
HAL Id: hal-03876233
https://hal.science/hal-03876233v1

Submitted on 28 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Translating canonical SQL to imperative code in Coq
Véronique Benzaken, Évelyne Contejean, Mohammed Houssem Hachmaoui,

Chantal Keller, Louis Mandel, Avraham Shinnar, Jérôme Siméon

To cite this version:
Véronique Benzaken, Évelyne Contejean, Mohammed Houssem Hachmaoui, Chantal Keller, Louis
Mandel, et al.. Translating canonical SQL to imperative code in Coq. Proceedings of the ACM on
Programming Languages, 2022, 6 (OOPSLA1), pp.1-27. �10.1145/3527327�. �hal-03876233�

https://hal.science/hal-03876233v1
https://hal.archives-ouvertes.fr

83

Translating Canonical SQL to Imperative Code in Coq

VÉRONIQUE BENZAKEN, LMF, Université Paris-Saclay, France

ÉVELYNE CONTEJEAN, LMF, CNRS, Université Paris-Saclay, France

MOHAMMED HOUSSEM HACHMAOUI, LMF, Université Paris-Saclay, France

CHANTAL KELLER, LMF, Université Paris-Saclay, France

LOUIS MANDEL, IBM Research, USA

AVRAHAM SHINNAR, IBM Research, USA

JÉRÔME SIMÉON∗, DocuSign, Inc., USA

SQL is by far the most widely used and implemented query language. Yet, on some key features, such as
correlated queries and NULL value semantics, many implementations diverge or contain bugs. We leverage
recent advances in the formalization of SQL and query compilers to develop DBCert, the first mechanically
verified compiler from SQL queries written in a canonical form to imperative code. Building DBCert required
several new contributions which are described in this paper. First, we specify and mechanize a complete
translation from SQL to the Nested Relational Algebra which can be used for query optimization. Second,
we define Imp, a small imperative language sufficient to express SQL and which can target several execution
languages including JavaScript. Finally, we develop a mechanized translation from the nested relational algebra
to Imp, using the nested relational calculus as an intermediate step.

CCS Concepts: • Software and its engineering → Semantics; Compilers; Formal software verification;
• Information systems→ Structured Query Language.

Additional Key Words and Phrases: Semantics preserving compiler, Query compiler, SQL, JavaScript, Coq

ACM Reference Format:

Véronique Benzaken, Évelyne Contejean, Mohammed Houssem Hachmaoui, Chantal Keller, Louis Mandel,
Avraham Shinnar, and Jérôme Siméon. 2022. Translating Canonical SQL to Imperative Code in Coq. Proc. ACM
Program. Lang. 6, OOPSLA1, Article 83 (April 2022), 27 pages. https://doi.org/10.1145/3527327

1 INTRODUCTION

SQL is by far the most widely used query language. While originally designed to query relational
databases, it is now also used for data integration [Lee et al. 2016], for processing logs [Jin-De
2010], and for big data [Grover et al. 2015]. It is commonly available as a library in a number of
programming languages [AlaSQL 2022; SQLAlchemy 2021].

While the SQL semantics for flat select-project-join queries are well understood and consistent
across platforms, several important features such as nested queries (often called correlated queries
in the database literature) and NULL values are a common source of bugs [Benzaken and Contejean

∗This author’s work conducted while at Clause, Inc.

Authors’ addresses: Véronique Benzaken, LMF, Université Paris-Saclay, France, veronique.benzaken@universite-paris-
saclay.fr; Évelyne Contejean, LMF, CNRS, Université Paris-Saclay, France, Evelyne.Contejean@lri.fr; Mohammed Houssem
Hachmaoui, LMF, Université Paris-Saclay, France, mohammed.hachmaoui@lri.fr; Chantal Keller, LMF, Université Paris-
Saclay, France, Chantal.Keller@lri.fr; Louis Mandel, IBM Research, USA, lmandel@us.ibm.com; Avraham Shinnar, IBM
Research, USA, shinnar@us.ibm.com; Jérôme Siméon, DocuSign, Inc., USA, jerome.simeon@docusign.com.

© 2022 Copyright held by the owner/author(s).
2475-1421/2022/4-ART83
https://doi.org/10.1145/3527327

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3527327
https://doi.org/10.1145/3527327

83:2 V. Benzaken, É. Contejean, M. H. Hachmaoui, C. Keller, L. Mandel, A. Shinnar, and J. Siméon

2019; Guagliardo and Libkin 2017]. Since SQL is commonly used in critical applications and for
handling sensitive data, like accessing medical information, SQL implementations can benefit from
the use of formal verification techniques.

Despite recent progress in mechanized semantics for query languages in general [Shinnar et al.
2015] and for SQL in particular [Benzaken and Contejean 2019; Chu et al. 2017], those are far
from being usable as a SQL implementation, typically missing a query optimizer and the ability to
generate efficient code. In this paper, we describe DBCert, a compiler from SQL to imperative code
which addresses those limitations and is mechanically verified using the Coq proof assistant.

To build DBCert, we followed a classical database compiler architecture [Shaikhha et al. 2016]:
(1) a source language to write the queries, (2) an algebra suitable for optimization, and (3) a physical
plan to execute the queries, specific to the targeted runtime. Our compiler enhances this architecture
by formally defining each of these components and proving the translation between them correct.

For the source language (1), we use the mechanized SQL semantics from Benzaken and Contejean
[2019]. To our knowledge, this is the most complete formal semantics of SQL currently available.
That semantics is fully executable and supports a large subset of SQL, including: select from

where group by having blocks, NULL values, aggregate functions, and correlated queries.1

For the intermediate algebra (2), we use the Nested Relational Algebra (NRAe) from Auerbach
et al. [2017a] which comes with a Coq mechanization, including a multi-step, optimizing compiler.
NRAe has several features essential to capture SQL queries. First it can naturally handle nested
queries. Second, it includes operators over sum types which we use to encode the semantics of NULL

values. Finally, NRAe was chosen for its validated use for optimization of nested queries [Claußen
et al. 1997; Cluet and Moerkotte 1993; Moerkotte 2020] and NULL values [Claußen et al. 2000].
For the physical plan (3), we generate JavaScript code to target an in-memory database where

the data are represented as JSON objects. We chose JavaScript for our final output because it is very
portable. For the formalization, we defined a series of intermediate languages that progressively
change to programming model from NRAe to a small imperative language Imp, which is sufficiently
expressive to capture SQL semantics. Imp is parameterized by a data model and a set of operators
which makes it flexible enough to drive code generation for a range of target execution languages.

Architecture. The following diagram outlines the full DBCert compilation pipeline.

SQL SQLCoq SQLAlg NRAe NNRC Imp JS

[Benzaken and Contejean 2019]

Section 4

[Auerbach et al. 2017a]

Section 5

The compilation from SQLCoq, a canonical form for SQL queries, to Imp is fully verified: the
semantics of any valid SQLCoq query is preserved by the compilation. SQLCoq is first compiled to
SQLAlg, an extension of the relational algebra that includes a SQL grouping operator, formulas and
environment handling. That algebra is translated to NRAe, which is used for query optimization.
Finally, NRAe is translated to the small imperative language Imp. This translation is decomposed into
multiple steps using different intermediate languages, starting with the Named Nested Relational
Calculus (NNRC) [Van den Bussche and Vansummeren 2007], a functional language with list
comprehensions. Using NNRC is a pragmatic choice, as it is proven equivalent to NRAe [Auerbach
et al. 2017a] and is closer to traditional languages, having variable names instead of just using
combinators.

1The constructs that are not handled yet which represent a loss of expressiveness are: silent coercion from singleton bags to
values, recursive queries, distinct, and order by.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

Translating Canonical SQL to Imperative Code in Coq 83:3

To make the resulting compiler usable, it is complemented by non-verified front- and back-ends: a
parser for SQL into SQLCoq, which also performs simple disambiguation (e.g. to avoid name clashes)
and a code generation step from Imp to JavaScript. The generated code by the compiler linked to a
runtime can then be used as a Node.js library.

Contributions. This paper makes the following contributions:

• A translation from SQL to the optimizing algebra NRAe. To the best of our knowledge, there
is no description (including in database literature) of such a translation for such a large
fragment of SQL, and we will see that this step is not trivial. This part represents about 20,000
lines of new formalization and proofs.

• A translation from NRAe to a physical plan for an in-memory database. This includes the
definition of multiple intermediate languages, introduced to break the difficulty of the proofs,
and the language Imp, a simple imperative language sufficiently expressive to capture SQL
semantics. In addition to the resulting correct-by-construction back-end, this is an advance
in verification techniques. This part represents around 31,000 lines of new formalization and
proofs.

• A complete compiler for a large subset of SQL, written in Coq, that translates to a database
algebra suitable for optimization, and generates low-level imperative code for execution. This
bridges a gap between prior works on SQL formalization and on mechanization of query
compilers [Auerbach et al. 2017b; Malecha et al. 2010].

While we rely heavily on prior work, building DBCert required significant new development.
First, we had to bridge the gap between the source SQL semantics and the algebraic intermediate
representation in NRAe. In particular, NRAe does not have a builtin for NULL and must have an
explicit encoding of the SQL environments semantics. Second, we had to develop translations and
correctness proofs from the algebraic representation to a lower-level imperative language. This
proof necessitated the creation of a series of intermediate languages to cope with its complexity.

Outline. Section 2 presents some simple SQL examples illustrating subtleties of the semantics of
the language (Section 2.1) and then explains the compilation pipeline on an example (Section 2.2).
Section 3 defines the main languages used in the compiler. Section 4 describes the translation
from SQLAlg to NRAe, This translation handles delicate aspects of SQL, including NULL values and
environments for correlated queries. Section 5 describes the translation from NNRC, an expression
oriented functional language, to Imp, a statement oriented imperative language with mutable
variables. Section 6 reviews the DBCert implementation. The compiler is verified using the Coq
proof assistant and extracted to OCaml. The non-verified parts include the SQL parser, written in
OCaml, and the JavaScript code generation and runtime used for execution. Section 7 evaluates
the compiler on some challenging queries and discusses methodology. This paper provides insight
both on the compilation of SQL, and on the software engineering aspect of connecting two large
Coq projects developed independently.

An extended version of this article with appendix is available [Benzaken et al. 2022b]. This article
is also accompanied with an artifact [Benzaken et al. 2022a] which is a Docker image containing
an installed version of a snapshot of the following open source projects:

• https://github.com/dbcert/dbcert: the entry point of the project containing the main theorem
and providing the runtime and the runner

• https://framagit.org/formaldata/sqltonracert: the frontend from SQL to NRAe (which itself
relies on the SQL formal semantics)

• https://querycert.github.io: the Q*Cert compiler that contains in particular the backend from
NRAe to Imp.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

https://github.com/dbcert/dbcert
https://framagit.org/formaldata/sqltonracert
https://querycert.github.io

83:4 V. Benzaken, É. Contejean, M. H. Hachmaoui, C. Keller, L. Mandel, A. Shinnar, and J. Siméon

2 OVERVIEW

2.1 Challenges of the SQL Semantics

As an introductory example, let us consider the following SQL query written using the
AlaSQL [AlaSQL 2022] library for Node.js:

alasql('CREATE TABLE R (a number, b number)');

alasql.tables.R.data = [{a: 1, b: 10}, {a: 2, b: 20}, {a: 3, b: 30}];

var res = alasql('select a from R where b > 15'); // res = [{ "a": 2 }, { "a": 3 }]

This library is primarily used for querying JSON data in memory or to run SQL queries directly
in the browser. The first line declares a relational schema with one table R containing two columns
a and b, both of type number. The second line populates the database, here as a JavaScript array of
objects, where each object corresponds to a row in table R with those same fields a and b. The third
line executes a simple select from where statement which returns the a column for every row
which has a b column greater than 15.

Challenges with null value semantics. We next consider a query adapted from Guagliardo and
Libkin [2017] involving NULL values, an important feature of SQL commonly used to model missing
data. This query selects all the values in the table R that are for sure not in S.

alasql('CREATE TABLE R (a number)');

alasql('CREATE TABLE S (b number)');

alasql.tables.R.data = [{a: 1}, {a: null}];

alasql.tables.S.data = [{b: null}];

var res = alasql('select a from R where a not in (select b from S)');

// expected: res = []

// alasql: res = [{"a": 1}]

The nested query select b from S returns a table with a single row containing null. For each
row in R, the value of the attribute a is compared to null to test non-membership in the result of
select b from S. The not in predicate expands to 1 ≠ null for the first row and null ≠ null

for the second row. SQL uses a three-valued logic and comparing a value to NULL returns unknown.
Thus, the two comparisons return unknown and the query’s result should be the empty collection.

Unfortunately, AlaSQL, when given this query, incorrectly returns [{a:1}] instead. AlaSQL
probably relies on the JavaScript comparison where 1 ≠ null is true instead of unknown.

Challenges with nested query semantics. A main challenge when compiling SQL to JavaScript
is correctly handling nested queries. In particular, extra care needs to be taken to account for
correlated queries, where the inner query refers to a variable introduced by an outer query.
Correlated queries are an important feature of SQL since they allow in particular to answer

negative questions like the previous query (where the correlation is introduced by the in operator).
To illustrate the subtlety of the semantics of nested queries, we consider the following queries

Q1 and Q2. The only difference between them is in the expression sum(1+0*𝑏): the variable 𝑏 refers
to b2 (defined in table t2) in Q1 and to b1 (defined in table t1) in Q2.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

Translating Canonical SQL to Imperative Code in Coq 83:5

-- Q1

select a1 from t1 group by a1 having exists

(select a2 from t2 group by a2 having sum(1+0*b2) = 2);

-- Q2

select a1 from t1 group by a1 having exists

(select a2 from t2 group by a2 having sum(1+0*b1) = 2);

t1 t2 Q1 Q2

a1 b1 a2 b2 a1 a1

1 1 7 7 1 1
1 2 7 8
2 3 2
3 1 3
3 2
3 3

At first glance, adding a term equal to 0 in a sum should have no effect. However, sum is an
aggregate operator, and is executed on each element of the table containing 𝑏. Thus, the expression
sum(1+0*𝑏) effectively counts the number of occurrences of 𝑏. This expression therefore returns
different results when applied to table t1 (sum(1+0*𝑏1), as in Q2) and t2 (sum(1+0*𝑏2), as in Q1).
The semantics of t1 group by a1 is to split the table t1 into intermediate tables where the

values of the attribute a1 is the same. In our example, for both queries, it creates the tables
[{a1:1, b1:1}, {a1:1, b1:2}], [{a1:2, b1:3}], and [{a1:3, b1:1}, {a1:3, b1:2}, {a1:3,

b1:3}]. Then, on each of these tables, the condition having is executed. The expression select

a2 from t2 group by a2 having sum(1+0*𝑏) = 2 is thus executed three times in three different
contexts. The expression t2 group by a2 always creates the table [{a2:7, b2:7}, {a2:7, b2:8}]

and the condition having sum(1+0*𝑏) = 2 tests if the number of occurrences of 𝑏 is two.
For Q1, where 𝑏 = b2, since there are three times the condition is true (since the table containing

b2 has two elements), the inner query returns [{a2:7}], and the exists condition is always a
success. As a result, the outer query returns [{a1:1}, {a1:2}, {a1:3}].
For Q2, where 𝑏 = b1, the table containing b1 has two elements such that a1 = 1, one element

such that a1 = 2, and three elements such that a1 = 3. The condition is true only once (when
a1 = 1), so the inner query returns [{a2:7}] and the exists condition succeeds only in this case.
Thus, the outer query returns [{a1:1}]. AlaSQL, alas, produces an incorrect result for this query.

This example illustrates what we call the environment handling of SQL: evaluating a nested query
must be done in an environment aware of all outer queries, and one must be careful on correctly
choosing the important piece of information in this environment. We will detail this in Sections 3.1
and 4.3.

2.2 Translating SQL to JavaScript

We introduce our translation using a simple correlated query that returns all the values of the
attribute a of the table R which are present in the column b of S:

select a from R where exists (select b from S where b = a);

We first translate the query into SQLCoq, a subset of SQL where all implicit features of SQL are
explicit. For example, a select without a where clause is completed by where true. SQLCoq is as
expressive as the considered subset of SQL, but its regularity simplifies formalization. Our example
in SQLCoq becomes:

select x as a from (table R) t0(x)

where exists (select y as t1_y from (table S) t1(y) where y = x);

In SQLCoq, all the intermediate results must be named. For example, the notation (table R) t0(x)

renames the table R into t0 and its single attribute is renamed x. The selection x as a projects the
attribute x of the table t0 and renames it a. The definition of SQLCoq and this compilation step is

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

83:6 V. Benzaken, É. Contejean, M. H. Hachmaoui, C. Keller, L. Mandel, A. Shinnar, and J. Siméon

taken from Benzaken and Contejean [2019]. Currently, the SQL features not supported by SQLCoq

are silent coercion from singleton bags to values, recursive queries, distinct, and order by.

The next compilation step is also taken from Benzaken and Contejean [2019]. It translates SQLCoq

to SQLAlg, a relational algebra such as is found in database textbooks [Abiteboul et al. 1995; Ullman
1982], but including grouping and aggregates. SQLAlg includes operators such as projection 𝜋 ,
selection 𝜎 , natural join ⊲⊳, and a grouping operator 𝛾 . Our example query translated into SQLAlg is:

𝜋𝑥 as 𝑎 (𝜎exists(𝜋𝑦 as 𝑡1_𝑦 (𝜎𝑦=𝑥 (𝜋𝑏 as 𝑦 (𝑆))))
(𝜋𝑎 as 𝑥 (𝑅))

The input of this query is the expression 𝜋𝑎 as 𝑥 (𝑅), corresponding to (table R) t0(x), the renam-
ing of the attribute of the table R. The top-level 𝜋𝑥 as 𝑎 corresponds to the projection of the result by
the clause select x as a. It is applied to 𝜎exists(...) , which corresponds to the where exists (...)

clause. Similarly, the expression inside the exists predicate corresponds to the inner SQLCoq query.

From SQLAlg, the query is translated into NRAe [Auerbach et al. 2017a], a nested relational algebra.
This intermediate language has two purposes: (1) it makes explicit the encoding of SQL features like
NULL values and the environment handling, and (2) it is a good language for optimization [Cao and
Badia 2007; Moerkotte 2020]. NRAe is based on functional combinators, evaluated in a context with
exactly two variables: In for the current input and Env for the local environment. The intuition
for that translation is that the structure of relational algebra operators (e.g., 𝜋 , 𝜎) is preserved,
but ładministrativež steps are added to deal with NULL values and the SQL evaluation context is
encoded in the NRAe environment Env.
Consider first the translation of 𝜋𝑎 as 𝑥 (𝑅) from SQLAlg to NRAe:

𝜒⟨{𝑥 :In.𝑎}⟩ (𝑅)

The combinator 𝜒 is a functional map: it applies the expression within the ⟨..⟩ to each element of
𝑅 where the element is bound to the variable In, which holds the current input. The expression
{𝑥 : In.𝑎} creates a record with label 𝑥 and value the projection of the label 𝑎 from the current
input (In). As expected, this expression creates a collection of records with label 𝑥 containing the
elements of 𝑅 with label 𝑎.
We next consider the translation of 𝜎exists(𝑄) (𝜋𝑎 as 𝑥 (𝑅)) where 𝑄 has 𝑆 as input, but also

depends on 𝑥 , the result of 𝜋𝑎 as 𝑥 (𝑅). Denoting the translation of 𝑄 as 𝑞, 𝜎exists(𝑄) (𝜋𝑎 as 𝑥 (𝑅)) is:

𝜎⟨exists(𝑞) ◦𝑒 pushone ⟩
(
𝜒⟨{𝑥 :In.𝑎}⟩ (𝑅)

)

The selection operator 𝜎 of SQLAlg is translated into the corresponding operator in NRAe. But
in SQLAlg, the 𝜎 operator implicitly adds 𝑥 to the evaluation context of exists(𝑞). This is done
explicitly in NRAe, with 𝑞1 ◦𝑒 𝑞2, which evaluates 𝑞2 first and then evaluates 𝑞1 in the environment
Env where the result of 𝑞2 is stored. Here, pushone adds the value of 𝑥 onto a stack defining the
evaluation context of exists(𝑞), implemented as a linked list with shape {slice : •, tail : •}. slice
contains the attributes introduced by 𝜒⟨{𝑥 :In.𝑎}⟩ (𝑅) and tail contains the evaluation context of
𝜒⟨{𝑥 :In.𝑎}⟩ (𝑅).
Finally, the last difficulties are in the translation of the expression 𝜎𝑦=𝑥 (...), which has the

following structure in NRAe (to simplify the presentation we simplified the code: in particular, we
assume that 𝑦 is not NULL):

𝜎⟨ (In |false) ◦ ((left (Env.slice.𝑦=In) |right ()) ◦ Env.tail.slice.𝑥) ◦𝑒 pushone ⟩ (...)

Starting from the right of the condition of the 𝜎 , the ◦𝑒 pushone adds𝑦 on the top of the environment
stack. Then (𝑞 ◦ Env.tail.slice.𝑥) where 𝑞 = (left (Env.slice.𝑦 = In) |right ()) corresponds to
the equality test 𝑦 = 𝑥 which has to deal with NULL values. The expression Env.tail.slice.𝑥 accesses
the value of 𝑥 at the appropriate level in the environment stack and is given as input to 𝑞 using

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

Translating Canonical SQL to Imperative Code in Coq 83:7

the composition operator ◦. The expression 𝑞 tests if 𝑥 is null (we assume here that 𝑦 is not null).
NRAe does not have a built-in notion of null, instead values that can be NULL are boxed in a value
of type either. For example, the number 42 is encoded as left 42 and a NULL is right (). The
operator (𝑞1 |𝑞2) matches its input with shape left𝑑1 and right𝑑2 to execute either𝑞1 with input𝑑1
or 𝑞2 with input 𝑑2. In our example, if 𝑥 is null, 𝑞 returns right () (corresponding to unknown),
otherwise left (Env.slice.𝑦 = In). The expression Env.slice.𝑦 = In performs the comparison𝑦 = 𝑥

knowing that 𝑥 and 𝑦 are not null. The output of 𝑞 is of type either, representing the three-
valued logic of SQL: left true is true, left false is false, and right () is unknown. The expression
(In|false) in the 𝜎 converts a boxed three-valued logic value to a Boolean.

From NRAe, the translation rewrites the query through a series of intermediate languages that
are successively closer to Imp, a simple imperative language. Imp contains variables, assignments,
conditionals, iterations, and calls to external operators and external runtime functions. It supports
compilation from SQL while remaining easy to translate into various imperative languages.
The translation of a query in Imp produces a function which is parameterized by the database

instance represented as a record where each table is a field. The body of the function initializes a
variable ret with the result of the query which is returned at the end.

fun(db) {

var R = db.R; var ret; ... return ret;

}

In Imp, the code corresponding to 𝜒⟨{𝑥 :In.𝑎}⟩ (𝑅) is a loop that builds a collection tmp0 by iterating
over the input collection provided in R.

var tmp0 = array(); for (id0 in R) { tmp0 = push(tmp0, { x : id0.a }) }

Finally, from Imp, we obtain JavaScript code that executes the query via a straightforward
translation. This is linked to a JavaScript runtime that implements operations like array and push.

3 MAIN LANGUAGES

SQL is a declarative query language built around the famous select from where statement. While
most formal treatments use a set-theoretic semantics, SQL implementations use a bag semantics,
i.e., unordered collection in which the same element may occur multiple times. Most realistic
queries use significantly more complex features, including select from where group by having

statements to handle aggregation and collection operators such as ∪ (union), ∩ (intersect) and \

(except) . SQL queries have also to account for NULL values that are used to represent unknown or
missing information in tables. SQL queries involve predicates (=,<,...) functions (+,-,...) and
aggregates (sum, max, count,...) which are often used in conjunction with group by having.
Last, SQL allows for nested expressions, e.g., queries inside the where or having clause.
To compile SQL, the three languages that are at the core of the contribution are SQLAlg, NRAe,

and Imp. We present their syntax, data models, and semantics.

3.1 SQLAlg

SQLAlg [Benzaken and Contejean 2019] is an extension of the relational algebra to encompass SQL’s
aggregates, formulas, bag semantics, and environment handling. The goal of SQLAlg is to capture
the semantics of SQL using the relational algebra as in database textbooks [Abiteboul et al. 1995;
Ullman 1982], but on a larger fragment than is typically presented.
SQLAlg queries operate on a flat data model. A database instance is a set of named relations (or

tables). Each table is a bag of tuples where each element of the tuple is a raw value (number, string,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

83:8 V. Benzaken, É. Contejean, M. H. Hachmaoui, C. Keller, L. Mandel, A. Shinnar, and J. Siméon

J()KQ
ℰ
(𝑖) = {| |}

JtblKQ
ℰ
(𝑖) = 𝑖 .tbl if tbl is a table

J𝑄1 ⊲⊳𝑄2K
Q
ℰ
(𝑖) =

��������

(
𝑎𝑛 = 𝑐𝑛, 𝑏𝑘 = 𝑑𝑘

)

��������

(𝑎𝑛 = 𝑐𝑛) ∈ J𝑄1K
Q
ℰ
(𝑖) ∧

(𝑏𝑘 = 𝑑𝑘) ∈ J𝑄2K
Q
ℰ
(𝑖) ∧

(∀ 𝑛,𝑘, 𝑎𝑛 = 𝑏𝑘 ⇒ 𝑐𝑛 = 𝑑𝑘)

��������

J𝜋 (𝑒𝑛 as𝑎𝑛) (𝑄)KQ
ℰ
(𝑖) = {| (𝑎𝑛 = J𝑒𝑛Ke

(ℓ (𝑡),[],[𝑡]) ::ℰ
) | 𝑡 ∈ J𝑄KQ

ℰ
(𝑖) |}

J𝜎𝑓 (𝑄)KQ
ℰ
(𝑖) = {|𝑡 ∈ J𝑄KQ

ℰ
(𝑖) | J𝑓 Kf

(ℓ (𝑡),[],[𝑡]) ::ℰ
(𝑖) = ⊤|}

J𝛾 (𝑒𝑘 as𝑎𝑘 ,𝑒𝑛 ,𝑓)
(𝑄)KQ

ℰ
(𝑖) =

{���(𝑎𝑘 = J𝑒𝑘Ke
(ℓ (𝑇),𝑒𝑛 ,𝑇) ::ℰ

) |𝑇 ∈ F3

���
}

and F2 is a partition of J𝑄KQ
ℰ
(𝑖) according to 𝑒𝑛

and F3 =
{���𝑇 ∈ F2

���J𝑓 Kf
(ℓ (𝑇),𝑒𝑛 ,𝑇) ::ℰ

(𝑖) = ⊤

���
}

J𝑓1 and 𝑓2K
f
ℰ
(𝑖) = J𝑓1K

f
ℰ
(𝑖) ∧3 J𝑓2K

f
ℰ
(𝑖)

J𝑓1 or 𝑓2K
f
ℰ
(𝑖) = J𝑓1K

f
ℰ
(𝑖) ∨3 J𝑓2K

f
ℰ
(𝑖)

J𝑝 (𝑒𝑛)K
f
ℰ
(𝑖) = 𝑝 (J𝑒𝑛Ka

ℰ
)

J𝑝 (𝑒𝑛, all 𝑞)K
f
ℰ
(𝑖) = true iff J𝑝 (𝑒𝑛, 𝑡)K

f
ℰ
(𝑖) = true for all 𝑡 ∈ J𝑞KQ

ℰ
(𝑖)

Jexists 𝑞Kf
ℰ
(𝑖) = true iff J𝑞KQ

ℰ
(𝑖) is not empty

J𝑐Ke
ℰ
= c J𝔣𝔫 (𝑒)Ke

ℰ
= 𝔣𝔫 (J𝑒Ke

ℰ
) J𝑎Ke

(𝐴,𝐺,𝑇) ::ℰ
=

{
𝑇 .𝑎 if 𝑎 ∈ 𝐴

J𝑎Ke
ℰ

if 𝑎 ∉ 𝐴

Fig. 1. Semantics of SQLAlg (excerpt).

etc) and can be accessed with its name called attribute. All the tuples in a table have the same set of
attributes, the NULL value is used to encode a missing attribute.
The syntax of SQLAlg is the following (the notation 𝑒 indicates a list of expressions 𝑒).

𝑄 ::= () | tbl

| 𝑄 (union | intersect | except) 𝑄 | 𝑄 ⊲⊳ 𝑄

| 𝜋 (𝑒 as𝑎) (𝑄) | 𝜎𝑓 (𝑄)

| 𝛾 (𝑒 as𝑎,𝑒,𝑓) (𝑄)

𝑓 ::= true | 𝑓 (and | or) 𝑓 | not 𝑓

| 𝑝 (𝑒) | 𝑝 (𝑒, (all | any) 𝑄)

| 𝑒 as 𝑎 in 𝑄 | exists 𝑄

𝑒 ::= 𝑐 | 𝑎 | 𝔣𝔫(𝑒) | 𝔞𝔤(𝑒)

A query 𝑄 can be a tuple with no attributes (()), a relation name tbl, a set operation on two
sub-queries, a natural join ⊲⊳,2 a projection (and renaming) 𝜋 , a selection sigma 𝜎 , or a grouping 𝛾 .
The 𝛾 operator extends the standard relational algebra with the possibility to compute groups and
aggregates similarly to a select/group by/having in SQL. A formula 𝑓 is an expression returning
a Boolean value in the three-valued logic where 𝑝 is a predicate (e.g., <). An expression 𝑒 can be
a constant 𝑐 from the set of values 𝒱 (currently DBCert supports intergers, Booleans, and string
and also floating point numbers in a separate version), an attribute name 𝑎 corresponding to a
component of a tuple, or a function call. There are two classes of functions: (1) the functions 𝔣𝔫 that
combine values (like +, −, ∗), and (2) aggregate functions 𝔞𝔤 that operate over collections (like sum,
avg, or min).3

The semantics of SQLAlg is defined in Figure 1 (the full definition is given in the extended version
of the paper [Benzaken et al. 2022b]). The semantics function of each syntactic category is annotated
with the syntactic category of the term (𝑄 for queries, 𝑓 for formulas, and 𝑒 for expressions). The
semantics J𝑄KQ

ℰ
(𝑖) of a query 𝑄 evaluated in an environment ℰ on a database instance 𝑖 defines a

2A natural join 𝑄1 ⊲⊳ 𝑄2 computes the set of all combinations of tuples in 𝑄1 and 𝑄2 that are equal on their common
attribute names. For example, if𝑄1 computes the bag of tuples {| (𝑎 : 1, 𝑏 : 2), (𝑎 : 2, 𝑏 : 2), (𝑎 : 3, 𝑏 : 3) |} and𝑄2 computes
the bag {| (𝑏 : 1, 𝑐 : 1), (𝑏 : 2, 𝑐 : 2), (𝑏 : 2, 𝑐 : 3) |}, then their natural join is the bag {| (𝑎 : 1, 𝑏 : 2, 𝑐 : 2), (𝑎 : 2, 𝑏 : 2, 𝑐 :

2), (𝑎 : 1, 𝑏 : 2, 𝑐 : 3), (𝑎 : 2, 𝑏 : 2, 𝑐 : 3) |}. For instance, the tuple (𝑎 : 3, 𝑏 : 3) from𝑄1 is discarded since there is no tuple in
𝑄2 whose value on the attribute 𝑏 is 3, whereas the tuple (𝑎 : 1, 𝑏 : 2) is combined with all the tuples of𝑄2 whose value on
the attribute 𝑏 is 2.
3In the implementation, expressions with and without aggregate are syntactically stratified.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

Translating Canonical SQL to Imperative Code in Coq 83:9

bag. The instance 𝑖 associates the data to each table. The environment ℰ defines the local evaluation
context of the query, and is a major subtlety in the semantics of SQL that we now detail.
An environment ℰ = [𝑆𝑛 ; ...; 𝑆1] has a stack structure reflecting the current nesting level of the

query. Each level of the stack is a slice 𝑆 = (𝐴,𝐺,𝑇) where 𝐴 is the set of attributes defined at the
slice level, 𝐺 is the list of grouping expressions in the case of a 𝛾 , and 𝑇 is the current tuple (or list
of tuples for a 𝛾) the query is evaluated against. We use the notation ℰ = 𝑆 :: ℰ ′ to access the top
of the stack and 𝐴(𝑆), 𝐺 (𝑆), 𝑇 (𝑆) to access to the different elements of a slice.
The rules for the projection (𝜋 (𝑒𝑛 as𝑎𝑛) (𝑄)) and for the grouping operator (𝛾 (𝑒𝑘 as𝑎𝑘 ,𝑒𝑛,𝑓) (𝑄)) in

Figure 1 illustrate the construction of the environment. Projection builds a bag by iterating on each
tuple 𝑡 in the result of the evaluation of 𝑄 . For each 𝑡 , it creates a new tuple with attributes 𝑎𝑛
of value 𝑒𝑛 . Each expression 𝑒𝑛 is evaluated in an environment ℰ ′ = (ℓ (𝑡), [], [𝑡]) :: ℰ where the
function ℓ extracts the attribute names of 𝑡 . The grouping operator, in contrast, first agglomerates
tuples as per some grouping expressions 𝑒𝑛 , then filters out some of the groups using the predicate 𝑓 ,
and finally computes the resulting expressions 𝑒𝑘 on groups. Thus, the predicate and the resulting
expressions are evaluated in an environment extended with the groups computed in F3.

Example 3.1. Consider the query Q1 from Section 2.1 in SQL and its corresponding SQLAlg

expression:4

select a1 from t1 group by a1 having exists

(select a2 from t2 group by a2 having sum(1+0*b2) = 2);

𝛾 ((𝑎1 as𝑎1), 𝑎1, exists(𝛾 ((𝑎2 as𝑎2), 𝑎2, sum(1+0∗𝑏2)=2) (𝑡2)))
(𝑡1)

Following the semantics of Figure 1 with 𝑡1 = {|(𝑎1 : 1, 𝑏1 : 1), (𝑎1 : 1, 𝑏1 : 2), (𝑎1 : 2, 𝑏1 : 3), (𝑎1 :

3, 𝑏1 : 1), (𝑎1 : 3, 𝑏1 : 2), (𝑎1 : 3, 𝑏1 : 3) |}, the 𝛾 operator first creates the partition of 𝑡1 according to
the value of the attribute 𝑎1:

F2 = [𝑇1,𝑇2,𝑇3] with 𝑇1 = {|(𝑎1 : 1, 𝑏1 : 1), (𝑎1 : 1, 𝑏1 : 2) |}, 𝑇2 = {|(𝑎1 : 2, 𝑏1 : 3) |}

and 𝑇3 = {|(𝑎1 : 3, 𝑏1 : 1), (𝑎1 : 3, 𝑏1 : 2), (𝑎1 : 3, 𝑏1 : 3) |}

The formula exists(...) is evaluated on each group𝑇 in F2 in an environment ℰ = ([𝑎1, 𝑏1], 𝑎1,𝑇).
If 𝑡2 = {|(𝑎2 : 7, 𝑏2 : 7), (𝑎2 : 7, 𝑏2 : 8) |}, similarly, the nested query is a 𝛾 operator that creates the
partition of 𝑡2 according to the value of the attribute 𝑎2:

F
′
2 = [{|(𝑎2 : 7, 𝑏2 : 7), (𝑎2 : 7, 𝑏2 : 8) |}]

So the formula sum(1 + 0 ∗ 𝑏2) = 2 is evaluated in an environment ℰ ′ = [([𝑎2, 𝑏2], 𝑎2, {|(𝑎2 :

7, 𝑏2 : 7), (𝑎2 : 7, 𝑏2 : 8) |}), ([𝑎1, 𝑏1], 𝑎1,𝑇)] for each 𝑇 ∈ F2. The evaluation of this formula will
evaluate 𝑏2 (even if it is multiplied by 0): 𝑏2 appears twice in the first slice of the environment, so
no matter 𝑇 , the expression 1 + 0 ∗ 𝑏2 is summed twice and sum(1 + 0 ∗ 𝑏2) = 2 is true for any 𝑇 .
This is why the entire query Q1 returns the three grouping values for 𝑎1: 1, 2 and 3, thus the bag
{|(𝑎1 : 1), (𝑎1 : 2), (𝑎1 : 3) |}.
For the query Q2, the same reasoning holds, except that the inner formula is sum(1 + 0 ∗ 𝑏1) = 2.

This time, the evaluation of this formula will evaluate 𝑏1, which appears in the second slice. Thus,
1+ 0 ∗𝑏1 is summed twice for𝑇1, once for𝑇2 and three times for𝑇3, which makes sum(1+ 0 ∗𝑏1) = 2

valid only for 𝑇1. The result of the query is thus only the grouping value 𝑎1 = 1, thus the bag
{|(𝑎1 : 1) |}. ■

The semantics of formulas uses a three-valued logic where Boolean values can be true, false, or
unknown. The value unknown is introduced by predicates on the NULL value. For example, the result

4For simplicity, we omit renamings that would have been added by SQLCoq.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

83:10 V. Benzaken, É. Contejean, M. H. Hachmaoui, C. Keller, L. Mandel, A. Shinnar, and J. Siméon

of 1 > NULL is unknown. The operators in this logic are noted ∧3, ∨3, and ¬3. They provide the
maximum information, so for example true ∨3 unknown = true and false ∨3 unknown = unknown.
The rule for accessing an attribute 𝑎 in Figure 1 looks up a value in the environment, which is

traversed from the top of the stack until the attribute is found, as we have seen in the example. The
same process is used for aggregates 𝔞𝔤, but a group is searched for in the environment instead of a
single attribute. Depending on the slice, 𝑇 can be either a tuple (if it is introduced by a anything
but grouping) or a list (if introduced by grouping). The well formedness of the query guaranties
that the access to an attribute (𝑇 .𝑎) can only occur on a tuple and not a list.

3.2 NRAe

NRAe [Auerbach et al. 2017a] is an extension of Nested Relational Algebra [Cluet and Moerkotte
1993], designed for optimizations. For example, there is no stratification between expressions,
formulas, and queries, which allows cross level rewriting. Some optimizations strategies already
exist for this language [Claußen et al. 1997, 2000; Cluet and Moerkotte 1993; Moerkotte 2020].
As suggested by the name, NRAe supports nested data:

𝑑 ::= 𝑐 | {𝐴𝑛 : 𝑑𝑛} | [𝑑𝑛] | left 𝑑 | right 𝑑

A value is either an atom (a constant), a record, a bag, or a value of type either (a value with
a constructor left or right). A record is a mapping from a finite set of attributes to values. A
large set of atoms is supported including numbers, strings, and Booleans. Values of type either

are used to encode SQLAlg’s typed null values and three-valued logic (Section 4.4).
The syntax of the language is the following:

𝑞 ::= 𝑑 | In | ⊞𝑞 | 𝑞1 ⊠ 𝑞2 | 𝑞2 ◦ 𝑞1 | 𝜒⟨𝑞2 ⟩ (𝑞1) | 𝜎⟨𝑞2 ⟩ (𝑞1) | 𝑞1 × 𝑞2 | 𝑞1 ?? 𝑞2 | 𝑞1 |𝑞2
| Env | 𝑞2 ◦

𝑒 𝑞1 | 𝜒
𝑒
⟨𝑞⟩

| group_by𝑔 (𝑎, 𝑞)

A query 𝑑 returns the value 𝑑 . The query In returns the data 𝑑 it is evaluated against. The queries
⊞𝑞 and 𝑞1 ⊠ 𝑞2 represent the application of unary operators (like negation, field access, building a
singleton collection) and binary operators (like union of bags, record concatenation).
The query composition 𝑞2 ◦ 𝑞1 illustrates the combinatorial nature of the semantics. It first

evaluates 𝑞1 on the input data, then uses the result of the evaluation to evaluate 𝑞2. The query
𝜒⟨𝑞2 ⟩ (𝑞1) evaluates the query 𝑞2 on each element of the bag returned by the evaluation of 𝑞1. The
operators 𝜎⟨𝑞2 ⟩ (𝑞1) and 𝑞1 × 𝑞2 are, respectively, selection and Cartesian product. The semantics
of product use the ⊕ binary operator, which performs record concatenation. For example, the
expression {𝑎 : 𝑡𝑟𝑢𝑒} ⊕ {𝑏 : 3} evaluates to {𝑎 : 𝑡𝑟𝑢𝑒, 𝑏 : 3}.
The operators 𝑞1 ?? 𝑞2 and 𝑞1 |𝑞2 are control structures. The query 𝑞1 ?? 𝑞2 checks the result of

running 𝑞1 on the input data. If it is not an empty bag it returns it, otherwise it evaluates 𝑞2 on the
input data. The query 𝑞1 |𝑞2 matches the input data with left 𝑑 and right 𝑑 and executes either
𝑞1 or 𝑞2 on the data 𝑑 as appropriate.

The queries Env, 𝑞2 ◦𝑒 𝑞1, and 𝜒𝑒
⟨𝑞⟩

manipulate the local environment 𝜌 . Env returns the environ-

ment 𝜌 , 𝑞2 ◦𝑒 𝑞1 updates it, and 𝜒𝑒
⟨𝑞⟩

iterates over it.

NRAe also provides a group_by𝑔 (𝑎, 𝑞) construct that evaluates 𝑞 and groups the result using the
values of the fields 𝑎 as keys. The result is a collection of records made of the key and a field 𝑔
containing the associated group. For example, group_by𝑔 (𝑥, 𝑑) where 𝑑 = [{𝑥 : 1, 𝑦 : 1}, {𝑥 : 1, 𝑦 :

2}, {𝑥 : 2, 𝑦 : 3}] returns [{𝑥 : 1, 𝑔 : [{𝑥 : 1, 𝑦 : 1}, {𝑥 : 1, 𝑦 : 2}]}, {𝑥 : 2, 𝑔 : [{𝑥 : 2, 𝑦 : 3}]}].

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

Translating Canonical SQL to Imperative Code in Coq 83:11

𝜌 ⊢ 𝑑0 @ 𝑑 ⇓𝑎 𝑑0
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝜌 ⊢ In @ 𝑑 ⇓𝑎 𝑑
𝐼𝐷

𝜌 ⊢ 𝑞1 @ 𝑑0 ⇓𝑎 𝑑1 𝜌 ⊢ 𝑞2 @ 𝑑1 ⇓𝑎 𝑑2

𝜌 ⊢ 𝑞2 ◦ 𝑞1 @ 𝑑0 ⇓𝑎 𝑑2
𝐶𝑜𝑚𝑝

𝜌 ⊢ Env @ 𝑑 ⇓𝑎 𝜌
𝐸𝑛𝑣

𝜌1 ⊢ 𝑞1 @ 𝑑1 ⇓𝑎 𝜌2 𝜌2 ⊢ 𝑞2 @ 𝑑1 ⇓𝑎 𝑑2

𝜌1 ⊢ 𝑞2 ◦
𝑒 𝑞1 @ 𝑑1 ⇓𝑎 𝑑2

Comp𝑒

𝜌 ⊢ 𝑞1 @ 𝑑 ⇓𝑎 𝑑1

𝜌 ⊢ 𝑞1 |𝑞2 @ left 𝑑 ⇓𝑎 𝑑1
Eitherleft

𝜌 ⊢ 𝑞2 @ 𝑑 ⇓𝑎 𝑑2

𝜌 ⊢ 𝑞1 |𝑞2 @ right 𝑑 ⇓𝑎 𝑑2
Eitherright

Fig. 2. Semantics of NRAe (excerpt).

This construct can be defined using simpler constructs of NRAe as follows:

group_by𝑔 (𝑎, 𝑞) = 𝜒〈
In⊕{𝑔:𝜎⟨Env.key=𝜋 [𝑎] (In)⟩(Env.input)◦𝑒 ({key:In}⊕Env)

〉

(
distinct(𝜒⟨𝜋 [𝑎] (In) ⟩ (Env.input))

)

◦𝑒 {input : 𝑞}

It is easiest to understand how this definition works by proceeding backwards. The last line
creates a record with a single label named input that contains the result of evaluating 𝑞. The ◦𝑒

expression causes this record to be used as the environment when evaluating the preceding lines.
The middle line constructs the set of distinct keys by iterating over input. It uses two operators:

distinct(𝑑) which takes a bag 𝑑 and removes the duplicates, and record projection 𝜋 [𝑎] (𝑑) which
takes a record 𝑑 and returns the same record with only the specified labels 𝑎. Since input is stored in
the current environment (thanks to the third line), it can be accessed by Env.input. Using map (𝜒)
and project (𝜋), we extract the keys from input and use distinct to ensure they are unique.

The last line maps over the set of distinct keys. For each one, we are building a record containing
the key and a field 𝑔 constructed as follow. We first extend our environment with an additional field
key containing the current key ({key : In} ⊕ Env). Then, we select the records in input matching
the key (𝜎⟨Env.key=𝜋 [𝑎] (In) ⟩ (Env.input)).
The formal semantics of NRAe is defined by a judgment 𝜌 ⊢ 𝑞 @ 𝑑 ⇓𝑎 𝑑

′ which means that a
query 𝑞 evaluated in a local environment 𝜌 against input data 𝑑 produces a value 𝑑 ′ where the
environment 𝜌 can be any NRAe data (e.g., a record or a collection). A few rules are given in Figure 2.
The complete semantics can be found in the extended version of the paper.

Compared to the original algebra, we have replaced the operator 𝑞1 ||𝑞2 which was testing if the
input was the empty collection by the operator 𝑞1 |𝑞2 which corresponds to the pattern matching
on the values left and right.

3.3 Imp

The goal of Imp, the final language we define, is to be close to the targeted runtime. It is parameter-
ized by a data model (the constant values), the built-in operators (like addition), and the library
functions (the runtime needed to execute the program). Imp can be instantiated into a subset of
most imperative languages. The syntax of Imp is the following:

𝑒 ::= 𝑐 | 𝑥 | op(𝑒) | 𝑓 (𝑒)

𝑠 ::= { decl∗𝑠∗ } | 𝑥 := 𝑒 | for 𝑥 in 𝑒 do 𝑠 | if 𝑒 then 𝑠 else 𝑠

decl ::= var 𝑥 | var 𝑥 = 𝑒

𝑞 ::= fun(𝑥){ 𝑠; return 𝑦}

A query 𝑞 is a function that takes an argument 𝑥 as the input data. Its body is an imperative
statement 𝑠 that must define the value of the returned variable 𝑦. Statements can be assignments,
loops over a collection, conditionals and blocks. A block can contain a list of variable declarations,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

83:12 V. Benzaken, É. Contejean, M. H. Hachmaoui, C. Keller, L. Mandel, A. Shinnar, and J. Siméon

that can be initialized or not, followed by a sequence of statements. Finally, expressions are
constants (𝑐), variables (𝑥), operator applications (op(𝑒)), and runtime operator calls (𝑓 (𝑒)).
The semantics J𝑒Kimp (𝜌) evaluates in an environment 𝜌 an expression 𝑒 into a value 𝑐 and

J𝑠Kimp (𝜌) evaluates statement 𝑠 into a new environment 𝜌 ′. The definition is standard and given in
the extended version of the paper. The only particularity is that an instantiation of Imp must provide
a semantics {[.]} for the parameterized operator and library functions. The instantiation must also
provide two functions toBool(𝑐) and toList (𝑐) that reify values of the language respectively into a
Boolean and into a list. Assuming that all the instantiated operators are terminating, all Imp pro-
grams are terminating. For example, the semantics of the conditional (Jif 𝑒 then 𝑠1 else 𝑠2K

imp (𝜌))
has to interpret the result of the evaluation of 𝑒 as a Boolean. The two expressions op(𝑒) and 𝑓 (𝑒)

have the same semantics. They are separate in Imp to distinguish functions that are compiled
into a built-in operator in the target language, with functions that are compiled into a runtime
library function. For example, the addition between two integers is compiled into a runtime library
function in JavaScript, but it could be compiled into a built-in operator if we target another language
that supports integers.

As our target is JavaScript code, we instantiate the Imp data model with EJson, an extended
JSON with integers and functional arrays (the null of JavaScript does not have the same semantics
of the NULL of SQL):

𝑐 ::= string val | number val | bool val | null | { 𝑙𝑛 : 𝑐𝑛 } | integer val | [𝑐𝑛]

The operators are those of the host language. For example, the operator * corresponds to
multiplication on JavaScript numbers (IEEE754 floating point numbers). Supporting SQL requires
Boolean arithmetic and string operators, as well as comparisons and access to the fields of an object.

Finally, the instantiation of Imp also comes with runtime functions that need to be implemented
in JavaScript. Examples of such functions are operations on integers and functional arrays.

4 FROM SQLAlg TO NRAe

This section presents the translation between SQLAlg and NRAe. The key aspects are the following:

(1) encoding NULL values and three-valued logic, and the operations on them;
(2) reflecting the environments and how they are handled.

The first challenge is that NRAe does not support three-valued logic connectives. To address this,
we encode these connectives, as discussed in Section 4.2. The second challenge arises from the
subtle handling of environments presented in Section 3.1. We address this by making the SQLAlg

environment explicit in the generated NRAe expression (Sections 4.3 and 4.4). These challenges in
the translation, presented in this section, are also reflected in the proof, as explained in Section 7.2.
SQLAlg is a stratified language with multiple syntactic categories (queries, formula, and expres-

sions), whereas NRAe is an expression language. Similarly the SQL data are stratified but not the
NRAe ones. This complicates the translation and proofs. Notationally, we index each translation
function with the syntactic category of its argument (𝑄 for queries, 𝑓 for formula, ...).

Before detailing the translation from SQLAlg to NRAe, we state the (verified) correctness theorems.

4.1 Correctness

Correctness of the translation applies only tomeaningful SQLAlg queries: queries that are well typed
and well formed [Benzaken and Contejean 2019]. For simplicity, we elide this assumption in the
following theorems.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

Translating Canonical SQL to Imperative Code in Coq 83:13

𝑄

SQLAlg

𝑞
NRAe

𝑏
Bag of tuples

𝑑
data collection

J𝑄KQ
ℰ
(𝑖)

E
valu

ation

(𝒯 env_dynamic(ℰ) ⊢ 𝑞 @ 𝒯 i(𝑖) ⇓𝑎 𝑑)

E
valu

ation

𝒯
Q

𝒯 env_static(ℰ)
(𝑄)

Translation

Encoding: 𝒯 bag(𝑏) ≡𝑑 𝑑

SQLAlg

Formulas

Expressions

NRAe

Bag

data3v-logic

Values

E
va
lu
at
io
n

E
va
lu
at
io
n

𝒯 Q (_)

𝒯 bag(_)

𝒯 B(_)

𝒯 val(_)

𝒯 f (_)

𝒯 e(_)

E
va
lu
at
io
n

E
va
lu
at
io
n

Fig. 3. SQLAlg to NRAe correctness diagram: top-level (left, Theorems 4.1 and 4.2) and internally (right,
Theorems 4.2, 4.3 and 4.4).

Theorem 4.1 is the main theorem. It states the correctness of the translation from SQLAlg to NRAe:
for any query𝑄 , the evaluation of its translation to NRAe (𝒯 Q (𝑄)) on the translated instance𝒯 i (𝑖)

is equal to the translation of the result of its evaluation (𝒯 bag (J𝑄KQ (𝑖))).

Theorem 4.1. ∀𝑄 𝑖, (⊢ 𝒯 Q (𝑄) @ 𝒯 i (𝑖) ⇓𝑎 𝒯 bag (J𝑄KQ (𝑖))) □

Theorem 4.2 generalizes Theorem 4.1 to any environment, which is needed for sub-queries.
As we will detail in Section 4.3, the SQLAlg environment ℰ can be seen has having a statically
determinable part (𝒯 env_static (ℰ), containing the groups and attribute names but not the data)
that is used at compile-time, while its dynamic part actually containing the tuples of the sub-
queries (𝒯 env_dynamic (ℰ)) will be available at runtime. The generalized theorem thus states that
for any query 𝑄 and any environment ℰ , the evaluation of the translation of 𝑄 in the dynamic
environment𝒯 env_dynamic(ℰ) is equal to the encoding (using the static environment𝒯 env_static (ℰ))
of the evaluation of 𝑄 into NRAe data model.

Theorem 4.2. ∀𝑄 ℰ 𝑖, (𝒯 env_dynamic (ℰ) ⊢ 𝒯
Q

𝒯 env_static (ℰ)
(𝑄) @ 𝒯 i (𝑖) ⇓𝑎 𝒯 bag (J𝑄KQ

ℰ
(𝑖))) □

An alternative view to Theorem 4.2 is given in Figure 3 (left).
The translation of queries (𝒯 𝑄) relies on the translation of formulas (𝒯 𝑓) and expressions (𝒯 𝑒).

Theorems 4.3 and 4.4 establish semantics preservation of these translations. To compare evaluations
of SQL formulas and expressions and their corresponding NRAe expressions, SQL Booleans and
values are translated into NRAe data (𝒯 B, and𝒯 val). Figure 3 (right) presents these theorems
graphically.

Theorem 4.3. ∀𝑓 ℰ 𝑖, (𝒯 env_dynamic (ℰ) ⊢ 𝒯 f
𝒯

env_static (ℰ)
(𝑓) @ 𝒯 i (𝑖) ⇓𝑎 𝒯 B (J𝑓 Kb

ℰ
(𝑖))) □

Theorem 4.4. ∀𝑒 ℰ , (𝒯 env_dynamic (ℰ) ⊢ 𝒯 e
𝒯

env_static (ℰ)
(𝑒) @ [] ⇓𝑎 𝒯 val (J𝑒Ke

ℰ
)) □

4.2 Translation of the Data Model

Database instances are the contents of the relations (tables). Since we consider only select queries,
the database instance is constant during evaluation. For SQLAlg, it is defined as a record where
fields are labeled with table names and values are bags of tuples. For NRAe, it is defined as a record
where values can be any data. The function 𝒯 i translates database instances, mapping relation
names to NRAe’s labels (𝒯 tab). Each SQLAlg tuple is translated into a NRAe record where the name
of each attribute is mapped to a label (𝒯 att) and each value is translated into a NRAe data (𝒯 val).
Value translation needs to handle NULL. This is done using an option type for nullable values.

Following NRAe convention, this is represented by boxing each value in a data of type either,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

83:14 V. Benzaken, É. Contejean, M. H. Hachmaoui, C. Keller, L. Mandel, A. Shinnar, and J. Siméon

which can be left or right. A non-null value 𝑣 is represented as left 𝑣 and a null value is
represented as right ().
To encode the three-valued logic in NRAe, we also use the either type:

true3 = left true false3 = left false unknown = right ()

We define the operators ¬𝐵,∧𝐵,∨𝐵 and is_true𝐵 as NRAe expressions. For example, the ¬𝐵

operator is implemented as follows:

¬𝐵 𝑞 = (left (¬ In) |right ()) ◦ 𝑞

This expression uses the ◦ operator to first evaluate 𝑞 to a data 𝑑 and then give 𝑑 as input to
(left ¬ In|right ()). Then the matching operator (𝑞1 |𝑞2) returns left ¬ 𝑏 if 𝑑 = left 𝑏 other-
wise it returns right (). So ¬𝐵 𝑞 has the expected behavior of returning unknown if 𝑞 is unknown

and the negation of the Boolean otherwise.

Floating points and bags: an inconsistency. DBcert supports Boolean values, integers, and strings.
The SQL specification also supports floating point operations. Unfortunately, however, our initial
attempts at supporting them revealed that the aggregate operators sum and avg are not compatible
with the set and bag semantics of SQL despite both beingmainstream features of Relational Database
Management Systems (RDBMSs).

Indeed, the specification requires for the aggregates sum and avg that addition is associative (and
commutative), as aggregates are operating over (unordered) bags; but floating point addition is not
associative. This issue is a fundamental problem with using floating point aggregate operations
over unordered bags, and is a (mostly ignored) problem in real Relational Database Management
Systems.
Our base compiler avoids this inconsistency by eliding support for floating point. However, to

target queries based on realistic JSON databases, supporting floating point operations is important.
There are a number of possible solutions to this issue. We could acknowledge that floating point

addition is indeed non-associative, and model that in the semantics. If we keep a bag semantics, this
would change the semantics to be non-deterministic. If we change from using a bag semantics, we
have a different infelicity to traditional semantics that would significantly inhibit query optimization.

Alternatively, we can avoid the non-associativity of floating point by using a slight-of-hand often
employed in theorem proving: changing from modelling floating point numbers to modelling real
numbers. This would regain associativity, but be unfaithful to our extracted implementation.
Another option is to keep modelling floating point numbers, but pretend that the sum and avg

aggregate operators are associative. This keeps the model simple, but introduces (false) axioms,
that need to be carefully isolated so they do not infect the rest of the verification effort.

We created a variant of our compiler that proceeds along the lines of the last option. We extended
SQLAlg with double precision floating point values, using Coq’s native floats. We also extended
the functions 𝔣𝔫 with arithmetic and Boolean operations on these values, and aggregate operators
𝔞𝔤 with sum, max, and avg. This pragmatic approach continues to model and reason about floating
point numbers, while pretending that addition is associative and commutative by assuming these
properties as axioms. While these axioms are technically unsound, we took great care to isolate
their usage to these proofs of the floating point aggregates. Note that three other axioms about
floating point numbers are also assumed, but these are all valid: associativity and commutativity of
floating point maximum, and a specification for injecting positive integers into floats. These are
specified as axioms since they characterize functions not implemented in Coq and only realized
during extraction, however they are believed to be sound.
In addition to the care taken to isolate the use of these unsound axioms, we preserve the core

version of the compiler, which does not contain these axioms (or the problematic floating point

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

Translating Canonical SQL to Imperative Code in Coq 83:15

operations), verifying the unconditional correctness of our base compiler, as described in this paper.
Both versions of the compiler are provided in the artifact.
While IEEE floating point is fundamentally ill-suited for a bag semantics, we hope that future

work can explore some of the other tradeoffs discussed above.

4.3 Translation of the Environment

We have seen in Section 3.1 that, during the evaluation of SQLAlg nested queries, one has to know
groups and data of outer queries: this is the role of the environment. This environment is implicit:
it is progressively populated when traversing queries, and the correct slice in which to find the
data (through attribute names) is automatically computed when needed.

NRAe also has an ambient environment 𝜌 . However, its manipulation is explicit: one has to store
and retrieve data in it through dedicated constructs.
To faithfully capture the SQLAlg semantics in NRAe, the implicit manipulation of the SQLAlg

environment thus has to be made explicit at compile time. It means that the translation, in addition
to reflecting the query operators (see next section), adds administrative expressions to manipulate
the environment.

Runtime environment. The runtime environment to execute a NRAe query coming from the
translation of a SQLAlg query mimics the SQLAlg environment. It has the structure of a stack of
slices, encoded as a link list in the record 𝜌 : 𝜌 = {slice : 𝑑𝑎𝑡𝑎1, tail : {slice : 𝑑𝑎𝑡𝑎2, tail : ...}}. The
values 𝑑𝑎𝑡𝑎1, 𝑑𝑎𝑡𝑎2, . . . correspond to each slice computed at runtime.

NRAe expressions for administrative steps. For this environment to be correctly handled during
the evaluation of the query, the translation has to make explicit:

• how to populate 𝜌 when traversing queries; and
• how to retrieve data in the correct slice of 𝜌 .

For the populating part, translation will inject administrative steps to add a new slice. We
have seen in Section Section 3.1 that slices can be composed of a single data or a collection. The
administrative steps are respectively these two NRAe expressions:

pushone = {slice : [In], tail : Env}

pushbag = {slice : In, tail : Env}

We remind the reader that Env is the expression that gives access to 𝜌 , and In is the expression
corresponding to the current input data. Hence both constructions add the current data on top of
the current environment, with the difference that for pushone the current data is put in a singleton
collection.

To retrieve data in the nth slice of the environment, the administrative step is simply the NRAe

expression Env.tail. · · · .tail.slice where there are 𝑛 − 1 tail projections.

Adding administrative steps at compile time. To correctly add these steps at compile time, the
translation function for queries 𝒯

Q
𝒜

is parameterized by a abstract translation environment 𝒜 ,
which contains static information about the environment ℰ . Indeed, in a slice (𝐴,𝐺,𝑇), 𝐴 and 𝐺
depend only on the structure of the query. For example, for the query 𝜎𝑓 (𝜋𝑥 as𝑎 (𝑡)), the top slice 𝑆 of
the environment in which the formula 𝑓 is executed is such that𝐴(𝑆) = 𝑎 and𝐺 (𝑆) = []. Therefore,
we define the translation environment 𝒜 = [𝑆𝑎𝑛 ; ...; 𝑆

𝑎
1
] as a stack of static slices 𝑆𝑎𝑖 = (𝐴𝑖 ,𝐺𝑖).

Example 4.5. Let us give the intuition on the SQLAlg queries of Example 3.1.5

At compile time, the translation starts with an empty translation environment.

5More details on this example are given at the end of the whole section.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

83:16 V. Benzaken, É. Contejean, M. H. Hachmaoui, C. Keller, L. Mandel, A. Shinnar, and J. Siméon

𝒯
Q

𝒜
(𝑄1 ⊲⊳ 𝑄2) = 𝒯

Q
𝒜

(𝑄1) × 𝒯
Q

𝒜
(𝑄2)

𝒯
Q

𝒜
(𝜎𝑓 (𝑄)) = 𝜎〈

𝒯
f
(sort 𝑄,{}) ::𝒜

(𝑓) ◦𝑒 pushone

〉
(
𝒯

Q
𝒜

(𝑄)
)

𝒯
Q

𝒜
(𝜋 (𝑒𝑛 as𝑎𝑛)) (𝑄) = 𝜒〈

𝒯
Sel
(sort 𝑄,{}) ::𝒜

(𝑒𝑛 as𝑎𝑛) ◦
𝑒 pushone

〉
(
𝒯

Q
𝒜

(𝑄)
)

𝒯
Q

𝒜
(𝛾

(𝑒𝑛 as𝑎𝑛,𝑏𝑘 ,𝑓)
(𝑄)) = let groups =𝜒⟨In·𝑔⟩

(
group_by𝑔 (𝑏𝑘 ,𝒯

Q
𝒜

(𝑄))
)
in

let filtered_groups = 𝜎〈
𝒯

f

(sort 𝑄,𝑏𝑘) ::𝒜
(𝑓) ◦𝑒 pushbag

〉 (groups) in

𝜒〈
𝒯

Sel

(sort 𝑄,𝑏𝑘) ::𝒜
(𝑒𝑛 as𝑎𝑛) ◦

𝑒 pushbag

〉 (filtered_groups)

where 𝑔 is a fresh label w.r.t 𝑏𝑘

Fig. 4. Non-trivial transformations of SQLAlg queries to NRAe.

It generates code for the outer 𝛾 by

• inserting the NRAe code that populates the environment using the function pushbag ; and
• calling itself recursively on the translation environment [([𝑎1, 𝑏1], 𝑎1)] and the formula
exists(...).

In this recursive call, similarly, it generates code by using pushbag again and calling itself recursively
on the translation environment [([𝑎2, 𝑏2], 𝑎2); ([𝑎1, 𝑏1], 𝑎1)] and the formula sum(1 + 0 ∗ 𝑏) = 2.

Finally, the translation of 𝑏 uses the translation environment to insert the correct code to retrieve
data: in the case of 𝑏 = 𝑏2, the code is Env.slice (since 𝑏2 is in the first slice on the translation
environment); in the case of 𝑏 = 𝑏1, the code is Env.tail.slice (since 𝑏1 is in the second slice). ■

Proof invariant. For the correctness statement and proof, we have to relate the SQLAlg environment
with the translation and runtime environments of NRAe. This is done through two helper functions:

• the function 𝒯 env_static(•) computes the translation environment by erasing the field 𝑇 from
SQLAlg environment’s slices:

𝒯 env_static ([]) = []

𝒯 env_static ((𝐴,𝐺,𝑇) :: ℰ) = (𝐴,𝐺) :: 𝒯 env_static (ℰ)

• the function 𝒯 env_dynamic (•) computes the runtime environment by erasing the fields 𝐴 and
𝐺 , and using the slice/tail records:

𝒯 env_dynamic ([]) = {}

𝒯 env_dynamic ((𝐴,𝐺,𝑇) :: ℰ) = {slice : 𝒯 bag (𝑇), tail : 𝒯 env_dynamic (ℰ)}

These two functions are used only for specification and proofs, not during the translation.

4.4 Transformation ofQueries, Formulas and Expressions

Queries. Translation of queries is denoted by 𝒯
Q

𝒜
(_). As explained above, the translation is

parameterized by a translation environment (𝒜). The translation of tables and set operations (union,
intersect and except) is straightforward: they are simply translated into the same operation in
NRAe. The translation of other queries is shown in Figure 4.

The join (⊲⊳) is translated into a Cartesian product because SQLAlg queries have by construction
distinct attribute names and in this case the semantics of both operators matches.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

Translating Canonical SQL to Imperative Code in Coq 83:17

𝒯 ef
𝒜

(𝑣) = 𝒯 val (𝑣) if 𝑣 is a value

𝒯 ef

(𝐴,𝐺) ::𝒜
(𝑎) = first_elt_of(Env · slice) · 𝒯 att (𝑎) if 𝑎 ∈ 𝐴

𝒯 ef

(𝐴,𝐺) ::𝒜
(𝑎) = 𝒯 ef

𝒜
(𝑎) ◦𝑒 (Env · tail) if 𝑎 ∉ 𝐴

𝒯 ef
𝒜

(𝔣𝔫 (𝑒 𝑓)) = 𝒯 𝔣𝔫 (𝔣𝔫, (𝒯 ef
𝒜

(𝑒 𝑓)))

𝒯 ea
𝒜

(𝔣𝔫 (𝑒𝑎)) = 𝒯 𝔣𝔫 (𝔣𝔫, (𝒯 ea
𝒜

(𝑒𝑎)))

𝒯 ea
𝒜

(𝔞𝔤(𝑒 𝑓)) = 𝒯 𝔞𝔤 (𝔞𝔤, (𝒯 f
((𝐴,𝐺) ::𝒜 ′)

(𝑒 𝑓))) ◦𝑒 (remove_slices (𝒜 , 𝑒 𝑓))

where remove_slices (𝒜 , 𝑒 𝑓) removes the same number of slices as F𝑎 (𝒜 , 𝑒 𝑓)

Fig. 5. SQLAlg Expressions translation

The translation of 𝜎𝑓 (𝑄) needs to take into account the encoding of the SQLAlg environment

in NRAe. It is translated as a NRAe selection over the translation of 𝑄 , 𝒯 Q
𝒜
(𝑄). This selection

is performed over the translation of the formula 𝑓 which, in order to operate over the tuples of
𝒯

Q
𝒜
(𝑄), is computed in a translation environment extended with the attributes introduced by

𝑄 (the sort of 𝑄). An administrative step (pushone) ensures that the resulting NRAe query will be
evaluated in a runtime environment extended with the result of the evaluation of 𝒯

Q
𝒜
(𝑄).

The translation of 𝜋 (𝑒𝑛 as𝑎𝑛) (𝑄) is similar. The difference is that it is translated into the mapping
operator of NRAe. The pairs given to this operator are computed recursively by translating each
element: the function 𝒯 Sel

𝒜
translates each expression 𝑒𝑛 and puts them in a record.

𝒯
Sel

𝒜
(𝑒𝑛 as𝑎𝑛) = {𝒯 att (𝑎𝑛) : 𝒯

e
𝒜
(𝑒𝑛)}

We now come to 𝛾 . We remind the reader that the query 𝛾
(𝑒𝑛 as𝑎𝑛,𝑏𝑘 ,𝑓)

(𝑄) performs three suc-

cessive operations on 𝑄 : it first creates groups using 𝑏𝑘 , then filters out some of these groups
with respect to the formula 𝑓 , finally projects over expressions 𝑒𝑛 (giving names 𝑎𝑛). This order
is reflected in the translation. On the translation of 𝑄 , 𝒯 Q

𝒜
(𝑄), it first creates groups using the

helper function group_by, adding an extra column to remember the grouping attribute thanks to
the mapping 𝜒⟨In·𝑔⟩ . Note that the grouping expressions must be attribute names, but it does not
reduce the expressiveness of SQLAlg. Second, the filtering is performed, similarly as for the selection
operator, except that it applies to groups, meaning that the environment has groups instead of
singletons: the translation environment contains the groups 𝑏𝑘 , and the runtime environment is
extended using pushbag . Finally, the projection is translated similarly to the projection operator,
except that it operates over groups as well.

Some basic optimizations are also implemented during the translation. For example, the selection
over the true formula (which is often introduced by the pre-processing step from SQL to SQLCoq)
is directly simplified:

𝒯
Q

𝒜
(𝜎true (𝑄)) = 𝒯

Q
𝒜
(𝑄)

𝒯
Q

𝒜
(𝛾

(𝑒𝑛 as𝑎𝑛,𝑏𝑘 ,true)
(𝑄)) = 𝜒〈

𝒯
Sel

(sort 𝑄,𝑏𝑘) ::𝒜
(𝑒𝑛 as𝑎𝑛) ◦𝑒 pushbag

〉
(
𝜒⟨In·𝑔⟩

(
group_by𝑔 (𝑏𝑘 ,𝒯

Q
𝒜
(𝑄))

))

Formulas. The main point in this translation is the use of three-valued logic, where Booleans
are encoded with values of type either. Each logical connective is thus translated into a NRAe

expression implementing the connective for three-valued logic (Section 4.2).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

83:18 V. Benzaken, É. Contejean, M. H. Hachmaoui, C. Keller, L. Mandel, A. Shinnar, and J. Siméon

Expressions. Figure 5 defines the translation of expressions. The translation of an attribute 𝑎
reflects the use of the translation environment that we have explained: access to the correct slice
in the runtime environment will be ensured by this translation. If the attribute 𝑎 is in the top-
slice (i.e., 𝑎 is in the set of labels defined in the slice), the value of the slice is extracted from
the environment (Env · slice). Since elements in a slice are wrapped in a singleton collection (c.f.,
pushone), the function first_elt_of accesses the (only) element in the slice. If the attribute 𝑎 is
not in the top slice, the translated expression removes the top slice (Env · tail), allowing 𝑎 to be
accessed from the rest of the stack; accordingly, this slice is also removed from the translation
environment.
The translation of functions (𝔣𝔫) and aggregates (𝔞𝔤) requires handling NULL values. For some

symbols, NULL values are absorbing elements: if any input is NULL, the output is also NULL. For
example 𝑞1 + 𝑞2 is NULL if either 𝑞1 or 𝑞2 is NULL. Other symbols are neutral: they skip NULL

values. For example, sum 𝑞 will ignore any NULL elements in the bag returned by 𝑞. Accounting for
these different behaviors correctly is not difficult, but needs to be done carefully. In addition, the
translation of aggregates (𝔞𝔤) has to access the right slice in the environment. The number of slices
to remove on top of the environment stack is computed using the predicate F𝑎 (𝒜 , 𝑒 𝑓) which can
be defined similarly to F𝑒 (ℰ , 𝑒 𝑓) (defined in Figure 1) since it does not use the component 𝑇 of the
slices of ℰ (that is to say, ∀ℰ , F𝑎 (𝒯

env_static (ℰ), 𝑒 𝑓) = F𝑒 (ℰ , 𝑒 𝑓)).

Example 4.6. Let us illustrate the translation of the outer𝛾 in the query Q1 (or Q2) from Example 3.1.
This translation first produces an NRAe expression that builds the groups according to the grouping
label using group_by and discards the grouping keys to keep only the groups:

groups = 𝜒⟨In·𝑔⟩

(
group_by𝑔 (𝑎1, 𝑡1)

)

Once the groups are built, they are filtered using the formula exists(...). Each group is put on the
environment stack using pushbag for the execution of the formula. The translation of the formula
is recursively done in the environment 𝒜 = [([𝑎1, 𝑏1], 𝑎1)] reflecting the content of the stack, and
exists(...) is translated into count(...) > 0:6

filtered_groups = 𝜎⟨(count(...)>0) ◦𝑒 pushbag⟩ (groups)

The last part of the translation is to project the parts of the groups that we are interested in. The
value of groups is put on the top of the environment stack and the translation of the projection
is done in the same environment 𝒜 = [([𝑎1, 𝑏1], 𝑎1)]. Since 𝑎1 is in the top slice of 𝒜 , the access
of 𝑎1 becomes first_elt_of(Env · slice) · 𝑎1. The generated code is thus:

𝜒⟨{𝑎1:first_elt_of(Env·slice) ·𝑥 }⟩ (filtered_groups)

■

Putting it all together yields a fully certified compiler from SQLAlg to NRAe, which handles most
constructs of SQL (correlated queries, NULL values, most predicate, function and aggregate symbols).
It enjoys two variants: one without floating point values, and one with floating point values that
will be directly used in our target language, JavaScript, but under invalid assumptions reflecting its
incompatibility with bag semantics.

6We do not detail the translation of the condition of the exists since it is very similar and would obscure the discourse.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

Translating Canonical SQL to Imperative Code in Coq 83:19

NRAe NNRC NNRS NNRSimp Imp(Data) Imp(EJSON)

Fig. 6. Compiler Pipeline

5 FROM NRAe TO IMP

Given the NRAe intermediate language, we want to compile to it JavaScript. It requires (1) a
paradigm switch from functional to imperative, and (2) a data representation switch from the
internal data representation to JSON.
The correctness proof of this translation is the most challenging of the compilation chain. In

order to handle it, we decomposed the translation into the pipeline given in Figure 6. It alternates
source-to-source transformations and changes of intermediate languages where each step lowers
some of the NRAe constructs into simpler constructs that are closer to JavaScript. On the one hand,
source-to-source transformations are simpler since they allow us to deal with only one semantics
at a time. On the other hand, each intermediate language can enforce in its syntax and semantics
some invariants which limit the scope of the proof. The alternation of these two techniques allows
us to make the transformation from a language to the next one simpler.

5.1 From NRAe to NNRC

Following the lead of Auerbach et al. [2017b], we first translate NRAe to the named nested relation
calculus (NNRC). This calculus (an extension of Van den Bussche and Vansummeren [2007]),
eliminates the implicit input of NRAe combinators, instead using explicit variables and environments.
It also looks closer to a standard calculus for a functional (bag-oriented) language. As in the previous
work, this translation (and the accompanying translation between the languages’ associated type
systems) are verified correct.

5.2 From NNRC to NNRS

NNRC, like NRAe, is an expression oriented language: every construct returns a value. Many
languages we would like to target, in contrast, are statement oriented, and evaluation proceeds
via side-effects to variables. While JavaScript supports expression oriented programming, notably
using first class functions, we would prefer a simpler translation that, for example, can use a for

loop to express iterators. The next language, NNRS, is a statement oriented language: statements
do not return values, but instead update the current state via (limited) side-effects. This language
is inspired by the normal form in the compilation of synchrous dataflow languages that identifes
functional expressions that are translated into mutable ones [Biernacki et al. 2008].
The translation from NNRC to NNRS is done in two steps. First, we define NNRC(stratified),

a subset of NNRC which distinguishes between basic expressions and complex expressions, and
ensures that basic expressions never have complex sub-expressions. Translation from NNRC to
NNRC(stratified) hoists complex sub-expressions out of basic expressions by adding let construct
when needed. For example, length({(𝑥 + 3) |𝑥 ∈ 𝑦}) is translated to let 𝑡1 = {(𝑥 + 3) |𝑥 ∈

𝑦} in length(𝑡1). The definition of NNRC(stratified) in Coq is as a predicate on NNRC, so the
translation from NNRC to NNRC(stratified) is a source-to-source transformation.

The second step of the translation is the compilation of NNRC(stratified) to NNRS where complex
expressions become statements. NNRS introduces two forms of mutable variables: mutable data
variables and mutable collection variables. Both of them enforce a phase distinction: in the first
phase, the mutable variable can (only) be updated, and in the second phase, it can (only) be read.
In the first phase, mutable data variables can be written (and re-written), and mutable collection
variables can have elements pushed (appended). This phase distinction is enforced using a form

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

83:20 V. Benzaken, É. Contejean, M. H. Hachmaoui, C. Keller, L. Mandel, A. Shinnar, and J. Siméon

of let, called LetMut and LetMutColl respectively. They each take a variable name and two
statements. They evaluate the first statement with the named variable being mutable/appendable.
The value of the variable is then frozen, and can be read (but not mutated) by the second statement.
Reading from a frozen data collection variable returns the accumulated bag. This phase distinction
avoids aliasing problems by construction: once we can read a variable, we can no longer modify it.

In this language, for loops no longer act as implicit maps: statements do not return values. They
are instead like for loops (over a bag) in more traditional statement oriented/imperative languages.

The translation fromNNRC(stratified) to NNRS uses a form of continuation passing style, keeping
track of a return continuation indicating which variable should store the return value. The let

statements are translated into mutable let statements, where the final return, instead of being
returned, is instead assigned to the variable. The for loops are translated into a definition of a
mutable collection variable, with the loop nested in the first branch of the mutable collection let

statement (before the phase barrier). The value returned by the body is pushed to the variable.
If we continue the example of the compilation of let 𝑡1 = {(𝑥 + 3) |𝑥 ∈ 𝑦} in length(𝑡1), the

corresponding NNRS code (after some simplification) is:

letMutColl t1 from { for (x in y) { push(t1, x + 3); } };

return (length(t1))

The letMutColl t1 from { ... }; ... constructs can update t1 in the block following the from

and only read its value after the return.

5.3 From NNRS to NNRSimp

NNRS supports a limited form of side effects. This suffices as a translation target for NNRC(stratified),
but differs from target languages like JavaScript. In particular, it has three distinct namespaces, for
different types of variables: mutable variables, mutable collections, and immutable variables. Also,
mutable let statements put a variable in different environments before and after the phase barrier
(moving from the mutable data or collection namespace to the łimmutablež namespace).

Separating these namespaces simplifies the translation from NNRC(stratified). Notably, the
different namespaces make it easy to pick fresh variables and ensure that no side effects are done
on a variable after it is read. But, the benefit of the three namespaces of NNRS also comes at a cost
since we want to target languages with only one namespace.

The next language in the pipeline, NNRSimp, removes the features of NNRS that were introduced
only to simplify the proofs, namely the phase distinctions and the separated namespaces of NNRS.
In NNRSimp, all variables are mutable (and readable). There is a single let construct (which
introduces mutable variables), and a single assignment operator.

Similarly to the compilation from NNRC to NNRS, we first define a subset of the source language,
NNRS(no-shadow), to simplify the compilation to the target language, NNRSimp. We define a
predicate, named cross-shadow-free, that specifies what name conflicts are problematic. The intuition
is that traditional shadowing is still ok, but shadowing across namespaces causes problems when
they are conflated. We define a source-to-source transformation that renames variables to ensure
that the result is cross-shadow-free. The translation is idempotent, and tries to rename variables
minimally. Of course, it is verified to be semantics and type preserving.

Once a program is in NNRS(no-shadow) form, it is compiled to NNRSimp. The NNRS(no-shadow)
language ensures that no false shadowing conflicts are introduced when the three namespaces of
NNRS are collapsed into one namespace. Immutable let statements are re-written to be mutable
let statements, which happen to mutate the value at most once. Mutable collection variables are
encoded by initializing a mutable variable with the empty bag.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

Translating Canonical SQL to Imperative Code in Coq 83:21

5.4 From NNRSimp to Imp

The final language in the compilation chain is Imp, which is used to handle the switch in data
representation. As presented in Section 3.3, the Imp language is parameterized by its data model
and the operations on it. We take advantage of that by compiling NNRSimp to Imp in two steps: first
we translate to Imp(Data), which preserves the NRAe data model (Section 3.2). We then translate
Imp(Data) to Imp(EJson), which still uses Imp, but over a (slightly extended) JSON data model.

NNRSimp to Imp(Data). The main difference between NNRSimp and Imp(Data) is the lack of an
Imp language construct for pattern matching on values of type either. This NNRSimp construct is
compiled into an if/then/else using an Imp function either to test if a value is a left or not,
and then using getLeft and getRight functions to deconstruct either values appropriately.

The operators of Imp(Data) are the same as the previous languages and the library functions are
either, getLeft, and getRight. Finally, if the NRAe group_by construct was preserved (and not
removed as described in section 3.2), the library of Imp(Data) must provide a group_by function.

From Imp(Data) to Imp(EJson). Now that the query is in Imp, the last step is to switch data
models, from the one of NRAe to JSON. We use a small extension to the official JSON representation
by adding a biginteger type in addition to JavaScript numbers. This is necessary to preserve the
semantics for integer operations in SQL which in our formalization relies on the Z Coq type.

The change of data model is fundamental in that it really introduces a representation specific to
the target language for the compiler (here JavaScript). In essence: collections are translated into
JavaScript arrays, records are translated into JavaScript objects, and the left 𝑑 and right 𝑑 values
of Data are encoded as JSON objects with reserved names { "$left": 𝑑 } and { "$right": 𝑑 }.
Imp(Data) functions on left or right values must be translated into equivalent Imp(EJson)

functions on those objects, relying on JavaScript’s ability to check if an object has a specific property.

Correctness. The shape of the correctness theorem for the translation from Imp(Data) to
Imp(EJson) is worth mentioning. First it relies on a translation function from Data to EJson with
good properties. Notably two Data values which translate to the same EJson have to be equal.

Lemma data_to_ejson_inj d1 d2: data_to_ejson d1 = data_to_ejson d2 → d1 = d2.

This property is fundamental to proving the main correctness theorem:

Lemma imp_data_function_to_imp_ejson_function_aux_correct h (d:data) (f:imp_data_function) :

lift data_to_ejson (imp_data_function_eval h f d) =

imp_ejson_function_eval h (imp_data_function_to_imp_ejson f) (data_to_ejson d).

which states that evaluating an Imp(Data) function on some data d and translating the result to
EJson yields the same result as evaluating the corresponding Imp(EJson) function on the translation
of d to EJson. Note that this formulation means the correctness theorem only holds for evaluating
Imp(EJson) values resulting from translating a Data value, not for arbitrary EJson data. We believe
this formulation provides the right invariant for the compiler, but this imposes that at runtime
only EJson values that correspond to valid Data values are passed, a property we are careful to
ensure. This additional constraint is needed (unlike our earlier translations, which do not have
such a constraint), because the target data model is larger, and allows for invalid data.

6 IMPLEMENTATION

DBCert is built from a certified core in Coq with additional non-certified components in OCaml and
JavaScript. We review those components here. The full development can be found in the artifact,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

83:22 V. Benzaken, É. Contejean, M. H. Hachmaoui, C. Keller, L. Mandel, A. Shinnar, and J. Siméon

including some examples focused on testing the more subtle aspects of SQL’s semantics [Benzaken
et al. 2022a].

6.1 The Main Theorem

The certified core links the various translations between intermediate languages described in
the previous sections. A theorem of semantics preservation for the full pipeline is obtained by
combining individual translation proofs.

Theorem 6.1 (Semantics preservation). Given a schema and a SQLCoq query 𝑄 :

• if 𝑄 is well-formed, in the sense of Benzaken and Contejean [2019],

• then the compiler outputs an Imp query 𝑞 such that, on every valid instance of the schema 𝑖 ,

J𝑄KQ (𝑖) is equal to J𝑞Kimp (𝒯 i (𝑖)) (upto bag equality).

6.2 SQL Parser

The DBCert implementation includes a SQL parser, written in OCaml, which is used to construct
an initial SQLCoq abstract syntax tree (AST). The SQL grammar is written using the menhir parser
generator, which can be used to generate the parser either using standard menhir or its Coq
back-end [Jourdan et al. 2012] and extracting the (thus proven complete) parser.

The initial construction of the SQLCoq AST performs some simple normalization of the SQL query
(e.g. adding a where true if the where clause is missing). It ensures every intermediate expression
has been named, yielding well-formed SQLCoq queries. It also ensures that all attribute names are
different, tagging them with the name of the relation they belong to. This step is not yet certified.

6.3 JavaScript Code Generation

From the generated Imp(EJson) code, DBCert creates a JavaScript string in two steps. First,
Imp(EJson) is translated into a JavaScript AST based on the JSCert [Bodin et al. 2014] formal-
ization of JavaScript. Then, the JSCert AST is pretty-printed as a JavaScript string.

The current DBCert produces ECMAScript 6 compliant code. It uses JavaScript blocks with let

bindings to ensure that variable scoping in Imp blocks is being preserved in the generated code.
It relies only on a small subset of ECMAScript 6 and should run in most versions of Node.js and
modern browsers. The artifact has been tested with Node.js version 10.

6.4 JavaScript Runtime

Execution of SQL queries compiled to JavaScript with DBCert relies on a small run-time library
written in JavaScript as well. This runtime serves two purposes: it implements runtime functions
specified by the instantiation of Imp on EJson; it is used as a pre-processor for the query input in
JSON, and as a post-processor for the query output.

EJson runtime. EJson supports JavaScript numbers (IEEE754 floating point numbers) and persis-
tent (functional) arrays. The runtime provides functions to manipulate these values.
For persistent arrays, we provide two implementations. Our initial implementation was using

JavaScript arrays directly, with each array operation creating a new array. But the most common
operation used in the compiled code is push which adds one element to an array. Doing a copy of
the entire array for every push has a strong impact on performances.
To address that issue, our current implementation uses persistent arrays where several arrays

can be represented as views on the same backing data. The goal is to keep the implementation
of the runtime simple and improve the performance of the push operation. A persistent array is
simply an object with two fields: $content, the JavaScript array containing the data, and $length,
an integer indicating the view of the array. With this representation, the push operation can be

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

Translating Canonical SQL to Imperative Code in Coq 83:23

implemented such that adding an element requires a copy of the data (slice) only if the size of the
backing array differs from the one stored in $length.

Pre- and post-processors. The runtime takes care of encoding JSON values into the expected
format for Imp(EJson). It includes the encoding of values which may or may not be NULL into the
appropriate left and right representation used internally by DBCert, as described in Section 4.2
and Section 5.4. It also renames record fields to be consistent with the renaming applied when
normalizing the SQLCoq AST. For instance, the following JSON input:

{ "persons" : [{ "name" : "John" }, { "name" : null }] }

is pre-processed to the following:

{ "persons" : array({ "persons.name" : { "left" : "John" } },

{ "persons.name" : { "right" : null } }) }

where array is the constructor for EJson persistent arrays.

6.5 DBCert Runner

For convenience, we provide a small Node.js script which allows one to execute queries compiled
with DBCert on JSON data. This script performs the following tasks: • load a SQL query compiled
to JavaScript through DBCert; • load and pre-process the database in JSON format; • execute the
query; • post-process and print the query result in JSON format.
For instance, here is a (re-flowed) trace for the compilation and execution of an SQL query.

bash-3.2> cat tests/org2.sql

create table employees (name text, age int);

select name from employees where age > 32;

bash-3.2> ./dbcert -link tests/org2.sql

Corresponding JS query generated in: tests/org2.js

Compilation to JavaScript finished

bash-3.2> cat tests/db1.json

{ "employees": [{ "name" : "John", "age" : 34 }, { "name" : "Joan", "age" : 32 },

{ "name" : "Jim", "age" : 33 }, { "name" : null, "age" : 35 },

{ "name" : "Jill", "age" : null }] }

bash-3.2> node ./dbcertRun.js tests/org2.js tests/db1.json

[{"name":"John"},{"name":"Jim"},{"name":null}]

7 EVALUATION AND RELATED WORK

7.1 Evaluation

We compare DBCert with AlaSQL [AlaSQL 2022], Q*cert [Auerbach et al. 2017b], and SQL.js [SQL.js
2022] which all execute SQL queries on JavaScript. AlaSQL is a popular JavaScript library with
more than 13k weekly downloads on https://www.npmjs.com and 5.6k stars on GitHub. The SQL
compiler from Q*cert also produces JavaScript. DBCert uses the translation from NRAe to NNRC
of this compiler. But compared to DBCert, Q*cert directly translates SQL to NRAe and produces
JavaScript code directly from NNRC. Both of these translation are not formally verified, and in
particular the translation from SQL to NRAe does not correctly handle environments. NULL values
are not supported by this compiler. SQL.js is SQLite compiled to WebAssembly that can be then
executed by the JavaScript engine. It is thus directly based on the implementation SQLite, one of
the most widely deployed implementation of SQL.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

https://www.npmjs.com

83:24 V. Benzaken, É. Contejean, M. H. Hachmaoui, C. Keller, L. Mandel, A. Shinnar, and J. Siméon

We evaluate the correctness of the compiler using the queries proposed by the papers of
Guagliardo and Libkin [2017] and Benzaken and Contejean [2019]. These queries have been
designed to notably exercise the use of NULL and correlated queries. The difficulty with NULL is that
it is generally considered as different from every values, including itself, although it is sometimes
considered equal to itself. The challenge wih correlated queries is that the behavior of a subquery
can depend on its evaluation context.
The benchmark contains a total fifteen queries. Four queries are covering NULL values: three

proposed by Guagliardo and Libkin [2017] and one by Benzaken and Contejean [2019]. The
remaining eleven queries are covering correlated queries and are proposed by Benzaken and
Contejean [2019].

We take as reference the answers given by the SQL standard (when precise enough), three major
RDBMSs (Oracle, PostgreSQL, SQLite), and the formal semantics of Benzaken and Contejean [2019].
On the considered queries, all of these systems agree on the expected results.
All the queries and database instances used for the evaluation are provided in the extended

version of the paper and in the artifact [Benzaken et al. 2022a,b]. We refer the readers to the original
papers for additional details.

The following table summarizes the results: for each compiler, we give number of valid answers
per number of queries.7

Benchmarks DBCert AlaSQL Q*cert SQL.js
NULL 4/4 3/4 N/A 4/4

correlated queries 11/11 7/11 9/11 11/11

We note that many SQL query compilers handle these kinds of queries differently from the
standard and well-established RDBMSs. These differences may lead to subtle bugs, resulting in
corruption of data and processes. It is crucial to ensure the semantic correctness of compiled queries.

A preliminary performance evaluation of the generated code is presented in the extended version
of the paper, but a proper evaluation is left as future work.

7.2 Challenges and Methodology

Translation from SQLAlg to NRA
e. DBCert is built on top of two existing projects [Auerbach et al.

2017b; Benzaken and Contejean 2019] which made different design choices. For example, they used
different techniques to implement extensible data models. In SQLAlg, the formalization has two
levels: a generic specification level, and a realization level that instantiates the generic components
with computational definitions. In NRAe, the data model is concrete, with extension points for
external data and operators abstracted using type classes.

Both approaches have some benefits and drawbacks. To start with a project, the concrete approach
of NRAe is easier, it provides concrete objects to think, execute, and debug, whereas the abstract
approach of SQLAlg makes the concept more difficult to grasp and requires a realization of the data
model to be able to experiment. On the other hand, the abstract approach provides a nice uniform
interface to select the data model. The concrete approach necessitates splitting the code of some
functions between the core of the data model and the instantiation of the extension point.

The different approaches employed created some challenges when connecting the two projects.
To preserve the genericity of SQLAlg with respect to the data model, the equivalence between data-
models is first specified and then realized according to the concrete data model. This separation
introduced by the abstract approach helped the proof development by dividing it into two phases.

Both approaches successfully enabled adding float values to the data model. The validity of the
core translation needed no modification. When realizing the abstract model, the formalization

7The incorrect behaviors have been reported in issues 1414 and 1416 on https://github.com/agershun/alasql/.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

https://github.com/agershun/alasql/

Translating Canonical SQL to Imperative Code in Coq 83:25

revealed SQL’s weakness when specifying the summing and averaging of float values, as discussed
in Section 4.2.

Regarding proofs, the most challenging one in this part was the correctness of the translation of
the environment: in SQLAlg, the whole environment is present at runtime; whereas in NRAe, the
static part of the environment has been embedded in the query during the translation, and only the
dynamic part is present at runtime. Relating the two in the induction was demanding. Another
exigent proof was the correctness of the translation of NULL values and three-valued logic. We
established that the chosen NRAe operators correctly implemented the SQLAlg operators. Coq was
a particularly effective tool in this context, as the translation itself could be guided by the proof.

DBCert back-end. Building the DBCert back-end involved solving three major and quite different
hurdles: the paradigm switch from functional to imperative languages, switching the data repre-
sentation from relations to JSON, and handling variable names and scoping. We used a few specific
strategies in order to deal with these difficulties while enabling proof development.

First, we used a large number of intermediate languages. This allows us to enforce some invariants
in the syntax and semantics of each language, tackling each hurdle one at a time. We are satisfied
by this approach, which simplifies the proofs and limits their scope. The additional translation
phases do not seem to negatively affect the extracted compiler, with most of the compilation time
spent on optimization. The proliferation of intermediate languages does have the disadvantage of
increasing the size of the code base. But the presence of proofs simplifies maintenance since any
breaking change in the code is immediately detected when compiling the corresponding proofs.

Second, we used small languages to keep them simple. This choice sometimes leads to complex
encodings of some language constructs into the next one. As an example, NRAe does not have
an if construct. This has little impact on how we write and prove the translation: we write in
Coq a function that generates a conditional using a selection (𝜎), prove that it behaves like a if,
and then use it instead of a NRAe language construct. However, this does impact the generated
code, introducing redundant packing and unpacking of data in collections. These then need to
be simplified through optimizations. Using small languages can thus result in a more complex
compiler, despite simplifying the functions and properties of each individual language.

7.3 Related Work

The very first attempt to verify a RDBMS, using Coq, is presented in Malecha et al. [2010]. The SQL
fragment considered is a reconstruction of SQL in which attributes are denoted by position. Several
key SQL features, such as group by having clauses, quantifiers in formulas, nested, correlated
queries, NULL’s, and aggregates, are not covered. A tool to decide SQL query equivalence was
presented in Chu et al. [2017]. It relies on a K-relation [Green et al. 2007] based semantics for SQL
which handles the select from where fragment with aggregates but does not include having or
handle NULL values. Like Malecha et al. [2010], they used a reconstruction of the language, avoiding
the trickier aspects of variable binding. Additionally, their semantics are not executable, making it
difficult to compare it to other SQL implementations.
More closely related to our work, a translation from SQL to NRAe was developed as part of

a certified query compiler effort in Auerbach et al. [2017b]. That translation supports a realistic
subset of SQL, including notably group by having, but it did not handle null values. It also did not
include a semantics for SQL and the translation was therefore not proved correct. To the best of
our knowledge the most complete formal and mechanized semantics for SQL is that developed
in Benzaken and Contejean [2019], notably covering most subtleties of SQL for a practical fragment
with nested correlated queries and null values. While it is executable, which means it can be

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

83:26 V. Benzaken, É. Contejean, M. H. Hachmaoui, C. Keller, L. Mandel, A. Shinnar, and J. Siméon

checked against actual SQL implementations, it relies on a simple interpreter with no compilation
or algebraic optimization. Our work relies heavily on both projects.

Since DBCert compiles to JavaScript, it is relevant to discuss the mechanized JavaScript specifica-
tion presented in Bodin et al. [2014]. While our work uses the AST provided by their work [Bodin
et al. 2014] for the final code generation, attempting to prove that final part of the translation
correct with respect to their semantics is left as future work.

8 CONCLUSION

We have presented a formally verified compiler from SQL to a general purpose imperative language,
with a JavaScript back-end. DBCert handles a large subset of the SQL language, including nested
queries and null values. Most of the compiler was proved correct using the Coq interactive theorem
prover. The extracted compiler is fully functional and produces portable JavaScript code which
can be executed in various environments. Importantly, one of the intermediate representations
is a classic database algebra for which a large numbers of optimization techniques have been
developed [Claußen et al. 1997; Cluet and Moerkotte 1993; Moerkotte 2020]. We believe this is an
important step toward the development of a fully certified and practical query compiler.

REFERENCES

Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.
AlaSQL 2022. AlaSQL JavaScript SQL Database Library. http://alasql.org.
Joshua S. Auerbach, Martin Hirzel, Louis Mandel, Avraham Shinnar, and Jérôme Siméon. 2017a. Handling Environments in

a Nested Relational Algebra with Combinators and an Implementation in a Verified Query Compiler, See [Salihoglu et al.
2017], 1555ś1569. https://doi.org/10.1145/3035918.3035961

Joshua S. Auerbach, Martin Hirzel, Louis Mandel, Avraham Shinnar, and Jérôme Siméon. 2017b. Q*cert: A Platform for
Implementing and Verifying Query Compilers, See [Salihoglu et al. 2017], 1703ś1706. https://doi.org/10.1145/3035918.
3056447

Véronique Benzaken and Évelyne Contejean. 2019. A Coq mechanised formal semantics for realistic SQL queries: formally
reconciling SQL and bag relational algebra. In Proceedings of the 8th ACM SIGPLAN International Conference on Certified

Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019. 249ś261. https://doi.org/10.1145/3293880.3294107
Véronique Benzaken, Éveleyne Contejean, MohammedHoussemHachmaoui, Chantal Keller, LouisMandel, Avraham Shinnar,

and Jérôme Siméon. 2022a. Translating Canonical SQL to Imperative Code in Coq. https://doi.org/10.5281/zenodo.6366579
Véronique Benzaken, Évelyne Contejean, Mohammed Houssem Hachmaoui, Chantal Keller, Louis Mandel, Avraham Shinnar,

and Jérôme Siméon. 2022b. Translating Canonical SQL to Imperative Code in Coq ś extended. CoRR abs/2203.08941
(2022). https://doi.org/10.48550/arXiv.2203.08941

Dariusz Biernacki, Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. 2008. Clock-directed modular code generation for
synchronous data-flow languages. In LCTES. ACM, 121ś130. https://doi.org/10.1145/1375657.1375674

Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio Maffeis, Daiva Naudziuniene, Alan Schmitt,
and Gareth Smith. 2014. A trusted mechanised JavaScript specification. In The 41st Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014. 87ś100. https:
//doi.org/10.1145/2535838.2535876

Bin Cao and Antonio Badia. 2007. SQL query optimization through nested relational algebra. ACM Trans. Database Syst. 32,
3 (2007), 18. https://doi.org/10.1145/1272743.1272748

Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. 2017. HoTTSQL: Proving Query Rewrites with Univalent SQL
Semantics. In PLDI 2017 (Barcelona, Spain). ACM, New York, NY, USA, 510ś524. https://doi.org/10.1145/3062341.3062348

Jens Claußen, Alfons Kemper, Guido Moerkotte, and Klaus Peithner. 1997. Optimizing Queries with Universal Quantification
in Object-Oriented and Object-Relational Databases. In Conference on Very Large Data Bases (VLDB). 286ś295.

Jens Claußen, Alfons Kemper, Guido Moerkotte, Klaus Peithner, and Michael Steinbrunn. 2000. Optimization and Evaluation
of Disjunctive Queries. IEEE Trans. Knowl. Data Eng. 12, 2 (2000), 238ś260. https://doi.org/10.1109/69.842265

Sophie Cluet and Guido Moerkotte. 1993. Nested Queries in Object Bases. In Database Programming Languages (DBPL-4),

Manhattan, New York City, USA, 30 August - 1 September 1993. 226ś242.
Todd J. Green, Gregory Karvounarakis, and Val Tannen. 2007. Provenance semirings. In Proceedings of the Twenty-Sixth

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 11-13, 2007, Beijing, China. 31ś40.
https://doi.org/10.1145/1265530.1265535

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

https://doi.org/10.1145/3035918.3035961
https://doi.org/10.1145/3035918.3056447
https://doi.org/10.1145/3035918.3056447
https://doi.org/10.1145/3293880.3294107
https://doi.org/10.5281/zenodo.6366579
https://doi.org/10.48550/arXiv.2203.08941
https://doi.org/10.1145/1375657.1375674
https://doi.org/10.1145/2535838.2535876
https://doi.org/10.1145/2535838.2535876
https://doi.org/10.1145/1272743.1272748
https://doi.org/10.1145/3062341.3062348
https://doi.org/10.1109/69.842265
https://doi.org/10.1145/1265530.1265535

Translating Canonical SQL to Imperative Code in Coq 83:27

Akshay Grover, Jay Gholap, Vandana P. Janeja, Yelena Yesha, Raghu Chintalapati, Harsh Marwaha, and Kunal Modi.
2015. SQL-like big data environments: Case study in clinical trial analytics. In 2015 IEEE International Conference on

Big Data, Big Data 2015, Santa Clara, CA, USA, October 29 - November 1, 2015. IEEE Computer Society, 2680ś2689.
https://doi.org/10.1109/BigData.2015.7364068

Paolo Guagliardo and Leonid Libkin. 2017. A Formal Semantics of SQL Queries, Its Validation, and Applications. PVLDB 11,
1 (2017), 27ś39. https://doi.org/10.14778/3151113.3151116

TU Jin-De. 2010. StreamSQL: A Query Language for Stream Data. Computer Systems & Applications 3 (2010), 26.
Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. 2012. Validating LR(1) Parsers. In Programming Languages and

Systems - 21st European Symposium on Programming, ESOP 2012, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings (Lecture Notes in Computer

Science, Vol. 7211), Helmut Seidl (Ed.). Springer, 397ś416. https://doi.org/10.1007/978-3-642-28869-2_20
Taewhi Lee, Moonyoung Chung, Sung-Soo Kim, Hyewon Song, and Jongho Won. 2016. Partial Materialization for Data

Integration in SQL-on-Hadoop Engines. In 6th International Conference on IT Convergence and Security, ICITCS 2016,

Prague, Czech Republic, September 26, 2016. IEEE Computer Society, 1ś2. https://doi.org/10.1109/ICITCS.2016.7740361
J. Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wisnesky. 2010. Toward a Verified Relational Database

Management System. In ACM Int. Conf. POPL. https://doi.org/10.1145/1706299.1706329
Guido Moerkotte. 2020. Building Query Compilers. Univ. Mannheim. https://pi3.informatik.uni-mannheim.de/~moer/

querycompiler.pdf
Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). 2017. Proceedings of the 2017 ACM

International Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017. ACM.
http://dl.acm.org/citation.cfm?id=3035918

Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad Dashti, and Christoph Koch. 2016. How to
Architect a Query Compiler. In SIGMOD Conference. ACM, 1907ś1922. https://doi.org/10.1145/2882903.2915244

Avraham Shinnar, Jérôme Siméon, and Martin Hirzel. 2015. A Pattern Calculus for Rule Languages: Expressiveness,
Compilation, and Mechanization. In 29th European Conference on Object-Oriented Programming, ECOOP 2015, July 5-10,

2015, Prague, Czech Republic. 542ś567. https://doi.org/10.4230/LIPIcs.ECOOP.2015.542
SQLAlchemy 2021. SQL Alchemy: The Python SQL Toolkit and Object Relational Mapper. https://www.sqlalchemy.org.
SQL.js 2022. SQLite compiled to JavaScript. https://sql.js.org/.
Jeffrey D. Ullman. 1982. Principles of Database Systems, 2nd Edition. Computer Science Press.
Jan Van den Bussche and Stijn Vansummeren. 2007. Polymorphic type inference for the named nested relational calculus.

Transactions on Computational Logic (TOCL) 9, 1 (2007). https://doi.org/10.1145/1297658.1297661

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 83. Publication date: April 2022.

https://doi.org/10.1109/BigData.2015.7364068
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.1007/978-3-642-28869-2_20
https://doi.org/10.1109/ICITCS.2016.7740361
https://doi.org/10.1145/1706299.1706329
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
http://dl.acm.org/citation.cfm?id=3035918
https://doi.org/10.1145/2882903.2915244
https://doi.org/10.4230/LIPIcs.ECOOP.2015.542
https://doi.org/10.1145/1297658.1297661

	Abstract
	1 Introduction
	2 Overview
	2.1 Challenges of the SQL Semantics
	2.2 Translating SQL to JavaScript

	3 Main languages
	3.1 SQLAlg
	3.2 NRAe
	3.3 Imp

	4 From SQLAlg to NRAe
	4.1 Correctness
	4.2 Translation of the Data Model
	4.3 Translation of the Environment
	4.4 Transformation of Queries, Formulas and Expressions

	5 From NRAe to Imp
	5.1 From NRAe to NNRC
	5.2 From NNRC to NNRS
	5.3 From NNRS to NNRSimp
	5.4 From NNRSimp to Imp

	6 Implementation
	6.1 The Main Theorem
	6.2 SQL Parser
	6.3 JavaScript Code Generation
	6.4 JavaScript Runtime
	6.5 DBCert Runner

	7 Evaluation and related work
	7.1 Evaluation
	7.2 Challenges and Methodology
	7.3 Related Work

	8 Conclusion
	References

