2.11) and (2.15), and since

∇ φ i ⋅ ∇ φ j is a constant in each element K contained in ∆ i ∩ ∆ j , d ij = -∑ K⊂∆ i ∩∆ j c ij,K w K , (2.17) 
and (2.13) follows by substituting this equation into (2.16).

Note that d ij = d ji owing to (2.17). The first consequence of Proposition 2.2 is that the right-hand side of (2.13) is a consistent approximation of (w, ∇ u ⋅ ∇ v).

Proposition 2.3. Let (2.3) hold, let u and v belong to H 2 (Ω) and w to L ∞ (Ω), and let U h = I h u, V h = I h v be defined by (2.2). Then, there exists a constant C, independent of h, M, u, v, and w, such that

󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 ∫ Ω w∇ u ⋅ ∇ v + M ∑ i,j=1 U i ( ∑ K⊂∆ i ∩∆ j c ij,K w K ) (V j -V i ) 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 ⩽ C h ‖w‖ L ∞ (Ω) ‖u‖ H 2 (Ω) ‖v‖ H 2 (Ω) . (2.18)
Proof. In view of the identity (2.13), the left-hand side of (2.18) is bounded as follows:

󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 ∫ Ω w(∇ u ⋅ ∇ v -∇ U h ⋅ ∇ V h ) 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 ⩽ ‖w‖ L ∞ (Ω) (‖∇(u -U h )‖ L 2 (Ω) ‖∇ v‖ L 2 (Ω) + ‖∇(v -V h )‖ L 2 (Ω) ‖∇ U h ‖ L 2 (Ω) ).
From here, (2.18) is a consequence of standard finite element interpolation error.

Now, if w is in W 1,∞ (Ω)
, then again, standard finite element approximation shows that there exists a constant C, independent of h, K ⊂ ∆ i ∩ ∆ j , and w, such that

󵄩 󵄩 󵄩 󵄩 w K -w 󵄩 󵄩 󵄩 󵄩L ∞ (K) ⩽ C h |w| W 1,∞ (K) ⩽ C h |w| W 1,∞ (Ω) . (2.19)
As a consequence, we will show that in the error formula (2.18), the average w K can be replaced by any value of w in K. Since all K in ∆ i ∩ ∆ j share the edge, say e ij , whose end points are the nodes with indices i and j, then we can pick the value of w at any point, say Wi,j , of e ij . At this stage, we choose this value freely, but we prescribe that it be symmetrical with respect to i and j, i.e., Wi,j = Wj,i .

(2.20)

Then we have the following approximation result.

Theorem 2.1. With the assumption and notation of Proposition 2.3, there exists a constant C, independent of h and M, such that for all u, and v in H 2 (Ω) and w in W 1,∞ (Ω),

∫ Ω w∇ u ⋅ ∇ v = - M ∑ i,j=1 U i c ij Wi,j (V j -V i ) + R (2.21)
for any arbitrary value Wi,j of w in the common edge e ij satisfying (2.20), and the remainder R satisfies

|R| ⩽ C h |w| W 1,∞ (Ω) ‖u‖ H 2 (Ω) ‖v‖ H 2 (Ω) . (2.22)
Proof. We infer from (2.12) and (2.13) that

∫ Ω w(∇ U h ⋅ ∇ V h ) = - M ∑ i,j=1 U i (V j -V i ) ∑ K⊂∆ i ∩∆ j c ij,K (w K -Wi,j ) - M ∑ i,j=1 U i c ij (V j -V i ) Wi,j . Let R ij = ∑ K⊂∆ i ∩∆ j c ij,K (w K -Wi,j )
which is symmetric in i and j by assumption (2.20). As in Proposition 2.1, the symmetry of R ij and the anti-

symmetry of V j -V i , imply - M ∑ i,j=1 U i R ij (V j -V i ) ⩽ 1 2 ( M ∑ i,j=1 |R ij |(U j -U i ) 2 ) 1/2 ( M ∑ i,j=1 |R ij |(V j -V i ) 2 ) 1/2 . (2.23)
From the nonnegativity of c ij,K , (2.12), and (2.19), we infer that

|R ij | ⩽ ( ∑ K⊂∆ i ∩∆ j c ij,K )C h |w| W 1,∞ (Ω) = c ij C h |w| W 1,∞ (Ω) .
Hence, with (2.10) and standard finite element approximation,

󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 M ∑ i,j=1 U i R ij (V j -V i ) 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 󵄨 ⩽ C h |w| W 1,∞ (Ω) ‖∇ U h ‖ L 2 (Ω) ‖∇ V h ‖ L 2 (Ω) ⩽ C h |w| W 1,∞ (Ω) ‖u‖ H 2 (Ω) ‖v‖ H 2 (Ω) .
The result follows by combining this inequality with (2.18).

The above considerations show that

- M ∑ i,j=1 U i c ij Wi,j (V j -V i ) is a consistent approximation of order one of ∫ Ω w∇ u ⋅ ∇ v
for any symmetric choice of Wi,j in e ij , the common edge of ∆ i ∩ ∆ j . This will lead to the upwinded space discretization in the next subsection (see also [START_REF] Michel | A finite volume scheme for two-phase incompressible flow in porous media[END_REF]). Furthermore, for all real numbers V i and Wi,j satisfying (2.20), 1 ⩽ i, j ⩽ M, the symmetry of c ij and anti-symmetry of

V j -V i imply M ∑ i,j=1 c ij Wi,j (V j -V i ) = 0.
(2.24)

Fully discrete scheme

Let τ = T/N be the time step, t n = nτ, the discrete times, 0 ⩽ n ⩽ N. Regarding time, we shall use the standard

L 2 projection ρ τ defined on ]t n-1 , t n ], for any function f in L 1 (0, T), by ρ τ (f) n := ρ τ (f)| ]t n-1 ,t n ] := 1 τ ∫ t n t n-1 f. (2.25)
Regarding space, we shall use a standard element-by-element L 2 projection ρ h as well as a nodal approximation operator r h defined at each node x i for any function g ∈ L 1 (Ω) by

r h (g)(x i ) = 1 |∆ i | ∫ ∆ i g, 1 ⩽ i ⩽ M (2.26)
and extended to Ω by r h (g) ∈ X h . The operator ρ h is defined for any

f in L 1 (Ω) by ρ h (f)| K = ρ K (f) where, in any element K, ρ K (f) = 1 |K| ∫ K f. (2.27)
The initial saturation s 0 is approximated by the operator r h , 

S 0 h = r h (s 0 ). ( 2 
0 ⩽ s in,h,τ ⩽ 1.
In order to preserve (1.10), the functions q and q are approximated by the functions qh,τ and q h,τ defined with r h and corrected as follows:

qh,τ = ρ τ (r h (q) - 1 |Ω| ∫ Ω (r h (q) -q)) , q h,τ = ρ τ (r h (q) - 1 |Ω| ∫ Ω (r h (q) -q)) . (2.30) 
Since qh,τ and q h,τ are piecewise linears in space, they are exactly integrated by the trapezoidal rule and we easily derive from (1.10) and (2.30) that we have for all n, (q n h , 1) h = (q n h , 1) h .

(2.31)

The set of primary unknowns is the discrete wetting phase saturation and the discrete wetting phase pressure,

S n h and P n w,h , defined pointwise at time t n by:

S n h = M ∑ i=1 S n,i φ i , P n w,h = M ∑ i=1 P n,i w φ i , 1 ⩽ n ⩽ N.
Then the discrete non-wetting phase pressure P n o,h defined by

P n o,h = M ∑ i=1 P n,i o φ i , 1 ⩽ n ⩽ N
is a secondary unknown. The upwind scheme we propose for discretizing (1.2)-(1.3) is inspired by the control volume finite element approach in [START_REF] Forsyth | A control volume finite element approach to NAPL groundwater contamination[END_REF] and by the finite volume scheme in [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF]. For each time step n, 1 ⩽ n ⩽ N, the lines of the discrete equations are 

mi (φ) τ (S n,i -S n-1,i ) - M ∑ j=1 c ij η w (S n,ij w )(P n,j w -P n,i w ) = m i (f w (s n,i in )q n,i -f w (S n,i )q n,i ) (2.32) - mi (φ) τ (S n,i -S n-1,i ) - M ∑ j=1 c ij η o (S n,ij o )(P n,j o -P n,i o ) = m i (f o (s n,i in )q n,i -f o (S n,i )q n,i ) (2.33) P n,i o -P n,i w = p c (S n,i ), 1 ⩽ i ⩽ M (2.34) M ∑ i=1 m i P n,i w = 0. ( 2 
-P n,M w ) -m M (f w (s n,M in )q n,M -f w (S n,M )q n,M ).
Then, in view of (2.24),

ÃM = M-1 ∑ i=1 A i + ÃM = M ∑ i=1 mi (φ) τ (S n,i -S n-1,i ) - M ∑ i=1 m i (f w (s n,i in )q n,i -f w (S n,i )q n,i ).
By summing in the same fashion the lines of (2.33), we obtain

M ∑ i=1 mi (φ) τ (S n,i -S n-1,i ) = - M ∑ i=1 m i (f o (s n,i in )q n,i -f o (S n,i )q n,i ).
A combination of these two equations yields

ÃM = - M ∑ i=1 m i ((f w (s n,i in ) + f o (s n,i in ))q n,i -(f w (S n,i ) + f o (S n,i ))q n,i ) = - M ∑ i=1 m i (q n,i -q n,i ) = 0
by virtue of (1.6), the definition (2.25), and (1.10).

3. In (2.32) (respectively, (2.33)), any constant can be added to P w (respectively, P o ), but in view of (2.34), the constant must be the same for both pressures. The last equation (2.35) is added to resolve this constant.

As usual, it is convenient to associate time functions S h,τ , P α,h,τ with the sequences indexed by n. These are piecewise constant in time in ]0, T[, for instance

P α,h,τ (t, x) = P n α,h (x), α = w, o ∀(t, x) ∈ Ω× ]t n-1 , t n ]. (2.38)
In view of the material of the previous subsection, we introduce the following form:

∀W h , U h , V h , Z h ∈ X h , [Z h , W h ; V h , U h ] h = M ∑ i,j=1 U i c ij Wij (V j -V i ) (2.39)
where the first argument Z h indicates that the choice of Wij depends on Z h . Such dependence, used for the upwinding, will be specified further on, but it is assumed from now on that Wij satisfies (2.20). Considering (2.24), the form satisfies the following properties,

∀Z h , W h , V h ∈ X h , [Z h , W h ; V h , 1] h = 0 (2.40) ∀Z h , W h , V h ∈ X h , [Z h , W h ; V h , V h ] h = - 1 2 M ∑ i,j=1 c ij Wij (V i -V j ) 2 . (2.41)
This last property is derived by the same argument as in proving (2.9).

With the above notation, and taking into account that (2.32) extends to i = M, the scheme (2.32)-(2.35) has the equivalent variational form. Starting from S 0 h (see (2.28)): Find S n h , P n w,h , and We shall see that under the above basic hypotheses, the discrete problem (2.42)-(2.45) has at least one solution. In the sequel, we shall use the following discrete auxiliary pressures:

P n o,h in X h , for 1 ⩽ n ⩽ N, solution of, for all ϑ h in X h , 1 τ (S n h -S n-1 h , ϑ h ) φ h -[P n w,h , I h (η w (S n h )); P n w,h , ϑ h ] h = (I h (f w (s n in,h ))q n h -I h (f w (S n h ))q n h , ϑ h ) h (2.42) - 1 τ (S n h -S n-1 h , ϑ h ) φ h -[P n o,h , I h (η o (S n h )); P n o,h , ϑ h ] h = (I h (f o (s n in,h ))q n h -I h (f o (S n h ))q n h , ϑ h ) h (2.
U w,h,τ = P w,h,τ + I h (p wg (S h,τ )), U o,h,τ = P o,h,τ -I h (p og (S h,τ )).
(2.46)

A priori bounds

The present section is devoted to basic a priori bounds used in proving existence of a discrete solution. Existence is fairly technical and will be postponed till Section 4. The first step is a key bound on the discrete saturation. In the second step, this bound will lead to a pressure estimate and in particular to a bound on the discrete analogue of auxiliary pressures.

Maximum principle

The scheme (2.32)-(2.35) satisfies the maximum principle property. The proof given below uses a standard argument as in [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF].

Theorem 3.1. The following bounds hold:

0 ⩽ S h,τ ⩽ 1. (3.1)
Proof. As 0 ⩽ s 0 ⩽ 1 almost everywhere, by construction (2.28), we immediately have

0 ⩽ min Ω s 0 ⩽ S 0 h ⩽ max Ω s 0 ⩽ 1.
Now, the proof proceeds by contradiction. Assume that there is an index n ⩾ 1 such that

S n-1 h ⩽ 1
and that there is a node i such that

S n,i = ‖S n h ‖ L ∞ (Ω) > 1 and thus S n,i > S n-1,i .
Dropping the index n in the rest of the proof, (2.32) and (2.33) imply 

∑ j ̸ =i,j∈N(i) c ij η w (S ij w )(P j w -P i w ) + m i (f w (s i in )q i -f w (S i )q i ) > 0 (3.2) -∑ j ̸ =i,j∈N(i) c ij η o (S ij o )(P j o -P i o ) -m i (f o (s i in )q i -f o (S i )q i ) > 0. ( 3 
-P i w ) ⩽ η w (S i )(P j w -P i w ).
Finally, the term vanishes when P i w = P j w . Therefore we have in all cases

∑ j ̸ =i,j∈N(i) c ij η w (S i )(P j w -P i w ) + m i (f w (s i in )q i -f w (S i )q i ) > 0. (3.4)
A similar argument gives

-∑ j ̸ =i,j∈N(i) c ij η o (S i )(P j o -P i o ) -m i (f o (s i in )q i -f o (S i )q i ) > 0. (3.5)
The substitution of (2.34) into (3.5) yields

-∑ j ̸ =i,j∈N(i) c ij η o (S i )((P j w -P i w ) + (p c (S j ) -p c (S i ))) -m i (f o (s i in )q i -f o (S i )q i ) > 0. (3.6) 
Since p c is decreasing and S i ⩾ S j , the second term in the above sum is negative. This implies that

-∑ j ̸ =i,j∈N(i) c ij η o (S i )(P j w -P i w ) -m i (f o (s i in )q i -f o (S i )q i ) > 0. (3.7)
The sum on j cancels by multiplying (3.4) by η o (S i ), (3.7) by η w (S i ), and adding the two. The sign is unchanged because either η o (S i ) or η w (S i ) is strictly positive. Hence,

m i η o (S i ) (f w (s i in )q i -f w (S i )q i ) -m i η w (S i ) (f o (s i in )q i -f o (S i )q i ) > 0.
By definition of f w and f o , this reduces to

η o (S i )f w (s i in ) -η w (S i )f o (s i in ) > 0. (3.8)
Now consider the function:

r(s) = η o (s)f w (s i in ) -η w (s)f o (s i in ). (3.9)
It is decreasing and r(s i in ) = 0. Then, since S i > 1 ⩾ s i in , see (1.11), we have

r(S i ) ⩽ r(s i in ) = 0
which contradicts (3.8). The proof of the lower bound in (3.1) follows the same lines.

Pressure bounds

The following properties will be used frequently. Proof. To simplify the notation, we drop the superscript n. The second mean formula for integrals gives

p wg (S j ) -p wg (S i ) = ∫ S j S i f o (s)p 󸀠 c (s) ds = f o (ξ)(p c (S j ) -p c (S i )) (3.14) 
for some ξ between S i and S j . Using (2.34) we write

U j w -U i w = (1 -f o (ξ))(P j w -P i w ) + f o (ξ)(P j o -P i o ) = f w (ξ)(P j w -P i w ) + f o (ξ)(P j o -P i o ).
Therefore since f w + f o = 1, we have

(U j w -U i w ) 2 ⩽ η w (ξ) η w (ξ) + η o (ξ) (P j w -P i w ) 2 + η o (ξ) η w (ξ) + η o (ξ) (P j o -P i o ) 2 . (3.15) 
We now consider the following six cases. 

(U j w -U i w ) 2 ⩽ η w (S ij w ) η w (ξ) + η o (ξ) (P j w -P i w ) 2 + η o (S ij o ) η w (ξ) + η o (ξ) (P j o -P i o ) 2
and with (1.9)

(U j w -U i w ) 2 ⩽ 1 η * (η w (S ij w )(P j w -P i w ) 2 + η o (S ij o )(P j o -P i o ) 2 ) . (3.16) 
2. If P i w > P j w and

P i o > P j o , then η w (S ij w ) = η w (S i ) and η o (S ij o ) = η o (S i ). From η o (S i )(p c (S j ) -p c (S i )) = (η o (S i ) + η w (S i )) ∫ S j S i f o (S i )p 󸀠 c (s) ds and (3.14), we derive η o (S i )(p c (S j ) -p c (S i ))-(η o (S i ) + η w (S i ))(p wg (S j ) -p wg (S i )) = (η o (S i ) + η w (S i )) ∫ S j S i (f o (S i ) -f o (s))p 󸀠 c (s) ds.
As p c and f o are decreasing, the above right-hand side is negative. Hence

η o (S i )(p c (S j ) -p c (S i )) -(η o (S i ) + η w (S i ))(p wg (S j ) -p wg (S i )) ⩽ 0. (3.17) 
We multiply (3.17 

(η o (S i )(p c (S j ) -p c (S i )) -(η o (S i ) + η w (S i ))(p wg (S j ) -p wg (S i ))) (2(P j w -P i w ) + p c (S j ) -p c (S i )) ⩾ 0.
By expanding and using the next inequality implied by (3.14)

, if f o (ξ) ̸ = 0, (p wg (S j ) -p wg (S i ))(p c (S j ) -p c (S i )) ⩾ (p wg (S j ) -p wg (S i )) 2
we obtain

η o (S i )(p c (S j ) -p c (S i )) 2 + 2η o (S i )(p c (S j ) -p c (S i ))(P j w -P i w ) ⩾ (η o (S i ) + η w (S i ))(p wg (S j ) -p wg (S i )) (2(P j w -P i w ) + p wg (S j ) -p wg (S i )) .
When (η o (S i ) + η w (S i ))(P j w -P i w ) 2 is added to both sides, this becomes

η w (S i )(P j w -P i w ) 2 + η o (S i )(P j o -P i o ) 2 ⩾ (η o (S i ) + η w (S i ))(U j w -U i w ) 2
and (1.9) implies the desired result. It remains to consider the case f o (ξ) = 0, i.e., p wg (S j ) = p wg (S i ). If

η o (S i ) ̸ = 0, then (3.17) yields p c (S j ) -p c (S i ) ⩽ 0, which implies P i o -P j o ⩾ P i w -P j w
and we deduce immediately

η w (S i )(P j w -P i w ) 2 + η o (S i )(P j o -P i o ) 2 ⩾ (η w (S i ) + η o (S i ))(P j w -P i w ) 2 ⩾ η * (P j w -P i w ) 2 .
When η o (S i ) = 0, we have trivially 

η w (S i )(P j w -P i w ) 2 + η o (S i )(P j o -P i o ) 2 = η w (S i )(P j w -P i w ) 2 ⩾ η * (P j w -P i w ) 2 .

If

(U j w -U i w ) 2 ⩽ η w (ξ) η w (ξ) + η o (ξ) (P j w -P i w ) 2 ⩽ η w (S ij w ) η w (ξ) + η o (ξ) (P j w -P i w ) 2
which is the desired result. 

- N ∑ n=1 (S n h -S n-1 h , p c (S n h )) φ h + 1 2 N ∑ n=1 τ ∑ α=w,o M ∑ i,j=1 c ij η α (S n,ij α )(P n,i α -P n,j α ) 2 = N ∑ n=1 τ ∑ α=w,o (f α (s n in,h )q n h -f α (S n h )q n h , P n α,h ) h . (3.19) 
Following [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF], the first term in (3.19) is treated with the primitive g c of p c , see (1.12). Indeed, by the mean-value theorem, there exists ξ between S n,i and S n-1,i such that

g c (S n,i ) -g c (S n-1,i ) = -(S n,i -S n-1,i )p c (ξ).
As the function p c is decreasing, then p c (ξ) ⩾ p c (S n,i ) when S n,i ⩾ S n-1,i and p c (ξ) ⩽ p c (S n,i ) when S n,i ⩽ S n-1,i . In both cases, we have

g c (S n,i ) -g c (S n-1,i ) ⩽ -(S n,i -S n-1,i )p c (S n,i )
and owing that φ is positive and constant in time, (3.19) can be replaced by the inequality

(g c (S N h ) -g c (S 0 h ), 1) φ h + 1 2 N ∑ n=1 τ ∑ α=w,o M ∑ i,j=1 c ij η α (S n,ij α )(P n,i α -P n,j α ) 2 ⩽ N ∑ n=1 τ ∑ α=w,o (f α (s n in,h )q n h -f α (S n h )q n h , P n α,h ) h . (3.20)
As the first term in the above left-hand side is bounded, owing to the continuity of g c and boundedness of S h,τ , it suffices to handle the right-hand side. Let us drop the superscript n and treat one term in the time sum. Following again [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF], in view of Lemma 3.2 we use the auxiliary pressures p wg and p wo , defined in (1.13).

Clearly, (1.15) and (2.34) imply

P i w + p wg (S i ) + p og (S i ) + p c (0) = P i o ∀i. (3.21)
Using this, a generic term, say Y, in the right-hand side of (3.20) can be expressed as

Y = (q h -q h , U w,h ) h + (f o (s in,h )q h -f o (S h )q h , p c (0)) h + (f o (s in,h )q h -f o (S h )q h , p og (S h )) h -(f w (s in,h )q h -f w (S h )q h , p wg (S h )) h = T 1 + ⋅ ⋅ ⋅ + T 4 .
We now bound each term T i . For T 1 , (2.31) implies that any constant β can be added to U w,h , in particular β can be chosen so that the sum has zero mean value in Ω. with a constant C, depending only on the domain Ω, we have

‖U w,h + β‖ h ⩽ C‖U w,h + β‖ L 2 (Ω) ⩽ C‖∇ U w,h ‖ L 2 (Ω)
with another constant C. Then Young's inequality yields

|T 1 | ⩽ C 2 2η * ‖q h -q h ‖ 2 h + η * 4 ‖∇ U w,h ‖ 2 L 2 (Ω)
and with Lemma 3.2, this becomes

|T 1 | ⩽ C 2 2η * ‖q h -q h ‖ 2 h + 1 4 M ∑ i,j=1 c ij (η w (S ij )(P j w -P i w ) 2 + η o (S ij )(P j o -P i o ) 2 ) .
The term T 2 is easily bounded since p c (0) is a number, and so are the terms T 3 and T 4 , in view of the boundedness of the saturation and the continuity of p og and p wg . We thus have

|T 2 + T 3 + T 4 | ⩽ C(‖q h ‖ L 1 (Ω) + ‖q h ‖ L 1 (Ω) ).
Then substituting these bounds for each n into (3.20), we obtain

1 4 τ N ∑ n=1 M ∑ i,j=1 c ij (η w (S n,ij w )(P n,i w -P n,j w ) 2 + η o (S n,ij o )(P n,i o -P n,j o ) 2 ) ⩽ C (‖q h,τ -q h,τ ‖ 2 L 2 (Ω× ]0,T[) + ‖q h,τ ‖ L 1 (Ω× ]0,T[) + ‖q h,τ ‖ L 1 (Ω× ]0,T[) )
thus proving (3.18). 

η * ‖∇ U α,h,τ ‖ 2 L 2 (Ω× ]0,T[) ⩽ C (3.23)
with the constant C of (3.18).

Existence of numerical solution

We fix n ⩾ 1 and assume there exists a solution (S n-1 h , P n-1 w,h ) at time t n-1 with 0 ⩽ S n-1 h ⩽ 1. We want to show existence of a solution (S n h , P n w,h ) by means of the topological degree [START_REF] Deimling | Nonlinear Functional Analysis[END_REF][START_REF] Dinca | Brouwer Degree and Applications[END_REF].

Let ϑ be a constant parameter in [0, 1]. For any continuous function f : [0, 1] → ℝ and any t ∈ [0, 1], we define the transformed function f :

[0, 1] → ℝ by ∀s ∈ [0, 1], f (s) = f(ts + (1 -t)ϑ).
Since ϑ is fixed, when t = 0, f (s) = f(ϑ), a constant independent of s. Now, (2.45) implies that any solution P w,h,τ of (2.42)-(2.45) belongs to the following subspace X 0,h of X h ,

X 0,h = {Λ h ∈ X h ; ∫ Ω Λ h = 0}. (4.1) 
This suggests to define the mapping F :

[0, 1] × X h × X 0,h → X h × X 0,h by F(t, ζ, Λ) = (A h , A h + B h )
where A h , respectively B h , solves for all Θ h ∈ X h ,

(A h , Θ h ) = 1 τ (ζ h -S n-1 h , Θ h ) φ h -[Λ h , I h (η w (ζ h )); Λ h , Θ h ] h -(I h ( fw (s n in,h ))tq n h -I h ( fw (ζ h ))tq n h , Θ h ) h (4.2) (B h , Θ h ) = - 1 τ (ζ h -S n-1 h , Θ h ) φ h -[P o,h , I h (η o (ζ h )); P o,h , Θ h ] h -(I h ( fo (s n in,h ))tq n h -I h ( fo (ζ h ))tq n h , Θ h ) h (4.3)
and P o,h is defined by 

P o,h = Λ h -I h (p c (ζ h )). ( 4 

A priori bounds on (ζ h , Λ h )

In the following we consider t ∈ [0, 1] and (ζ h , Λ h ) ∈ X h × X 0,h that satisfy

F(t, ζ h , Λ h ) = 0. (4.5)
We first show that ζ h satisfies a maximum principle.

Proposition 4.1. The following bounds hold for all (t, ζ h , Λ h ) satisfying (4.5):

0 ⩽ ζ h ⩽ 1. (4.6)
Proof. Either t ∈ ]0, 1] or t = 0. The proof for t ∈ ]0, 1] follows closely the argument used in proving Theorem 3.1 and is left to the reader. For t = 0 we proceed again by contradiction. Assume first that ‖ζ h ‖ L ∞ (Ω) > 1,

i.e., there is a node i such that

ζ i = ‖ζ h ‖ L ∞ (Ω) > 1 ⩾ S n-1,i .
As t = 0, (4.5) reduces to

∑ j ̸ =i c ij η w (ϑ)(Λ i -Λ j ) > 0, -∑ j ̸ =i c ij η o (ϑ)(Λ i -Λ j ) > 0 ∀1 ⩽ i ⩽ M.
Since η o and η w are non-negative functions satisfying (1.9), the inequalities above yield a contradiction. A similar argument is used to show that ζ h ⩾ 0.

Next we show the following bound on Λ h .

Proposition 4.2.

There is a constant C such that for all t ∈ [0, 1] we have

η * M ∑ i,j=1
c ij (Λ j -Λ i + p wg (tζ j + (1 -t)ϑ) -p wg (tζ i + (1 -t)ϑ)) with P o,h defined in (4.4). This bound is obtained via arguments similar to those used in proving Theorem 3.2.

The main difference is that the formula is neither summed over n nor multiplied by the time step τ. As a consequence, the constant C 1 includes a term of the form τ -1 ‖g c ‖ L ∞ (Ω) arising from the bound of the discrete time derivative. To finish the proof we must show that η * (Λ j -Λ i + p wg (tζ j + (1 -t)ϑ) -p wg (tζ i + (1 -t)ϑ))

2 ⩽ η w (tζ ij w + (1 -t)ϑ)(Λ j -Λ i ) 2 + η o (tζ ij o + (1 -t)ϑ)(P j o -P i o ) 2 .
By (1.9), this is trivially satisfied when t = 0. When t ∈]0, 1], the argument is the same as in the proof of Lemma 3. owing to (2.10). As Λ h ∈ X 0,h , the generalized Poincaré inequality (3.22) shows there exists a constant C 3 independent of t such that

‖Λ h ‖ L 2 (Ω) ⩽ C 3 .
Then the equivalence of norm (2.5) yields

‖Λ h ‖ h ⩽ C 4
and (4.8) follows by setting R 1 = C 1 + C 4 , a constant independent of t.

Proof of existence

For any R > 0, let B R denote the ball Proof. The proof proceeds in two steps. First, we show that the system with t = 0 has a solution:

B R = {(ζ h , Λ h ) ∈ X h × X 0,h ; ‖ζ h ‖ h + ‖Λ h ‖ h ⩽ R} (4.
F(0, ζ h , Λ h ) = 0.
This is a square linear system in finite dimension, so existence is equivalent to uniqueness. Thus we assume that it has two solutions, and for convenience, we still denote by (ζ h , Λ h ) the difference between the two solutions. The system reads

mi τ ζ i h -∑ j ̸ =i,j∈N(i) c ij η w (ϑ)(Λ j -Λ i ) = 0, 1 ⩽ i ⩽ M (4.11) - mi τ ζ i h -∑ j ̸ =i,j∈N(i) c ij η o (ϑ)(Λ j -Λ i ) = 0, 1 ⩽ i ⩽ M (4.12) ∑ i m i Λ i = 0. (4.13)
We add the first two equations, multiply by Λ i , and sum over i. Then (2.10) and (2.41) imply that Λ h is a constant and finally (4.13) shows that this constant is zero. This yields ζ h = 0.

Next, we argue on the topological degree. Since the topological degree of a linear map is the sign of its 

  η w (S ij w ) = η w (S i ) and η o (S ij o ) = η o (S j ) when P i o < P j o ; when P i o = P j o , the value of η o does not matter. From (3.10) we then have S i ⩾ S j . Since η w is increasing, η w (ξ) ⩽ η w (S i ) and since η o is decreasing, η o (ξ) ⩽ η o (S j ). Thus we have

  w ) < 0 and use (2.34),

  η w (S ij w ) = η w (S j ) and η o (S ij o ) = η o (S i ) in the case of a strict inequality; also S i ⩽ S j . Then (3.15) and the monotonic properties of η w and η o yield (3.13). If P i w = P j w , then according to (3.11), S i ⩽ S j and the same conclusion holds. from (3.12), we have S i ⩽ S j and with (3.15):

  The proof follows closely that of Theorem 3.2. First we show there exists a constant C 1 independent oft such that M ∑ i,j=1 c ij (η w (tζ ij w + (1 -t)ϑ)(Λ j -Λ i ) 2 + η o (tζ ij o + (1 -t)ϑ)(P j o,h -P i o,h ) 2 ) ⩽ C 1
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 41 [START_REF] Chen | Mathematical analysis for reservoir models[END_REF] and let R 0 = R 1 +1, where R 1 is the constant of (4.8). Since all solutions (ζ h , Λ h ) of (4.5) are in the ball B R 1 , this function has no zero on the boundary ∂B R 0 . Existence of a solution of (2.42)-(2.45) follows from the following result. The equation F(1, ζ h , Λ h ) = 0 has at least one solution (ζ h , Λ h ) ∈ B R 0 .

  .28)The input saturation s in is approximated in space and time by s in,h,τ = ρ τ (r h (s in ))

		(2.29)
	with space-time nodal values denoted by s	n,i

in . Clearly,

(1.11) 

implies in space and time

  .35)Here i runs from 1 to M -1 in (2.32) and from 1 to M in (2.33); the upwind values S

									n,ij w , S	n,ij o are defined by
	S	n,ij w =	{ { { { {	S n,i , S n,j , max(S n,i , S n,j ), P P P	n,i w > P n,i n,i w = P w < P	n,j w w n,j n,j w	(2.36)
	S	n,ij o	=	{ { { { {	S n,i , S n,j , min(S n,i , S n,j ), P P P	n,i o > P n,i n,i o = P o < P	n,j o o . n,j n,j o	(2.37)
	We observe that							
			S	n,ij w = S	n,ji w ,	S	n,ij o = S	n,ji o
	so that, if we interpret in (2.32) (respectively, (2.33)) η w (S	n,ij w ) (respectively, η o (S	n,ij o )) as Wi,j , then (2.20) and
	hence (2.24) hold.							
	Remark 2.1. Before setting (2.32)-(2.35) in variational form, observe that:
	1. The scheme (2.32)-(2.35) forms a square system in the primary unknowns, S n h and P n w,h .
							M ∑	c Mj η w (S	n,Mj w )(P	n,j w
							j=1

2. Formula (2.32) is also valid for i = M. Indeed, we pass to the left-hand side the right-hand side of (2.32) and set A i the resulting line of index i. Let ÃM denote what should be the line of index M, i.e., ÃM = mM (φ) τ (S n,M -S n-1,M ) -

  Lemma 3.1. The fact that p c is strictly decreasing and (2.34) yield the following:

			P i w > P	j w , and P i o ⩽ P	j o implies S i ⩾ S j ;	(3.10)
		if P i w = P	j w , then P i o ⩾ P	j o if and only if S i ⩽ S j ;	(3.11)
		if P i o = P	j o , then P i w ⩽ P	j w , if and only if S i ⩽ S j .	(3.12)
	Let us start with a lower bound that removes the degeneracy caused by the mobilities when they multiply the
	discrete pressures.									
	Lemma 3.2. Let U w,h be defined by (2.46) with p wg defined in (1.13). We have for all n and any i and j
	η * (U	n,j w -U	n,i w ) 2 ⩽ η w (S	n,ij w )(P	n,j w -P	n,i w ) 2 + η o (S	n,ij o )(P	n,j o -P	n,i o ) 2 .	(3.13)

  , add the two equations, multiply by τ and sum over n from 1 to N.

	5. Similarly, if P i w = P	j w and P i o < P	j o , then from (3.11), we have S j ⩽ S i and with (3.15):
			(U	j w -U i w ) 2 ⩽	η o (ξ) η w (ξ) + η o (ξ)	(P	j o -P i o ) 2 ⩽	η o (S η w (ξ) + η o (ξ) ij o )	(P	j o -P i o ) 2 .
	6. If P i w < P	j w and P i o < P	j o , (3.13) follows from the second case by switching i and j.
	This completes the proof.							
	The pressure bound in the next theorem is the one that arises naturally from the left-hand side of (2.42)
	and (2.43).										
	Theorem 3.2. There exists a constant C, independent of h and τ, such that
		τ	N ∑ n=1	i,j=1 M ∑	c ij (η w (S	n,ij w )(P	n,i w -P	n,j w ) 2 + η o (S	n,ij o )(P	n,i o -P	n,j o ) 2 ) ⩽ C.	(3.18)
	Proof. We test (2.42) by P n w,h , (2.43) by P n o,h By using (2.44) and (2.41), we obtain

  By combining Theorem 3.2 with Lemma 3.2, we immediately derive a bound on the discrete auxiliary pressures. The bound (3.23) with α = o follows from the same with α = w, (1.15), and (2.34).

	Theorem 3.3. For α = w, o we have

  .4)The choice of ηw (ζ h ) in (4.2) (respectively ηo (ζ h ) in (4.3)) is given by (2.36) (respectively (2.37)) where Λ h plays the role of P w,h and P o,h is defined in (4.4). As in (2.36) and (2.37), it leads us to introduce the variables ζ ⩽ i, j ⩽ M. Clearly, (4.2)-(4.4) determine uniquely A h and B h , and it is easy to check that A h + B h belongs to X 0,h . The mapping t 󳨃 → F(t, ζ h , Λ h ) is continuous. Indeed, since the space has finite dimension, we only need to check continuity of the upwinding. By splitting x into its positive and negative part, x = x + + x -, the upwind

	ζ o for all 1 term, say ηw (ζ ij	ij w )(P	j w -P i w ) reads	ij w and
	ηw (ζ	ij w )(P	j w -P i w ) = η w (tζ i + (1 -t)ϑ)((P	j w -P i w ) -) + η w (tζ j + (1 -t)ϑ)((P	j w -P i w )

+ )

which is continuous with respect to t.

We remark that

F(1, ζ h , Λ h ) = 0 implies that (ζ h , Λ h ) solves (2.42)-(2.45). Conversely, if (ζ h , Λ h ) solves (2.42)-(2.45) then F(1, ζ h , Λ h ) = 0.

Thus, showing existence of a solution to the problem (2.42)-(2.45) is equivalent to showing existence of a zero of F(1, ζ h , Λ h ). Before proving existence of a zero, we use the estimates established in the previous section to determine an a priori bound of any zero (ζ h , Λ h ) of F(1, ζ h , Λ h ).

  2. Propositions 4.1 and 4.2 are combined to obtain a bound on ‖ζ h‖ h + ‖Λ h ‖ h . There exists a constant R 1 > 0, independent of t ∈ [0, 1], such that any solution (ζ h , ΛTo establish a bound on ‖Λ h ‖ h , we infer from (1.13) that the function |p wg | is bounded by p c (0) -p c (1) because f o is bounded by one and p c is a decreasing function. Thus (4.7) implies that there exists a constant C 2 independent of t that satisfies C 2 , i.e., ‖∇Λ h ‖ L 2 (Ω) ⩽

	Proposition 4.3. M ∑ i,j=1	c ij (Λ j -Λ i )	√C 2 √ 2	(4.9)

h ) of (4.5) satisfies

‖ζ h ‖ h + ‖Λ h ‖ h ⩽ R 1 . (4.8)

Proof. According to Proposition 4.1, there exists a constant C 1 independent of t such that

‖ζ h ‖ h ⩽ C 1 . 2 ⩽

  determinant, we have, by denoting d the degree,d(F(0, ζ h , Λ h ), B R 0 , 0) ̸ = 0.

We also know that d(F(t, ζ h

, Λ h ), B R 0 , 0) is independent of t since the mapping t 󳨃 → F(t, ζ h , Λ h ) is continuous and for every t ∈ [0, 1], if F(t, ζ h , Λ h ) = 0, then (ζ h , Λ h ) does not belong to ∂B R 0 . Therefore we have d(F(1, ζ h , Λ h ), B R 0 , 0) = d(F(0, ζ h , Λ h ), B R 0 , 0) ̸ = 0. This implies that F(1, ζ h , Λ h ) has a zero (ζ h , Λ h ) ∈ B R 0 .

Numerical validation

The present section proposes a numerical validation of our algorithm with a two dimensional finite difference code. Details on the algorithm implemented are given. A problem with manufactured solutions is then considered to study the convergence properties of our algorithm.

Implementation of the model

The scheme developed in Section 2.3 is linearized by time lagging the saturation, by using (2.34) 

Thus, for each node 1 ⩽ i ⩽ M, the unknowns (S n+1,i , P n+1,i w

) are computed as the solution of the following problem:

We note that to facilitate the implementation of this algorithm in a two dimensional finite difference code, the source terms of the equations (2.32)-(2.33) have been replaced by functions denoted by f 1 and f 2 .

Numerical test with a manufactured solution

The numerical validation of the algorithm is done by approximating the analytical solutions defined by

on the computational domain Ω = [0, 1] 2 . Dirichlet boundary conditions are applied on ∂Ω on both unknowns P w and S. The initial conditions of the problem satisfy (5.2)-(5.3). The porosity of the domain is set to:

(5.4)

The mobilities η w and η o , introduced in Section 1.1, are defined as follows:

(5.5)

The capillary pressure is based on the Brooks-Corey model, it reads: we uniformly refine the mesh by dividing each into four triangles to obtain the second structured grid. We continue this process until all the six grids have been constructed. The convergence properties are evaluated by using a time step τ set to the mesh size h with a final time T = 1. As the time derivatives and the saturations

are computed with first order time approximation, we expect the convergence rate in the L 2 norm to be of order one.

The results of the convergence tests are presented in Table 1. The theoretical order of convergence, equal to one, is recovered for both unknowns which confirms the correct behavior of the algorithm.

Conclusions

This paper formulates a ℙ 1 finite element method to solve the immiscible two-phase flow problem in porous media. The unknowns are the phase pressure and saturation, which are the preferred unknowns in industrial reservoir simulators. The numerical method employs mass lumping for integration and an upwind flux technique. In this paper, we prove existence of the numerical solutions and some stability bounds. We also show that the numerical saturation is bounded between zero and one. The convergence analysis is to be presented in the second part of the paper.
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