
HAL Id: hal-03876297
https://hal.science/hal-03876297v1

Submitted on 28 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finite element approximation of a strain-limiting elastic
model

Andrea Bonito, Vivette Girault, Endre Süli

To cite this version:
Andrea Bonito, Vivette Girault, Endre Süli. Finite element approximation of a strain-limiting elastic
model. IMA Journal of Numerical Analysis, 2018, 40, pp.29 - 86. �10.1093/imanum/dry065�. �hal-
03876297�

https://hal.science/hal-03876297v1
https://hal.archives-ouvertes.fr


IMA Journal of Numerical Analysis (2020) 40, 29–86
doi:10.1093/imanum/dry065

Advance Access publication on 29 October 2018

Finite element approximation of a strain-limiting elastic model

Andrea Bonito∗

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA
∗Corresponding author: bonito@math.tamu.edu

Vivette Girault

Sorbonne Université, Université Paris-Diderot SPC, CNRS, Laboratoire Jacques-Louis Lions,
LJLL, F-75005 Paris

girault@ann.jussieu.fr

and

Endre Süli

Mathematical Institute, Andrew Wiles Building, University of Oxford, Woodstock Road,
Oxford OX2 6GG, UK
suli@maths.ox.ac.uk

[Received on 10 May 2018; revised on 10 May 2018]

We construct a finite element approximation of a strain-limiting elastic model on a bounded open domain
in R

d , d ∈ {2, 3}. The sequence of finite element approximations is shown to exhibit strong convergence
to the unique weak solution of the model. A rate of convergence for the sequence of finite element
approximations is shown provided that the material parameters featuring in the model are Lipschitz
continuous and that the exact solution possesses additional regularity. A rate of convergence for the
sequence of finite element approximations is shown provided that the material parameters featuring
in the model are Lipschitz continuous and that the exact solution possesses additional regularity. An
iterative algorithm is constructed for the solution of the system of nonlinear algebraic equations that
arises from the finite element approximation. An appealing feature of the iterative algorithm is that it
decouples the monotone and linear elastic parts of the nonlinearity in the model. In particular, our choice
of piecewise constant approximation for the stress tensor (and continuous piecewise linear approximation
for the displacement) allows us to compute the monotone part of the nonlinearity by solving an algebraic
system with d(d+1)/2 unknowns independently on each element in the subdivision of the computational
domain. The theoretical results are illustrated by numerical experiments.

Keywords: strain-limiting elastic model; finite element method; convergence; decoupled iterative
method;.

1. Introduction and statement of the problem

Until recently, the term elasticity referred to Cauchy elasticity, and within such a theory, strain-limiting
models are not possible. Motivated by the work of Rajagopal discussed in Málek et al. (1996), see
also Rajagopal (2003, 2007), the objective of this paper is to design, analyze and implement numerical
approximations of models that fall outside the realm of classical Cauchy elasticity. These models are
implicit and nonlinear, and are referred to as strain limiting because they permit the linearized strain
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30 A. BONITO ET AL.

to remain bounded even when the stress is very large, a property that cannot be guaranteed within the
framework of standard elastic or nonlinear elastic models.

On a bounded domain Ω ⊂ R
d, d ∈ {2, 3}, and for a given external force f : Ω → R

d we consider
the nonlinear elastic model

− div(T) = f in Ω , (1.1)

where the symmetric stress tensor T is related to the strain tensor ε(u) := 1
2 (∇u + (∇u)T), for a given

displacement vector u, via a nonlinear constitutive relation of the form

ε(u) = λ(Tr(T))Tr(T)I + μ(|Td|)Td in Ω . (1.2)

Here λ ∈ C0(R) and μ ∈ C0([0, +∞)) are given functions and Td denotes the deviatoric part of the
tensor T, defined by

Td := T − 1

d
Tr(T)I.

Additional assumptions on λ and μ are required (see (A1–A4) below), which guarantee that, in
particular, the right-hand side of (1.2) is a monotone operator applied to T. This strain-limiting model
is used to describe, for example, the behavior of brittle materials in the vicinity of fracture tips, or in the
neighborhood of concentrated loads, where there is concentration of stress even though the magnitude
of the strain tensor is limited. The model itself is derived and analyzed in the work of Bulíček et al.
(2014); some of the ideas introduced in Bulíček et al. (2014) will also be used in the numerical analysis
developed in the sequel. Of course, there are several strain-limiting models: the reader will find other
models in Bulíček et al. (2014) and the references quoted therein. This being the first effort though
to construct and rigorously analyze a numerical algorithm for a strain-limiting elastic model, we shall
confine ourselves to the model (1.1), (1.2).

The analysis of the model (1.1), (1.2) is far from trivial because the operator involved, although
monotone, lacks coercivity. Bulíček et al. (2014) show the existence of a weak solution to the problem
by first regularizing (1.2) with the addition of an appropriate coercive term,

Tr(T)I

n|Tr(T)|1− 1
n

+ Td

n|Td|1− 1
n

,

see (3.2), eventually providing a control of T in L1+ 1
n
(Ω)d×d. It is then shown in Bulíček et al. (2014)

that, as n → ∞, the limit of the sequence of solutions to the regularized system satisfies the original
problem. This nonlinear regularization is necessary in order to be able to cope with possibly rough data
f. However, for smoother data, the simpler linear regularization 1

n T has been used in Bulíček et al.
(2014) to recover additional regularity of the solution; see (6.3).

The same framework is used here in the discrete case. More precisely, the regularized problems
(3.2) and (6.3) are discretized by means of a simple finite element scheme: for instance, on simplices, by
discontinuous piecewise P0 elements for each component of the stress tensor T, and globally continuous,
piecewise P1 elements for each component of the displacement vector u; see (5.3) and (6.10). It is
worth noting here that for quadrilateral subdivisions of the domain Ω , the corresponding (Q0,Q1)

stress/displacement pair of finite element spaces is (inf-sup) unstable, and discontinuous polynomials of
degree 1 in each direction should be selected for the stress approximations instead of Q0 elements so as
to restore (inf-sup) stability; see Sections 5.3 and 5.4. Convergence to the exact solution is established by
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FE APPROXIMATION OF STRAIN-LIMITING ELASTICITY 31

first passing to the limit as the mesh size tends to zero, for a fixed value of the regularization parameter
n, and then we let n tend to infinity. For rough data, the delicate part in the approximation of (3.2) is the
derivation of a suitable rate of convergence for the approximation error. The difficulty stems from the
lack of a meaningful error bound in a standard Lebesgue norm. Our analysis therefore relies on modular
forms and associated Orlicz norms (see Theorem 5.5 and the subsequent discussion). For smoother
data, the 1

n T regularization mentioned above can be used, and the numerical analysis of (6.10) is then
somewhat simpler because estimates for the stress, for the regularized problem at least, are naturally
obtained in L2(Ω)d×d (see Theorem 6.2) instead of L1(Ω)d×d (or L1+ 1

n
(Ω)d×d).

The proposed finite element discretizations (5.3) and (6.10) yield nonlinear systems with constraints.
Since the nonlinear operator is the sum of a monotone and a coercive operator, we take advantage of
the algorithm developed in Lions & Mercier (1979) to decouple these two parts: the unconstrained
monotone system is solved first, followed by solving a constrained coercive system. As the stress
tensor is potentially discontinuous, its simplest possible discretization is, as was suggested above, by
means of a piecewise constant approximation on simplices; thus, the associated nonlinearity can be
resolved element by element. We establish convergence of this splitting algorithm when applied to (6.10)
(see Theorem 7.1). When applied to (5.3), the rigorous proof of convergence of the splitting algorithm
is an open problem, although our numerical experiments at least appear to indicate that the splitting
algorithm may well be convergent in this case as well.

1.1 Setting of the problem

We consider the system (1.1), (1.2) and describe the assumptions required on λ and μ. In addition to
λ ∈ C0(R) and μ ∈ C0([0, +∞)), we assume that s ∈ R �→ λ(s)s ∈ C1(R). Complementing these
regularity hypotheses we assume that λ and μ satisfy, for some positive constants C1, C2, κ and α, the
following inequalities:

C1s2

κ + |s| ≤ λ(s)s2 ≤ C2|s| ∀ s ∈ R, (A1)

C1s2

κ + s
≤ μ(s)s2 ≤ C2s ∀ s ∈ R≥0, (A2)

0 ≤ d

ds
(λ(s)s) ∀ s ∈ R, (A3)

C1

(κ + s)α+1
≤ d

ds
(μ(s)s) ∀ s ∈ R>0. (A4)

We note that, using the continuity of λ, the first inequality in assumption (A1) implies that λ(s) > 0
when s �= 0 and λ(s) ≥ 0 for s ∈ R. In addition, now using the second inequality in (A1), we have

|λ(s)s| = λ(s)|s| ≤ C2 ∀ s ∈ R. (1.3)

The same argument applied to the function μ gives μ(s) > 0 when s > 0, and

μ(s) ≥ 0, μ(s) s ≤ C2 ∀ s ∈ R≥0. (1.4)
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32 A. BONITO ET AL.

In particular, these assumptions guarantee that the system will exhibit finite strain only (see
Theorem 2.1 below). At this point we also recall a result from Málek et al. (1996) (see also
Bulíček et al. (2014), Lemma 4.1), which will play a crucial role in the subsequent analysis.

Under assumptions (A1–A4) stated above, there exists a positive constant C such that the following
inequalities hold for all R1, R2 ∈ R

d×d
sym (the set of all d×d symmetric matrices with real-valued entries):

(
μ(|R1|)R1 − μ(|R2|)R2

)
: (R1 − R2) ≥ C

|R1 − R2|2
(κ + |R1| + |R2|)1+α

, (1.5)

(
μ(|R1|)R1 − μ(|R2|)R2

)
: (R1 − R2) ≥ C

∣∣∣(κ + |R1|)
1−α

2 − (κ + |R2|)
1−α

2

∣∣∣2 , (1.6)

(
λ(Tr(R1))Tr(R1) − λ(Tr(R2))Tr(R2)

)
(Tr(R1) − Tr(R2)) ≥ 0. (1.7)

If, in addition,

0 <
d

ds
(λ(s)s) ∀ s ∈ R, (A3′)

then, for all R1, R2 ∈ R
d×d
sym such that Tr(R1) �= Tr(R2), we have

(
λ(Tr(R1))Tr(R1) − λ(Tr(R2))Tr(R2)

)
(Tr(R1) − Tr(R2)) > 0. (1.8)

The system (1.1), (1.2) is supplemented with the boundary conditions

u = g on ∂DΩ and Tν = � on ∂NΩ ,

where the boundary of Ω is decomposed into two parts, ∂DΩ and ∂NΩ , with ∂DΩ ∩ ∂NΩ = ∅ and
∂DΩ ∪ ∂NΩ = ∂Ω , ν is the outward-pointing unit normal to ∂Ω , g : ∂Ω → R

d is a given displacement
on ∂DΩ and � : ∂Ω → R

d is a given traction force on ∂NΩ .

1.2 Notation

We shall suppose for the rest of this section that Ω is a bounded simply connected John domain; see, for
instance, Acosta et al. (2006) or Jiang & Kauranen (2017). Henceforth, Lp(Ω) and Wk,p(Ω) will denote
the standard Lebesgue and Sobolev spaces, and the corresponding spaces of d-component vector-valued
functions and symmetric (d × d)-component tensor-valued functions will be denoted, respectively by
Lp(Ω)d, Lp(Ω)d×d

sym and Wk,p(Ω)d, Wk,p(Ω)d×d
sym . In order to characterize displacements that vanish on

the boundary, ∂Ω , of Ω , we consider for p ∈ [1, ∞) the Sobolev space W1,p
0 (Ω), defined as the closure

of the linear space C∞
0 (Ω), consisting of infinitely many times continuously differentiable functions

with compact support in Ω , in the norm of the space W1,p(Ω):

W1,p
0 (Ω) = C∞

0 (Ω)
‖·‖1,p .
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FE APPROXIMATION OF STRAIN-LIMITING ELASTICITY 33

We recall the Poincaré and Korn inequalities, which for each p ∈ (1, ∞) assert the existence of
positive constants Sp and Kp such that, respectively (cf. Jiang & Kauranen, 2017, Theorem 1.5),

‖v‖Lp(Ω) ≤ Sp ‖∇v‖Lp(Ω) ∀ v ∈ W1,p
0 (Ω), (1.9)

‖∇v‖Lp(Ω) ≤ Kp ‖ε(v)‖Lp(Ω) ∀ v ∈ W1,p
0 (Ω)d. (1.10)

By combining inequalities (1.10) and (1.9) we obtain the inequality

‖v‖Lp(Ω) ≤ CK,p‖ε(v)‖Lp(Ω) ∀ v ∈ W1,p
0 (Ω)d, (1.11)

with CK,p = Sp Kp > 0.
For any two symmetric d × d tensors S = (Sij) and T = (Tij) we shall use a colon to denote their

contraction product,

S : T =
d∑

i=1

d∑
j=1

SijTij,

so that the Frobenius norm of S reads

|S|2 = S : S = Tr(S2).

It is then easy to show

|S|2 = |Sd|2 + 1

d
|Tr(S)|2 ≤ |Sd|2 + |Tr(S)|2 ∀ S ∈ R

d×d
sym , (1.12)

which implies

|S| ≤ |Sd| + |Tr(S)| ∀ S ∈ R
d×d
sym . (1.13)

Conversely,

|Tr(S)| + |Sd| ≤ √
2d |S| ∀ S ∈ R

d×d
sym , (1.14)

since, by elementary inequalities and by noting the equality stated in (1.12),

|Tr(S)| + |Sd| ≤ √
d

(
1√
d
|Tr(S)| + |Sd|

)
≤ √

2d

(
1

d
|Tr(S)|2 + |Sd|2

) 1
2 = √

2d |S|.

Moreover, for any non-negative real numbers a and b, and for any p ≥ 1 and θ ∈ (0, 1], we have

ap + bp ≥ 21−p(a + b)p ≥ 21−p(a2 + b2)
p
2 ≥ 21−p(θa2 + b2)

p
2 .

Thus, by taking a = |Tr(S)|, b = |Sd| and θ = 1, we have by (1.12) that, for any p ≥ 1,

21−p|S|p ≤ |Tr(S)|p + |Sd|p. (1.15)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/40/1/29/5139567 by guest on 28 N
ovem

ber 2022



34 A. BONITO ET AL.

The remainder of this article is organized as follows. The problem is set into variational form in
Section 2 and the associated existence and uniqueness results are recalled. Sections 3 and 4 are devoted
to the analysis of the sequence of regularized problems (3.2) that will be discretized by finite elements
in Section 5; this includes a priori estimates, convergence and identification of the limit. The simpler
analysis of (6.3) is sketched in Section 6. In Section 7 we present an iterative algorithm that dissociates
the computation of the nonlinearity from the elastic constraint, and we prove its convergence when
applied to (6.10). In Section 8 we report numerical experiments aimed at assessing the performance of
the iterative algorithm and the discretization scheme.

2. Weak formulation

We begin by recalling Bulíček et al. (2014, Theorem 4.3), which guarantees the existence and
uniqueness of a solution to problem (1.1), (1.2) in the case when ∂DΩ = ∂Ω and g = 0.

When the Neumann part of the boundary ∂NΩ is nonempty, the structure of the solution is potentially
much more complicated. It was shown in Beck et al. (2017) that, in general, the solution in that case
belongs to the space of Radon measures, but if the problem is equipped with a so-called asymptotic radial
structure, then the solution can in fact be understood as a standard weak solution, with one proviso:
the attainment of the boundary value is penalized by a measure supported on ∂NΩ . For simplicity,
in this initial effort to construct a provably convergent numerical algorithm for the problem under
consideration, we shall therefore suppose henceforth that ∂DΩ = ∂Ω (i.e., ∂NΩ = ∅) and that the
Dirichlet boundary datum is g = 0 on ∂Ω .

Theorem 2.1 (Bulíček et al., 2014, Theorem 4.3). Assume that ∂NΩ = ∅ and that λ, μ satisfy (A1–A4)
with 0 ≤ α < 1/d; then the following statements hold:

(a) Assume that f = −div(F) for F ∈ Wβ,1(Ω)d×d
sym with β ∈ (αd, 1). Then there exists a pair (T, u)

such that

T ∈ L1(Ω)d×d
sym ,

u ∈ W1,p
0 (Ω)d ∀ p ∈ [1, ∞),

ε(u) ∈ L∞(Ω)d×d
sym

is a weak solution in the sense that it satisfies

∫
Ω

T : ε(w) dx =
∫

Ω

F : ε(w) dx ∀ w ∈ D(Ω)d, (2.1)

where D(Ω)d := C∞
0 (Ω)d, and the nonlinear relationship between the strain ε(u) and the stress

T stated in (1.2) holds almost everywhere in Ω .

(b) Moreover, if Ω has a continuous boundary, then equality (2.1) holds for all w ∈ W1,1
0 (Ω)d such

that ε(w) ∈ L∞(Ω)d×d
sym .

(c) In addition, u is unique and if λ satisfies assumption (A3′), then T is also unique.
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FE APPROXIMATION OF STRAIN-LIMITING ELASTICITY 35

(d) Furthermore, if F belongs to W2,2(Ω)d×d
sym then T ∈ W1,q

loc (Ω)d×d
sym with

q

{
:= 2 − 2(d−2)(1+α)

(d−2)(1+α)+d(1−α)
for d ≥ 3,

∈ [1, 2), arbitrary for d = 2.

Remark 2.2 We note in connection with part (d) of the above theorem that when d = 3 then

q = 2 − 1 + α

2 − α

is a monotonic decreasing function of α. Thus, as 0 ≤ α < 1
3 , we have 6

5 < q ≤ 3
2 .

3. Analysis of a regularized problem

The proof of existence of weak solutions to the problem is based on constructing a sequence of solutions
to a regularized problem, where the original stress–strain relationship (1.2) is modified to become

ε(u) = λ(Tr(T))Tr(T)I + μ(|Td|)Td + Tr(T)I

n|Tr(T)|1− 1
n

+ Td

n|Td|1− 1
n

; (3.1)

here n ∈ N (where N denotes the set of all positive integers) is a regularization parameter, which we
shall ultimately send to the limit n → ∞.

Following this idea, we study in this work the finite element approximation of this regularized
problem, stated in the following variational form: find (Tn, un) ∈ Mn × Xn satisfying

an(Tn, S) + c(Tn; Tn, S) − b(S, un) = 0 ∀ S ∈ Mn,

b(Tn, v) =
∫

Ω

F : ε(v) dx ∀ v ∈ Xn,
(3.2)

where

an(T, S) := 1

n

∫
Ω

(
Tr(T)I

|Tr(T)|1− 1
n

+ Td

|Td|1− 1
n

)
: S dx,

c(T; R, S) :=
∫

Ω

(
λ(Tr(T))Tr(R)I + μ(|Td|)Rd

)
: S dx,

b(S, v) :=
∫

Ω

S : ε(v) dx

and

Mn := L1+ 1
n
(Ω)d×d

sym , Xn := W1,n+1
0 (Ω)d, n ∈ N.
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36 A. BONITO ET AL.

Motivated by the form of the expression appearing on the right-hand side of the relationship (3.1),
we define the mapping An : L1+ 1

n
(Ω)d×d

sym → Ln+1(Ω)d×d
sym by

An(S) := λ(Tr(S))Tr(S)I + μ(|Sd|)Sd + Tr(S)I

n|Tr(S)|1− 1
n

+ Sd

n|Sd|1− 1
n

. (3.3)

It follows from inequalities (1.3) and (1.4) that An does indeed take its values in Ln+1(Ω)d×d
sym , since

the first two terms belong to L∞(Ω)d×d
sym for all S ∈ L1+ 1

n
(Ω)d×d

sym , while the third and fourth terms

belong to Ln+1(Ω)d×d
sym for all S ∈ L1+ 1

n
(Ω)d×d

sym , n ∈ N. Moreover, the mapping An : L1+ 1
n
(Ω)d×d

sym →
Ln+1(Ω)d×d

sym is bounded, continuous and coercive for all n ∈ N, as is asserted in the following lemma.

Lemma 3.1 (Boundedness, continuity and coercivity of An). Let λ ∈ C0(R) and μ ∈ C0([0, +∞)) and
suppose that hypotheses (A1) and (A2) are valid. Then the following assertions hold:

(i) For any n ∈ N, the mapping An : L1+ 1
n
(Ω)d×d

sym → Ln+1(Ω)d×d
sym is bounded; i.e., every bounded

set in L1+ 1
n
(Ω)d×d

sym is mapped by An into a bounded set in Ln+1(Ω)d×d
sym .

(ii) For any n ∈ N, the mapping An : L1+ 1
n
(Ω)d×d

sym → Ln+1(Ω)d×d
sym is continuous, i.e., for any

sequence (Sk)k>0 ⊂ L1+ 1
n
(Ω)d×d

sym , which strongly converges in the norm of L1+ 1
n
(Ω)d×d to

some S ∈ L1+ 1
n
(Ω)d×d

sym , we have

An(Sk) → An(S) strongly in Ln+1(Ω)d×d
sym .

(iii) For any n ∈ N, the mapping An is coercive, i.e.,

∫
Ω
An(S) : S dx

‖S‖L
1+ 1

n
(Ω)

→ ∞ as ‖S‖L
1+ 1

n
(Ω) → ∞.

Proof. (i) It suffices to prove that any bounded ball in L1+ 1
n
(Ω)d×d

sym , centered at the origin, is mapped

by An into a bounded set in Ln+1(Ω)d×d
sym . Consider, to this end, the bounded ball

BR :=
{

S ∈ L1+ 1
n
(Ω)d×d

sym : ‖S‖L
1+ 1

n
(Ω) ≤ R

}
with R > 0.

For every S ∈ BR we have

‖An(S)‖Ln+1(Ω) ≤ C2d
1
2 |Ω| 1

n+1 + C2|Ω| 1
n+1 + 1

n
d

1
2 ‖Tr(S)‖

1
n
L

1+ 1
n
(Ω) + 1

n
‖Sd‖

1
n
L

1+ 1
n
(Ω)

≤ C2d
1
2 |Ω| 1

n+1 + C2|Ω| 1
n+1 + 1

n
d

1
2 (1+ 1

n )‖S‖
1
n
L

1+ 1
n
(Ω) + 1

n
‖S‖

1
n
L

1+ 1
n
(Ω),

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/40/1/29/5139567 by guest on 28 N
ovem

ber 2022



FE APPROXIMATION OF STRAIN-LIMITING ELASTICITY 37

where in the transition to the second inequality we have made use of the facts that, by the identity (1.12),

we have |Tr(S)| ≤ d
1
2 |S| and |Sd|2 = |S|2 − 1

d (Tr(S))2, whereby |Sd| ≤ |S|. Hence,

‖An(S)‖Ln+1(Ω) ≤ C2d
1
2 |Ω| 1

n+1 + C2|Ω| 1
n+1 + 1

n
d

1
2

(
1+ 1

n

)
R

1
n + 1

n
R

1
n =: R∗,

which implies that An(BR) is contained in a bounded ball in Ln+1(Ω)d×d
sym , centered at the origin, of

radius R∗. Thus, An : L1+ 1
n
(Ω)d×d

sym → Ln+1(Ω)d×d
sym is a bounded mapping.

(ii) Suppose that Sk → S strongly in L1+ 1
n
(Ω)d×d

sym . We begin by showing that

λ(Tr(Sk))Tr(Sk)I → λ(Tr(S))Tr(S)I strongly in Ln+1(Ω)d×d
sym .

By defining ϕk := λ(Tr(Sk))Tr(Sk) and using (1.3) we get

|ϕk| ≤ C2 a.e. in Ω .

Now, the strong convergence of {Sk}k>0 in L1+ 1
n
(Ω)d×d

sym implies that there exists a subsequence (not

indicated) such that Sk → S a.e. on Ω . Thanks to the assumed continuity of λ, it then follows that

ϕk → ϕ := λ(Tr(S))Tr(S)

a.e. in Ω and |ϕ| ≤ C2 a.e. in Ω . By Lebesgue’s dominated convergence theorem we therefore have
that ϕk → ϕ strongly in L1(Ω). When combined with the boundedness of ϕk, the strong convergence
ϕk → ϕ in L1(Ω) implies that ϕk → ϕ strongly in Lp(Ω) for all p ∈ [1, ∞). Therefore, taking p = n+1,

the first term of An(Sk) strongly converges in Ln+1(Ω)d×d
sym to the first term in An(S). The same is true

of the second term.
To handle the third term we note that since, for any a ∈ (0, 1],∣∣∣∣ x

|x| |x|
a − y

|y| |y|
a
∣∣∣∣ ≤ 21−a|x − y|a ∀ x, y ∈ R \ {0},

it follows with a = 1
n , n ∈ N that∣∣∣∣ Tr(Sk)

|Tr(Sk)|1− 1
n

− Tr(S)

|Tr(S)|1− 1
n

∣∣∣∣ ≤ 21− 1
n |Tr(Sk) − Tr(S)| 1

n ≤ 21− 1
n d

1
2n |Sk − S| 1

n , (3.4)

whereby the assumed strong convergence Sk → S in L1+ 1
n
(Ω)d×d

sym implies

Tr(Sk)

|Tr(Sk)|1− 1
n

I → Tr(S)

|Tr(S)|1− 1
n

I

in Ln+1(Ω)d×d
sym , n ∈ N. By an identical argument the fourth term strongly converges in Ln+1(Ω)d×d

sym ,
n ∈ N.
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(iii) Note that, by assumptions (A1) and (A2),

∫
Ω

An(S) : S dx ≥ 1

n

∫
Ω

(
|Tr(S)|1+ 1

n + |Sd|1+ 1
n

)
dx.

By taking p = 1 + 1
n with n ∈ N in (1.15) and using (1.15), we then have

∫
Ω

An(S) : S dx ≥ 2− 1
n

n

∫
Ω

|S| n+1
n dx = 2− 1

n

n
‖S‖1+ 1

n
L

1+ 1
n
(Ω).

As the exponent 1 + 1
n appearing on the right-hand side of the last equality is strictly greater than 1 for

all n ∈ N, the coercivity of the mapping An : L1+ 1
n
(Ω)d×d

sym → Ln+1(Ω)d×d
sym directly follows. �

Remark 3.2 One can simplify the proof of the continuity of An asserted in Lemma 3.1(ii) by assuming
that s �→ λ(s)s and s �→ μ(s)s are globally Hölder-continuous functions over their respective domains
of definition. The latter assumption will be required in Theorem 5.5 to deduce rates of convergence for
the finite element approximation of the regularized problem; prior to that, we do not assume the global
Hölder continuity of s �→ λ(s)s and s �→ μ(s)s.

Lemma 3.3 (Monotonicity of An). Assume that λ ∈ C0(R) and μ ∈ C0([0, +∞)), and that hypotheses
(A1–A4) are satisfied. Then, for any n ∈ N, the mapping An : L1+ 1

n
(Ω)d×d

sym → Ln+1(Ω)d×d
sym is

monotone, i.e.,

∫
Ω

(An(S1) − An(S2)) : (S1 − S2) dx ≥ 0 (3.5)

for any pair of functions S1, S2 ∈ L1+ 1
n
(Ω)d×d

sym . Furthermore, monotonicity is strict, in the sense that

equality holds if and only if S1 = S2 a.e. on Ω .

Proof. To prove the monotonicity of An, note first that for any pair of matrices S, R ∈ R
d×d
sym one has

(
S|S| 1

n −1 − R|R| 1
n −1
)

: (S − R) ≥ 1

n
|S − R|2

∫ 1

0
|R + θ(S − R)| 1

n −1 dθ ≥ 0, (3.6)

and since n ≥ 1, the expression on the right-hand side is equal to 0 if and only if S = R. Similarly, for
any s, r ∈ R,

(
s|s| 1

n −1 − r|r| 1
n −1
)

(s − r) = 1

n
|s − r|2

∫ 1

0
|r + θ(s − r)| 1

n −1 dθ ≥ 0, (3.7)
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FE APPROXIMATION OF STRAIN-LIMITING ELASTICITY 39

and the expression on the right-hand side is equal to 0 if and only if s = r. Hence, and by noting
inequalities (1.5) and (1.7), we have∫

Ω

(An(S1) − An(S2)) : (S1 − S2) dx

≥ 1

n2
|Tr(S1 − S2)|2

∫ 1

0

∣∣Tr(S2 + θ(S1 − S2))
∣∣ 1

n −1 dθ

+ 1

n2
|Sd

1 − Sd
2 |2
∫ 1

0

∣∣Sd
2 + θ

(
Sd

1 − Sd
2

)| 1
n −1 dθ .

(3.8)

The expression on the right-hand side of this inequality is non-negative and it is equal to 0 if, and only
if, Tr(S1) = Tr(S2) a.e. on Ω and Sd

1 = Sd
2 a.e. on Ω , that is, when S1 = S2 a.e. on Ω . �

4. A priori estimates for the regularized problem

Our aim in this section is to derive a priori estimates for the regularized problem (3.2). Clearly, problem
(3.2) can be interpreted as a constrained system with (strictly) monotone nonlinearity. The constraint is
the second equation in problem (3.2); it is linear and nonhomogeneous, and can be, as is usual in mixed
variational problems, transformed into a homogenous constraint via an inf-sup property, which we state
in the next lemma.

Lemma 4.1 (Inf-sup property). The following inequality holds for all n ∈ N:

inf
v∈Xn

sup
S∈Mn

b(S, v)

‖S‖L
1+ 1

n
(Ω)‖ε(v)‖Ln+1(Ω)

≥ 1. (4.1)

Proof. Given v ∈ Xn = W1,n+1
0 (Ω)d, it suffices to note that R = ε(v)|ε(v)|n−1 ∈ L1+ 1

n
(Ω)d×d

sym and

that we have

b(R, v) = ‖ε(v)‖n+1
Ln+1(Ω) = ‖ε(v)‖Ln+1(Ω)‖ε(v)‖n

Ln+1(Ω) = ‖ε(v)‖Ln+1(Ω)‖R‖L
1+ 1

n
(Ω),

whence,

sup
S∈Mn

b(S, v)

‖S‖L
1+ 1

n
(Ω)

≥ ‖ε(v)‖Ln+1(Ω),

and the stated inf-sup property follows. �
We shall assume henceforth that, as in Theorem 2.1, f = −div(F), with F ∈ Wβ,1(Ω)d×d

sym and

β ∈ (αd, 1) (recall that, by hypothesis, 0 < α < 1
d ); hence, by Sobolev embedding F ∈ L1+ β

d−β
(Ω)d×d

sym

whereby also F ∈ L1+ 1
n
(Ω)d×d

sym = Mn for all n ≥ d
β

− 1 (consequently, f ∈ W−1,1+ 1
n (Ω)d =

(W1,n+1
0 (Ω)d)′ = (Xn)

′ for all n ≥ d
β

− 1), and we define

Tf
n := F.
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40 A. BONITO ET AL.

Clearly, the subscript n in the expression on the left-hand side of this equality is redundant, as Tf
n is equal

to F for all n ≥ d
β
−1. We shall, however, continue to carry this redundant subscript in order to emphasize

the fact that the problem, as a whole, is dependent on n. Should it be desired that F ∈ L1+ 1
n
(Ω)d×d

sym for

all n ∈ N, one can, instead, adopt the slightly stronger assumption that F ∈ Wβ,1(Ω)d×d
sym ∩ L2(Ω)d×d

sym .

The use of the function Tf
n will allow us to lift the constraint imposed by the second equation in

problem (3.2) by converting it into a homogeneous equation; we can then replace the first equation in
(3.2) by one that is considered on a linear subspace Vn of Mn, defined below, which we choose to be the
kernel of the mapping div : Mn → (Xn)

′.
Trivially, ∫

Ω

Tf
n : ε(v) dx =

∫
Ω

F : ε(v) dx ∀ v ∈ Xn. (4.2)

We define

Vn := {S ∈ Mn : b(S, v) = 0 ∀ v ∈ Xn

} = {S ∈ Mn : div(S) = 0 ∈ (Xn)
′} = Ker(div). (4.3)

As Xn is a reflexive Banach space, transposition yields that the transpose (−div)′ : (Xn)
′′ = Xn →

(Mn)
′ of the linear operator −div : Mn → (Xn)

′ is (−div)′ = ε(·). The annihilator V⊥
n of Vn is, by

definition,

V
⊥
n := {� ∈ (Mn)

′ : �(S) = 0 ∀ S ∈ Vn}.
By the Riesz representation theorem the dual space (Mn)

′ of L1+ 1
n
(Ω)d×d

sym is isometrically

isomorphic to Ln+1(Ω)d×d
sym . Furthermore, since −div : Mn → (Xn)

′ is a bounded linear operator, it
is also a closed linear operator. Hence, by Banach’s closed range theorem,

V
⊥
n :=

{
R ∈ Ln+1(Ω)d×d

sym :
∫

Ω

R : S dx = 0 ∀ S ∈ Vn

}
= [Ker(div)]⊥ = [Ker(−div)]⊥ = Range((−div)′) = Range(ε(·)).

Furthermore, once again by the closed range theorem,

Range(div) = Range(−div) = [Ker((−div)′)]⊥ = [Ker(ε(·))]⊥ = [{0}]⊥ = (Xn)
′,

where the penultimate equality follows from inequality (1.11).
Thanks to the definition of Tf

n,

‖Tf
n‖L

1+ 1
n
(Ω) = ‖F‖L

1+ 1
n
(Ω). (4.4)

Using Tf
n, we can eliminate the constraint (3.2)2 by setting

T0
n := Tn − Tf

n ∈ Vn
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FE APPROXIMATION OF STRAIN-LIMITING ELASTICITY 41

and consider the following problem: find T0
n ∈ Vn such that

an

(
T0

n + Tf
n, S
)+ cn

(
T0

n + Tf
n; T0

n + Tf
n, S
) = 0 ∀ S ∈ Vn. (4.5)

From here, by using Lemmas 3.1 and 3.3, we easily deduce that the mapping

S ∈ Vn �→ An

(
S + Tf

n

) ∈ Ln+1(Ω)d×d
sym = (Mn)

′ ⊂ (Vn)
′

is bounded, continuous (and therefore hemicontinuous), coercive and monotone; in addition, Vn is a
separable reflexive Banach space, as it is a closed linear subspace of the separable and reflexive Banach
space Mn = L1+ 1

n
(Ω)d×d

sym . Therefore, by the Browder–Minty theorem (cf., for instance, Lions, 1969;

Showalter, 1997), problem (4.5), and hence also problem (3.2), has a solution Tn = T0
n + Tf

n ∈ Mn, and
since by Lemma 3.3 the operator An is strictly monotone, the solution is unique.

With Tn ∈ Mn thus uniquely fixed we seek un ∈ Xn such that

b(S, un) = an(Tn, S) + c(Tn; Tn, S) ∀ S ∈ Mn.

Consider the linear functional �n ∈ (Mn)
′ defined by

�n(S) := an(Tn, S) + c(Tn; Tn, S), S ∈ Mn.

Hence, thanks to equation (4.5), we have �n(S) = 0 for all S ∈ Vn; consequently, �n ∈ V
⊥
n . Thus, we

are seeking un ∈ Xn such that

b(S, un) = �n(S) ∀ S ∈ Mn. (4.6)

As �n ∈ V
⊥
n = [Ker(div)]⊥ = Range(ε(·)), there exists a un ∈ Xn such that ε(un) = �n; that is, un ∈ Xn

solves problem (4.6). The inf-sup property (4.1), together with inequality (1.11), then implies that such
a un ∈ Xn is unique. Thus, we have shown the existence of a unique solution pair (Tn, un) ∈ Mn × Xn
to the regularized problem (3.2).

Next we shall prove the following a priori bounds on ε(un) and Tn.

Lemma 4.2 (A priori estimates). Suppose that F ∈ L1+ 1
n
(Ω)d×d

sym , and that λ and μ satisfy properties

(A1) and (A2). We then have

‖ε(un)‖Ln+1(Ω) ≤ 1

n
d
√

2

[
16d2‖F‖1+ 1

n
L

1+ 1
n
(Ω)+2(n+1)C2

√
2d |Ω| 1

n+1 ‖F‖L
1+ 1

n
(Ω) + 4(n +1)C1κ|Ω|

] 1
n+1

+ C2

√
2d |Ω| 1

n+1 .

Moreover,

1

n + 1
‖Tn‖1+ 1

n
L

1+ 1
n
(Ω) + C1‖Tn‖L1(Ω) ≤ 16d2

n + 1
‖F‖1+ 1

n
L

1+ 1
n
(Ω) + 2C2

√
2d |Ω| 1

n+1 ‖F‖L
1+ 1

n
(Ω) + 4C1κ|Ω|.
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42 A. BONITO ET AL.

Proof. We start by testing problem (3.2) with v = un and S = Tn to get

an(Tn, Tn) + c(Tn; Tn, Tn) − b(Tn, un) = 0,

b(Tn, un) =
∫

Ω

F : ε(un) dx,
(4.7)

whence, by substituting equation (4.7)2 into equation (4.7)1, we have

1

n

∫
Ω

( |Tr(Tn)|2
|Tr(Tn)|1− 1

n

+ |Td
n |2

|Td
n |1− 1

n

)
dx +

∫
Ω

(
λ(Tr(Tn))|Tr(Tn)|2 + μ(|Td

n |)|Td
n |2
)

dx

=
∫

Ω

F : ε(un) dx,

where we have used that

Td : T = Td :

(
Td + 1

d
Tr(T)I

)
= |Td|2 + 1

d
Tr(T) Tr(Td)︸ ︷︷ ︸

=0

= |Td|2.

Hence, Hölder’s inequality yields

1

n

∫
Ω

(
|Tr(Tn)|1+ 1

n + |Td
n |1+ 1

n

)
dx +

∫
Ω

(
λ(Tr(Tn))|Tr(Tn)|2 + μ(|Td

n |)|Td
n |2
)

dx

≤ ‖F‖L
1+ 1

n
(Ω)‖ε(un)‖Ln+1(Ω).

For the λ and μ terms on the left-hand side of this inequality we note that for s > 0 one has

s2

κ + s
= s − κ

1 + κ
s

.

This, together with properties (A1) and (A2), leads to

1

n

∫
Ω

(
|Tr(Tn)|1+ 1

n + |Td
n |1+ 1

n

)
dx + C1

∫
Ω

(|Tr(Tn)| + |Td
n |) dx

≤ ‖F‖L
1+ 1

n
(Ω)‖ε(un)‖Ln+1(Ω) + C1κ

∫
Ω

(
1

1 + κ
|Tr(Tn)|

+ 1

1 + κ

|Td
n |

)
dx

≤ ‖F‖L
1+ 1

n
(Ω)‖ε(un)‖Ln+1(Ω) + 2C1κ|Ω|,

since sups>0
1

1+ κ
s

= 1.

Moreover, it follows from inequality (1.15) with p = 1 + 1
n that

|Tr(Tn)|1+ 1
n + |Td

n |1+ 1
n ≥ 2− 1

n |Tn|1+ 1
n ,
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and therefore (1.13) yields

2− 1
n

n
‖Tn‖1+ 1

n
L

1+ 1
n
(Ω) + C1‖Tn‖L1(Ω) ≤ ‖F‖L

1+ 1
n
(Ω)‖ε(un)‖Ln+1(Ω) + 2C1κ|Ω|. (4.8)

We now derive a bound on ‖ε(un)‖Ln+1(Ω), using the inf-sup property (4.1). We begin by noting that

‖ε(un)‖Ln+1(Ω) ≤ sup
S∈L

1+ 1
n
(Ω)d×d

sym

b(S, un)

‖S‖L
1+ 1

n
(Ω)

= sup
S∈L

1+ 1
n
(Ω)d×d

sym

an(Tn, S) + c(Tn; Tn, S)

‖S‖L
1+ 1

n
(Ω)

.

We invoke Hölder’s inequality, the equality |I| = √
d, the elementary inequality a+b ≤ 21− 1

n (an+bn)
1
n ,

where a, b ≥ 0 and n ∈ N with a = √
d |Tr(Tn)|

1
n , b = |Td

n | 1
n and note that 1√

d
|Tr(Tn)|+|Td

n | ≤ √
2 |Tn|,

to deduce that

an(Tn, S) ≤ 2
√

d

n

(
d

2

) 1
2n ‖Tn‖

1
n
L

1+ 1
n
(Ω)‖S‖L

1+ 1
n
(Ω).

Further, by noting properties (A1) and (A2) again, together with inequality (1.14), we have

c(Tn; Tn, S) ≤ C2

√
2d |Ω| 1

n+1 ‖S‖L
1+ 1

n
(Ω), (4.9)

where we have bounded
√

d + 1 by
√

2d for the sake of simplifying the constants appearing in the
subsequent calculations. Hence,

‖ε(un)‖Ln+1(Ω) ≤ 2
√

d

n

(
d

2

) 1
2n ‖Tn‖

1
n
L

1+ 1
n
(Ω) + C2

√
2d |Ω| 1

n+1 . (4.10)

By substituting inequality (4.10) into inequality (4.8), we obtain

2− 1
n

n
‖Tn‖1+ 1

n
L

1+ 1
n
(Ω)+C1‖Tn‖L1(Ω) ≤‖F‖L

1+ 1
n
(Ω)

(
2
√

d

n

(
d

2

) 1
2n ‖Tn‖

1
n
L

1+ 1
n
(Ω)+C2

√
2d |Ω| 1

n+1

)
+2C1κ|Ω|;

thus, by applying Young’s inequality,

ab ≤ ε
ap

p
+ ε

− 1
p−1

bq

q
for a, b ≥ 0, ε > 0, p > 1 and

1

p
+ 1

q
= 1,

to the first term on the right-hand side with p = n + 1, ε = 1
n 2− 1

n ,

a = ‖Tn‖
1
n
L

1+ 1
n
(Ω) and b = 2

√
d

n

(
d

2

) 1
2n ‖F‖L

1+ 1
n
(Ω)
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in order to absorb the factor ‖Tn‖
1
n
L

1+ 1
n
(Ω) into the left-hand side, we deduce that

2− 1
n

n + 1
‖Tn‖1+ 1

n
L

1+ 1
n
(Ω) + C1‖Tn‖L1(Ω)

≤ 2
1+ 1

2n + 1
2n2 (

√
d)(1+ 1

n )2

n + 1
‖F‖1+ 1

n
L

1+ 1
n
(Ω) + C2

√
2d |Ω| 1

n+1 ‖F‖L
1+ 1

n
(Ω) + 2C1κ|Ω|.

Hence, after multiplying by 2
1
n and noting that 1 ≤ 2

1
n ≤ 2 and 1 + 3

2n + 1
2n2 ≤ (1 + 1

n

)2, we obtain

1

n + 1
‖Tn‖1+ 1

n
L

1+ 1
n
(Ω)+C1‖Tn‖L1(Ω) ≤ (2

√
d)(1+ 1

n )2

n + 1
‖F‖1+ 1

n
L

1+ 1
n
(Ω)+2C2

√
2d |Ω| 1

n+1 ‖F‖L
1+ 1

n
(Ω)+4C1κ|Ω|.

Bounding 1 + 1
n by 2 in the exponent of 2

√
d in the first term on the right-hand side then yields the

second inequality in the statement of the lemma.
Omitting the second term from the left-hand side of that inequality and multiplying by n + 1 then

yields

‖Tn‖1+ 1
n

L
1+ 1

n
(Ω) ≤ 16d2‖F‖1+ 1

n
L

1+ 1
n
(Ω) + 2(n + 1)C2

√
2d |Ω| 1

n+1 ‖F‖L
1+ 1

n
(Ω) + 4(n + 1)C1κ|Ω|.

Therefore, by inequality (4.10), we have

‖ε(un)‖Ln+1(Ω) ≤ 2
√

d

n

(
d

2

) 1
2n
[

16d2‖F‖1+ 1
n

L
1+ 1

n
(Ω) + 2(n + 1)C2

√
2d |Ω| 1

n+1 ‖F‖L
1+ 1

n
(Ω)

+ 4(n + 1)C1κ|Ω|
] 1

n+1

+ C2

√
2d |Ω| 1

n+1 .

Bounding the exponent 1
2n by 1

2 in the prefactor on the right-hand side yields the first bound in the
lemma. �

Lemma 4.2 implies in particular that

lim sup
n→∞

‖ε(un)‖Ln+1(Ω) ≤ C2

√
2d

and

lim sup
n→∞

‖Tn‖L1(Ω) ≤ 2C2

C1

√
2d ‖F‖L1(Ω) + 4κ|Ω|.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/40/1/29/5139567 by guest on 28 N
ovem

ber 2022



FE APPROXIMATION OF STRAIN-LIMITING ELASTICITY 45

These bounds are consistent with the properties of the strain-limiting model under consideration,
expressed by Theorem 2.1(a), which asserts that the strain tensor is contained in L∞(Ω)d×d

sym , even though

the stress tensor is, in general, an element of L1(Ω)d×d
sym only.

In connection with this we recall from Bulíček et al. (2014, Section 4) that the sequence of (unique)
weak solution pairs ((Tn, un))n∈N to the regularized problem (3.2) converges to a weak solution pair
(T, u) of problem (1.1), (1.2), supplemented by a homogeneous Dirichlet boundary condition on ∂Ω

(which is also unique if the condition (A3′) holds), in the sense that, as n → ∞,

Tn → T strongly in Lq(Ω0)
d×d
sym for any q ∈

[
1, 1 + 1

2
β−αd
d−β

)
, β ∈ (αd, 1), 0 ≤ α < 1

d , Ω0 ⊂⊂ Ω;

(4.11)

furthermore,

un ⇀ u weakly in W1,2d
0 (Ω)d,

un → u strongly in C(Ω)d,

(Tn)
d

n|(Tn)
d|1− 1

n

→ 0 strongly in L1(Ω)d×d
sym ,

Tr(Tn)

n|Tr(Tn)|1− 1
n

→ 0 strongly in L1(Ω).

(4.12)

In particular,

ε(un) ⇀ ε(u) weakly in L2d(Ω)d×d
sym . (4.13)

We note though that the weak convergence result (4.13) can be strengthened to

ε(un) → ε(u) strongly in Lp(Ω0)
d×d
sym ∀Ω0 ⊂⊂ Ω , ∀ p ∈ [1, ∞) (4.14)

and consequently to

ε(un) → ε(u) strongly in L2d(Ω)d×d
sym . (4.15)

To show this we fix any Ω0 ⊂⊂ Ω and note that by subtracting the constitutive relation (1.2) from
its regularized counterpart (3.1) we have

ε(un − u) = A(Tn) − A(T) + Tr(Tn)I

n|Tr(Tn)|1− 1
n

+ Td
n

n|Td
n |1− 1

n

,

where A : L1(Ω0)
d×d
sym → L∞(Ω0)

d×d
sym is given by

A(S) := λ(Tr(S))Tr(S)I + μ(|Sd|)Sd. (4.16)

A similar argument to the one in the proof of Lemma 3.1 yields that the mapping A : L1(Ω0)
d×d
sym →

Lp(Ω0)
d×d
sym is well defined and continuous for all p ∈ [1, ∞), whence, because Tn converges strongly
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to T in L1(Ω0)
d×d
sym , it follows that so does A(Tn) to A(T) in Lp(Ω0)

d×d
sym for all p ∈ [1, ∞). For the first

regularization term, Hölder’s inequality implies

1

n
‖|Tr(Tn)|

1
n ‖Lp(Ω0)

≤ 1

n
‖Tr(Tn)‖

1
n
L1(Ω0)

|Ω0|
1
p (1− p

n ) → 0 as n → ∞,

and similarly for the second regularization term, containing Td
n . The convergence result (4.14) then

follows by collecting the above results. To show (4.15) we consider a nested sequence of Ω0 that
exhausts Ω . By (4.14) there exists a subsequence (still indexed by n) such that ε(un) → ε(u) almost
everywhere on Ω . Hence, in view of (4.13), (4.15) follows by Vitali’s theorem.

Motivated by these convergence results our objective is to construct a sequence of finite element
approximations ((Tn,h, un,h))h∈(0,1] to the solution pair (Tn, un) of the regularized problem, for a fixed
value of n, and then pass to the limit h → 0+ with the discretization parameter h ∈ (0, 1], followed by
passage to the limit n → ∞ with the regularization parameter n ∈ N—instead of approximating the
solution pair (T, u) directly by a finite element method. Our reasons for proceeding in this way will be
made clear at the start of Section 5.2.

5. Finite element approximation

For the sake of simplicity we shall suppose from now on that Ω is a polygon when d = 2 or a Lipschitz
polyhedron when d = 3.

We consider a sequence of shape-regular simplicial subdivisions (Th)h∈(0,1] of Ω; by this we mean
that there exists a positive real number η, independent of the mesh size h, such that all closed simplices
K in the subdivision Th satisfy the inequality

hK

�K
≤ η, (5.1)

where hK is the diameter of K and �K is the diameter of the largest ball inscribed in K; see for instance
Ciarlet (1991). The extension to quadrilateral and hexahedral meshes is discussed in Sections 5.3
and 5.4.

Let Pr
h be the space of piecewise (subordinate to Th) polynomials of degree at most r. We consider

the conforming finite element spaces

Mn,h :=
(
P0

h

)d×d

sym
⊂ Mn, Xn,h :=

(
P1

h

)d ∩ Xn ⊂ Xn (5.2)

for the approximation of Tn and un, respectively. We note in passing that in the set-theoretical sense
Mn,h and Xn,h are independent of n; we shall, however, continue to label them with the double subscript

n,h instead of just h in order to emphasize that they are being thought of as finite-dimensional normed
linear subspaces of Mn and Xn, respectively, throughout the paper.

As the exact solution is not expected to be very smooth, we have restricted ourselves to considering
a first-order finite element approximation. There are, of course, other choices of first-order spaces than
the one we shall be focusing on, but for the sake of brevity we shall not dwell on those here in detail;
for extensions and alternative choices of spaces we refer the reader again to Sections 5.3 and 5.4.
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5.1 Discrete scheme

The discrete counterpart of problem (3.2), based on Xn,h and Mn,h, is then defined as follows: find
(Tn,h, un,h) ∈ Mn,h × Xn,h such that

an(Tn,h, Sh) + c(Tn,h; Tn,h, Sh) − b(Sh, un,h) = 0 ∀ Sh ∈ Mn,h,

b(Tn,h, vh) =
∫

Ω

F : ε(vh) dx ∀ vh ∈ Xn,h.
(5.3)

We start by proving the discrete version of the inf-sup property (4.1).

Lemma 5.1 (Discrete inf-sup property). For each n ∈ N we have

inf
vh∈Xn,h

sup
Sh∈Mn,h

b(Sh, vh)

‖Sh‖L
1+ 1

n
(Ω)‖ε(vh)‖Ln+1(Ω)

≥ 1. (5.4)

Proof. The argument is based on mimicking the proof of Fortin’s lemma. Indeed, the assertion directly
follows from the continuous inf-sup property (4.1) upon noting that for all vh ∈ Xn,h ⊂ Xn, ε(vh)

belongs to Mn,h. Thus, for all vh ∈ Xn,h, all S ∈ Mn and all K ∈ Th, one has∫
K

ε(vh) : ΠhS dx =
∫

K
ε(vh) : S dx,

where ΠhS ∈ Mn,h is defined componentwise by

Πh f |K := 1

|K|
∫

K
f dx ∀ K ∈ Th, ∀ f ∈ L1(K), (5.5)

and the projector Πh : Mn → Mn,h is stable in (the norm of) Mn because

‖Πh f ‖L
1+ 1

n
(K) ≤ ‖ f ‖L

1+ 1
n
(K) ∀ K ∈ Th, ∀ f ∈ L1+ 1

n
(K),

whereby

‖ΠhS‖L
1+ 1

n
(Ω) ≤ ‖S‖L

1+ 1
n
(Ω) ∀ S ∈ L1+ 1

n
(Ω)d×d

sym .

That completes the proof. �
The above proof suggests eliminating the constraint by defining

Tf
n,h = ΠhTf

n = ΠhF; (5.6)

we recall that Tf
n ∈ Mn satisfies equality (4.2). Then, by setting

Vn,h := {Sh ∈ Mn,h : b(Sh, vh) = 0 ∀ vh ∈ Xn,h

}
(5.7)
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and

V
⊥
n,h :=

{
Sh ∈ Mn,h :

∫
Ω

Sh : Rh dx = 0 ∀ Rh ∈ Vn,h

}
,

we deduce from equalities (4.2), (5.6), and by noting that ε(vh) ∈ Mn,h for all vh ∈ Xn,h, that Tf
n,h ∈

Mn,h satisfies ∫
Ω

ε(vh) : Tf
n,h dx =

∫
Ω

F : ε(vh) dx ∀ vh ∈ Xn,h; (5.8)

furthermore, equality (5.6) implies ∥∥Tf
n,h

∥∥
L

1+ 1
n
(Ω)

≤ ‖F‖L
1+ 1

n
(Ω). (5.9)

We observe further that, as h → 0+,

Tf
n,h → Tf

n strongly in Mn. (5.10)

Given Tf
n,h ∈ Mn,h defined by equality (5.6) we shall seek T0

n,h := Tn,h − Tf
n,h ∈ Vn,h that solves

an

(
T0

n,h + Tf
n,h, Sh

)+ c
(
T0

n,h + Tf
n,h; T0

n,h + Tf
n,h, Sh

) = 0 ∀ Sh ∈ Vn,h. (5.11)

The existence of a unique such T0
n,h ∈ Vn,h, and therefore of a unique Tn,h = T0

n,h +Tf
n,h ∈ Mn,h and

a unique un,h ∈ Xn,h satisfying equation (5.3)1 for all Sh ∈ Mn,h, can be shown by proceeding as in the
case of the continuous problem discussed in Section 4, but with the continuous inf-sup property stated
in Lemma 4.1, that was used there, now replaced by the discrete inf-sup property stated in Lemma 5.1.
Indeed, let An,h : Mn,h → (Mn,h)

′ be defined by the projection of An onto Mn,h,

∫
Ω

An,h(Sh) : Rh dx = an(Sh, Rh) + c(Sh; Sh, Rh) ∀ Rh ∈ Mn,h.

In the present case where the tensors of Mn,h are piecewise constant functions, An,h(Sh) coincides with
An(Sh), but this equality is not necessary. It is easy to check that An,h has the same boundedness,
continuity, coercivity and monotonicity properties (all uniform in h) as An, as stated in Lemmas 3.1
and 3.3. The same is true of the mapping

Sh ∈ Vn,h �→ An,h

(
Sh + Tf

n,h

)
.

Therefore, another application of the Browder–Minty theorem gives existence and uniqueness of T0
n,h

solving (5.11) and we set Tn,h = T0
n,h + Tf

n,h. The discrete inf-sup property (5.4) then guarantees the
existence of a corresponding un,h ∈ Xn,h such that (Tn,h, un,h) solves system (5.3). This is summarized
in the following lemma.

Lemma 5.2 (Existence and uniqueness of the discrete solution). Assume that λ and μ satisfy hypotheses
(A1–A4). Then, system (5.3) has exactly one solution (Tn,h, un,h) ∈ Mn,h × Xn,h.
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5.2 Convergence of the sequence of discrete solutions

Without regularization (i.e., with 1
n formally set equal to zero in problem (5.3), resulting in the absence of

the form an(·, ·) from the left-hand side of (5.3)1), the proof of convergence of the sequence of solutions
generated by the resulting numerical method to (T, u) is an open problem. The source of the technical
difficulties is that, as n → ∞, the only uniform (w.r.t. n ∈ N) bound on Tn,h, with h ∈ (0, 1] fixed, that
is directly available to us is in the L1(Ω)d×d norm; a uniform bound in the L1(Ω)d×d norm guarantees
only biting weak convergence, via Chacon’s biting lemma for example, and this is insufficient to deduce
even convergence of a subsequence in the weak topology of L1(Ω)d×d. The proof of existence of a
solution to the continuous problem in reference Bulíček et al. (2014) succeeds because the L1(Ω)d×d

norm bound on Tn in the sequence of solution pairs (Tn, un) to the regularized problem is supplemented
by fractional derivative estimates. Unfortunately, the extension of those fractional derivative estimates to
the finite element discretization considered here is problematic. For this reason, we freeze the parameter
n ∈ N and we now discuss convergence, without rates, of the sequence of solution pairs (Tn,h, un,h) of
the discrete scheme to the solution (Tn, un) of the regularized problem as h → 0+. Having done so, we
will invoke the converge results stated at the end of Section 4 to pass to the limit n → ∞ to deduce that
limn→∞ limh→0+(Tn,h, un,h) = (T, u) in the strong topology of L1(Ω0)

d×d
sym ×C(Ω)d, for any Ω0 ⊂⊂ Ω .

We begin by establishing the weak convergence of the sequence (Tn,h)h∈(0,1] ⊂ Mn, with n ∈ N

fixed.

Lemma 5.3 (Weak convergence of Tn,h). Assume that F ∈ L1+ 1
n
(Ω)d×d

sym and that the functions λ and μ

satisfy hypotheses (A1–A4). Let (Tn, un) ∈ Mn ×Xn be the unique solution of the regularized problem
(3.2). Then, as h → 0+,

Tn,h ⇀ Tn weakly in Mn = L1+ 1
n
(Ω)d×d

sym .

Proof. In this proof C denotes a generic positive constant that is independent of n and h. We use again
the lift Tf

n,h = ΠhTf
n of the data satisfying equality (5.8) and set T0

n,h = Tn,h − Tf
n,h ∈ Vn,h, which

satisfies equation (5.11). The a priori estimates provided by Lemma 4.2 guarantee that

‖ε(un,h)‖Ln+1(Ω) ≤ d
√

2

n

[
16d2‖F‖1+ 1

n
L

1+ 1
n
(Ω)+2(n +1)C2

√
2d |Ω| 1

n+1 ‖F‖L
1+ 1

n
(Ω)+ 4(n + 1)C1κ|Ω|

] 1
n+1

+ C2

√
2d |Ω| 1

n+1 (5.12)

and

1

n + 1
‖Tn,h‖1+ 1

n
L

1+ 1
n
(Ω) + C1‖Tn,h‖L1(Ω) ≤ 16d2

n + 1
‖F‖1+ 1

n
L

1+ 1
n
(Ω)

+ 2C2

√
2d |Ω| 1

n+1 ‖F‖L
1+ 1

n
(Ω) + 4C1κ|Ω|.

(5.13)

Hence, in particular,

1

n + 1
‖Tn,h‖1+ 1

n
L

1+ 1
n
(Ω) + ‖Tn,h‖L1(Ω) + ‖ε(un,h)‖Ln+1(Ω) ≤ cn ∀ n ∈ N, ∀ h ∈ (0, 1],
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where cn is a positive constant, depending on ‖F‖L
1+ 1

n
(Ω), C1, C2, d, κ and |Ω| only. Thanks to the

stability inequality (5.9) satisfied by the lift Tf
n,h we then deduce that

1

n + 1
‖T0

n,h‖
1+ 1

n
L

1+ 1
n
(Ω) + ‖T0

n,h‖L1(Ω) ≤ cn ∀ n ∈ N, ∀ h ∈ (0, 1].

Therefore, for each fixed n ∈ N there exists a subsequence with respect to h (and still indexed by h) and

T
0
n ∈ L1+ 1

n
(Ω)d×d

sym such that, as h → 0+,

T0
n,h ⇀ T

0
n weakly in L1+ 1

n
(Ω)d×d

sym . (5.14)

We note that T
0
n ∈ Vn, in fact. Indeed, for any vn ∈ Xn there exists a sequence (vn,h)h∈(0,1], with

vn,h ∈ Xn,h, such that ε(vn,h) → ε(vn) strongly in Ln+1(Ω)d×d
sym . As

b
(
T0

n,h, vn,h

) = b(Tn,h, vn,h) − b
(
Tf

n,h, vn,h

) = (f, vn,h) − (f, vn,h) = 0,

passage to the limit h → 0+, using the weak convergence (5.14) and the strong convergence ε(vn,h) →
ε(vn) in Ln+1(Ω)d×d

sym , implies that b(T
0
n, vn) = 0 for all vn ∈ Xn. Hence, T

0
n ∈ Vn thanks to the

definition of the linear space Vn.

We now show, using Minty’s method, that T
0
n satisfies equation (4.5). To this end, we recall the

notation (3.3) for An and first prove that, for Sn,h ∈ Vn,h,

∫
Ω

An

(
Sn,h + Tf

n,h

)
:
(
T0

n,h − Sn,h

)
dx ≤ 0. (5.15)

We begin the proof of inequality (5.15) by invoking the monotonicity result (3.5) to deduce that, for
Sn,h ∈ Vn,h,

∫
Ω

(
An

(
T0

n,h + Tf
n,h

)− An

(
Sn,h + Tf

n,h

))
:
(
T0

n,h − Sn,h

)
dx

=
∫

Ω

(
An

(
T0

n,h + Tf
n,h

)− An

(
Sn,h + Tf

n,h

))
:
(
T0

n,h + Tf
n,h − Tf

n,h − Sn,h

)
dx ≥ 0.

Moreover, as T0
n,h and Sn,h both belong to Vn,h, we use relation (5.11) satisfied by T0

n,h to deduce that

∫
Ω

An

(
T0

n,h + Tf
n,h

)
:
(
T0

n,h − Sn,h

)
dx = 0,

and thus we obtain inequality (5.15).

We can now use inequality (5.15) to show that T
0
n solves problem (4.5). To see this, we consider

ΠhSn for a given Sn ∈ Vn. As h → 0+, the weak convergence (5.14), the strong convergence ΠhSn →
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Sn (by density) and Tf
n,h = ΠhTf

n → Tf
n (see (5.10)) in Mn guarantee that

T0
n,h − ΠhSn ⇀ T

0
n − Sn weakly in Mn

and

ΠhSn + Tf
n,h → Sn + Tf

n strongly in Mn.

Hence, inequality (5.15) and the continuity of An (cf. Lemma 3.1(ii)) lead to∫
Ω

An

(
Sn + Tf

n

)
:
(
T

0
n − Sn

)
dx ≤ 0 ∀ Sn ∈ Vn.

Choosing Sn = T
0
n − tWn for t > 0 and some Wn ∈ Vn we get∫

Ω

An

(
T

0
n + Tf

n − tWn

)
: Wn dx ≤ 0 ∀ Wn ∈ Vn.

Thanks to the continuity (and therefore hemicontinuity) of An (cf. again Lemma 3.1(ii)), we can pass to
the limit t → 0+ to deduce that∫

Ω

An

(
T

0
n + Tf

n

)
: Wn dx ≤ 0 ∀ Wn ∈ Vn,

and consequently, since Vn is a linear space, after replacing Wn by −Wn in the inequality above and
then combining the two inequalities,∫

Ω

An

(
T

0
n + Tf

n

)
: Wn dx = 0 ∀ Wn ∈ Vn,

which shows that T
0
n = T0

n = Tn − Tf
n satisfies equation (4.5), and thus Tn,h ⇀ Tn in Mn as h → 0+.�

Lemma 5.4 (Strong convergence). Assume that F ∈ L1+ 1
n
(Ω)d×d

sym , that the functions λ and μ satisfy

assumptions (A1–A4) and let (Tn, un) denote the unique solution to the regularized problem (3.2), with
n ∈ N. Then, for each fixed n ∈ N, as h → 0+,

Tn,h → Tn strongly in Lp(Ω)d×d
sym ∀ p ∈ [1, 1 + 1

n

)
, (5.16)

ε(un,h) ⇀ ε(un) weakly in Lp(Ω)d×d
sym ∀ p ∈ [1, n + 1]. (5.17)

When n = 1, the strong convergence result (5.16) holds for all p ∈ [1, 2]. In addition, for each n ∈ N,

un,h → un

{
strongly in Lp(Ω)d ∀ p ∈ [1, d(n+1)

d−(n+1)

)
when 1 ≤ n ≤ d − 1,

strongly in C0,α(Ω)d ∀ α ∈ (0, 1 − d
n+1

)
when d < n + 1,

(5.18)
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and for each n ∈ N, n ≥ 2,

ε(un,h) → ε(un) strongly in Ln(Ω)d×d
sym . (5.19)

Furthermore, if λ satisfies (A3′), we have that, for any Ω0 ⊂⊂ Ω ,

lim
n→∞ lim

h→0+
‖Tn,h − T‖L1(Ω0)

= 0 and lim
n→∞ lim

h→0+
‖un,h − u‖C(Ω) = 0

and

lim
n→∞ lim

h→0+
‖ε(un,h) − ε(u)‖Lp(Ω0)

= 0 ∀Ω0 ⊂⊂ Ω , ∀ p ∈ [1, ∞),

where (T, u) denotes the unique solution of the original (nonregularized) continuous problem (1.1),
(1.2) subject to a homogeneous Dirichlet boundary condition on ∂Ω .

Proof. In this proof, again, C denotes a generic positive constant, independent of h and n. Also, we use
again the notation Tn = T0

n + Tf
n and Tn,h = T0

n,h + Tf
n,h, where Tf

n = F satisfies equality (4.2) and

Tf
n,h = ΠhTf

n satisfies equality (5.8).

To establish control on T0
n,h − T0

n we write

T0
n,h − T0

n = (T0
n,h − ΠhT0

n

)+ (ΠhT0
n − T0

n

)
. (5.20)

Since ΠhT0
n → T0

n strongly in L1+ 1
n
(Ω)d×d

sym for all n ∈ N, it suffices to focus on the discrepancy

T0
n,h − ΠhT0

n.

Thanks to inequality (3.6), for any pair of matrices S, R ∈ R
d×d
sym , one has

(
S|S| 1

n −1 − R|R| 1
n −1
)

: (S − R) ≥ 1

n
|S − R|2

∫ 1

0
|R + θ(S − R)| 1

n −1 dθ

≥ 1

n

|S − R|2
(|R| + |S − R|)1− 1

n

.

Analogously, for any pair of real numbers s, r ∈ R,

(
s|s| 1

n −1 − r|r| 1
n −1
)

(s − r) ≥ 1

n

|s − r|2
(|r| + |s − r|)1− 1

n

.
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Hence, and by invoking inequalities (1.5) and (1.7) (guaranteed by assumptions (A1–A4)) we have

∫
Ω

(
An

(
T0

n,h + Tf
n,h

)− An

(
ΠhT0

n + Tf
n,h

))
:
(
T0

n,h − ΠhT0
n

)
dx

≥ 1

n2

∫
Ω

∣∣Tr
(
T0

n,h + Tf
n,h

)− Tr
(
ΠhT0

n + Tf
n,h

)∣∣2(∣∣Tr
(
ΠhT0

n + Tf
n,h

)∣∣+ ∣∣Tr
(
T0

n,h + Tf
n,h

)− Tr
(
ΠhT0

n + Tf
n,h

)∣∣)1− 1
n

dx

+ 1

n2

∫
Ω

∣∣(T0
n,h + Tf

n,h

)d − (ΠhT0
n + Tf

n,h

)d∣∣2(∣∣(ΠhT0
n + Tf

n,h

)d∣∣+ ∣∣(T0
n,h + Tf

n,h

)d − (ΠhT0
n + Tf

n,h

)d∣∣)1− 1
n

dx.

(5.21)

Moreover, because T0
n = T

0
n ∈ Vn (cf. the last sentence in the proof of Lemma 5.3) we have

∫
Ω

ε(vh) : ΠhT0
n dx =

∫
Ω

ε(vh) : T0
n dx = 0 ∀ vh ∈ Xn,h,

and so ΠhT0
n ∈ Vn,h. As a consequence, T0

n,h − ΠhT0
n ∈ Vn,h and there holds

∫
Ω

An

(
T0

n,h + Tf
n,h

)
:
(
T0

n,h − ΠhT0
n

)
dx = 0.

Using this in inequality (5.21) and noting that ΠhT0
n + Tf

n,h = Πh(T
0
n + Tf

n) = ΠhTn we obtain

−
∫

Ω

An

(
ΠhT0

n + Tf
n,h

)
:
(
T0

n,h − ΠhT0
n

)
dx

≥ 1

n2

∫
Ω

∣∣Tr
(
T0

n,h − ΠhT0
n

)∣∣2(|Tr(ΠhTn)| + ∣∣Tr
(
T0

n,h − ΠhT0
n

)∣∣)1− 1
n

dx

+ 1

n2

∫
Ω

∣∣(T0
n,h − ΠhT0

n

)d∣∣2(|(ΠhTn)
d| + ∣∣(T0

n,h − ΠhT0
n

)d∣∣)1− 1
n

dx ≥ 0.

(5.22)

On the one hand, T0
n,h −ΠhT0

n weakly converges to T0
n −T0

n = 0 in Mn as h → 0+ (cf. Lemma 5.3).

On the other hand, ΠhT0
n + Tf

n,h strongly converges to T0
n + Tf

n in Mn = L1+ 1
n
(Ω)d×d

sym as h → 0+.

Therefore, the continuity of the mapping An : L1+ 1
n
(Ω)d×d

sym → Ln+1(Ω)d×d
sym (cf. Lemma 3.1(ii)), which

implies that An(ΠhT0
n + Tf

n,h) strongly converges to An(T
0
n + Tf

n) in Ln+1(Ω)d×d
sym as h → 0+, yields

−
∫

Ω

An

(
ΠhT0

n + Tf
n,h

)
:
(
T0

n,h − ΠhT0) dx → 0 as h → 0+,
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whence, returning to inequality (5.22),

0 ≤ 1

n2

∫
Ω

∣∣Tr
(
T0

n,h − ΠhT0
n

)∣∣2(|Tr(ΠhTn)| + ∣∣Tr
(
T0

n,h − ΠhT0
n

)∣∣)1− 1
n

dx

+ 1

n2

∫
Ω

∣∣(T0
n,h − ΠhT0

n

)d∣∣2(|(ΠhTn)
d| + ∣∣(T0

n,h − ΠhT0
n

)d∣∣)1− 1
n

dx → 0 as h → 0+.

Consequently, for each n ∈ N,

lim
h→0+

∫
Ω

∣∣Tr
(
T0

n,h − ΠhT0
n

)∣∣2(|Tr(ΠhTn)| + ∣∣Tr
(
T0

n,h − ΠhT0
n

)∣∣)1− 1
n

dx = 0,

lim
h→0+

∫
Ω

∣∣(T0
n,h − ΠhT0

n

)d∣∣2(|(ΠhTn)
d| + ∣∣(T0

n,h − ΠhT0
n

)d∣∣)1− 1
n

dx = 0.

In the special case when n = 1 we directly deduce from these, equality (1.12) and the strong
convergence of ΠhT0

n to T0
n in L2(Ω)d×d

sym , that T0
n,h → T0

n strongly in L2(Ω)d×d
sym , as h → 0+. Since

Tf
n,h = ΠhTf

n → Tf
n strongly in L2(Ω)d×d

sym as h → 0+, it follows that, for n = 1, Tn,h → Tn strongly

in L2(Ω)d×d
sym , and therefore also strongly in Lp(Ω)d×d

sym for all p ∈ [1, 2], as h → 0+. That completes the
proof of the assertion of the lemma concerning (Tn,h)h∈(0,1] for n = 1.

Let us now consider the case when n > 1. Let M( f ) denote the Hardy–Littlewood maximal
function of f ∈ L1(Ω), with f extended by zero outside Ω to the whole of Rd, and let Br(x) denote the
d-dimensional ball of radius r centered at x ∈ R

d. Clearly,

|ΠhTn(x)| ≤ 1

|K|
∫

K
|Tn(y)| dy ≤ |BhK

(x)|
|K|

(
1

|BhK
(x)|

∫
BhK (x)

|Tn(y)| dy

)
≤ c(η)M(|Tn|)(x)

for all x ∈ K and all K ∈ Th, where hK = diam(K) and c(η) is a positive constant that depends only
on the shape-regularity parameter η of the family (Th)h∈(0,1] of simplicial subdivisions of the domain Ω

(see (5.1)). Thus,

|ΠhTn(x)| ≤ c(η)M(|Tn|)(x) ∀ x ∈ Ω . (5.23)

Since the Hardy–Littlewood maximal function is of weak-type (L1, L1,∞) (with L1,∞ signifying a
Lorentz space) with norm at most 3d (cf. Theorem 2.1.6 and inequality (2.1.3) in Grafakos (2014)),
we have

|{x ∈ Ω : M(|Tn|)(x) > t}| ≤ 3d

t
‖Tn‖L1(Ω) ∀ t > 0.

For k ∈ N we define

Ωk := {x ∈ Ω : M(|Tn|)(x) ≤ k}.
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Hence,

Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ω and |Ω \ Ωk| ≤ 3d

k
‖Tn‖L1(Ω) ∀ k ∈ N; (5.24)

in particular,

lim
k→∞ |Ω \ Ωk| = 0. (5.25)

By recalling (1.12), (5.23) and the definition of the set Ωk, we have

|Tr(ΠhTn)(x)| ≤ d
1
2 |ΠhTn(x)| ≤ d

1
2 c(η)M(|Tn|)(x) ≤ d

1
2 c(η) k ∀ x ∈ Ωk, ∀ k ∈ N,

|(ΠhTn)
d(x)| ≤ |ΠhTn(x)| ≤ c(η)M(|Tn|)(x) ≤ c(η) k ∀ x ∈ Ωk, ∀ k ∈ N.

Thus, we deduce that, for each k ∈ N,

lim
h→0+

∫
Ωk

∣∣Tr
(
T0

n,h − ΠhT0
n

)∣∣2(√
dc(η) k + ∣∣Tr

(
T0

n,h − ΠhT0
n

)∣∣)1− 1
n

dx = 0,

lim
h→0+

∫
Ωk

∣∣(T0
n,h − ΠhT0

n

)d∣∣2(
c(η) k + ∣∣(T0

n,h − ΠhT0
n

)d∣∣)1− 1
n

dx = 0,

as h → 0+; hence, for each k there exists a null sequence (h(k)) ⊂ (0, 1], with (h(k+1)) ⊂ (h(k)) for all
k ∈ N, such that∣∣Tr

(
T0

n,h(k) − Πh(k)T0
n

)∣∣2(√
dc(η) k + ∣∣Tr

(
T0

n,h(k) − Πh(k)T0
n

)∣∣)1− 1
n

→ 0 and

∣∣(T0
n,h(k) − Πh(k)T0

n

)d∣∣2(
c(η) k + ∣∣(T0

n,h(k) − Πh(k)T0
n

)d∣∣)1− 1
n

→ 0

a.e. on Ωk as h(k) → 0+. Since

a2

(k + a)1− 1
n

≥ 2
1
n −1 min

(
a2

k1− 1
n

, a1+ 1
n

)
∀ a ≥ 0, ∀ k ∈ N, (5.26)

it follows that∣∣Tr
(
T0

n,h(k) − Πh(k)T0
n

)∣∣→ 0 and
∣∣(T0

n,h(k) − Πh(k)T0
n

)d∣∣→ 0 a.e. on Ωk, ∀ k ∈ N

as h(k) → 0+. We then deduce from inequality (1.13) that

T0
n,h(k) − Πh(k)T0

n → 0 a.e. on Ωk ∀ k ∈ N as h(k) → 0+.
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Hence,

T0
n,h(k) → T0

n a.e. on Ωk ∀ k ∈ N as h(k) → 0+.

By Cantor’s diagonal argument we can then extract a ‘diagonal’ null sequence (h(∞)) such that

T0
n,h(∞) → T0

n a.e. on Ωk ∀ k ∈ N as h(∞) → 0+.

Since the sets Ωk are nested (cf. (5.24)) and they exhaust the whole of Ω (cf. (5.25)), it follows that

T0
n,h(∞) → T0

n a.e. on Ω as h(∞) → 0+.

For the sake of the simplicity of our notation we shall henceforth suppress the superscript (∞) and will
simply write

T0
n,h → T0

n a.e. on Ω as h → 0+.

As Tf
n.h = ΠhTf

n → Tf
n strongly in L1+ 1

n
(Ω)n×n

sym , and therefore (for a subsequence, not indicated) a.e.

in Ω , it follows that

Tn,h = T0
n,h + Tf

n.h → T0
n + Tf

n = Tn a.e. on Ω as h → 0+.

As, by Lemma 5.3, Tn,h ⇀ Tn weakly in L1+ 1
n
(Ω)d×d

sym , it follows that the sequence (Tn,h)h∈(0,1] is

equi-integrable in L1(Ω)d×d
sym , and therefore by Vitali’s theorem,

Tn,h → Tn strongly in L1(Ω)d×d
sym as h → 0+, (5.27)

whereby, because of the weak convergence Tn,h ⇀ Tn in L1+ 1
n
(Ω)d×d

sym , it follows that

Tn,h → Tn strongly in Lp(Ω)d×d
sym ∀ p ∈

[
1, 1 + 1

n

)
as h → 0+,

where the limiting function Tn is the first component of the unique solution (Tn, un) of the regularized
problem. That completes the proof of the strong convergence result (5.16) for n > 1. For n = 1, (5.16)
has already been shown in the first part of this proof for all p ∈ [1, 2]; hence (5.16) holds for all n ∈ N.

To prove the strong convergence of the sequence (un,h)h∈(0,1] ⊂ Xn,h to un ∈ Xn we note that
inequality (5.12) implies that the sequence (ε(un,h))h∈(0,1] is bounded in Ln+1(Ω)d×d

sym . Hence, there

exists a subsequence (not indicated) and ε(un,h) ∈ Ln+1(Ω)d×d
sym such that, as h → 0+,

ε(un,h) ⇀ ε(un,h) weakly in Ln+1(Ω)d×d
sym . (5.28)

Here, and henceforth, for any weakly (respectively, strongly) convergent sequence of the form
(an,h)h∈(0,1] in a function space, with n ≥ 1 held fixed, an,h will denote the weak (respectively, strong)
limit of the sequence as h → 0+, in instances where the limit of the sequence is yet to be identified.
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FE APPROXIMATION OF STRAIN-LIMITING ELASTICITY 57

This will imply assertion (5.17) once we have shown that ε(un,h) = ε(un), which we shall do
now. For 1 ≤ n ≤ d − 1, Korn’s inequality (1.10) and Poincaré’s inequality (1.9) together imply that
(un,h)h∈(0,1] is bounded in W1,n+1

0 (Ω)d, and by Kondrashov’s compact embedding theorem the sequence
therefore possesses a strongly convergent subsequence (not indicated), with limit un,h ∈ Lp(Ω)d, such
that

un,h → un,h strongly in Lp(Ω)d as h → 0+ ∀ p ∈
[

1,
(n + 1)d

d − (n + 1)

)
.

This will imply the first line of assertion (5.18) once we have shown that un,h = un, which we shall

do below. In any case, by the uniqueness of the weak limit it then follows that ε(un,h) = ε(un,h), and
therefore

ε(un,h) ⇀ ε(un,h) weakly in Ln+1(Ω)d×d
sym as h → 0+.

For n > d − 1, by an analogous argument,

un,h → un,h strongly in C0,α(Ω)d as h → 0+ ∀ α ∈
(

0, 1 − d

n + 1

)
.

This will imply the second line of assertion (5.18) provided we show that un,h = un, the second
component of the unique solution (Tn, un) of the regularized problem. We shall do so by passing to
the limit in equation (5.3)1.

To this end, take any S ∈ L1+ 1
n
(Ω)d×d

sym and let Sh := ΠhS in equation (5.3)1, resulting in

an(Tn,h, ΠhS) + c(Tn,h; Tn,h, ΠhS) − b(ΠhS, un,h) = 0. (5.29)

As

ΠhS → S strongly in L1+ 1
n
(Ω)d×d

sym (5.30)

it follows from the weak convergence (5.28) that, for each n ∈ N,

lim
h→0+

b(ΠhS, un,h) = b(S, un,h) ∀ S ∈ L1+ 1
n
(Ω)d×d

sym . (5.31)

We shall now pass to the limit h → 0+ in the first two terms on the left-hand side of equation (5.29).
Thanks to the strong convergence result Tn,h → Tn in L1(Ω)d×d

sym , which follows from assertion
(5.16) for all n ∈ N, as h → 0+, an identical argument to the one in the proof of Lemma 3.1(ii) implies
that, as h → 0+,

λ(Tr(Tn,h))Tr(Tn,h)I → λ(Tr(Tn))Tr(Tn)I strongly in Ln+1(Ω)d×d
sym

and

μ
(∣∣Td

n,h

∣∣)Td
n,h → μ

(∣∣Td
n

∣∣)Td
n strongly in Ln+1(Ω)d×d

sym .
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Together with the strong convergence (5.30) these then imply that, for each n ∈ N,

lim
h→0+

c(Tn,h; Tn,h, ΠhS) = c(Tn; Tn, S) ∀ S ∈ L1+ 1
n
(Ω)d×d

sym . (5.32)

Finally, we consider the first term on the left-hand side of equation (5.29). By inequality (3.4),∣∣∣∣ Tr(Tn,h)

|Tr(Tn,h)|1− 1
n

− Tr(Tn)

|Tr(Tn)|1− 1
n

∣∣∣∣ ≤ 21− 1
n d

1
2n |Tn,h − Tn|

1
n .

Thus, because of the strong convergence (5.16), we have that, as h → 0+,

Tr(Tn,h)

|Tr(Tn,h)|1− 1
n

I → Tr(Tn)

|Tr(Tn)|1− 1
n

I strongly in Lp(Ω)d×d
sym ∀ p ∈ [1, n + 1).

Furthermore, by the uniform bound (5.13), for each fixed n ∈ N,(
Tr(Tn,h)

|Tr(Tn,h)|1− 1
n

I

)
h∈(0,1]

is a bounded sequence in Ln+1(Ω)d×d
sym , which therefore has a weakly convergent subsequence (not

indicated), whose (weak) limit in Ln+1(Ω)d×d
sym , by the uniqueness of the weak limit, coincides with

Tr(Tn)

|Tr(Tn)|1− 1
n

I.

Hence, as h → 0+,

Tr(Tn,h)

|Tr(Tn,h)|1− 1
n

I ⇀
Tr(Tn)

|Tr(Tn)|1− 1
n

I weakly in Ln+1(Ω)d×d
sym .

By an identical argument,

Td
n,h

|Td
n,h|1− 1

n

⇀
Td

n

|Td
n |1− 1

n

weakly in Ln+1(Ω)d×d
sym .

By combining these two weak convergence results with the strong convergence result (5.30) we deduce
that, for each n ∈ N,

lim
h→0+

an(Tn,h, ΠhS) = an(Tn, S) ∀ S ∈ L1+ 1
n
(Ω)d×d

sym . (5.33)
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Using the convergence results (5.31), (5.32) and (5.33) we can now pass to the limit h → 0+ in
equation (5.29) to deduce that

an(Tn, S) + c(Tn; Tn, S) − b(S, un,h) = 0 ∀ S ∈ L1+ 1
n
(Ω)d×d

sym . (5.34)

By subtracting equation (5.34) from equation (3.2) we deduce that

b(S, un,h − un) = 0 ∀ S ∈ L1+ 1
n
(Ω)d×d

sym .

Hence,

ε(un,h − un) = 0 in Ln+1(Ω)d×d
sym .

Thus, by noting inequality (1.11) we deduce that

un,h − un = 0 in W1,n+1
0 (Ω)d.

In other words, un,h = un ∈ W1,n+1
0 (Ω)d, as has been asserted above.

The strong convergence (5.19) in Ln(Ω)d for n ≥ 2 follows by an argument that we have already
used, so we only sketch the proof. For any Sh ∈ Mn,h, the constitutive relations in (3.2) and (5.3) imply

∫
Ω

(ε(un,h)−ε(un)) : Sh dx =
∫

Ω

(An(Tn,h)−An(Tn)) : Sh dx ≤‖An(Tn,h)−An(Tn))‖Ln(Ω)‖Sh‖L n
n−1

(Ω).

Now, using an argument similar to the one leading to (3.4), we find that

1

n

∫
Ω

∣∣∣∣ Tr(Tn,h)

|Tr(Tn,h)|1− 1
n

− Tr(Tn)

|Tr(Tn)|1− 1
n

∣∣∣∣n dx + 1

n

∫
Ω

∣∣∣∣ Td
n,h

|Td
n,h|1− 1

n

− Td
n

|Td
n |1− 1

n

∣∣∣∣n dx

≤ C‖Tn,h − Tn‖L1(Ω) → 0 as h → 0+,

(5.35)

for a constant C depending only on d and n. For the monotone part, A, in An (cf. (4.16)), we invoke a
similar argument to the one used in Lemma 3.1 to deduce that

‖A(Tn,h) − A(Tn)‖Ln(Ω) → 0 as h → 0+.

Hence, in conjunction with (5.35), we arrive at

1

‖Sh‖L n
n−1

(Ω)

∫
Ω

(ε(un,h) − ε(un)) : Sh dx → 0 as h → 0+.
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Using the decomposition ε(un,h) − ε(un) = ε(un,h) − Πh(ε(un)) + Πh(ε(un)) − ε(un) we write

1

‖Sh‖L n
n−1

(Ω)

∫
Ω

(ε(un,h) − Πh(ε(un))) : Sh dx

= 1

‖Sh‖L n
n−1

(Ω)

∫
Ω

(ε(un,h) − ε(un)) : Sh dx − 1

‖Sh‖L n
n−1

(Ω)

∫
Ω

(Πh(ε(un)) − ε(un)) : Sh dx.

Choosing Sh = (ε(un,h) − Πh(ε(un)))|ε(un,h) − Πh(ε(un))|n−2 ∈ Mn,h yields

‖ε(un,h) − Πh(ε(un))‖Ln(Ω) → 0 as h → 0+.

It remains to employ a density argument to deduce the strong convergence result (5.19).
The final claim in the statement of the lemma follows from the strong convergence results (4.11),

(4.12)2, (4.14), (5.16) and (5.18)2, which together imply that, for any Ω0 ⊂⊂ Ω ,

lim
n→∞ lim

h→0+
‖Tn,h − T‖L1(Ω0)

= 0,

lim
n→∞ lim

h→0+
‖un,h − u‖C(Ω) = 0

and

lim
n→∞ lim

h→0+
‖ε(un,h − u)‖Lp(Ω0)

= 0 ∀ p ∈ [1, ∞).

The assertions concerning the uniqueness of u and T follow from Theorem 2.1(c). �
Hypotheses (A3′) and (A4) adopted in the statement of Lemma 5.4 guarantee that the derivatives

of the functions s ∈ R �→ λ(s)s and s ∈ R≥0 �→ μ(s)s are bounded below by 0 on R and R>0,
respectively. These two functions are, in fact, Lipschitz continuous on any compact subinterval of R and
R≥0, respectively. If they are assumed to be globally Hölder continuous on R and R≥0, respectively,
with Hölder exponent β ∈ (0, 1], then an error inequality holds, for all n ∈ N, in the limit of h → 0+,
as we shall now show.

Theorem 5.5 In addition to the assumptions of Lemma 5.4, let us also suppose that the functions
s ∈ R �→ λ(s)s ∈ R and S ∈ R

d×d
sym �→ μ(|S|)S ∈ R

d×d
sym are Hölder continuous with exponent β ∈ (0, 1],

i.e., there exists a positive constant Λ such that

|λ(r)r −λ(s)s| ≤ Λ|r − s|β ∀ r, s ∈ R, |μ(|R|)R−μ(|S|)S| ≤ Λ|R−S|β ∀ R, S ∈ R
d×d
sym . (5.36)

Then, assuming that Tn ∈ L∞(Ω)d×d
sym for n ≥ 2, the following error bound holds:∫

Ω

Φn(|Tn,h − ΠhTn|) dx

≤ C(d, Λ, β, n, Kn, K)

(
inf

vh∈Xn,h

∫
Ω

Φ∗
n (|ε(vh − un)|) dx +

∫
Ω

Φ∗
n (|Tn − ΠhTn|min(β, 1

n )) dx
)

.

(5.37)
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Here

Φn(s) := s2

(1 + s)1− 1
n

, s ∈ [0, ∞), n ∈ N,

Φ∗
n , defined by Φ∗

n (s) := supt≥0(st − Φn(t)) for s ∈ [0, ∞), is the convex conjugate of the function Φn,
Kn := max(1, ‖Tn‖L∞(Ω)) and K = K(n) is a positive constant that will be specified in the proof. When
n = 1 inequality (5.37) holds without the additional assumption that Tn ∈ L∞(Ω)d×d

sym .

Proof. We proceed similarly to the proof of Lemma 5.4. From relations (3.2) and (5.3) we have for all
Sh ∈ Mn,h that∫

Ω

(An(Tn,h) − An(ΠhTn)) : Sh dx =
∫

Ω

ε(un,h − un) : Sh dx

+
∫

Ω

(An(Tn) − An(ΠhTn)) : Sh dx.

The choice Sh = Tn,h − ΠhTn ∈ Vn,h guarantees that∫
Ω

ε(vh) : Sh dx = 0 ∀ vh ∈ Xn,h.

Thus, by defining, for any vh in Xn,h,

Un,h := ε(vh − un) + (An(Tn) − An(ΠhTn)
)
,

and proceeding similarly to the proof of inequality (5.21), we have

1

n2

∫
Ω

|Tr(Tn,h) − Tr(ΠhTn)|2
(|Tr(ΠhTn)| + |Tr(Tn,h) − Tr(ΠhTn)|)1− 1

n

dx

+ 1

n2

∫
Ω

∣∣Td
n,h − ΠhTd

n

∣∣2(∣∣ΠhTd
n

∣∣+ ∣∣Td
n,h − ΠhTd

n

∣∣)1− 1
n

dx

≤
∫

Ω

Un,h : (Tn,h − ΠhTn) dx.

(5.38)

Thanks to equality (1.12),

∣∣ΠhTd
n(x)

∣∣2 + 1

d
|Tr(ΠhTn)(x)|2 = |ΠhTn(x)|2 ≤ ‖ΠhTn‖2

L∞(Ω) ≤ ‖Tn‖2
L∞(Ω) for a.e. x ∈ Ω .

Thus, by denoting Kn := max(1, ‖Tn‖L∞(Ω)), it follows that

‖ΠhTd
n‖L∞(Ω) ≤ Kn and ‖Tr(ΠhTn)‖L∞(Ω) ≤ d

1
2 Kn.
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62 A. BONITO ET AL.

Hence we have from inequality (5.38) that

1

n2

∫
Ω

|Tr(Tn,h) − Tr(ΠhTn)|2
(d

1
2 Kn + |Tr(Tn,h) − Tr(ΠhTn)|)1− 1

n

dx + 1

n2

∫
Ω

∣∣Td
n,h − ΠhTd

n

∣∣2(
Kn + ∣∣Td

n,h − ΠhTd
n

∣∣)1− 1
n

dx

≤
∫

Ω

Un,h : (Tn,h − ΠhTn) dx.

Because Kn ≥ 1 and by noting the decomposition T = 1
d Tr(T)I + Td, the above inequality implies

1

n2

(
d

1
2 Kn

) 1
n −1

∫
Ω

|Tr(Tn,h) − Tr(ΠhTn)|2
(1 + |Tr(Tn,h) − Tr(ΠhTn)|)1− 1

n

dx

+ 1

n2 (Kn)
1
n −1

∫
Ω

∣∣Td
n,h − ΠhTd

n

∣∣2(
1 + ∣∣Td

n,h − ΠhTd
n

∣∣)1− 1
n

dx

≤ 1

d

∫
Ω

Tr(Un,h) Tr(Tn,h − ΠhTn) dx +
∫

Ω

Ud
n,h : (Tn,h − ΠhTn)

d dx

≤ 1

d

∫
Ω

|Tr(Un,h)| |Tr(Tn,h) − Tr(ΠhTn)| dx +
∫

Ω

∣∣Ud
n,h

∣∣ ∣∣Td
n,h − ΠhTd

n

∣∣ dx.

(5.39)

Let us consider the function Φn : R → R≥0 defined by

Φn(s) := s2

(1 + |s|)1− 1
n

, n ∈ N. (5.40)

The values of s of interest to us below will always be in the range [0, ∞), and therefore the absolute
value sign appearing in the denominator of Φn(s) can be ignored for such s.

Clearly, Φn(0) = 0, Φn is even, continuous, strictly monotonic increasing for s ≥ 0 and convex,
with

Φn(s) � s2 as s → 0+ and Φn(s) � s1+ 1
n as s → +∞. (5.41)

Here A � B means that there exist positive constants c and c̃ independent of A and B such that cB ≤
A ≤ c̃B. Following Rao & Ren (2002), a function Φ : R → R≥0 is called a nice Young function (N-
function), if (i) Φ is even and convex; (ii) Φ(s) = 0 if and only if s = 0 and (iii) lims→0 Φ(s)/s = 0
and lims→+∞ Φ(s)/s = +∞.

Hence, Φn is an N-function. Simple calculations show that

Φn(2s) ≤ 4Φn(s) ∀ s ∈ [0, ∞) and
1

2c
Φn(cs) ≥ Φn(s) ∀ s ∈ [0, ∞), ∀ c ≥ 2n; (5.42)

therefore, Φn satisfies the Δ2 and ∇2 conditions on [0, ∞) (cf. Rao & Ren, 2002, Definition 1 on p. 2).
Now, let Φ∗

n denote the convex conjugate of the function Φn. Then (Φn, Φ∗
n ) is a pair of complementary
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FE APPROXIMATION OF STRAIN-LIMITING ELASTICITY 63

N-functions and, by Rao & Ren (2002, Theorem 2 on p. 3), Φ∗
n also satisfies the Δ2 and ∇2 conditions

on [0, ∞); i.e., there exists a constant K = K(n) > 2 such that

Φ∗
n (2s) ≤ KΦ∗

n (s) ∀ s ∈ [0, ∞), (5.43)

and there exists a constant c = c(n) > 1 such that

1

2c
Φ∗

n (cs) ≥ Φ∗
n (s) ∀ s ∈ [0, ∞).

More precisely, by inequality (5.26),

2
1
n −1 min

(
s2, s1+ 1

n
) ≤ Φn(s) ≤ min

(
s2, s(1 + s)

1
n
) ∀ s ∈ [0, ∞).

By recalling that Φ∗
n (s) := supt≥0(st − Φn(t)), we get from (5.41) that

Φ∗
n (s) � 1

4
s2 as s → 0+ and Φ∗

n (s) � sn+1

n + 1

(
n

n + 1

)n

as s → +∞. (5.44)

Therefore, there exist positive constants c1,n and c2,n, with c1,n ≤ c2,n, such that

0 ≤ Φ∗
n (s) ≤ c1,ns2 ∀ s ∈ [0, 1]

and

c1,n ≤ Φ∗
n (s) ≤ c2,nsn+1 ∀ s ∈ [1, ∞).

Reverting to (5.39), by the Fenchel–Young inequality, for any real number δ > 0,

1

n2

(
d

1
2 Kn

) 1
n −1

∫
Ω

Φn(|Tr(Tn,h) − Tr(ΠhTn)|) dx + 1

n2 (Kn)
1
n −1

∫
Ω

Φn

(∣∣Td
n,h − ΠhTd

n

∣∣) dx

≤ 1

d

∫
Ω

|Tr(Un,h)| |Tr(Tn,h) − Tr(ΠhTn)| dx +
∫

Ω

∣∣Ud
n,h

∣∣ ∣∣Td
n,h − ΠhTd

n

∣∣ dx

= 1

dδ

∫
Ω

|Tr(Un,h)| δ |Tr(Tn,h) − Tr(ΠhTn)| dx + 1

δ

∫
Ω

∣∣Ud
n,h

∣∣ δ ∣∣Td
n,h − ΠhTd

n

∣∣ dx

≤ 1

dδ

∫
Ω

Φn(δ|Tr(Tn,h) − Tr(ΠhTn)|) dx + 1

dδ

∫
Ω

Φ∗
n (|Tr(Un,h)|) dx

+ 1

δ

∫
Ω

Φn

(
δ
∣∣Td

n,h − ΠhTd
n

∣∣) dx + 1

δ

∫
Ω

Φ∗
n

(∣∣Ud
n,h

∣∣) dx.

Clearly, for any a ∈ R≥0 and δ ∈ (0, 1], we have

Φn(δa) = δ2a2

(1 + δa)1− 1
n

≤ δ1+ 1
n Φn(a).
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64 A. BONITO ET AL.

Hence,

1

n2

(
d

1
2 Kn

) 1
n −1

∫
Ω

Φn(|Tr(Tn,h) − Tr(ΠhTn)|) dx + 1

n2
(Kn)

1
n −1

∫
Ω

Φn

(∣∣Td
n,h − ΠhTd

n

∣∣) dx

≤ δ
1
n

d

∫
Ω

Φn(|Tr(Tn,h) − Tr(ΠhTn)|) dx + 1

dδ

∫
Ω

Φ∗
n (|Tr(Un,h)|) dx

+ δ
1
n

∫
Ω

Φn

(∣∣Td
n,h − ΠhTd

n

∣∣) dx + 1

δ

∫
Ω

Φ∗
n

(∣∣Ud
n,h

∣∣) dx.

Let δ1, δ2 > 0 be such that

d

2n2

(
d

1
2 Kn

) 1
n −1 = δ

1
n
1 and

1

2n2 (Kn)
1
n −1 = δ

1
n
2 .

Thus, with δ := min(1, δ1, δ2), we have

∫
Ω

Φn(|Tr(Tn,h) − Tr(ΠhTn)|) dx +
∫

Ω

Φn

(∣∣Td
n,h − ΠhTd

n

∣∣) dx

≤ C(d, n, Kn)

(∫
Ω

Φ∗
n (|Tr(Un,h)|) dx +

∫
Ω

Φ∗
n

(∣∣Ud
n,h

∣∣) dx
)

.

(5.45)

Now assumptions (5.36) and (3.4) yield

|Un,h| ≤ |ε(vh − un)| + |An(Tn) − An(ΠhTn)|
≤ |ε(vh − un)| + C

(
|Tn − ΠhTn|

1
n + |Tn − ΠhTn|β

)
.

As Φ∗
n is an N-function, it is strictly monotonic increasing (cf. Rao & Ren, 2002, the top of p. 2) and

convex, and therefore by (5.43),

Φ∗
n (|Un,h|) ≤ Φ∗

n (|ε(vh − un)| + |An(Tn) − An(ΠhTn)|)

≤ 1

2

(
Φ∗

n (2|ε(vh − un)|) + Φ∗
n (2|An(Tn) − An(ΠhTn)|)

)
≤ K

2

(
Φ∗

n (|ε(vh − un)|) + Φ∗
n (|An(Tn) − An(ΠhTn)|)

)
.

(5.46)

In order to proceed we need to bound the right-hand side of the last inequality and that involves
comparing

An(Tn) := λ(Tr(Tn))Tr(Tn)I + μ
(∣∣Td

n

∣∣)Td
n + Tr(Tn)I

n|Tr(Tn)|1− 1
n

+ Td
n

n
∣∣Td

n

∣∣1− 1
n

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/40/1/29/5139567 by guest on 28 N
ovem

ber 2022



FE APPROXIMATION OF STRAIN-LIMITING ELASTICITY 65

with

An(ΠhTn) := λ(Tr(ΠhTn))Tr(ΠhTn)I + μ
(∣∣ΠhTd

n

∣∣)ΠhTd
n + Tr(ΠhTn)I

n|Tr(ΠhTn)|1− 1
n

+ ΠhTd
n

n
∣∣ΠhTd

n

∣∣1− 1
n

.

We have from inequalities (5.36) and (3.4) that

|An(Tn) − An(ΠhTn)| ≤ d
1
2 Λ|Tr(Tn) − ΠhTr(Tn)|β + Λ

∣∣Td
n − ΠhTd

n

∣∣β
+ d

1
2n

n
21− 1

n |Tr(Tn) − Tr(ΠhTn)|
1
n

+ C(d, n)
∣∣Td

n − ΠhTd
n

∣∣ 1
n

≤ C(d, Λ, β) |Tn − ΠhTn|β + C(d, n) |Tn − ΠhTn|
1
n

≤ C(d, Λ, β, n, Kn)|Tn − ΠhTn|min(β, 1
n ).

By inequality (5.43), Φ∗
n (2�s) ≤ K�Φ∗

n (s) for all s ∈ [0, ∞) and all � ≥ 1. Hence, with

� := [log2 C(d, Λ, β, n, Kn)] + 1

we have that C(d, Λ, β, n, Kn) ≤ 2�, whereby

Φ∗
n (|An(Tn) − An(ΠhTn)|) ≤ Φ∗

n (C(d, Λ, β, n, Kn)|Tn − ΠhTn|min(β, 1
n ))

≤ Φ∗
n (2�|Tn − ΠhTn|min(β, 1

n ))

≤ K�Φ∗
n (|Tn − ΠhTn|min(β, 1

n )).

By substituting this into inequality (5.46) we deduce that

Φ∗
n (|Un,h|) ≤ Φ∗

n (|ε(vh − un)| + |An(Tn) − An(ΠhTn)|)

≤ 1

2
KΦ∗

n (|ε(vh − un)|) + 1

2
K�+1Φ∗

n (|Tn − ΠhTn|min(β, 1
n )).

We then substitute this into inequality (5.45) and note, once again, the monotonicity of Φ∗
n , which

gives

∫
Ω

Φn(|Tr(Tn,h) − Tr(ΠhTn)|) dx +
∫

Ω

Φn

(∣∣Td
n,h − ΠhTd

n

∣∣) dx

≤ C(d, Λ, β, n, Kn, K)

(∫
Ω

Φ∗
n (|ε(vh − un)|) dx +

∫
Ω

Φ∗
n (|Tn − ΠhTn|min(β, 1

n )) dx
)

.
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For any pair of numbers a, b ∈ R≥0, by (5.42) and convexity, we have Φn(a + b) ≤ 2Φn(a) + 2Φn(b);
hence, by inequality (1.13),∫

Ω

Φn(|Tn,h − ΠhTn|) dx

≤ C(d, Λ, β, n, Kn, K)

(∫
Ω

Φ∗
n (|ε(vh − un)|) dx +

∫
Ω

Φ∗
n (|Tn − ΠhTn|min(β, 1

n )) dx
)

.

As this inequality holds for all vh ∈ Xn,h, the bound (5.37) directly follows. �
The error bound (5.37) can be restated in the following equivalent form. Given an N-function Ψ , let

L̃Ψ (Ω) :=
{

S : Ω → R
d×d
sym measurable, such that ρΨ (S) :=

∫
Ω

Ψ (|S(x)|) dx < ∞
}

;

the function ρΨ (·) is called a modular. In terms of the modulars ρΦn
and ρΦ∗

n
the error bound (5.37)

takes the form

ρΦn
(|Tn,h − ΠhTn|)

≤ C(d, Λ, β, n, Kn, K)

(
inf

vh∈Xn,h
ρΦ∗

n
(|ε(vh − un)|) + ρΦ∗

n
(|Tn − ΠhTn|min(β, 1

n ))

)
.

(5.47)

Here, as before,

Φn(s) := s2

(1 + s)1− 1
n

, s ∈ [0, ∞), n ∈ N,

and Φ∗
n is the convex conjugate of Φn.

Under the above assumptions, convergence rates can be derived by strengthening the regularity
hypothesis Tn ∈ L∞(Ω)d×d

sym from Theorem 5.5. Thus, for example, suppose that

Tn ∈ Wr,q(Ω)d×d
sym with 1 ≥ r >

d

q
and un ∈ W1+t,p(Ω)d ∩ W1,n+1

0 (Ω)d with 1 ≥ t >
d

p
,

and q, p ∈ (1, ∞], which ensure, by Morrey’s embedding theorem, that

Tn ∈ Wr,q(Ω)d×d
sym ↪→ C0,γ (Ω)d×d

sym ↪→ Wγ ,∞(Ω)d×d
sym with γ := r − d

q

and

ε(un) ∈ Wt,p(Ω)d×d
sym ↪→ C0,ζ (Ω)d×d

sym ↪→ Wζ ,∞(Ω)d×d
sym with ζ := t − d

p
.

With these stronger regularity hypotheses we then have

|Tn(x) − ΠhTn(x)| ≤ Chγ
K‖Tn‖Wγ ,∞(K) ≤ Chγ ‖Tn‖Wγ ,∞(Ω) ∀ x ∈ K, ∀ K ∈ Th.
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Thus, thanks to the fact that Φ∗
n is monotonic increasing, and by the first asymptotic property in (5.44),

ρΦ∗
n

(
|Tn − ΠhTn|min(β, 1

n )
)

≤ ρΦ∗
n

(
Chγ min(β, 1

n )‖Tn‖min(β, 1
n )

Wγ ,∞(Ω)

)
� Ch2γ min(β, 1

n )‖Tn‖2 min(β, 1
n )

Wγ ,∞(Ω)

as h → 0+. Analogously,

inf
vh∈Xn,h

ρΦ∗
n
(|ε(vh) − ε(un)|) ≤ ρΦ∗

n
(Chζ ‖ε(un)‖Wζ ,∞(Ω)) � Ch2ζ ‖ε(un)‖2

Wζ ,∞(Ω)
as h → 0+.

By substituting these bounds into the error inequality (5.47) we deduce that

ρΦn
(|Tn,h − ΠhTn|) ≤ C

(
h2ζ ‖ε(un)‖2

Wζ ,∞(Ω)
+ h2γ min(β, 1

n )‖Tn‖2 min(β, 1
n )

Wγ ,∞(Ω)

)

as h → 0+. In particular, if β = 1
n and ζ = γ

n ,

ρΦn
(|Tn,h − ΠhTn|) ≤ Ch2 γ

n

(
‖ε(un)‖2

W
γ
n ,∞(Ω)

+ ‖Tn‖
2
n
Wγ ,∞(Ω)

)
(5.48)

as h → 0+, where γ ∈ (0, 1] and n ∈ N. The error bound (5.48) on ρΦn
(|Tn,h − ΠhTn|) can be used to

derive bounds on norms of the error |Tn,h − ΠhTn|. For example, in the special case when n = 1, we
have Φn(s) = s2, and therefore

‖Tn,h − ΠhTn‖L2(Ω) ≤ Chγ
(‖ε(un)‖Wγ ,∞(Ω) + ‖Tn‖Wγ ,∞(Ω)

)
as h → 0+, where γ ∈ (0, 1]. In this special case, the regularity requirements on u and T can, in fact,

be relaxed to un ∈ W1+γ ,2(Ω)d×d
sym ∩ W1,2

0 (Ω)d×d
sym and Tn ∈ Wγ ,2(Ω)d×d

sym , γ ∈ (0, 1].
More generally, for n ∈ N, we divide inequality (5.48) by |Ω|, recall the definition of the modular

ρΦn
(·) and apply Jensen’s inequality on the left-hand side to deduce that

Φn

(
−
∫

Ω

|Tn,h − ΠhTn| dx
)

≤ Ch2 γ
n

(
‖ε(un)‖2

W
γ
n ,∞(Ω)

+ ‖Tn‖
2
n
Wγ ,∞(Ω)

)

as h → 0+, where γ ∈ (0, 1]. Because Φ−1
n , the inverse function of Φn (which is uniquely defined on

[0, ∞) thanks to the fact that Φn is strictly monotonic increasing on [0, ∞)), is monotonic increasing,
we have

−
∫

Ω

|Tn,h − ΠhTn| dx ≤ Φ−1
n

(
Ch2 γ

n

(
‖ε(un)‖2

W
γ
n ,∞(Ω)

+ ‖Tn‖
2
n
Wγ ,∞(Ω)

))
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as h → 0+, where γ ∈ (0, 1] and n ∈ N. Since Φn(s) � s2 as s → 0+, it follows that Φ−1
n (s) � s

1
2 as

s → 0+, and therefore

‖Tn,h − ΠhTn‖L1(Ω) ≤ Ch
γ
n

(
‖ε(un)‖W

γ
n ,∞(Ω)

+ ‖Tn‖
1
n
Wγ ,∞(Ω)

)
(5.49)

as h → 0+, where γ ∈ (0, 1], n ∈ N and C = C(d, Λ, n, Kn, K, γ , |Ω|).

5.3 Other elements that fit the theory

We shall comment here on some alternative choices of finite element spaces to which our analysis
applies. Let Qr

h denote the finite element space on quadrilateral or hexahedral meshes for d = 2 or
d = 3, respectively, consisting of (possibly discontinuous) mapped piecewise d-variate functions that
are polynomials of degree r in each variable over each element in the subdivision. We consider the
conforming finite element spaces

Mn,h := (Qr
h

)d×d
sym ⊂ Mn, Xn,h := (Qr

h

)d ∩ Xn ⊂ Xn (5.50)

for the approximation of Tn and un, respectively. Clearly, ε(Xn,h) ⊂ Mn,h and the L2(Ω)d×d orthogonal
projector Πh : Mn �→ Mn,h is stable in the Lp(Ω)d×d norm for all p ∈ [1, ∞].1 Then Lemma 5.3

can be shown to hold by an identical argument; if in addition it is assumed that Tn ∈ L∞(Ω)d×d
sym , then

Lemma 5.4 and Theorem 5.5 also hold. We note that our proof of Lemma 5.4 in the special case of

Mn,h =
(
P0

h

)d×d

sym
⊂ Mn and Xn,h =

(
P1

h

)d ∩ Xn ⊂ Xn (5.51)

did not require the additional assumption Tn ∈ L∞(Ω)d×d
sym , thanks to the connection between the

explicit formula for the projection onto piecewise constant functions and the Hardy–Littlewood maximal
function.

5.4 A simple quadrilateral/hexahedral element to which the theory does not apply

The simplest extension to quadrilaterals or hexahedra of the spaces defined in (5.2) is of course

Mn,h :=
(
Q0

h

)d×d

sym
⊂ Mn, Xn,h :=

(
Q1

h

)d ∩ Xn ⊂ Xn (5.52)

for the approximation of Tn and un, respectively. Everything done previously applies to this pair of
elements, except the uniform discrete inf-sup condition. Indeed, the proof of Lemma 5.1 does not carry
over to this case because ε(Xn,h) is not contained in Mn,h.

1 This stability result is a consequence of the stability in the Lp(−1, 1) norm of the L2(−1, 1) orthogonal projection onto the

space of univariate polynomials of degree r on the interval (−1, 1), for all p ∈ [1, ∞], with a stability constant Cr,p = C ·r
1
2

∣∣∣1− 2
p

∣∣∣
;

for p = ∞ see Gronwall (1913, eq. (29) on p. 230); for p = 2, Cr,2 = 1 for all r ≥ 1; for p ∈ (2, ∞) the form of Cr,p follows by
function space interpolation and for p ∈ [1, 2) it follows from the result for p = (2, ∞] by duality.
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FE APPROXIMATION OF STRAIN-LIMITING ELASTICITY 69

Let us look more closely at the greatest lower bound in (5.4), say βh. First, for any given vh, the
choice in each element K (which generalizes (5.5)),

Th = 1

|K|n
(∫

K
ε(vh) dx

) ∣∣∣∣ ∫
K

ε(vh) dx

∣∣∣∣n−1

, (5.53)

shows that βh ≥ 0. The next lemma shows that on a structured mesh (i.e., a mesh with a Cartesian
numbering) βh �= 0. To avoid excessive technicalities, it is stated for quadrilaterals, but it extends to
structured hexahedral meshes.

Proposition 5.6 Let Th be a structured quadrilateral mesh. Then the greatest lower bound βh in (5.4)
is strictly positive.

Proof. We argue by contradiction. Suppose that βh = 0. Then there is a displacement vh in Xn,h such
that

sup
Sh∈Mn,h

b(Sh, vh) = 0.

In particular, b(Th, vh) = 0 for Th defined by (5.53). This implies∣∣∣∣ ∫
K

ε(vh) dx

∣∣∣∣ = 0 ∀ K ∈ Th. (5.54)

Let us examine the consequences of (5.54) on specific elements K of the mesh. Let K̂ = [0, 1]2 be the
reference square with vertices â1 = (0, 0), â2 = (1, 0), â3 = (1, 1) and â4 = (0, 1). Let ai, 1 ≤ i ≤ 4
denote the vertices of K and FK the bilinear mapping from K̂ onto K that maps âi to ai, 1 ≤ i ≤ 4. Since
the mesh is assumed to be nondegenerate, FK is invertible and the functions of Q1

h are the images by
F−1

K of the functions of Q̂1 defined on K̂. Their derivatives are transformed as follows:

∂v

∂x1
◦ FK = 1

JK

( ∂ v̂

∂ x̂1

(
a4

2 − a1
2 + x̂1

(
a3

2 − a2
2 − a4

2 + a1
2

))− ∂ v̂

∂ x̂2

(
a2

2 − a1
2 + x̂2

(
a3

2 − a2
2 − a4

2 + a1
2

)))
,

∂v

∂x2
◦ FK = 1

JK

( ∂ v̂

∂ x̂2

(
a2

1 − a1
1 + x̂2

(
a3

1 − a2
1 − a4

1 + a1
1

))− ∂ v̂

∂ x̂1

(
a4

1 − a1
1 + x̂1

(
a3

1 − a2
1 − a4

1 + a1
1

)))
,

the subscript indicating the coordinate, and JK the Jacobian of FK .
Now, let us start with a corner element; since the mesh is structured, all corner elements have at least

two sides and three vertices on the boundary, say a1, a2 and a4. As vh vanishes on ∂Ω , this means that
vh(a1) = vh(a2) = vh(a4) = 0 and thus

( ∫
K

ε(vh) dx
)

:
( ∫

K
ε(vh) dx

)
= 1

4

[(
v̂3

1

)2(
a4

2 − a2
2

)2 + (v̂3
2

)2(
a4

1 − a2
1

)2]
+ 1

4

[
1

4

(
v̂3

2

(
a4

2 − a2
2

)+ v̂3
1

(
a4

1 − a2
1

))2] = 0.

As |a4 − a2| > 0, we easily derive from this expression that vh(a3) = 0, and hence vh vanishes on
K. This implies that vh also vanishes at its neighbours adjacent to the boundary, and by progressing
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element by element along the boundary, we have vh = 0 on all boundary elements. From here, the same
argument gives vh = 0 on all elements of Th. �

The positivity of βh implies that (5.4) holds with a positive constant for each h, but does not
guarantee that the positive constant is uniformly bounded away from zero as h tends to zero. Let us
give an example when βh tends to zero, inspired by the checkerboard modes of the Stokes problem; see
Girault & Raviart (1986). The idea is to construct a displacement vh such that the integral average of
ε(vh) vanishes on a large number of elements, while ε(vh) is nonzero there. Consider a square domain
Ω = (0, 1)2 divided into (N +1)2 equal squares Kij, 0 ≤ i, j ≤ N, with mesh size h = 1

N+1 . Take vh = 0
on ∂Ω and define each component vh by

vh(xij) =
{

1 if i + j is odd
−1 if i + j is even

for 1 ≤ i, j ≤ N.

It is easy to check that, in all interior elements K,∫
K

ε(vh) dx = 0,

and in each boundary element K,

0 < c1h ≤
∣∣∣ ∫

K
ε(vh) dx

∣∣∣ ≤ C1h,

where here and below all constants are independent of K and h. Let T b
h denote the union of the boundary

elements. Since the choice of Th in all interior elements does not affect the value of b(Th, vh), let us
choose Th = 0 in these elements; this will minimize its norm there. On the boundary elements K, we
choose Th by (5.53); this gives

b(Th, vh) =
∑

K∈T b
h

1

|K|n
∣∣∣∣ ∫

K
ε(vh) dx

∣∣∣∣n+1

and

‖Th‖L
1+ 1

n
(Ω) =

( ∑
K∈T b

h

1

|K|n
∣∣∣∣ ∫

K
ε(vh) dx

∣∣∣∣n+1) n
n+1

,

so that

b(Th, vh)

‖Th‖L
1+ 1

n
(Ω)

≤ C2h− n
n+1 .

On the other hand, ε(vh) does not vanish in the interior elements, and we have

‖ε(vh)‖L1+n(Ω) ≥ C3h−1.
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Hence, with this choice of Th,

inf
vh∈Xn,h

b(Th, vh)

‖Th‖L
1+ 1

n
(Ω)‖ε(vh)‖Ln+1(Ω)

≤ C4h
1

n+1 . (5.55)

Of course, we have not proved that this choice of Th realizes the supremum in (5.55). But since the
number of interior elements, which do not contribute to the numerator of (5.55) but do contribute to the
norm of vh, is much larger than the number of boundary elements (more precisely, this ratio is of the
order of h−1), no value of Th can balance this ratio.

6. The case of smoother data

The regularization (3.1) is a particular case of

ε(u) = λ(Tr(T))Tr(T)I + μ(|Td|)Td + Tr(T)I

n|Tr(T)|1− 1
t

+ Td

n|Td|1− 1
t

, (6.1)

n ∈ N, t ∈ R>0, with t = n in (3.1). When the data are smoother, as in Theorem 2.1 (d), the following
simpler regularization is used in reference Bulíček et al. (2014):

ε(u) = λ(Tr(T))Tr(T)I + μ(|Td|)Td + 1

n
T, (6.2)

which corresponds to t = 1 (up to the factor 1
d multiplying Td). The analysis developed in the previous

sections applies to (1.1), (6.2) but is in fact much simpler. Indeed, let (Tn,1, un,1) denote a solution to
(1.1), (6.2), i.e., (Tn,1, un,1) ∈ Mn,1 × Xn,1 satisfies

an,1(Tn,1, S) + c(Tn,1; Tn,1, S) − b(S, un,1) = 0 ∀ S ∈ Mn,1,

b(Tn,1, v) =
∫

Ω

f · v dx ∀ v ∈ Xn,1,
(6.3)

where

an,1(T, S) := 1

n

∫
Ω

T : S dx

and

Mn,1 := L2(Ω)d×d
sym , Xn,1 := H1

0(Ω)d.

The function F is used in deriving more regularity of the solution, but as far as the numerical scheme
is concerned, we can simply proceed with the original data f. Let us briefly sketch the analysis of (6.3).
We define the mapping An,1 : L2(Ω)d×d

sym → L2(Ω)d×d
sym by

An,1(S) := λ(Tr(S))Tr(S)I + μ(|Sd|)Sd + 1

n
S, (6.4)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/40/1/29/5139567 by guest on 28 N
ovem

ber 2022



72 A. BONITO ET AL.

and we easily prove as in Lemma 3.1 that An,1 is bounded, continuous and coercive for all n ∈ N. The
inf-sup condition is satisfied, as in Lemma 4.1,

inf
v∈Xn,1

sup
S∈Mn,1

b(S, v)

‖S‖L2(Ω)‖ε(v)‖L2(Ω)

≥ 1. (6.5)

The lifting Tf
n,1 is defined by the analogue of (4.2),

∫
Ω

Tf
n,1 : ε(v) dx =

∫
Ω

f · v dx ∀ v ∈ Xn,1, (6.6)

and is bounded by

‖Tf
n,1‖L2(Ω) ≤ CK‖f‖L2(Ω), (6.7)

where CK is the constant of (1.11) with p = 2. In this context, the a priori estimates of Lemma 4.2
simplify to

‖ε(un,1)‖2
L2(Ω) ≤ 4

n2 C2
K‖f‖2

L2(Ω) + 8

n
C1κ|Ω| + 8C2

2d|Ω|, (6.8)

1

n
‖Tn,1‖2

L2(Ω) +C1‖Tn,1‖L1(Ω) ≤ 2C1κ|Ω|+CK‖f‖L2(Ω)

(
4

n2
C2

K‖f‖2
L2(Ω) + 8

n
C1κ|Ω| + 8C2

2d|Ω|
) 1

2

.

(6.9)

Thus, up to a subsequence, un,1 converges weakly in W1,2
0 (Ω)d, and thanks to the results in Bulíček et al.

(2014) (see also Theorem 2.1 (d) and Remark 2.2), the additional regularity F ∈ W2,2(Ω)d×d
sym enables

one to prove in particular that Tn,1 is bounded in W1,q(Ω0)
d×d
sym for any Ω0 ⊂⊂ Ω , with q ∈ [1, 2)

when d = 2 and q ∈ [1, 3
2 ] when d = 3, and therefore, up to a subsequence, weakly converges to T

in W1,q(Ω0)
d×d
sym for any Ω0 ⊂⊂ Ω for q ∈ [1, 2) when d = 2 and q ∈ [1, 3

2 ] when d = 3. Hence, by

the Rellich–Kondrashov theorem, up to a subsequence, Tn,1 tends to T strongly in Lp(Ω0)
d×d
sym on any

Ω0 ⊂⊂ Ω for all p ∈ [1, ∞) when d = 2 and all p ∈ [1, 3
2 ) when d = 3.

6.1 Finite element discretization

With the spaces Mn,h and Xn,h defined in (5.2) or (5.50), system (6.3) is discretized by the following:
find (Tn,1,h, un,1,h) in Mn,h × Xn,h such that

an,1(Tn,1,h, Sh) + c(Tn,1,h; Tn,1,h, Sh) − b(Sh, un,1,h) = 0 ∀ Sh ∈ Mn,h,

b(Tn,1,h, vh) =
∫

Ω

f · vh dx ∀ vh ∈ Xn,h.
(6.10)

As previously, the constraint in the second part of (6.10) is lifted by means of the projection operator
Πh defined in (5.5), T f

n,1,h is defined by (5.6),

Tf
n,1,h = ΠhTf

n,1
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and

T0
n,1,h := Tn,1,h − Tf

n,1,h.

Existence and uniqueness of the discrete solution (Tn,1,h, un,1,h) is derived as in Lemma 5.2. Again, the
a priori bounds (6.8) and (6.9) hold for un,1,h and Tn,1,h. In fact, even without regularization, i.e., without
the form an,1(·, ·), existence by Brouwer’s fixed point follows and, if moreover (A3′) holds, uniqueness
follows by a finite-dimensional argument. But we shall not pursue the no-regularization option, because
as stated at the beginning of Section 5.2, we are then unable to show convergence.

The arguments of Lemma 5.3 under analogous assumptions show that, as h → 0+, for each n,

Tn,1,h ⇀ Tn,1 weakly in L2(Ω)d×d
sym .

Let us sketch the proof of the strong convergence, which is much simpler than that of Lemma 5.4.

Lemma 6.1 (Strong convergence). Assume that f ∈ L2(Ω)d, that the functions λ and μ satisfy
assumptions (A1–A4), and let (Tn,1, un,1) denote the unique solution to the regularized problem (6.3),
with n ∈ N. Then for each fixed n ∈ N, as h → 0+,

Tn,1,h → Tn,1 strongly in Mn,1 = L2(Ω)d×d
sym and un,1,h → un,1 strongly in Xn,1 = W1,2

0 (Ω)d.

Proof. We retain the notation and the setting of the proof of Lemma 5.4. The discrepancy T0
n,1,h −

ΠhT0
n,1 satisfies

1

n

∥∥T0
n,1,h − ΠhT0

n,1

∥∥2
L2(Ω)

+ C
∫

Ω

∣∣T0
n,1,h − ΠhT0

n,1

∣∣2(
κ + ∣∣T0

n,1,h

∣∣+ ∣∣ΠhT0
n,1

∣∣)1+α
dx

≤
∫

Ω

(
An,1(Tn,1,h) − An,1

(
ΠhT0

n,1 + T f
n,1,h

))
:
(
T0

n,1,h − ΠhT0
n,1

)
dx,

(6.11)

where C is the constant in (1.5). As T0
n,1,h − ΠhT0

n,1 ∈ Vn,h, (6.11) reduces to

1

n

∥∥T0
n,1,h − ΠhT0

n,1

∥∥2
L2(Ω)

+ C
∫

Ω

∣∣T0
n,1,h − ΠhT0

n,1

∣∣2(
κ + ∣∣T0

n,1,h

∣∣+ ∣∣ΠhT0
n,1

∣∣)1+α
dx

≤ −
∫

Ω

An,1

(
ΠhT0

n,1 + T f
n,1,h

)
:
(
T0

n,1,h − ΠhT0
n,1

)
dx. (6.12)

Then the weak convergence of T0
n,1,h − ΠhT0

n,1 to zero, the strong convergence of ΠhT0
n,1 + T f

n,1,h both
in Mn,1 as h → 0+ and the continuity of the mapping An,1 : Mn,1 → Mn,1 yield

−
∫

Ω

An,1

(
ΠhT0

n,1 + T f
n,1,h

)
:
(
T0

n,1,h − ΠhT0
n,1

)
dx → 0 as h → 0+,
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whence, returning to (6.12),

1

n

∥∥T0
n,1,h − ΠhT0

n,1

∥∥2
L2(Ω)

→ 0 as h → 0+,

and the asserted strong convergence of Tn,1,h to Tn,1 in Mn,1 = L2(Ω)d×d
sym , as h → 0+, follows for any

n ≥ 1.
For the strong convergence of un,1,h, we use again the discrete inf-sup property (5.4) to define Rh ∈

V
⊥
n,h satisfying ∫

Ω

ε
(
un,1,h − Π sz

h un,1

)
: ε(vh) dx =

∫
Ω

Rh : ε(vh) dx ∀ vh ∈ Xn,h,

where Π sz
h is the Scott–Zhang projector onto Xn,h; see Scott & Zhang (1990). In particular, we have

‖Rh‖L2(Ω) ≤ ‖ε(un,1,h − Π sz
h un,1)‖L2(Ω). (6.13)

For vh = un,1,h − Π sz
h un,1 we then get∥∥ε(un,1,h − Π sz

h un,1

)∥∥2
L2(Ω)

=
∫

Ω

Rh : ε(un,1,h − un,1) dx +
∫

Ω

Rh : ε
(
un,1 − Π sz

h un,1

)
dx

=
∫

Ω

(An,1(Tn,1,h) − An,1(Tn,1)) : Rh dx +
∫

Ω

Rh : ε
(
un,1−Π sz

h un,1

)
dx,

where we have also used relations (6.3) and (6.10) to obtain the second equality. We now argue that
both terms on the right-hand side of the above equality vanish as h → 0+. To see this, it suffices to
recall the uniform bound (6.13) on Rh; hence, the strong convergence results Π sz

h un,1 → un,1 in Xn,1
and Tn,1,h → Tn,1 in Mn,1, as h → 0+, together with the continuity of An,1 guaranteed by Lemma 3.1,
imply the stated claim. Thanks to Korn’s inequality (1.10),∥∥∇(un,1,h − Π sz

h un,1

)∥∥
L2(Ω)

≤ K
∥∥ε(un,1,h − Π sz

h un,1

)∥∥
L2(Ω)

→ 0 as h → 0+,

and therefore un,1,h → un,1 in Xn,1. �
Thus, when λ satisfies (A3′), we have again, for any Ω0 ⊂⊂ Ω ,

lim
n→∞ lim

h→0+
‖Tn,1,h − T‖L1(Ω0)

= 0,

lim
n→∞ lim

h→0+
‖un,1,h − u‖C(Ω) = 0,

lim
n→∞ lim

h→0+
‖ε(un,1,h) − ε(u)‖L2(Ω0)

= 0.

As in the preceding section, an error inequality can be established when the functions λ(s)s and
μ(s)s are Lipschitz continuous, but again the situation is much simpler.

Theorem 6.2 In addition to the assumptions of Lemma 6.1, suppose that the real-valued functions
s ∈ R �→ λ(s)s and s ∈ R≥0 �→ μ(s)s are Lipschitz continuous, i.e., that there exists a positive constant
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Λ such that

|λ(s)s − λ(r)r| ≤ Λ|r − s| ∀ r, s ∈ R, |μ(s)s − μ(r)r| ≤ Λ|r − s| ∀ r, s ∈ R≥0. (6.14)

Then, the following error inequality holds:

1

n
‖Tn,1,h − Tn,1‖L2(Ω) ≤ inf

vh∈Xh
‖ε(vh − un,1)‖L2(Ω) + 2

(
1

n
+ Λ

)
‖Tn,1 − Πh(Tn,1)‖L2(Ω). (6.15)

Proof. As in the proof of Theorem 5.5, from relations (6.3) and (6.10) we infer that on the one hand,∫
Ω

ε(vh) : Sh dx = 0,

and on the other hand, for any vh in Xn,h,

1

n
‖Tn,1,h − ΠhTn,1‖2

L2(Ω) + C
∫

Ω

|Tn,1,h − ΠhTn,1|2
(κ + |Tn,1,h| + |ΠhTn,1|)1+α

dx

≤
(

‖ε(vh − un,1)‖L2(Ω) + 1

n
‖Tn,1 − ΠhTn,1‖L2(Ω)

)
‖Tn,1,h − ΠhTn,1‖L2(Ω)

+
∫

Ω

(
An,1(Tn,1) − An,1(ΠhTn,1)

)
: (Tn,1,h − ΠhTn,1) dx,

(6.16)

where C is the constant in (1.5). The Lipschitz property (6.14) implies

|An,1(Tn,1) − An,1(ΠhTn,1)| ≤ 1

n
|Tn,1 − ΠhTn,1| + 2Λ|ΠhTn,1 − Tn,1|,

so that

1

n
‖Tn,1,h − ΠhTn,1‖L2(Ω) ≤

(
‖ε(vh − un,1)‖L2(Ω) + 2

(
1

n
+ Λ

)
‖Tn,1 − ΠhTn,1‖L2(Ω)

)
, (6.17)

which yields (6.15). �
Under the above assumptions, convergence rates can be derived provided that Tn,1 ∈ W1,q(Ω)d×d

sym

with q > 2d
2+d (ensuring that W1,q(Ω)d×d ↪→ L2(Ω)d×d) and un,1 ∈ W1+t,2(Ω)d, t > 0 (ensuring that

W1,1+t(Ω)d ↪→ W1,2(Ω)d). Rates of convergence for ‖∇(un,1 − un,1,h)‖L2(Ω) are obtained using the
inf-sup properties and interpolation theory again.

7. Decoupled iterative algorithm

The convergent iterative algorithm proposed in this section for the solution of the discrete problem (6.10)
is designed to dissociate the computation of the nonlinearity from that of the elastic constraint. We have
also applied it numerically to (5.3) in Section 8 but proving its convergence in that case is still an open
problem.
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The algorithm, which belongs to the class of alternating direction methods, proceeds in two steps.
In both steps an artificial divided difference, analogous to a discrete time derivative, is added to enhance
the stability of the algorithm. The first half-step involves the monotone nonlinearity while, in the case of
(6.10), the second half-step solves for the elastic part from a system of linear algebraic equations whose
matrix is the mass-matrix (Gram matrix) generated by the basis functions of the finite element space
Xn,h. In the case (5.3), this second system is nonlinear. But in both cases, our choice of the finite element
space Mn,h, consisting of piecewise constant approximations for the stress tensor Tn,1 or Tn, allows us
to deal with the monotone nonlinearity involved in the first half-step in an efficient way by solving an
algebraic system with d(d + 1)/2 unknowns independently on each element K in the subdivision Th of
the computational domain Ω . Let us describe the algorithm applied to (6.1).

The initialization consists of finding (T(0)
h , u(0)

h ) ∈ Mn,h × Xn,h satisfying∫
Ω

ε(vh) : T(0)
h dx =

∫
Ω

f · vh dx, ∀ vh ∈ Xn,h∫
Ω

T(0)
h : Sh dx =

∫
Ω

ε
(

u(0)
h

)
: Sh dx ∀ Sh ∈ Mn,h.

Let τ > 0. Given (T(k)
h , u(k)

h ) in Mn,h × Xn,h for a nonnegative integer k, the algorithm proceeds in
the following two steps.

Step 1. Find T
(k+ 1

2 )

h in Mn,h such that, for all Sh ∈ Mn,h,

1

τ

∫
Ω

(
T

(k+ 1
2 )

h − T(k)
h

)
: Sh dx

+
∫

Ω

(
λ

(
Tr

(
T

(k+ 1
2 )

h

))
Tr

(
T

(k+ 1
2 )

h

)
Tr(Sh) + μ

(∣∣∣∣∣
(

T
(k+ 1

2 )

h

)d
∣∣∣∣∣
)(

T
(k+ 1

2 )

h

)d

: Sh

)
dx

=
∫

Ω

ε(u(k)
h ) : Sh dx −

∫
Ω

⎛⎝ Tr
(
T(k)

h

)
I

n
∣∣Tr
(
T(k)

h

)∣∣1− 1
t

+
(
T(k)

h

)d
n
∣∣(T(k)

h

)d∣∣1− 1
t

⎞⎠ : Sh dx.

As has already been mentioned, because T
(k+ 1

2 )

h is piecewise constant, the above system reduces to
decoupled algebraic systems of d(d + 1)/2 unknowns each, in every element in the subdivision of the
computational domain.
Step 2. Find T(k+1)

h ∈ Mn,h and u(k+1)
h ∈ Xn,h such that

1

τ

∫
Ω

(
T(k+1)

h − T
(k+ 1

2 )

h

)
: Sh dx +

∫
Ω

(
Tr
(
T(k+1)

h

)
I

n|Tr
(
T(k+1)

h

)|1− 1
t

+
(
T(k+1)

h

)d
n|(T(k+1)

h

)d|1− 1
t

)
: Sh dx

=
∫

Ω

ε
(
u(k+1)

h

)
: Sh dx −

∫
Ω

(
λ

(
Tr

(
T

(k+ 1
2 )

h

))
Tr

(
T

(k+ 1
2 )

h

)
Tr(Sh)

+μ

(∣∣∣∣∣
(

T
(k+ 1

2 )

h

)d
∣∣∣∣∣
)(

T
(k+ 1

2 )

h

)d

: Sh

)
dx
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and such that, for all vh ∈ Xn,h,

∫
Ω

ε(vh) : T(k+1)
h dx =

∫
Ω

f · vh dx.

When t = 1, the initialization is unchanged and the two steps simplify as follows:

Step 1. Find T
(k+ 1

2 )

h in Mn,h such that, for all Sh ∈ Mn,h,

1

τ

∫
Ω

(
T

(k+ 1
2 )

h − T(k)
h

)
: Sh dx

+
∫

Ω

(
λ

(
Tr

(
T

(k+ 1
2 )

h

))
Tr

(
T

(k+ 1
2 )

h

)
Tr(Sh) + μ

(∣∣∣∣∣
(

T
(k+ 1

2 )

h

)d
∣∣∣∣∣
)(

T
(k+ 1

2 )

h

)d

: Sh

)
dx

=
∫

Ω

ε
(

u(k)
h

)
: Sh dx − 1

n

∫
Ω

T(k)
h : Sh dx.

Step 2. Find T(k+1)
h ∈ Mn,h and u(k+1)

h ∈ Xn,h such that

1

τ

∫
Ω

(
T(k+1)

h − T
(k+ 1

2 )

h

)
: Sh dx + 1

n

∫
Ω

T(k+1)
h : Sh dx

=
∫

Ω

ε
(
u(k+1)

h

)
: Sh dx −

∫
Ω

(
λ

(
Tr

(
T

(k+ 1
2 )

h

))
Tr

(
T

(k+ 1
2 )

h

)
Tr(Sh)

+μ

(∣∣∣∣∣
(

T
(k+ 1

2 )

h

)d
∣∣∣∣∣
)(

T
(k+ 1

2 )

h

)d

: Sh

)
dx

and such that, for all vh ∈ Xn,h,

∫
Ω

ε(vh) : T(k+1)
h dx =

∫
Ω

f · vh dx.

Following the general theory of Lions & Mercier (1979) we now prove that the iterative algorithm
for t = 1 converges to the solution of the decoupled system.

Theorem 7.1 (Convergence of the iterative decoupled algorithm). Assume that λ and μ satisfy (A1–A4)
and that n ≥ 1. Let Tn,1,h ∈ Mn,h be the first component of the solution of (6.10) and let T(k)

h ∈ Mn,h,
k = 1, 2, . . . be successive iterates computed by the iterative algorithm, with τ > 0. We then have

lim
k→∞

∥∥T(k)
h − Tn,1,h

∥∥
L2(Ω)

= 0.
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Proof. The nonlinear part of the system is represented by the operator Ah : Mn,h → Mn,h defined by
AhSh = Ah, where for all Rh ∈ Mn,h,∫

Ω

Ah : Rh dx =
∫

Ω

(
λ(Tr(Sh))Tr(Sh)Tr(Rh) + μ(|(Sd

h |)Sd
h : Rh

)
dx,

and the linear part, excluding the artificial time derivative, is represented by the function

B(k)
h := 1

n
T(k)

h − ε
(
u(k)

h

)
.

With this notation, the first step of the iterative algorithm reads

(I + τAh)T

(
k+ 1

2

)
h = T(k)

h − τB(k)
h

or, equivalently,

T

(
k+ 1

2

)
h = (I + τAh)

−1(T(k)
h − τB(k)

h

)
.

It is convenient to introduce the two auxiliary tensors

Λ
(k)
h := T(k)

h + τ

(
1

n
T(k)

h − ε
(
u(k)

h

)) = T(k)
h + τB(k)

h (7.1)

and

Θ
(k)
h := 2T(k)

h − Λ
(k)
h ,

whereby

T(k)
h = 1

2

(
Θ

(k)
h + Λ

(k)
h

)
.

We shall see that the convergence of T(k)
h will result from that of Λ

(k)
h and Θ

(k)
h . With these tensors the

second step of the iterative algorithm reads

Λ
(k+1)
h = (I − τAh)T

(
k+ 1

2

)
h = (I − τAh)(I + τAh)

−1(T(k)
h − τB(k)

h

)
.

Notice that, from (7.1), B(k)
h = 1

2τ
(Λ

(k)
h − Θ

(k)
h ), and we define C(k)

h := 1
2τ

(Θ
(k)
h − Λ

(k+1)
h ). In addition,

we note for later that

(I + τAh)
−1Θ

(k)
h = 1

2

(
Λ

(k+1)
h + Θ

(k)
h

)
,

which implies

Ah

(
Λ

(k+1)
h + Θ

(k)
h

2

)
= 1

2τ

(
Θ

(k)
h − Λ

(k+1)
h

) = C(k)
h .
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We also define the analogous quantities

Bh := 1

n
Tn,1,h − ε(un,1,h), Λh := Tn,1,h + τBh, Ch := AhTn,1,h, Θh = Tn,1,h + τCh.

With this notation, the first relation in (5.3) reads

Ch + Bh = AhTn,1,h + 1

n
Tn,1,h − ε(un,1,h) = 0,

and so

Λh + Θh = 2Tn,1,h + τ(Bh + Ch) = 2Tn,1,h,

which in turn implies

Ch = 1

τ
(Θh − Tn,1,h) = 1

2τ
(Θh − Λh).

Similarly, for Bh we have the decomposition

Bh = 1

2τ
(Λh − Θh).

We can now express the discrepancy between Tn,1,h and T(k)
h as

1

n

∥∥T(k)
h − Tn,1,h

∥∥2
L2(Ω)

= 1

n

∫
Ω

(
T(k)

h − Tn,1,h

)
:
(
T(k)

h − Tn,1,h

)
dx

=
∫

Ω

(
B(k)

h − Bh

)
:
(
T(k)

h − Tn,1,h

)
dx +

∫
Ω

ε
(
u(k)

h − un,1,h

)
:
(
T(k)

h − Tn,1,h

)
dx.

Because, for all vh ∈ Xn,h,∫
Ω

T(k)
h : ε(vh) dx =

∫
Ω

f · vh =
∫

Ω

Tn,1,h : ε(vh) dx,

we deduce that T(k)
h − Tn,1,h ∈ Vn,h, and therefore

1

n

∥∥T(k)
h − Tn,1,h

∥∥2
L2(Ω)

=
∫

Ω

(
B(k)

h − Bh

)
:
(
T(k)

h − Tn,1,h

)
dx.

The relations

B(k)
h − Bh = 1

2τ

(
Λ

(k)
h − Λh − (Θ(k)

h − Θh

))
and

T(k)
h − Tn,1,h = 1

2

(
Λ

(k)
h − Λh + (Θ(k)

h − Θh

))
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further lead to

1

n

∥∥T(k)
h − Tn,1,h

∥∥2
L2(Ω)

= 1

4τ

(
‖Λ(k)

h − Λh‖2
L2(Ω) − ‖Θ(k)

h − Θh‖2
L2(Ω)

)
. (7.2)

This, of course, implies

‖Θ (k)
h − Θh‖L2(Ω) ≤ ‖Λ(k)

h − Λh‖L2(Ω). (7.3)

In addition, we have

∫
Ω

(
C(k)

h − Ch

)
:

(
Λ

(k+1)
h + Θ

(k)
h

2
− Tn,1,h

)
dx

=
∫

Ω

(
Ah

(
Λ

(k+1)
h + Θ

(k)
h

2

)
− AhTn,1,h

)
:

(
Λ

(k+1)
h + Θ

(k)
h

2
− Tn,1,h

)
dx

≥ 0,

(7.4)

thanks to the monotonicity property of Ah due to (1.5) and (1.7). On the other hand, we compute

∫
Ω

(
C(k)

h − Ch

)
:

(
Λ

(k+1)
h + Θ

(k)
h

2
− Tn,1,h

)
dx = 1

4τ

(∥∥Θ(k)
h − Θh

∥∥2
L2(Ω)

− ∥∥Λ(k+1)
h − Λh

∥∥2
L2(Ω)

)
.

(7.5)
Hence, we find that

1

4τ

(∥∥Θ(k)
h − Θh

∥∥2
L2(Ω)

− ∥∥Λ(k+1)
h − Λh

∥∥2
L2(Ω)

)
≥ 0, (7.6)

and therefore, in view of (7.3),∥∥Λ(k+1)
h − Λh

∥∥
L2(Ω)

≤ ∥∥Θ (k)
h − Θh

∥∥
L2(Ω)

≤ ∥∥Λ(k)
h − Λh

∥∥
L2(Ω)

. (7.7)

This guarantees that the sequence ‖Λ(k)
h − Λh‖L2(Ω) of nonnegative real numbers is monotonic

nonincreasing, and so converging. In particular, we have

lim
k→∞

(∥∥Λ(k)
h − Λh

∥∥
L2(Ω)

− ∥∥Λ(k+1)
h − Λh

∥∥
L2(Ω)

)
= 0.

Consequently, (7.7) yields that

lim
k→∞

∥∥Θ(k)
h − Θh

∥∥
L2(Ω)

= 0.

From (7.6), this also means that

lim
k→∞

∥∥Λ(k)
h − Λh

∥∥
L2(Ω)

= 0.
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With these two limits, (7.2) implies

lim
k→∞

1

n

∥∥T(k)
h − Tn,1,h

∥∥
L2(Ω)

= 0.

That completes the proof. �

Remark 7.2 (Post-processing). Since T
(k+ 1

2 )

h within the iterative algorithm does not satisfy the
constraint, it seems difficult to prove its convergence to Tn,1,h, and as a consequence the convergence of

u(k)
h to un,1,h, as k → ∞. Instead, given T(k)

h , one can define ũ(k)
h ∈ Xn,h as the solution to the elasticity

problem

∫
Ω

ε
(̃
u(k)

h

)
: ε(vh) dx = 1

n

∫
Ω

T(k)
h : ε(vh) dx +

∫
Ω

Ah

(
T(k)

h

)
: ε(vh) dx ∀ vh ∈ Xn,h.

The convergence of ũ(k)
h towards un,1,h follows from the convergence of T(k)

h towards Tn,1,h, as k → ∞.

8. Numerical experiments

We now illustrate the performance of the decoupled algorithm in several situations. We start with a
setting where the exact solution is accessible in order to demonstrate the asymptotic behavior of the
algorithm and to determine adequate values for the numerical parameters to be used in other situations.
We then challenge our algorithm in the two-dimensional case of a crack.

The numerical results presented below are obtained using the deal.ii library (Arndt et al., 2017).
The subdivisions of Ω consist of quadrilaterals/hexahedra. Unless stated otherwise, the stress tensor
T is approximated using piecewise constant polynomials while the displacement u is approximated by
piecewise polynomials of degree 1 in each coordinate direction; see Section 5.3.

8.1 Details of the implementation

For a given tolerance parameter TOL>0, the decoupled iterative algorithm described in Section 7 is
terminated once the relative tolerance on the increment

∥∥T(k+1)
h − T(k)

h

∥∥
Lp(Ω)

+ ∥∥∇(u(k+1)
h − u(k)

h

)∥∥
L2(Ω)∥∥T(k)

h

∥∥
Lp(Ω)

+ ∥∥∇u(k)
h

∥∥
L2(Ω)

≤ TOL (8.1)

is satisfied, where p = 2 when t = 1 and p = 1 otherwise.
Each step of the decoupled algorithm requires subiterations (only in Step 1 when t = 1), which are

terminated once the relative tolerance on the increments is smaller than TOL/5.
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Table 1 Asymptotic behavior of eu and eT for n = t = 1 and n = 2 with t = 1 or t = 2. The method
exhibits convergence of order 1 in all cases. This is in accordance with Theorem 5.5 when t = 1 but
better than predicted for t > 1.

h n = 1 n = 2

t = 1 t = 1 t = 2
eu eT eu eT eu eT

2−2 0.14438 0.03946 0.14436 0.05453 0.14434 0.05182
2−3 0.07217 0.01973 0.07217 0.02725 0.07217 0.02486
2−4 0.03609 0.00986 0.03609 0.01363 0.03609 0.01224
2−5 0.01804 0.00493 0.01804 0.00681 0.01804 0.00625
2−6 0.00902 0.00247 0.00902 0.00341 0.00902 0.00327
2−7 0.00451 0.00124 0.00451 0.00171 0.00451 0.00177

8.2 Validation on smooth solutions

We illustrate the performance of the decoupled algorithm introduced in Section 7 on the discretization
of the regularized system

an(T, S) + c(T; T, S) − b(S, u) =
∫

Ω

G : S dx ∀ S ∈ M,

b(T, v) =
∫

Ω

f · v dx ∀ v ∈ X.

(8.2)

The presence of the given tensor G : Ω → R
d×d
sym on the right-hand side of the first equation allows us to

exhibit an exact solution in closed form; compare with (3.2). In fact, we let λ(s) = μ(s) = (1 + s2)− 1
2 ,

Ω = (0, 1)2 and, given n ≥ 1, we define f and G so that

u(x, y) =
(

y(1 − y)
0

)
, T(x, y) =

(
ex 0
0 cos y

)
(8.3)

solves (8.2).
Regarding the numerical parameters, we fix the pseudo-time increment parameter τ = 0.01

and perform simulations for several values of the regularization parameter n and for t = 1 (linear
regularization) and t = n. The computational domain Ω is subdivided by using a sequence of uniform
partitions consisting of squares of diameter h = 2−i, i = 0, . . . , 7. The target tolerance for the iterative
algorithm is set to TOL = 10−5.

Convergence as h → 0. We provide in Table 1 the corresponding errors eu := ‖∇(un − un,h)‖L2(Ω)

and eT := ‖Tn − Tn,h‖Lp(Ω). Theorem 5.5 predicts a rate of convergence of O(h
1
t ) for both quantities

which seems to be pessimistic (in this model problem with a smooth solution) since convergence of
order O(h) is observed for t = 1 and t = n. In fact, we also ran tests with other values of t > 1 and
observed the same order O(h).
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Table 2 Convergence of the decoupled algorithm when n → ∞ for a fixed spatial resolution (h =
2−7) using linear (t = 1) and nonlinear (t = n) regularization. In the nonlinear regularization case,
the error in the stress is always measured in L1(Ω) (instead of L2(Ω) when t = 1). The two algorithms
yield similar results.

t = 1 t = n

n = 1.0 n = 500 n = 1000 n = 1.0 n = 500 n = 1000

eu 0.80168 0.00927 0.00617 eu 0.80167 0.00519 0.00470
eT 1.53397 0.06777 0.03583 eT 2.18173 0.04052 0.02234

Fig. 1. Decay of ‖u − uh‖L2(Ω) and ‖T − Th‖L1(Ω) as a function of the mesh size h using the unstable pair in (5.52). Both
quantities decay linearly.

Convergence as n → ∞. We now turn our attention to the convergence of the algorithm when n →
∞ for a fixed subdivision corresponding to h = 2−7. Again we consider two cases: t = 1 (linear
regularization) and t = n. The data f and G are modified so that (u, T) given by (8.3) solves (8.2)
without regularization, i.e., without the bilinear form an(·, ·). The results are reported in Table 2; they
indicate that in this smooth setting, eu + eT → 0 as n → ∞.

8.3 Inf-sup condition

We conclude the section containing our numerical experiments with an observation on the inf-sup
condition when using quadrilaterals. We consider the discretization of the linear problem, for which
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Fig. 2. Crack problem. A horizontal compressive force Tn = ( f , 0)T for f > 0 is applied on side III, while no force (i.e., Tn = 0)
is imposed on the side marked by I and II. The top and bottom sides are fixed, i.e., u = 0.

Fig. 3. Crack problem. The deformed domain for different force magnitudes f = 0.25, 0.5, 0.75, 1 (from left to right) pulling the
right face of the computational domain. The gray scale describes the magnitude of the displacement |u|, where white corresponds
to 0 and black to 0.92.

the solution (u, T) ∈ X × M is defined as the one satisfying∫
Ω

T : S −
∫

Ω

ε(u) : S +
∫

Ω

ε(v) : T =
∫

Ω

f · v ∀ (v, S) ∈ X × M.

In view of the discussion in Section 5.3, any pair of discrete spaces satisfying ε(Xn,h) ⊂ Mn,h, such
as in (5.50) or in (5.51), yields an inf-sup stable scheme. In contrast, unstable modes (that violate the
discrete inf-sup condition with an h-independent positive inf-sup constant) can be proved to exist when
using the pair in (5.52). However, for the exact (smooth) solution

u(x, y) =
(

x e y

sin x

)
, T(x, y) = ε(u(x, y))

on a square domain Ω = (0, 1)2, the finite element approximations using this unstable pair showed
no signs of instability in our numerical experiments. In fact, a linear rate of convergence for ‖∇(u −
uh)‖L2(Ω) and ‖T − Th‖L1(Ω) was observed in the limit of h → 0; see Fig. 1.

It is worth mentioning that, when using (Q1
h)

d×d
sym instead of (Q0

h)
d×d
sym for Th, the approximation of

uh remains exactly the same while the approximation of Th is more accurate on any given subdivision,
but it still exhibits only first-order convergence as h → 0. The intriguing fact that, for the exact solution
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Table 3 Evolutions of ‖∇uh‖L∞(Ω) and ‖Th‖L∞(Ω) as functions of the force magnitude f pulling the
right face of the domain. The influence of increasing the magnitude of the force is severe on the stress
while relatively moderate on the strain. This is in accordance with the properties of the strain-limiting
model considered.

f = 0.25 f = 0.5 f = 0.75 f = 1 f = 1.25 f = 1.5

‖∇un,1,h‖L∞(Ω) 1.0656 2.2510 3.5032 5.2703 7.0492 8.8003
‖Tn,1,h‖L∞(Ω) 0.92231 5.3090 18.17 46.5215 95.3902 166.335

(u, T) considered above, the scheme exhibits the optimal rate of convergence dictated by interpolation
theory, even though an inf-sup unstable finite element pair is being used, will be the subject of future
work.

8.4 Crack problem

We consider the ‘crack problem’ described in Fig. 2. A horizontal force of magnitude f is applied to the
right face of the domain (III), while the left faces (I and II) are free to deform (i.e., no external force is
being applied there). The top and bottom (IV) are fixed with u = 0.

We set λ(s) = μ(s) = (1 + s2)− 1
2 . In view of the performance observed in Section 8.2 we set the

numerical parameters to τ = 2, n = 100 and t = 1. The domain is partitioned into 16384 quadrilaterals
of minimal diameter h = 0.011. The stress is approximated in (Q0

h)
d×d
sym and the displacement in

(Q1
h)

d ∩ Xn. In Fig. 3 we provide the deformed domain predicted by the algorithm for different values
of f . We also report in Table 3 the evolution of ‖∇uh‖L∞(Ω) and ‖Th‖L∞(Ω) as the magnitude of
the force increases. The influence of the latter is severe on ‖Th‖L∞(Ω) while relatively moderate on
‖ε(uh)‖L∞(Ω) ≤ ‖∇uh‖L∞(Ω). This is in accordance with the properties of the strain-limiting model
considered.
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