
HAL Id: hal-03876090
https://hal.science/hal-03876090v1

Submitted on 5 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-material topology optimization using Wachspress
interpolations for designing a 3-phase electrical machine

stator
Théodore Cherrière, Luc Laurent, Sami Hlioui, François Louf, Pierre Duysinx,

Christophe Geuzaine, Hamid Ben Ahmed, Mohamed Gabsi, Eduardo
Fernández

To cite this version:
Théodore Cherrière, Luc Laurent, Sami Hlioui, François Louf, Pierre Duysinx, et al.. Multi-material
topology optimization using Wachspress interpolations for designing a 3-phase electrical machine sta-
tor. Structural and Multidisciplinary Optimization, 2022, 65 (12), pp.352. �10.1007/s00158-022-03460-
1�. �hal-03876090�

https://hal.science/hal-03876090v1
https://hal.archives-ouvertes.fr


Multi-material topology optimization using
Wachspress interpolations for designing a
3-phase electrical machine stator
Théodore Cherrière∗,a
Luc Laurentb,c
Sami Hliouid
François Loufe
Pierre Duysinxf

Christophe Geuzaineg
Hamid Ben Ahmedh

Mohamed Gabsia
Eduardo Fernándezf

a SATIE laboratory, ENS Paris-Saclay, CNRS, Université Paris-Saclay, 91190
Gif-sur-Yvette, France
b Laboratoire de Mécanique des Structures et des Systèmes Couplés, EA 3196,
Conservatoire national des arts et métiers, F-75003 Paris, France
c HESAM University, Paris, France
d SATIE Laboratory, CY Cergy Paris University, CNRS, Paris-Saclay University, 95000
Cergy, France
e LMPS - Laboratoire de Mécanique Paris-Saclay, Université Paris-Saclay,
CentraleSupélec, ENS Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France
f Department of Aerospace and Mechanical Engineering, University of Liège, 4000 Liège,
Belgium.
g Department of Electrical Engineering and Computer Science, University of Liège, 4000
Liège, Belgium.
h SATIE Laboratory, ENS Rennes, CNRS, 35170 Bruz, France
∗ Corresponding author
theodore.cherriere@ens-paris-saclay.fr

Abstract

This work uses Multi-Material Topology Optimization (MMTO) to maximize the average torque
of a 3-phase Permanent Magnet Synchronous Machine (PMSM). Eight materials are considered
in the stator: air, soft magnetic steel, three electric phases, and their three returns. To address
the challenge of designing a 3-phase PMSM stator, a generalized density-based framework is used.
The proposed methodology places the prescribed material candidates on the vertices of a convex
polytope, interpolates material properties using Wachspress shape functions, and defines Cartesian
coordinates inside polytopes as design variables. A rational function is used as penalization to
ensure convergence towards meaningful structures, without the use of a filtering process. The
influences of different polytopes and penalization parameters are investigated. The results indicate
that a hexagonal-based diamond polytope is a better choice than the classical orthogonal domains
for this MMTO problem. In addition, the proposed methodology yields high-performance designs
for 3-phase PMSM stators by implementing a continuation method on the electric load angle.

Keywords: Density Methods – Electrical Machine – Multimaterial Topology Optimization –
Nonlinear Magnetostatics – Wachspress’ Shape Functions

1

https://orcid.org/0000-0001-5421-4061
https://orcid.org/0000-0002-8935-5929
https://orcid.org/0000-0002-3992-8266
https://orcid.org/0000-0002-2371-2655
https://orcid.org/0000-0001-7870-3628
https://orcid.org/0000-0001-9970-358X
https://orcid.org/0000-0001-6662-6020
https://orcid.org/0000-0003-3735-1886
mailto:theodore.cherriere@ens-paris-saclay.fr
theodore.cherriere@ens-paris-saclay.fr


Théodore Cherrière, Luc Laurent, Sami Hlioui, François Louf, Pierre Duysinx, Christophe Geuzaine, Hamid Ben Ahmed, Mohamed Gabsi &
Eduardo Fernández. Multi-material topology optimization using Wachspress interpolations for designing a 3-phase electrical machine stator.
Structural and Multidisciplinary Optimization volume, 65, 2022. doi: 10.1007/s00158-022-03460-1

• Open Archive HAL with file: hal-03876090

• Doi: 10.1007/s00158-022-03460-1

Contents
1 Introduction 2

2 Topology optimization framework 4
2.1 Physical problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Interpolation scheme 9
3.1 Interpolation domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Materials placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Penalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Numerical examples and discussion 12
4.1 Presentation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Interpolation domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Penalization parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Discussion on the local optima issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4.1 Influence of the remanence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.2 Influence of the penalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.3 Parametric ψ adjustement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Conclusion 24

References 26

1 Introduction
Since the seminal work of Bendsøe and Kikuchi [1], Topology Optimization (TO) has experienced
considerable advances driven by the widespread interest in industry. The achievement owes to the high
number of contributions that have improved computational efficiency [2] and expanded its applicability
beyond solid mechanics to other physics [3]. Among different TO approaches [4], such as level-set the
density method stands out. In the context of structural optimization, each mesh element is associated
with a design variable (called density) that takes a value of 0 to represent a void phase or a value of 1 to
represent a solid phase. After solving the optimization problem, solid elements define the optimized
design. In order to obtain a well-posed problem, design variables are interpolated continuously between
0 and 1. The relaxation also enables sensitivities computation in order to use efficient optimization
algorithms such as gradient descent, thanks to the adjoint variable method. To avoid intermediate
values in the final design, these are penalized, for instance, by a power-law [5] or a rational function [6].
A substantial extension of density-based methods called Multiple Materials in Topology Optimization
(MMTO) appeared with the work of Thomsen [7]. Notably, these methodologies have been widely used
in compliance minimization problems that consider isotropic materials with different Young’s moduli.
Advances in MMTO have spanned different fields involving the design of compliant mechanisms [8], lattice
structures [9], thermomechanically constrained porous composites [10], structural joints [11], piezoelectric
structures [12], among many others. Other MMTO methodologies include level-set approaches [13,
14], phase field approaches, such as Cahn-Hilliard dynamics [15] or accelerated constrained Allen-Cahn

2

https://doi.org/10.1007/s00158-022-03460-1
https://hal.archives-ouvertes.fr/hal-03876090
https://doi.org/10.1007/s00158-022-03460-1


Théodore Cherrière, Luc Laurent, Sami Hlioui, François Louf, Pierre Duysinx, Christophe Geuzaine, Hamid Ben Ahmed, Mohamed Gabsi &
Eduardo Fernández. Multi-material topology optimization using Wachspress interpolations for designing a 3-phase electrical machine stator.
Structural and Multidisciplinary Optimization volume, 65, 2022. doi: 10.1007/s00158-022-03460-1

dynamics [16, 17]. Recently, Chandrasekhar and Suresh [18] used neural networks to represent the
volume fraction of different materials.

In the magnetostatics field, MMTO emerged with the work of Dyck and Lowther [19]. The authors
optimized a magnetic bearing, composed of steel, air and conductors, by interpolating each physical
property (magnetic permeability and current density). They also eliminated intermediate materials with
penalization. Concerning density methods, the most common applications are C-core electromagnets
as in Wang, Park, and Kang [20] and Wang et al. [21], which contain steel, air and a source – current
density, Permanent Magnets (PM) or both. The application on which the highest number of materials
are used is the design of Halbach arrays, where different PMs are distributed to maximize the flux
density. This problem was tackled in 3D [22] and with arbitrary PM directions [23], which were included
within the optimization variables. Steel was added in the optimization to design moving actuators.
Lee, Dede, and Nomura [24] placed several materials to maximize the force profile of a plunger. This
work was extended in Lee et al. [25] to include more PMs and in Jung, Lee, and Lee [26] to produce
manufacturable structures.

Concerning MMTO applied to electrical machines, many works use heuristic approaches as in Sato,
Watanabe, and Igarashi [27] and Jung, Ro, and Jung [28], mainly to optimize only the rotor of electrical
machines. Density-based methodologies are also used to optimize rotors of different kinds of actuators,
such as wound field synchronous machines [29], permanent magnet synchronous reluctance motors [30,
31], or permanent magnet synchronous machines [32], and can be hybridized with shape optimization
[33]. By contrast, very few works tackle the stator optimization. Among them, Lee, Seo, and Kikuchi
[34] and Choi et al. [35] optimize the stator teeth without changing the conductor distribution, and
Labbé and Dehez [36] includes only one phase of a reluctant machine within the optimization.

In order to consider many materials, the traditional density method can be extended. One solution is
to interpolate M materials using M −1 auxiliary variables per mesh element [37]. Other methods require
a single variable per element by using peak functions [38], or by ordering several interpolation functions
in ascending order [39]. Authors have proposed the use of M optimization variables (one per candidate
layer) in a scheme denoted as Discrete Material Optimization [DMO, see 40]. More recently, Bruyneel
[41] proposed placing candidate materials at the vertices of a rectangular domain. The design variable is
a point inside the domain that interpolates material properties. Thus, M = 4 candidate materials can
be handled using two design variables: the Cartesian coordinates of the inner point. This idea, denoted
as Shape Function with Penalization (SFP), was then extended to handle M = 8 candidate materials
using hexahedral domains and three design variables per element [42, 43] and has been successfully
applied, mainly in the design of fiber-reinforced composites [44].

The literature proposes two possibilities to handle a different number of materials. The majority
of works use redundant materials (mostly air) as Sigmund [45] to fill the vertices of an orthogonal
interpolation domain. However, no element indicates that orthogonal domains suit all MMTO problems.
Jung and Min [46] have shown that the attribution of these redundant materials may affect the
optimization results. A comparison of two different materials placements is given in Fig. 1a and Fig. 1b.
Other authors, as Choi and Yoo [47] use linear programming to handle a linear constraint per mesh
element, as illustrated in Fig. 1c. As the obtained triangular domain is not equilateral as in Fig. 1d, a
permutation of the materials’ positions changes the optimization problem.

As an alternative, this paper presents a new method for MMTO based on SFP formalism, using
polytopes as catalog domains that allow the inclusion of any number of candidate materials without
repeating any of them. To interpolate material properties inside the polytope, we use generalized basis
functions [48]. Since the proposed method uses non-orthogonal domains, many linear constraints are
required to keep the design variables within the polytope. However, since we consider low-dimensional
polytopes, we observe that a straightforward Projecting Gradient Descent (PGD) algorithm is enough
to tackle the 3-phase stator design problem.

The structure of this article is organized as follows. Section 2 presents the adopted topology opti-
mization approach, the optimization problem to be solved, and the implemented algorithm. Section 3
details the novelties of this work related to the polytope domains for placing material candidates and
the Wachspress functions for interpolating material properties. Section 4 presents design results for the
stator of a Permanent Magnet Synchronous Machine (PMSM). Finally, conclusions and perspectives are
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Figure 1: Different possible materials placements for a C-core electromagnet optimization.

given in Section 5.

2 Topology optimization framework
2.1 Physical problem
Among the wide variety of electromechanical actuators, the 3-phase PMSM is one of the most popular in
industrial applications, especially in electrical mobility. It comprises two parts separated by an airgap:
a rotating element – the rotor – which contains one or several Permanent Magnets (PM), and a fixed
part – the stator – which creates a rotating magnetic field generated by varying electric currents inside
coils. For standard electric frequencies, the distribution of the magnetic flux density can be described by
magnetostatics, which comes from Maxwell’s equations:

∇× (ν(|b|).∇× a) = j +∇× m, (1)

where a = [ax ay az]
T is the vector potential ensuring the divergence-free of flux density b = ∇× a, ν

is the magnetic reluctivity, j = [jx jy jz]
T is the current density, and m = [mx my mz]

T is the PM
magnetization. Note that ν depends on |b| in the ferromagnetic materials, as shown in Fig. 2. In a 2D
problem within the plane (x, y), the x and y components of a and j vanish, as well as the z component
of m.

Thus, the magnetostatics equation in 2D becomes:

∇.[ν(|b|)∇az] = jz +∇
(
R−π

2
mxy

)
, (2)

with R−π
2

=

[
0 1
−1 0

]
a rotation operator and mxy = [mx my]

T . The 2D flux density reads:

b = R−π
2
∇az. (3)

Equation (2) can be discretized using, for instance, the Finite Element Method (FEM), which gives
the resulting non-linear system:

K(ν(a))a = sj(j) + sm(m), (4)
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Figure 2: FeSi anhysteretic behavior: h is the magnetic field, b the flux density and ν = |h|
|b| the reluctivity.

where a, j and m, are the discretized az, jz and mxy, respectively. K is the stiffness matrix, a the
degrees of freedom, sj and sm compose the right-hand side, representing the discretized source terms of
the system.

The interaction between PM and stator magnetic fluxes creates a torque T . A formula to compute
the torque of 2D rotating machines using spatial integration of Maxwell stress tensor was proposed by
Arkkio [49]. It can be written as:

T =

[
2πL

Sairgap

∫∫
airgap

x× (x) ds
]
· ez, (5)

where L is the axial length of the machine, Sairgap the surface of the airgap between the stator and the
rotor, x the position of the integration point, ez the axial unitary vector, and the magnetic part of the
Maxwell stress tensor, which depends on the flux density b:

Σij = ν0

(
bibj −

|b|
2
δij

)
. (6)

2.2 Optimization problem
This work adopts the density approach. Namely, the design domain is discretized into N triangular
finite elements, and the material properties of each element are defined by interpolating the properties of
prescribed materials with n design variables. Since multiple materials are considered for the optimization
problem and handled in an SFP approach, n depends on the total number of finite elements (N) and
the dimension of the interpolation domain. By contrast with the original SFP scheme, the interpolation
domain is not limited to orthogonal ones and can be any convex polytope. From now on, this polytope is
denoted by D for the sake of simplicity. To keep a general notation, we define xe by the vector containing
the n design variables assigned to the mesh element e. That is, xe = [xe1 xe2 ... xedim(D)], where xei
denotes the i-Cartesian coordinate inside the polytope associated with the e-element, as shown in Fig. 3.
In this work, only 2D and 3D polytopes are considered: dim(D) = 2 or 3.

The proposed methodology for MMTO is presented for designing a PMSM stator. The objective
is to maximize the average torque given by Equation (5), considering multiple materials in the stator
with different magnetic reluctivities and current densities, detailed in Section 4. The design problem is
formulated as follows:

min f(x) = −〈 T (a(x)) 〉

s.t.: xe ∈ D , e = 1, ..., N

K(ν(a, x))a = sj(j(x)) + sm(m)

(7)
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Figure 3: Examples of interpolation domains. Black dots represent prescribed materials, gray dots
represent interpolated materials.

with x the set of all optimization variables, i.e. x = [xe]e∈J1,NK. Usually, a volume constraint is necessary
to avoid the trivial solution, such as a fully solid beam in the compliance minimization problem. However,
a fully solid stator cannot produce torque in the case of electrical machines, so a volume constraint
is unnecessary and was not used. Moreover, global constraints are non-trivial to implement in the
presented approach and thus will be tackled in future works.

2.3 Optimization algorithm
The optimization problem (7) is solved with a Projected Gradient Descent (PGD). The iterative
optimization process consists of four steps illustrated in Fig. 4.

The first step is to evaluate the material properties within each finite element from the optimization
variables. This procedure will be detailed in Section 3 as it presents the main novelty of this work.
The second step is to solve Equation (4) to evaluate the magnetic performance as defined previously
(Section 2.1). The third step is to compute the sensitivities using the Adjoint Variable Method (AVM).
To do so, the following adjoint problem must be solved [50]:(

∂(Ka− sj − sm)

∂a

)T
λ =

∂f

∂a
, (8)

then the sensitivities to each component i of xe are computed for each element e with:

df
dxei

=
∂f

∂xei
+ λT

(
∂sj
∂xei

− ∂K
∂xei

a

)
. (9)

Our implementation of the AVM has been validated by comparison with finite differences. The fourth
step of the optimization process is to update the design variables using the Projected Gradient Descent
(PGD) algorithm. This algorithm consists of three phases, which are detailed below:

1. Compute the descent direction. As sensitivities magnitudes can be very different from one
mesh element to another, which leads to slow convergence, each component i of the local descent
direction vectors de = [de1 de2 ... d

e
dim(D)] associated with a finite element e are normalized as

follows:

dei = −

df
dxei∥∥∥∥ df
dxe

∥∥∥∥ . (10)

2. Estimate the appropriate step size. The step size at iteration k is denoted as αk and is
adjusted by a simplified trust-region algorithm inspired from Nocedal and Wright [51]. The step
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Figure 4: Flowchart of the optimization algorithm.

is heuristically adapted according to the quality of the linearized model. A quality indicator q is
defined as:

q =
f(xk)− f(xk−1)(
df
dx

)T
(xk − xk−1)

. (11)

If the linearized model is considered as bad (when q is too low), the iteration is rejected and the
step size is reduced. If the model is considered good enough, the step size is increased to accelerate
the convergence. Algorithm 1 details the whole procedure. The initial step size α0 is set to 0.1.

3. Projection. After applying the descent, some points may lie outside the polytope domain D. In
that case, they should be projected back onto it using the min-norm operator denoted as P. The
PGD update reads:

xk+1 = P(xk + αkdk). (12)
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Algorithm 1 Control of the step size α
1: Compute q
2: if q < 5× 10−3 then . The linear model is bad.
3: Reject the iteration
4: α⇐ α/2 . The step size is decreased.
5: else if q ∈ [5× 10−3, 5× 10−2] then
6: Accept the iteration
7: else if q > 5× 10−2 then . The linear model is good.
8: Accept the iteration
9: α⇐ 1.2α . The step size is increased.

10: end if
11: Continue the optimization process

For orthogonal domains as in Fig. 3a, the application of P is a simple truncation of x-components.
For other types of interpolation domains, it implies considering many linear constraints and
finding the active one to project the point onto, which can be a facet, an edge, or a vertex of the
polytope. This task can demand an extensive computation time on high-dimensional polytopes
without efficient projection algorithms (Haddock 2018). Fortunately, in the present case, P can
be decomposed in N projections of xe onto a low dimensional convex polytope D (2D or 3D). If
xe is located outside D, it belongs to the normal cone associated with the face i, onto which xe
should be projected, as shown in Fig. 5.

x1

P (x1)

P (x2)

x2

Figure 5: Min-norm projection onto a pentagon: x1 is associated to an edge and x2 to a vertex.

It follows a simple procedure to compute P(xe):
a) Compute the normal fan of the polytope – defined as the collection of all the normal cones

from each of its faces, as shown in Fig. 6. This needs to be done once, at the beginning of
the optimization process.

b) Find the normal cone where xe is located. The closest face is associated with this cone. It
requires testing each cone.

c) Project the point xe onto the closest face with the standard orthogonal projector.

A vectorized Matlab 2020b implementation of the projection algorithm is available on Github and
archived in Zenodo [52].
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(a) Pentagon (b) Tetrahedron (c) Diamond

Figure 6: Normal fans of different polytopes. Red cones are associated with vertices, green cones with
edges and blue cones with facets.

3 Interpolation scheme
The expressions of the interpolated material properties are essential in density-based methods to obtain
realistic design solutions. This work proposes to extend the SFP formalism introduced by Bruyneel [41]
to a broader class of interpolation domains. In order to build such interpolations, four choices have to
be made:

1. The interpolation domain D with M vertices.

2. The materials placement on its vertices.

3. The basis functions set {ωD
v }v∈J1,MK. Each basis function is associated with a vertex v of D.

4. The penalization function P .

After that, the material property κ̃e of a mesh element e filled with an intermediate material can be
constructed from the properties of the prescribed materials κv, which possibly depends on the local flux
density be:

κ̃e(xe, be) =
M∑
v=1

κv(|be|) · P (ωD
v (xe)). (13)

Note that it is possible to associate a different penalization function for each vertex. However, we
consider the same penalization function P for every vertex for simplicity. The derivative of (13) with
respect to the i-component of xe is necessary to compute the sensitivities with (9), and reads:

dκ̃e
dxei

(xe, |be|) =
M∑
v=1

κv(|be|)P ′(ωD
v (xe))

dωD
v (xe)
dxei

. (14)

3.1 Interpolation domain
The first step consists in choosing a suitable domain D for the material interpolation, with each prescribed
material associated with one of its vertices. In the literature, only hypercubes of [0, 1]dim are chosen.
Hypercubes are orthogonal domains that can contain 2dim materials. Their main advantage is their
boundary constraints, which can be easily handled by a simple truncation algorithm. However, compared
to other polytopes, hypercubes may not be suitable for some MMTO problems because, as shown in
our numerical examples (Section 4), they promote local optima even when the number of prescribed
materials is a power of two. This work considers 2D and 3D convex polytopes as admissible domains.
Some examples are presented in Table 1.
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dim(D)= 2 dim(D)= 3

Hyper-
cubes

(current
state of the

art)
M = 4

M = 8

Other
possible
convex

polytopes

M = 3

M = 6

M = 6

M = 8

Forbidden
domains

not convex not a polytope

Table 1: Examples of admissible interpolation domains.

3.2 Materials placement
The next step consists of associating each material considered in the optimization to a vertex of D.

As shown by [46], the results of the optimization depend on the materials placement. An intuitive
choice for the 3-phase PMSM stator optimization problem is to place the electric sources on the same
plane, according to their phases, in orthogonality with steel. This can be made with a hexagonal-based
diamond but not with a classical orthogonal domain such as a cube. The methodology presented in this
paper can efficiently handle any convex polytope, which is essential for complex MMTO problems such
as a 3-phase PMSM stator optimization as shown by our numerical experiments (Section 4.2).

3.3 Basis functions
Once the domain D and the materials placement are chosen, an interpolation can be defined thanks to a
set of differentiable basis functions ωD

v : D → [0, 1] associated with each vertex v, such as ωD
v = 1 on the

vertex v and 0 on the others. An interesting property is the partition of unity:
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∀xe ∈ D,
M∑
v=1

ωD
v (xe) = 1, (15)

which allows the interpretation the basis functions as material volume fractions. However, partition of
unity is required only at the end of the optimization process, so the penalization of the intermediate
values of the basis functions is possible [41] and will be detailed in Section 3.4. Several different basis
functions meet the partition of unity, such as Wachspress, mean-value, or Malsch interpolant, see
Sukumar and Malsch [53] and Kraus, Rajagopal, and Steinmann [54]. In this paper, we use [48] basis
functions, which read in 2D:

ωv(xe) =
ϕv(xe)∑M
j=1 ϕj(xe)

,

with ϕv(xe) =
Av

A+
v (xe).A−

v (xe)
,

(16)

where A−
v (xe), A+

v (xe), Av represent the areas of the triangles defined, respectively, by vertices
[xev−1, xev, xe], [xev, xev+1, xe] and [xev−1, xev, xev+1] as shown in Fig. 7a. An example of basis function
is plotted in Fig. 7b. In higher dimensions, Av becomes a simplex hypervolume related to the adjacent
facets. A code to compute the basis functions values as well as their gradients for any convex 2D and
3D polytopes is given by Floater, Gillette, and Sukumar [55]. A vectorized version of this code was used
to handle many points [52].

xv-1
xv

xv+1

xe

Av
A�(xe)v

A+(xe)v

(a) Construction of a
Wachspress basis
function.

0.8

0.6

0.4

1

0.2

0

(b) Values of a Wachspress
basis function.

Figure 7: Illustration of a Wachspress basis function associated with a vertex of a pentagon.

3.4 Penalization
An interpolation built with basis functions matching the partition of unity may not lead to meaningful
designs. Some intermediate materials often remain, and a penalization P is necessary to avoid them. A
wide variety of such functions exists. The most popular is the power-law from the SIMP method [5]. In
this paper, we chose to use the RAMP [6] applied to each basis function:

P :

{
[0, 1] → [0, 1]

ω 7→ ω

1 + p(1− ω)
, (17)

where p is the penalization factor. The RAMP was preferred to the classical SIMP scheme because it
preserves the non-zero gradient of the basis functions on all the vertices of the polytope, as shown in
Fig. 8.
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(a) SIMP - p = 3. The gra-
dient is zero in the cir-
cled zone.

(b) RAMP (17) - p = 4.
The gradient does not
vanish anywhere.

Figure 8: Examples of penalized Wachspress functions.

4 Numerical examples and discussion
The presented methodology can handle numerous materials. As an example, we applied it to the MMTO
of a complete three-phase PMSM stator. Although three-phase machines are widely used in industrial
applications, only their rotor is generally optimized as in Sato and Igarashi [56], and sometimes with
the stator teeth [34, 35]. When the magnetic source distribution has been addressed, only one electric
phase had been considered, as in Labbé and Dehez [36]. This numerical example is the MMTO of a
3-phase PMSM, containing all electrical phases, steel, and air. To the authors’ knowledge, this problem
has not been addressed in the literature, perhaps because of the high number of materials and the lack
of appropriate interpolation domains.

4.1 Presentation of the problem
We consider Equation (7) as the optimization problem. It contains M = 8 materials to distribute within
the stator, summarized in Table 2:

• Air, which is a linear material with a magnetic reluctivity of ν0 =
1

4π × 10−7
m/H.

• Steel, which has a non-linear behavior. Its reluctivity is given in Fig. 2b and follows the anhysteretic
behavior of standard FeSi.

• Six different types of copper conductors, which have the same magnetic behavior as air. They
carry current densities jα with the same amplitude but different electrical phases:

jα(θe) = J cos(ppθ − απ/3 + ψoptim), α ∈ J0, 5K (18)

where J is the amplitude of the current density set to 10A/mm2, θ is the mechanical angle varying
from 0◦ to 30◦, pp = 6 is the number of poles pairs, and ψoptim is the fixed load angle set to 288◦,
which corresponds to the load angle where the torque is maximum on the reference design in
Fig. 9.

The load angle ψ can be interpreted as either a magnetic rotation of the magnetic fields created from
the stator without mechanical rotation or a mechanical rotation of the stator without magnetic rotation,
as shown in Fig. 10.

The torque is computed with (5) on 60 angular positions of the rotor and averaged. The rotor is
inspired by the one of the BMW i3 [57] shown in Fig. 9. The problem is discretized on a mesh generated
with Gmsh [58] shown in Fig. 11. As the rotor structure is periodic, only one magnetic pole is considered
in the FEM analysis. Therefore, only this pole of the obtained designs will be shown to save space in
the rest of the article.
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Table 2: Materials used in the optimization
Material Reluctivity Current density

Air ν0 0
Steel (FeSi) ν(|b|) – see Fig. 2b 0
Phase A+Phase A+Phase A+Phase A+Phase A+Phase A+Phase A+Phase A+Phase A+Phase A+Phase A+Phase A+Phase A+Phase A+Phase A+Phase A+Phase A+ ν0 J cos(θe + ψ)
Phase A−Phase A−Phase A−Phase A−Phase A−Phase A−Phase A−Phase A−Phase A−Phase A−Phase A−Phase A−Phase A−Phase A−Phase A−Phase A−Phase A− ν0 J cos(θe − π + ψ)
Phase B+Phase B+Phase B+Phase B+Phase B+Phase B+Phase B+Phase B+Phase B+Phase B+Phase B+Phase B+Phase B+Phase B+Phase B+Phase B+Phase B+ ν0 J cos(θe − 2π/3 + ψ)
Phase B−Phase B−Phase B−Phase B−Phase B−Phase B−Phase B−Phase B−Phase B−Phase B−Phase B−Phase B−Phase B−Phase B−Phase B−Phase B−Phase B− ν0 J cos(θe − 5π/3 + ψ)
Phase C+Phase C+Phase C+Phase C+Phase C+Phase C+Phase C+Phase C+Phase C+Phase C+Phase C+Phase C+Phase C+Phase C+Phase C+Phase C+Phase C+ ν0 J cos(θe − 4π/3 + ψ)
Phase C−Phase C−Phase C−Phase C−Phase C−Phase C−Phase C−Phase C−Phase C−Phase C−Phase C−Phase C−Phase C−Phase C−Phase C−Phase C−Phase C− ν0 J cos(θe − π/3 + ψ)

+

Phase A+

Phase C-

Phase B+

Phase C+

Phase A-

Phase B-

Iron

Permanent magnet

Air

FEM zone

Optimization zone

Rotor

Stator

Figure 9: Reference design adapted from the BMW i3 [57].

The numerical examples are used to assess three main aspects of the proposed methodology: (i) the
polytope domain D, (ii) the penalization parameter p, and (iii) the load angle ψ. In the following section,
the first aspect is discussed.

4.2 Interpolation domain
The choice of the interpolation domain is essential and beyond the number of materials M . Indeed,
it exists several possible polytopes which have M vertices. Since this work considers eight candidate
materials, it is interesting to compare the performance of the proposed MMTO approach using different
8-vertex polytopes. The polytopes under analysis are a 2D octagon (Fig. 12a), a 3D cube (Fig. 12b) and
a 3D diamond (Fig. 12c). The 3D cube is representative of the literature [42], but the octagon and the
diamond are new domains in MMTO, to the best of our knowledge.

We place the conductors consistently with their electric phases, which is easy for the diamond domain,
but not for the others. At the beginning of the optimization process, the design variables are placed at
the centroid of the polytopes. All the other optimization parameters are strictly the same. The material
properties ν and j are interpolated by using Equation (17), with pν = 4 and pj = 3. These penalization
values are justified in Section 4.3. The PGD was applied during 500 iterations, and the final structures
are plotted in Fig. 12.

We note that no design contains air, which is logical because air has the same magnetic behavior as
conductors but carries no current. Therefore, they cannot increase the torque more than conductors.
Visually, the best-defined design is given by the diamond domain in Fig. 12c. For that design, the
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ψ=0

(a) Reference
mechanical
and mag-
netic angles.

(b) ψ seen as a
magnetic an-
gle.

(c) ψ seen as a me-
chanical angle.

Figure 10: Equivalence between load angle ψ interpretations. Arrows represent magnetic field reference.
The rotor is represented in orange and the stator in blue.

Dirichlet

Sliding band

Antiperiodic

Figure 11: Mesh with boundary conditions obtained (11331 triangles, 5890 nodes).

optimized design variables are displayed in Fig. 13 as points inside the diamond polytope. There, it can
be observed that most design variables have converged to the vertices of the polytope. Notably, a large
number of variables that point to iron lie in the vicinity of the vertex. Indeed, at high flux densities,
intermediate materials may carry more flux than iron because of penalization, which is analyzed in
detail in Section 4.3.

Regarding the optimized design, one can identify small design features where portions of materials
appear isolated from the main bulk. Fig. 14 decomposes the topology by material to facilitate the
visualization of these zones. According to our numerical experiments, these small design features are
caused by a poor convergence of the optimization problem to a local optimum and not by numerical
instabilities such as a checkerboard. This can be seen in Figure 15, where two results obtained with
the same set of parameters but with different discretization (coarse and refined) are presented. Both
topologies are the same, i.e., the global shape and arrangement of the materials are the same. Similar to
Choi and Yoo [47], neither checkerboard nor mesh-dependence was found, so no filtering process was
used for the rest of the numerical experiments. This could be the subject of future work, such as when
incorporating manufacturing constraints.

The optimized design in Fig. 12c contains three conductor slots, while the reference design contains
six slots. The topology change between the reference and the optimized structures demonstrates the

14

https://doi.org/10.1007/s00158-022-03460-1


Théodore Cherrière, Luc Laurent, Sami Hlioui, François Louf, Pierre Duysinx, Christophe Geuzaine, Hamid Ben Ahmed, Mohamed Gabsi &
Eduardo Fernández. Multi-material topology optimization using Wachspress interpolations for designing a 3-phase electrical machine stator.
Structural and Multidisciplinary Optimization volume, 65, 2022. doi: 10.1007/s00158-022-03460-1

A+

C-B+

A-

C+

Iron

Air

B-
(a) Octagon

B-

Iron

A+

Air

C+

A-

C-

(b) Cube (representative of the literature)

A+

C-

B+ A-

C+

Iron

Air

B-

(c) Diamond

Figure 12: Different interpolation domains associated with their final design.

usefulness of a MMTO, as the optimized design is unreachable with parametric or shape optimization
approaches. However, the numerical results given in Table 3 indicates that the cube (Fig. 12b) returns
a structure associated with higher torque. These obtained structures are then fed with currents with
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-1
-1
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-0.5

Air

A-0
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0.5

B-

xe
2
0

1

-1

B+

xe
1

-0.500.5

Iron

1

A+

1

C-

Figure 13: Repartition of the optimization variables for the design plotted in Fig. 12c. Each point
represents the material of a mesh element from the stator.

different load angles ψ, as for a real machine where the optimal feeding is determined from its design.
The resulting torques plotted in Fig. 17 show clearly that the diamond gives a structure that can reach
higher torque than the two other designs, and even higher than the reference machine. Therefore, the
structure obtained with a diamond-based catalog is better than the two others, as ψ represents only
a rotation between the same stator and the rotor. Moreover, it seems closer to convergence than the
other domains as the relative variation of the objective function is 1000 times lower, as shown in the
4th row of Table 3. Note that when the step size becomes too big, some iterations may be rejected by
Algorithm 1, so Table 3 also gives the number of accepted iterations. For the rest of the numerical
experiments, we thus choose to use the diamond domain. Note that a diamond-type domain can be
used with this approach to address stator configurations that have a number of materials other than 8,
as shown in Fig. 16.

Table 3: Optimization results with different domains.
Domains Octagon Cube Diamond

Torque (Nm/m) 1703 1836 1720
Total iter. 500 500 500

Accepted iter. 401 400 395
|fend − fend−1|

fend
2.0× 10−5 2.3× 10−5 3.4× 10−8

Nevertheless, Fig. 17 shows that the load angle where the torque is maximum ψmax is shifted from
the angle ψoptim imposed during the optimization process. It means that a simple rotation applied to
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Figure 14: Decomposition of the spatial distribution of each material of the design represented in Fig. 12c

the obtained structure gives a better torque; that is to say, the results are stuck in local optima. Possible
causes and a solution to this problem are analyzed in Section 4.4.

4.3 Penalization parameter
Once the domain and materials placement are chosen, which are global and apply to all physical
properties, the choice of the penalization is tricky. There are two material coefficients to interpolate in
the partial differential equation (2): the magnetic reluctivity ν and the current density j. The associated
penalization coefficients are pν and pj , respectively. Their role is to avoid intermediate materials to have
interesting properties simultaneously (i.e. high current density and good magnetic property). In this
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(a) Coarse mesh (5935 triangles, 3126
nodes)

(b) Fine mesh (29833 triangles, 15268
nodes)

Figure 15: Optimized stator designs with a diamond domain and different meshes.

paper, we use the RAMP interpolation scheme proposed on Equation (17) directly on ν. While the
obtained design does not seem sensitive to pj , the ν-interpolation strongly influences the result, which
should be investigated. Its value is tested between 0 (which corresponds to a linear interpolation) and
10. We found that for low pν values, the final designs tend to have very little steel, as shown in Fig 18b.
The steel quantity in the stator teeth and the average torque increase with pν , until the steel is replaced
by gray material for a high pν value, as shown in Fig. 18. The presence of intermediate materials in
converged design can be explained because they carry a higher flux density |b| than the steel for high
magnetic field |h|. Indeed, the physical limit of a ferromagnetic material’s reluctivity is:

lim
|b|→∞

ν(|b|) = ν0, (19)

while the limit reluctivity ν̃ of the interpolated materials with a strictly convex penalization scheme
such as (17) with pν > 0 is:

lim
|b|→∞

ν̃(xe, |b|) = ν0

M∑
v=1

P (ωD
v (xe)) < ν0. (20)

Therefore, intermediate materials can carry more flux than steel and are better magnetic materials than
steel for high flux densities |b|, which justifies their existence in the converged designs. In practice, the
larger p, the lower the |b| limit under which the steel is better than intermediate materials. To quantify
the presence of intermediate materials, we use the following discreteness indicator in the optimization
zone:

D(x) =

N∑
e=1

[
Ve

M∑
v=1

P (ωv(xe))− P (ωv(x0))

]
N∑
e=1

Ve

[
1−

M∑
v=1

P (ωv(x0))

] , (21)
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Figure 16: Examples of diamond-type domains as in Fig. 12c for other multiphased stator. The numbers
indicate the electric phases.
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Figure 17: Evolution of the average torque of optimized structures with the load angle ψ.

with ωv the Wachspress basis function verifying the partition of unity, Ve the surface of the e-mesh
element, and P a convex penalization function. Equation (21) is 0 when all the xe are in the center x0

of D, and 1 if they are all on its vertices (prescribed materials). We arbitrary chose Equation (17) with
p = 2 for P in (21). A compromise must be made to get a realistic design with a high torque, as shown
in Fig. 18a. The relative variations of the objective function becomes lower than 10−6 for all designs,
which indicates gray materials exists in converged results for high pν . We chose pν = 4 and pj = 3 for
the remaining numerical tests, which gives good performances with a discreteness around 0.99.

4.4 Discussion on the local optima issue
As shown in Fig. 17, the average torque is not maximum at ψ = ψoptim = 288◦. The situation is
illustrated in Fig. 19. The optimum load angle shift means that we can rotate the optimized structure,
shown in Fig. 19a to obtain a better design, shown in Fig. 19b under the same electric conditions.
Therefore the optimized design is necessarily a local optimum.

At least two causes may lead to local optima: the PM induced a field in the initial situation, which
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Figure 18: Effect of pν on the converged designs.

may lead the design variables in a bad direction, which is analyzed in Section 4.4.1, and the penalization
plays a role as in the compliance problem, analyzed in Section 4.4.2. To avoid the algorithm being stuck
in local optima, we propose in Section 4.4.3 to adjust ψ with a parametric optimization performed all
the nψ iteration of the main algorithm independently.

4.4.1 Influence of the remanence

Only two different components can produce a non-zero average torque. The hybrid component is due to
the interaction between the winding flux and the magnet flux, while the reluctant component is due to
the non-uniformity of the magnetic flux paths.

The initial situation is a uniform material with no current. The only magnetic flux comes from the
permanent magnets, which may promote too much the hybrid torque against the reluctant one at the
beginning of the optimization process. This may lead to the shift between ψoptim and ψmax shown in
Fig. 17.

This influence can be verified numerically by removing the permanent magnet remanence Br from
the optimization, so the concurrence between the two torque components vanishes. In practice, it is
impossible to start the optimization with no source because the physical field a is null, and so are the
sensitivities – see Equation (9). Therefore, we started with Br = 1µT. The influence of Br on the final
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(a) Obtained design with a load angle shift (local optimum).

(b) Potential global optimum (no load angle shift).

Figure 19: Illustration of the effect of the load angle shift on the design.

design is plotted in Fig. 20. We note that the bigger the remanence, the bigger the shift between ψmax
and ψoptim, which highlights the role of Br in getting local optima.

4.4.2 Influence of the penalization

Another difficulty for avoiding local optima is the penalization. It is known that for simple problems,
such as compliance minimization, a penalized material interpolation function breaks the convexity of the
problem [59].

To illustrate the non-convexity induced by the penalization, we use the following procedure. The
penalization parameters of the magnetic reluctivity (pν) and the current density (pj) are initialized
as pν = 4 and pj = 3. After 20 iterations, the design is almost converged and similar to Fig. 12c,
which is a local optimum, so the penalization is removed by setting pν = 0 and pj = 0. Next, 10 more
iterations are carried out, then the penalization of the current density is reactivated as pj = 3 to remove
intermediate materials, and the optimization problem is run until convergence. The average torque and
some intermediate designs during optimization are plotted in Fig. 22 and 23, respectively.

Fig. 23 shows that during the optimization process, materials that were committed for a specific
penalization can be decommitted and associated to another material when the penalization is changed.
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(b) ψmax and its associated torque.

Figure 20: Torque of optimized designs and load angle ψ for different remanences Br.

It can also be observed that such a scheme presents in its final design a smaller number of isolated
materials (material zones that are represented by only one element) compared to the designs obtained
with a fixed penalization.

Regarding the performance, Fig. 23 shows that the final design artificially changes the magnetic phase
by mixing some electrical phases within a single slot instead of mechanically rotating the whole structure.
By doing so, the load angle shift is highly reduced, as shown in Fig. 24, and the torque is increased. This
result confirms that the penalization leads to a local optimum shown in Fig. 23c, and the modification
of the penalization parameters allows to get better designs such as the structure shown in Fig. 23f.

4.4.3 Parametric ψ adjustement

The shift between the optimization load angle ψoptim and the maximum torque load angle ψmax is an
indicator of local optimum. A simple way to avoid this problem is to control ψoptim to ensure that it
is always equal to ψmax with a parametric study. To save computation time, we can update ψ all the
nψ iterations with Algorithm 2. nψ = 1 means ψ is ajusted every iterations, nψ = ∞ means it is never
adjusted.
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(a) Br = 1 µT (b) Br = 200mT (c) Br = 400mT

(d) Br = 600mT (e) Br = 800mT (f) Br = 1T

Figure 21: Final designs obtained for different remanences.

This method was tested for several nψ. The results are given in Fig. 25 and the structures are shown
in Fig. 26. The initial ψ value is ψ0 = 288◦. As expected, the more often ψ0 is adjusted, the higher the
torque. Moreover, the maximum torque with ψ adjustment is significantly higher than the maximum
torque without, even with a high nψ value.

Algorithm 2 Control of ψ
Require: k, xk, nψ . k is the number of the current iteration of the optimizer.

1: if modulo(nψ, k) = 0 then
2: for each ψi ∈ J0◦, 359◦K do
3: Compute 〈Ti(xk)〉 with ψ = ψi
4: Store 〈Ti(xk)〉 and ψi
5: end for
6: Find the max. torque and associated ψmax
7: ψ ⇐ ψmax
8: end if
9: Continue the optimization

Concerning the load angle, ψmax drifts more from the initial ψ when nψ is small. Concerning the
obtained structures, the final designs become more symmetric with frequent ψ adjustments, which
indicates that the asymmetry is also a local optimum. The existence of this local optimum may be due
to the PM flux as Fig. 21 seems to show a correlation between symmetry and remanence.

Moreover, low nψ gives ”cleaner” designs, as all elements are the same conductor in a same slot for
nψ = 1 and nψ = 5: the number of isolated islands of materials decreases with the frequency of the load
angle adjustment. Therefore, we recommend adjusting ψ during the optimization process to avoid local
optima. The computing time in Algorithm 2 can be reduced by considering a smaller angle interval
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Figure 22: Average torque during topology optimization with penalization changes. The prescribed
penalization is shown in red.

centered on the current ψi in the parametric study.

5 Conclusion
This paper presented a general density-based topology optimization methodology designed to support
many different materials. It extends the SFP scheme to non-orthogonal interpolation domains using
Wachspress basis functions with a projected gradient algorithm. We applied this methodology to the
challenging 8-materials optimization of a 3-phase PMSM stator. Performing and meaningful designs were
obtained, demonstrating this methodology’s potential. In addition, we highlighted the importance and
difficulties of choosing both a suitable interpolation domain and an appropriate material penalization to
obtain satisfactory designs through numerical examples. We show that classic orthogonal domains are
not suitable for all MMTO problems. In fact, a diamond domain appears to be better suited for this
application and may also apply to a different number of electric phases.

However, with a load-angle analysis, we found that this methodology could return local optima, as in
all gradient-based optimization methods. In this application, they are caused at least by the presence of
an external field source – identified as the permanent magnets – and the penalization of the material
properties. Adjusting the load angle during optimization solves this issue and leads to better designs,
transitioning from asymmetric to almost symmetric structures.

This methodology can be improved by adding global constraints to address industrial problems. For
instance, imposing the conductors’ volume associated with a given current density is directly related to
controlling the total electric current. A solution is to use popular optimizers such as MMA or GCMMA
[60]. It requires including the projection algorithm within the optimizer, which will be done in future
work. This methodology could then be applied to other physics and objective functions. As this work
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Figure 23: Design snapshots during the optimization process with penalization changes. The average
torque for each figure is illustrated in Fig. 22.
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Figure 24: Evolution of the average torque with ψ at different steps of the penalization-change process.

extends the SFP scheme designed for composite materials in mechanical engineering, it could be used to
optimize different fiber orientations, similar to the different electric phases within a PMSM.
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