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Chemical reaction networks are widely used to model biochemical systems. However, when the complexity of these systems increases, the chemical reaction networks are prone to errors in the initial modeling and subsequent updates of the model. We present the Meta-species-oriented Biochemical Systems Language (MobsPy), a language designed to simplify the definition of chemical reaction networks in Python. MobsPy is built around the notion of meta-species, which are sets of species that can be multiplied to create higher-dimensional orthogonal characteristics spaces and inheritance of reactions. Reactions can modify these characteristics. For reactants, queries allow to select a subset from a meta-species and use them in a reaction. For products, queries specify the dimensions in which a modification occurs. We demonstrate the simplification capabilities of the MobsPy language at the hand of a running example and a circuit from literature. The MobsPy Python package includes functions to perform both deterministic and stochastic simulations, as well as easily configurable plotting. The MobsPy package is indexed in the Python Package Index and can thus be installed via pip.

Introduction

Chemical reaction networks (CRNs) model the dynamics of biochemical systems by a set of species and reactions acting on them [START_REF] Daniel | Exact stochastic simulation of coupled chemical reactions[END_REF]. In particular, in synthetic biology, which studies the engineering of new behavior in biological entities [START_REF] Heinemann | Synthetic biology-putting engineering into biology[END_REF], CRNs have proved useful to model genetic circuits. Examples are the toggle switch, the repressilator, and logic gates, among others [START_REF] Santos-Moreno | Multistable and dynamic CRISPRi-based synthetic circuits[END_REF][START_REF] Clamons | Modeling dynamic transcriptional circuits with CRISPRi[END_REF][START_REF] Arkin | Computational functions in biochemical reaction networks[END_REF]. While synthetic biology has primarily addressed single-cell behavior, recent work has studied the engineering of bacterial populations to reduce cell burden and allow for population-averaging of circuit responses [START_REF] Sergi Regot | Distributed biological computation with multicellular engineered networks[END_REF][START_REF] Tamsir | Robust multicellular computing using genetically encoded NOR gates and chemical 'wires[END_REF].

However, the modeling of genetic circuits using CRNs is error-prone due to the complexity of the resulting model. Lopez, Muhlich, Bachman, and Sorger [START_REF] Lopez | Programming biological models in Python using PySB[END_REF] studied several works from literature and found discrepancies when comparing their description and the provided models. There is thus a need for tools that simplify the modeling of complex biological circuits through CRNs, both for single-cell and population-level dynamics.

Several solutions have been proposed to facilitate the modeling and simulation of such systems. For instance, COPASI [START_REF] Hoops | COPASIa COmplex PAthway SImulator[END_REF] and iBioSim [START_REF] Myers | iBioSim: a tool for the analysis and design of genetic circuits[END_REF] are simulators that can be either used via a graphical interface or by writing a model in SBML format [START_REF] Hucka | and the rest of the SBML Forum. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models[END_REF]. They come with state-of-the-art stochastic and ordinary differential equation (ODE) solvers, but are not directly suited for automated prototyping due to design entry by a GUI. BasiCO [START_REF] Frank | BasiCO[END_REF] is a Python interface for using CO-PASI, thus allowing for automation. However, BasiCO does not support any language-based model simplifications: species and reactions are added one by one. BSim [START_REF] Gorochowski | BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology[END_REF] is a geometric, agent-based simulator for population dynamics and uses ODEs for internal cellular dynamics.

In this work, we propose MobsPy, a language and Python framework that is based on the concept of meta-species and meta-reactions. Meta-species are sets of species and meta-reactions act upon meta-species. This allows for model simplification via the following features: (i) Inheritance of reactions. Meta-reactions construct reactions for all the species that inherit from the meta-species present in the meta-reaction. (ii) The definition of species via independent characteristicsspace structures. Products of meta-species create a meta-species whose characteristics space is the Cartesian product of the characteristics space of its elements. (iii) The possibility to query and transform the characteristics of a species. Queries can be used to restrict meta-species to subsets of species. Transformations can be used to change specific characteristics within a meta-species' characteristics space. These features will be discussed in greater detail in Section 2, along with an example model.

The most closely related frameworks to MobsPy are Kappa [START_REF] Danos | Formal molecular biology[END_REF] and iBio-Gen [START_REF] Faeder | Rule-based modeling of biochemical systems with BioNetGen[END_REF], both providing a rule-based language that can define multiple reactions with a single rule. A rule defines how individual species (typically molecules) combine and separate based on their state. While Kappa was designed to focus on complex formation in chemical pathways, MobsPy targets more general dynamics, where the reacting species do not necessarily form complexes upon interaction but may change states, produce, or consume species. Kappa also proposes the utilization of gadgets for keeping track of complex state changes, while MobsPy uses Python itself. In [START_REF] Vincent Danos | Rule-based modelling and model perturbation[END_REF], an extension with general inheritance has been proposed to Kappa. To achieve this, they propose a distinction between two types of agents called concrete and generic agents, which is not required for inheritance in MobsPy. Also, Kappa's inheritance extension does not allow for multiple inheritances.

MobsPy syntax and simulator

We next discuss the main features of MobsPy along with a running example. Consider a system of two groups of trees (Figure 1a): one group where trees grow and reproduce in a dense population and one in a sparse population. We assume that the leaves of a tree change color from green to yellow to brown in a cyclic fashion. Further, trees die, with young trees in the dense group dying at a higher rate due to competition for resources and space.

We start modeling the system by defining base-species with characteristics, and a reaction for how the base-species Ager changes its characteristics. We also assign a rate to this reaction using units via the unit registry u and the unit name, e.g., u.year for years. A base species has a single set of characteristics that can either be defined explicitly using the dot notation as in code line 2 or implicitly as in code line 4. In the implicit case, new characteristics are automatically added, when they are used for the first time inside a reaction.

Meta-reactions have a CRN-like syntax of the form reactants >> products [rate spec]. The rate spec can be a (non-negative) real or a function whose parameters are the meta-species reactants, and that returns a real or a string. In the case of a (returned) real, the reaction rate follows mass-action kinetics, with the real being the rate constant. In the case of a returned string, one can define different kinetics in terms of concentrations of species/characteristics of the reactants. Meta-reactions can define multiple reactions in the CRN, as they act upon all the species from the meta-species. As an example,we give a list of all CRN reactions generated by the meta-reactions of the Tree model in the appendix.

To assign different death rates for old and young trees, we make use of a rate spec in terms of a function that returns the respective rate-constant (see code line 5), and the special base-species Zero that contains no species. Multiplication (see code line 6) is used to combine base-species and metaspecies into more complex meta-species. The product meta-species inherits all characteristics and reactions from its factors. In our example, Tree contains twelve species (see Figure 1b). Further, the product meta-species inherits the meta-reactions of its factors. Therefore, Tree receives the aging reactions from Ager and the death reactions from Mortal. This allows to significantly simplify the model: only one death and aging meta-reaction need to be specified for all the model's species. Within reactants, the dot operator is used to query for species inside metaspecies, making it possible to assign reactions to only the preferred sub-set. Queries can be composed arbitrarily and independently of order. It is further possible to query over a string value stored inside a variable, say s, using species.c(s). In our example, we make use of queries to specify the color-cycle exhibited by the leaves: Unlike in reactions of a CRN, order of products and reactants matters in meta-reactions: In the competition meta-reaction (code line 12), Tree.old wins the competition against Tree.young and becomes Tree.old. MobsPy, by default, uses a round-robin order, where products cycle through the list of available reactants from the same meta-species. Alternatively, labels can be used to explicitly declare which reactant becomes which product.

The initial count of the default species within a meta-species S is set via S(i), where i is either an integer count, or a real-valued concentration with respective units. Here, the default species is the species with the first characteristic added to each meta-species from which it inherits. For example, in the Tree model, Tree(50) assigns the count 50 to Tree.green.dense.young. To assign counts to other species, one can add more characteristics. A simulation object of the species in the meta-species Tree is finally constructed by: 18 MySim = Simulation(Tree)

The simulation can then be parametrized with solver parameters (stochastic and ODE), plotting options, and data export options. As a backend, MobsPy generates SBML models [START_REF] Hucka | and the rest of the SBML Forum. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models[END_REF] and runs simulations using BasiCO. Simulation results can be accessed directly in Python or exported as JSON files. Examples for default stochastic plots are shown in Figure 1c. The plots can be easily configured via a Python dictionary, where a single parameter can be set for all figures, for individual figures, or for each curve in a hierarchical fashion. For a detailed description of the modeling, simulation, and plotting features of MobsPy, we refer the reader to the GitHub repository [START_REF] Cravo | MobsPy[END_REF]. It contains several examples like a simple reaction A + B >> 2*C + D, a Hill function model of a genetic oscillator, a bacteria-phage system, a bacteria and phage random walk, a simple repressor, a toggle switch, genetic gates such as the NOR and AND gates, an example for the hierarchical plot structure and tutorial models.

In the next section, we demonstrate the modeling capabilities of MobsPy at the hand of a real-world synthetic design from literature [START_REF] Clamons | Modeling dynamic transcriptional circuits with CRISPRi[END_REF].

Genetic circuits with MobsPy: the CRISPRlator

To show that MobsPy is well-suited to model genetic circuits, we modeled the CRISPRlator, a CRISPRi oscillator proposed by Santos-Moreno, Tasiudi, Stelling, and Schaerli [START_REF] Santos-Moreno | Multistable and dynamic CRISPRi-based synthetic circuits[END_REF]. The circuit is a CRISPRi-based repressilator where each gRNA represses the next gRNA-encoding gene in a cyclic manner. The model is shown below, with reaction rates taken from Clamons and Murray [START_REF] Clamons | Modeling dynamic transcriptional circuits with CRISPRi[END_REF]. The code to run ODE simulations over a range of 650 h is shown in Figure 2a. The resulting plot is depicted in Figure 2b. 

Conclusions

We presented MobsPy, a simple CRN programming language to simplify the modeling of complex biochemical reaction networks. The simulator creates SBML code and uses BasiCO/COPASI as a stochastic and ODE solver. We discussed MobsPy's features at the hand of a Tree toy example and a real-world genetic design, with succinct model descriptions instead of a direct specification as CRNs (12 species and 45 reactions for the Tree and 13 species and 32 reactions for the CRISPRi model). MobsPy is open-source (MIT license) and easy to install through pip or via the git repository.
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  Ager, Mortal, Colored, Location = BaseSpecies(4) 2 Colored.green, Colored.yellow, Colored.brown 3 Location.dense, Location.sparse 4 Ager.young >> Ager.old [0.1/ u.year]
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  Mortal >> Zero [lambda r1: 0.1/ u.year if r1.old else 0] 6 Tree = Ager*Colored*Mortal*Location

Fig. 1 :

 1 Fig. 1: (a) System dynamics: schematic representation of all the reactions in the Tree model, which are aging, reproduction, color cycle, and competition. (b) Meta-species Tree created by multiplication of the three base-species Ager, Location, and Colored. One of the twelve species generated, Tree.brown.sparse.young, has been labeled. (c) MobsPy default plots after simulating the Tree model (n = 3 stochastic runs). In the top row of the panel individual runs are shown. The bottom plots depicts mean and standard deviation.

7 # color cycle 8 colors

 78 = ['green','yellow','brown'] 9 for color, next_color in zip(colors, colors[1:] + colors[:1]): 10 Tree.c(color) >> Tree.c(next_color) [10/ u.year] 11 # competition 12 Tree.dense.old + Tree.dense.young >> Tree.dense.old 13 [1e-10*u.decimeter/ u.year] 14 # replication 15 Tree.old >> Tree + Tree.green.young [0.1/ u.year]

16 # initial conditions 17 Tree

 17 .dense(50),Tree.dense.old(50),Tree.sparse(50),Tree.sparse.old(50)

1 3 DNAPro

 3 Promoter, dCas, CasBinding = BaseSpecies(3) 2 Promoter.active, Promoter.inactive, CasBinding.no_cas, CasBinding.cas 'g1', 'g2', 'g3'] 6 Promoters_list = ['P1', 'P2', 'P3']

7 8

 7 rev_rt = (1.8e-3/(u.nanomolar * u.second), 2.3e-2/ u.minute)

  20 for prom, grna in zip(Promoters_list, gRNA_rep_List): 21 dna_rt1 = 1.2e-2 * u.liter/ (u.nanomoles * u.second) 22 dna_rt2 = 2.3e-2/ u.minute 23 DNAPro.active.c(prom) + gRNA.cas.c(grna) >> DNAPro.inactive.c(prom)[dna_rt1] 24 DNAPro.inactive.c(prom) >> 2 * DNAPro.active.c(prom) + gRNA.cas.c(grna)[dna_rt2] 25 26 Rev[Zero >> dCas][1/ u.minute, 2.3e-2/ u.minute] 27 28 DNAPro.active.P1(1), DNAPro.active.P2(1), DNAPro.active.P3(1) 29 gRNA.no_cas.g1(0), gRNA.no_cas.g2(40*u.nanomolar), gRNA.no_cas.g3(1*u.nanomolar) 30 dCas(43*u.nanomolar) 31 32 MySim = Simulation(gRNA | DNAPro | dCas) 33 MySim.volume = 1*u.femtoliter

Fig. 2 :

 2 Fig. 2: (a) Code for simulating the CRISPRlator model and generating default plots. (b) CRISPRlator simulation results.

⋆ Supported by the ANR project DREAMY (ANR-21-CE48-0003) and the CNRS project BACON.

A Comparison of meta-reactions and reactions for the Tree model

In the following we list the MobsPy meta-reactions for the Tree model in Section 2 along with their corresponding CRN reactions.

Ager.young >> Ager.old

Tree.old >> Tree + Tree.green.young

Tree.dense.old + Tree.dense.young >> Tree.dense.old

Tree.c(color) >> Tree.c(next color)