
HAL Id: hal-03876041
https://hal.science/hal-03876041

Submitted on 11 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MobsPy: A Meta-species Language for Chemical
Reaction Networks

Fabricio Cravo, Matthias Függer, Thomas Nowak, Gayathri Prakash

To cite this version:
Fabricio Cravo, Matthias Függer, Thomas Nowak, Gayathri Prakash. MobsPy: A Meta-species Lan-
guage for Chemical Reaction Networks. CMSB 2022 - International Conference on Computational
Methods in Systems Biology, Sep 2022, Bucharest, Romania. pp.277-285, �10.1007/978-3-031-15034-
0_14�. �hal-03876041�

https://hal.science/hal-03876041
https://hal.archives-ouvertes.fr

MobsPy: A Meta-species Language for
Chemical Reaction Networks⋆

Fabricio Cravo1,2, Matthias Függer2,3, Thomas Nowak1,3, and Gayathri
Prakash2

1 LISN, Université Paris-Saclay, CNRS
2 LMF, ENS Paris-Saclay, Université Paris-Saclay, CNRS, Inria
3 Corresponding Authors: mfuegger@lsv.fr, thomas.nowak@lri.fr

Abstract. Chemical reaction networks are widely used to model bio-
chemical systems. However, when the complexity of these systems in-
creases, the chemical reaction networks are prone to errors in the initial
modeling and subsequent updates of the model.

We present the Meta-species-oriented Biochemical Systems Language
(MobsPy), a language designed to simplify the definition of chemical
reaction networks in Python. MobsPy is built around the notion of
meta-species, which are sets of species that can be multiplied to cre-
ate higher-dimensional orthogonal characteristics spaces and inheritance
of reactions. Reactions can modify these characteristics. For reactants,
queries allow to select a subset from a meta-species and use them in a
reaction. For products, queries specify the dimensions in which a mod-
ification occurs. We demonstrate the simplification capabilities of the
MobsPy language at the hand of a running example and a circuit from
literature. The MobsPy Python package includes functions to perform
both deterministic and stochastic simulations, as well as easily config-
urable plotting. The MobsPy package is indexed in the Python Package
Index and can thus be installed via pip.

Keywords: chemical reaction networks · modeling language · simulation

1 Introduction

Chemical reaction networks (CRNs) model the dynamics of biochemical systems
by a set of species and reactions acting on them [8]. In particular, in synthetic
biology, which studies the engineering of new behavior in biological entities [10],
CRNs have proved useful to model genetic circuits. Examples are the toggle
switch, the repressilator, and logic gates, among others [16,3,1]. While synthetic
biology has primarily addressed single-cell behavior, recent work has studied
the engineering of bacterial populations to reduce cell burden and allow for
population-averaging of circuit responses [15,17].

⋆ Supported by the ANR project DREAMY (ANR-21-CE48-0003) and the CNRS
project BACON.

2 Fabricio Cravo, Matthias Függer, Thomas Nowak, and Gayathri Prakash

However, the modeling of genetic circuits using CRNs is error-prone due to
the complexity of the resulting model. Lopez, Muhlich, Bachman, and Sorger [13]
studied several works from literature and found discrepancies when comparing
their description and the provided models. There is thus a need for tools that
simplify the modeling of complex biological circuits through CRNs, both for
single-cell and population-level dynamics.

Several solutions have been proposed to facilitate the modeling and simula-
tion of such systems. For instance, COPASI [11] and iBioSim [14] are simulators
that can be either used via a graphical interface or by writing a model in SBML
format [12]. They come with state-of-the-art stochastic and ordinary differential
equation (ODE) solvers, but are not directly suited for automated prototyping
due to design entry by a GUI. BasiCO [2] is a Python interface for using CO-
PASI, thus allowing for automation. However, BasiCO does not support any
language-based model simplifications: species and reactions are added one by
one. BSim [9] is a geometric, agent-based simulator for population dynamics
and uses ODEs for internal cellular dynamics.

In this work, we propose MobsPy, a language and Python framework that is
based on the concept of meta-species and meta-reactions. Meta-species are sets of
species and meta-reactions act upon meta-species. This allows for model simplifi-
cation via the following features: (i) Inheritance of reactions.Meta-reactions con-
struct reactions for all the species that inherit from the meta-species present in
the meta-reaction. (ii) The definition of species via independent characteristics-
space structures. Products of meta-species create a meta-species whose char-
acteristics space is the Cartesian product of the characteristics space of its ele-
ments. (iii) The possibility to query and transform the characteristics of a species.
Queries can be used to restrict meta-species to subsets of species. Transforma-
tions can be used to change specific characteristics within a meta-species’ char-
acteristics space. These features will be discussed in greater detail in Section 2,
along with an example model.

The most closely related frameworks to MobsPy are Kappa [6] and iBio-
Gen [7], both providing a rule-based language that can define multiple reactions
with a single rule. A rule defines how individual species (typically molecules)
combine and separate based on their state. While Kappa was designed to fo-
cus on complex formation in chemical pathways, MobsPy targets more general
dynamics, where the reacting species do not necessarily form complexes upon
interaction but may change states, produce, or consume species. Kappa also
proposes the utilization of gadgets for keeping track of complex state changes,
while MobsPy uses Python itself. In [5], an extension with general inheritance
has been proposed to Kappa. To achieve this, they propose a distinction between
two types of agents called concrete and generic agents, which is not required for
inheritance in MobsPy. Also, Kappa’s inheritance extension does not allow for
multiple inheritances.

MobsPy: A Meta-species Language for Chemical Reaction Networks 3

2 MobsPy syntax and simulator

We next discuss the main features of MobsPy along with a running example.
Consider a system of two groups of trees (Figure 1a): one group where trees
grow and reproduce in a dense population and one in a sparse population. We
assume that the leaves of a tree change color from green to yellow to brown in a
cyclic fashion. Further, trees die, with young trees in the dense group dying at
a higher rate due to competition for resources and space.

We start modeling the system by defining base-species with characteristics,
and a reaction for how the base-species Ager changes its characteristics. We also
assign a rate to this reaction using units via the unit registry u and the unit
name, e.g., u.year for years.

1 Ager, Mortal, Colored, Location = BaseSpecies(4)

2 Colored.green, Colored.yellow, Colored.brown

3 Location.dense, Location.sparse

4 Ager.young >> Ager.old [0.1/ u.year]

A base species has a single set of characteristics that can either be defined
explicitly using the dot notation as in code line 2 or implicitly as in code line 4.
In the implicit case, new characteristics are automatically added, when they are
used for the first time inside a reaction.

Meta-reactions have a CRN-like syntax of the form reactants >> products

[rate spec]. The rate spec can be a (non-negative) real or a function whose
parameters are the meta-species reactants, and that returns a real or a string.
In the case of a (returned) real, the reaction rate follows mass-action kinetics,
with the real being the rate constant. In the case of a returned string, one can
define different kinetics in terms of concentrations of species/characteristics of
the reactants. Meta-reactions can define multiple reactions in the CRN, as they
act upon all the species from the meta-species. As an example,we give a list
of all CRN reactions generated by the meta-reactions of the Tree model in the
appendix.

To assign different death rates for old and young trees, we make use of a
rate spec in terms of a function that returns the respective rate-constant (see
code line 5), and the special base-species Zero that contains no species.

5 Mortal >> Zero [lambda r1: 0.1/ u.year if r1.old else 0]

6 Tree = Ager*Colored*Mortal*Location

Multiplication (see code line 6) is used to combine base-species and meta-
species into more complex meta-species. The product meta-species inherits all
characteristics and reactions from its factors. In our example, Tree contains
twelve species (see Figure 1b). Further, the product meta-species inherits the
meta-reactions of its factors. Therefore, Tree receives the aging reactions from
Ager and the death reactions from Mortal. This allows to significantly simplify
the model: only one death and aging meta-reaction need to be specified for all
the model’s species.

4 Fabricio Cravo, Matthias Függer, Thomas Nowak, and Gayathri Prakash

b

dense

sparse

young

old

green

yellow

brown Tree.brown.sparse.young

Location

Ager

C
o
lo
re

d

c

a

Fig. 1: (a) System dynamics: schematic representation of all the reactions in the Tree
model, which are aging, reproduction, color cycle, and competition. (b) Meta-species
Tree created by multiplication of the three base-species Ager, Location, and Colored.
One of the twelve species generated, Tree.brown.sparse.young, has been labeled. (c)
MobsPy default plots after simulating the Tree model (n = 3 stochastic runs). In the
top row of the panel individual runs are shown. The bottom plots depicts mean and
standard deviation.

Within reactants, the dot operator is used to query for species inside meta-
species, making it possible to assign reactions to only the preferred sub-set.
Queries can be composed arbitrarily and independently of order. It is further
possible to query over a string value stored inside a variable, say s, using
species.c(s). In our example, we make use of queries to specify the color-cycle
exhibited by the leaves:

7 # color cycle

8 colors = ['green','yellow','brown']

9 for color, next_color in zip(colors, colors[1:] + colors[:1]):

10 Tree.c(color) >> Tree.c(next_color) [10/ u.year]

MobsPy: A Meta-species Language for Chemical Reaction Networks 5

11 # competition

12 Tree.dense.old + Tree.dense.young >> Tree.dense.old

13 [1e-10*u.decimeter/ u.year]

14 # replication

15 Tree.old >> Tree + Tree.green.young [0.1/ u.year]

Unlike in reactions of a CRN, order of products and reactants matters in
meta-reactions: In the competition meta-reaction (code line 12), Tree.old wins
the competition against Tree.young and becomes Tree.old. MobsPy, by de-
fault, uses a round-robin order, where products cycle through the list of avail-
able reactants from the same meta-species. Alternatively, labels can be used to
explicitly declare which reactant becomes which product.

The initial count of the default species within a meta-species S is set via S(i),
where i is either an integer count, or a real-valued concentration with respective
units. Here, the default species is the species with the first characteristic added
to each meta-species from which it inherits. For example, in the Tree model,
Tree(50) assigns the count 50 to Tree.green.dense.young. To assign counts
to other species, one can add more characteristics.

16 # initial conditions

17 Tree.dense(50),Tree.dense.old(50),Tree.sparse(50),Tree.sparse.old(50)

A simulation object of the species in the meta-species Tree is finally con-
structed by:

18 MySim = Simulation(Tree)

The simulation can then be parametrized with solver parameters (stochastic
and ODE), plotting options, and data export options. As a backend, MobsPy
generates SBML models [12] and runs simulations using BasiCO. Simulation
results can be accessed directly in Python or exported as JSON files. Examples
for default stochastic plots are shown in Figure 1c. The plots can be easily
configured via a Python dictionary, where a single parameter can be set for
all figures, for individual figures, or for each curve in a hierarchical fashion.
For a detailed description of the modeling, simulation, and plotting features of
MobsPy, we refer the reader to the GitHub repository [4]. It contains several
examples like a simple reaction A + B >> 2*C + D, a Hill function model of a
genetic oscillator, a bacteria-phage system, a bacteria and phage random walk,
a simple repressor, a toggle switch, genetic gates such as the NOR and AND gates,
an example for the hierarchical plot structure and tutorial models.

In the next section, we demonstrate the modeling capabilities of MobsPy at
the hand of a real-world synthetic design from literature [3].

3 Genetic circuits with MobsPy: the CRISPRlator

To show that MobsPy is well-suited to model genetic circuits, we modeled
the CRISPRlator, a CRISPRi oscillator proposed by Santos-Moreno, Tasiudi,

6 Fabricio Cravo, Matthias Függer, Thomas Nowak, and Gayathri Prakash

Stelling, and Schaerli [16]. The circuit is a CRISPRi-based repressilator where
each gRNA represses the next gRNA-encoding gene in a cyclic manner. The
model is shown below, with reaction rates taken from Clamons and Murray [3].

1 Promoter, dCas, CasBinding = BaseSpecies(3)
2 Promoter.active, Promoter.inactive, CasBinding.no_cas, CasBinding.cas
3 DNAPro = New(Promoter)
4 gRNA = New(CasBinding)
5 gRNAs_list = ['g1', 'g2', 'g3']
6 Promoters_list = ['P1', 'P2', 'P3']
7

8 rev_rt = (1.8e-3/(u.nanomolar * u.second), 2.3e-2/ u.minute)
9 # Rev defines a reversible reaction

10 Rev[gRNA.no_cas + dCas >> gRNA.cas][rev_rt]
11 gRNA.no_cas >> Zero [0.0069/ u.second]
12 Promoter.active >> 2 * Promoter.active [2.3e-2/ u.minute]
13 Promoter >> Zero [2.3e-2/ u.minute]
14

15 for prom, grna in zip(Promoters_list, gRNAs_list):
16 act_rt = lambda dna: 5/ u.minute if dna.active else 0
17 DNAPro.c(prom) >> gRNA.no_cas.c(grna) + DNAPro.c(prom)[act_rt]
18

19 gRNA_rep_List = ['g3', 'g1', 'g2']
20 for prom, grna in zip(Promoters_list, gRNA_rep_List):
21 dna_rt1 = 1.2e-2 * u.liter/ (u.nanomoles * u.second)
22 dna_rt2 = 2.3e-2/ u.minute
23 DNAPro.active.c(prom) + gRNA.cas.c(grna) >> DNAPro.inactive.c(prom)[dna_rt1]
24 DNAPro.inactive.c(prom) >> 2 * DNAPro.active.c(prom) + gRNA.cas.c(grna)[dna_rt2]
25

26 Rev[Zero >> dCas][1/ u.minute, 2.3e-2/ u.minute]
27

28 DNAPro.active.P1(1), DNAPro.active.P2(1), DNAPro.active.P3(1)
29 gRNA.no_cas.g1(0), gRNA.no_cas.g2(40*u.nanomolar), gRNA.no_cas.g3(1*u.nanomolar)
30 dCas(43*u.nanomolar)
31

32 MySim = Simulation(gRNA | DNAPro | dCas)
33 MySim.volume = 1*u.femtoliter

The code to run ODE simulations over a range of 650 h is shown in Figure 2a.
The resulting plot is depicted in Figure 2b.

a 34 # Code to generate CRISPRlator plot
35 MySim.save_data = False
36 MySim.plot_data = False
37 MySim.duration = 650*u.hours
38 MySim.step_size = 100
39 MySim.unit_x = 'hours'
40

41 MySim.run()
42 MySim.plot_deterministic(gRNA.g1,gRNA.g2,
43 gRNA.g3)

b

Fig. 2: (a) Code for simulating the CRISPRlator model and generating default plots.
(b) CRISPRlator simulation results.

MobsPy: A Meta-species Language for Chemical Reaction Networks 7

4 Conclusions

We presented MobsPy, a simple CRN programming language to simplify the
modeling of complex biochemical reaction networks. The simulator creates SBML
code and uses BasiCO/COPASI as a stochastic and ODE solver. We discussed
MobsPy’s features at the hand of a Tree toy example and a real-world genetic de-
sign, with succinct model descriptions instead of a direct specification as CRNs
(12 species and 45 reactions for the Tree and 13 species and 32 reactions for
the CRISPRi model). MobsPy is open-source (MIT license) and easy to install
through pip or via the git repository.

A Comparison of meta-reactions and reactions for the
Tree model

In the following we list the MobsPy meta-reactions for the Tree model in Sec-
tion 2 along with their corresponding CRN reactions.

Ager.young >> Ager.old



Tree · brown · dense · young Tree · brown · dense · old
Tree · brown · sparse · young Tree · brown · sparse · old
Tree · green · dense · young Tree · green · dense · old
Tree · green · sparse · young Tree · green · sparse · old
Tree · yellow · dense · young Tree · yellow · dense · old
Tree · yellow · sparse · young Tree · yellow · sparse · old

Tree.old >> Tree + Tree.green.young



Tree · brown · dense · old Tree · brown · dense · old + Tree · green · dense · young
Tree · brown · sparse · old Tree · brown · sparse · old + Tree · green · sparse · young
Tree · green · dense · old Tree · green · dense · old + Tree · green · dense · young
Tree · green · sparse · old Tree · green · sparse · old + Tree · green · sparse · young
Tree · yellow · sparse · old Tree · yellow · sparse · old + Tree · green · sparse · young
Tree · yellow · dense · old Tree · yellow · dense · old + Tree · green · dense · young

Tree.dense.old + Tree.dense.young >> Tree.dense.old



Tree · brown · dense · old + Tree · brown · dense · young Tree · brown · dense · old
Tree · brown · dense · old + Tree · green · dense · young Tree · brown · dense · old
Tree · brown · dense · old + Tree · yellow · dense · young Tree · brown · dense · old
Tree · green · dense · old + Tree · brown · dense · young Tree · green · dense · old
Tree · green · dense · old + Tree · green · dense · young Tree · green · dense · old
Tree · green · dense · old + Tree · yellow · dense · young Tree · green · dense · old
Tree · yellow · dense · old + Tree · brown · dense · young Tree · yellow · dense · old
Tree · yellow · dense · old + Tree · green · dense · young Tree · yellow · dense · old
Tree · yellow · dense · old + Tree · yellow · dense · young Tree · yellow · dense · old

8 Fabricio Cravo, Matthias Függer, Thomas Nowak, and Gayathri Prakash

Mortal >> Zero



Tree · brown · dense · old
Tree · brown · dense · young
Tree · brown · sparse · old
Tree · brown · sparse · young
Tree · green · dense · old
Tree · green · dense · young
Tree · green · sparse · old
Tree · green · sparse · young
Tree · yellow · dense · old
Tree · yellow · dense · young
Tree · yellow · sparse · old
Tree · yellow · sparse · young

Tree.c(color) >> Tree.c(next color)



Tree · brown · dense · old Tree · green · dense · old
Tree · brown · dense · young Tree · green · dense · young
Tree · brown · sparse · old Tree · green · sparse · old
Tree · brown · sparse · young Tree · green · sparse · young
Tree · yellow · dense · old Tree · brown · dense · old
Tree · yellow · dense · young Tree · brown · dense · young
Tree · yellow · sparse · old Tree · brown · sparse · old
Tree · yellow · sparse · young Tree · brown · sparse · young
Tree · green · dense · old Tree · yellow · dense · old
Tree · green · dense · young Tree · yellow · dense · young
Tree · green · sparse · old Tree · yellow · sparse · old
Tree · green · sparse · young Tree · yellow · sparse · young

References

1. Adam Arkin and John Ross. Computational functions in biochemical reaction
networks. Biophysical Journal, 67(2):560–578, 1994.

2. Frank T. Bergmann. BasiCO. https://github.com/copasi/basico, 2022.
3. Samuel E. Clamons and Richard M. Murray. Modeling dynamic transcriptional

circuits with CRISPRi. https://www.biorxiv.org/content/early/2017/11/27/

22531, 2017.
4. Fabricio Cravo, Matthias Függer, Thomas Nowak, and Gayathri Prakash. MobsPy.

https://github.com/ROBACON/mobspy, 2022.
5. Vincent Danos, Jérôme Feret, Walter Fontana, Russ Harmer, and Jean Krivine.

Rule-based modelling and model perturbation. In Corrado Priami, Ralph-Johan
Back, and Ion Petre, editors, Transactions on Computational Systems Biology XI,
volume 5750 of Lecture Notes in Bioinformatics, pages 116–137. Springer, Heidel-
berg, 2009.

6. Vincent Danos and Cosimo Laneve. Formal molecular biology. Theoretical Com-
puter Science, 325(1):69–110, 2004.

7. James R. Faeder, Michael L. Blinov, andWilliam S. Hlavacek. Rule-based modeling
of biochemical systems with BioNetGen. In Ivan V. Maly, editor, Systems Biology.
Methods in Molecular Biology (Methods and Protocols), volume 500 of Methods in

https://github.com/copasi/basico
https://www.biorxiv.org/content/early/2017/11/27/22531
https://www.biorxiv.org/content/early/2017/11/27/22531
https://github.com/ROBACON/mobspy

MobsPy: A Meta-species Language for Chemical Reaction Networks 9

Molecular Biology, pages 113–167. Springer Science+Business Media, New York,
2009.

8. Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81(25):2340–2361, 1977.

9. Thomas E. Gorochowski, Antoni Matyjaszkiewicz, Thomas Todd, Neeraj Oak,
Kira Kowalska, Stephen Reid, Krasimira T. Tsaneva-Atanasova, Nigel J. Savery,
Claire S. Grierson, and Mario Di Bernardo. BSim: an agent-based tool for modeling
bacterial populations in systems and synthetic biology. PLoS ONE, 7(8):e42790,
2012.

10. Matthias Heinemann and Sven Panke. Synthetic biology—putting engineering into
biology. Bioinformatics, 22(22):2790–2799, 2006.

11. Stefan Hoops, Sven Sahle, Ralph Gauges, Christine Lee, Jürgen Pahle, Natalia
Simus, Mudita Singhal, Liang Xu, Pedro Mendes, and Ursula Kummer. COPASI–
a COmplex PAthway SImulator. Bioinformatics, 22(24):3067–3074, 2006.

12. M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P.
Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov,
E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman,
J.-H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling, U. Kum-
mer, N. Le Novère, L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness,
Y. Nakayama, M. R. Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro,
T. S. Shimizu, H. D. Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wagner,
J. Wang, and the rest of the SBML Forum. The systems biology markup lan-
guage (SBML): a medium for representation and exchange of biochemical network
models. Bioinformatics, 19(4):524–531, 2003.

13. Carlos F. Lopez, Jeremy L. Muhlich, John A. Bachman, and Peter K. Sorger.
Programming biological models in Python using PySB. Molecular Systems Biology,
9:646, 2013.

14. Chris J. Myers, Nathan Barker, Kevin Jones, Hiroyuki Kuwahara, Curtis Madsen,
and Nam-Phuong D. Nguyen. iBioSim: a tool for the analysis and design of genetic
circuits. Bioinformatics, 25(21):2848–2849, 2009.

15. Sergi Regot, Javier Macia, Núria Conde, Kentaro Furukawa, Jimmy Kjellén, Tom
Peeters, Stefan Hohmann, Eulãlia De Nadal, Francesc Posas, and Ricard Solé.
Distributed biological computation with multicellular engineered networks. Nature,
469(7329):207–211, 2011.

16. Javier Santos-Moreno, Eve Tasiudi, Joerg Stelling, and Yolanda Schaerli. Multi-
stable and dynamic CRISPRi-based synthetic circuits. Nature Communications,
11(1):1–8, 2020.

17. Alvin Tamsir, Jeffrey J. Tabor, and Christopher A. Voigt. Robust multicellular
computing using genetically encoded NOR gates and chemical ‘wires’. Nature,
469(7329):212–215, 2011.

	MobsPy: A Meta-species Language forChemical Reaction Networks

