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Abstract

This article introduces a new way to discretize
Maxwell’s equations. It is a discontinuous high-
order method based on local polynomial inter-
polations, named the Spectral Difference method.
This approach mainly differs from the standard
Discontinuous Galerkin method by solving the
strong form of the equation, instead of the weak
form. This article gives the main lines of the
Spectral Difference method for a 1D conserva-
tion law and explains how it applies to transient
Maxwell’s equations. The method is then eval-
uated on a test-case with well-known analytical
solution.
Keywords: High-order method, Spectral Differ-
ence, Maxwell’s equations, Time domain.

1 Introduction

The Spectral Difference (SD) method is a dis-
continuous high-order method based on local
polynomial interpolations. This method was in-
troduced in [1] as a scheme that is conservative,
high-order, geometrically flexible, computation-
ally efficient and simply formulated. It solves
the strong form of the equation, as in Finite
Difference. This method has been widely ex-
plored in Computational Fluid Dynamic (CFD)
as an alternative to the Discontinuous Galerkin
method (DG) [2]. The present article starts
from the formulation in [1] for Maxwell’s equa-
tions but accounts for specific location of the
degrees of freedom associated with stable SD
schemes [3]. This paper is organized as follows.
Section 1 explains how the SD method works for
a 1D conservation law and how it generalizes to
Maxwell’s equations. Section 2 shows a test-
case, on a non-Cartesian grid, with well-known
analytical solution.

2 Spectral Difference method

In 1D, the main idea of the SD method, for
a conservative system (∂tu = −∂xF (u)), is to
compute the conserved variables u as a polyno-
mial of degree p (p ∈ N∗) and to compute the
flux as a polynomial of degree p+1 so that solu-
tion and flux divergence are both polynomials of
degree p. Solution and flux polynomials are de-
fined by Lagrange interpolation using two sets
of points, p + 1 solution points and p + 2 flux
points (Figure 1).
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Figure 1: Example of point positions over a seg-
ment, for p = 2: solution points (◦) and flux
points (N).

The stability of the method only depends on
the location of the latter [3]. In 1D, two of the
flux points must be taken as the segment end
points, the p remaining are taken inside the ele-
ment. The formulation is shown linearly stable
for any degree p [4]. The SD algorithm consists
of four steps:

1. The solution is extrapolated to the flux
points.

2. For the two boundary points, the flux is
the solution of a Riemann problem. On
the internal points, the flux is a linear
combination of the unknowns.

3. The flux polynomial is interpolated from
the flux points.

4. The flux is differentiated at the solution
points in order to update the solutions.

For 2D/3D configurations, problems are con-
sidered using tensorized 1D formulation. An
efficient implementation can easily be obtained
using matrix/vector products.
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The SD formulation is applied to Maxwell’s
equations written in conservative form; they con-
sist of two coupled linear advection equations
(in 1D, u = (E,H) and F (u) = (H,E)). From
there, everything described above applies: each
component of the fields E and H is approxi-
mated by a polynomial of degree p, and the in-
terpolations are taken in every directions using
a tensorial rule.

3 Numerical results

As a primary validation, the method is tested
by considering a propagating mode (here the
(1, 1, 0) mode) inside the unit cube of R3. For
computation, p = 3. The mesh is a structured
non-Cartesian grid (Figure 2), with 32,768 de-
grees of freedom and 512 cells.

Figure 2: Structured non-Cartesian mesh used
for the simulation. 32,768 degrees of freedom,
512 cells.
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Figure 3: Comparison of the numerical solution
given by the SD method for p = 3 (red curve),
and the analytical solution (blue dots) for the
mode (1, 1, 0).

Figure 3 shows the good agreement between
the SD numerical solution and the analytical so-
lution. Other configurations will be presented
during the conference.

4 Conclusion

In this article, a new way (the SD method) to
discretize Maxwell’s equations is introduced and
validated for a cavity mode by using a non-
Cartesian grid. For the presentation further de-
tails will be given on the formulation of the SD
method, in particular stability results and com-
parisons with both FDTD [5] and DG schemes
[6].
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