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We propose a new active learning algorithm for PDFA based on three main aspects: a congruence over states which takes into account next-symbol probability distributions, a quantization that copes with differences in distributions, and an efficient tree-based data structure. Experiments showed significant performance gains with respect to reference implementations.

Introduction

We are interested in the problem of efficiently learning probabilistic deterministic finite automata (PDFA) in the context of the general active MAT-learning framework proposed in [START_REF] Angluin | Learning regular sets from queries and counterexamples[END_REF] where a learner and a so-called minimum adequate teacher interact by asking and responding questions, respectively. The learner's purpose is to unveil the hidden target automaton only known to the teacher. The latter allows the former to ask two kinds of questions, namely membership (MQ) and equivalence (EQ) queries.

MQ seeks to discover the automaton's outcome for a particular string. Originally, the purpose of MQ is to know whether a string belongs to the language to be learnt or, equivalently, whether it is accepted by the associated automaton. This name has been kept in later applications to other classes of automata. In [START_REF] Beimel | Learning functions represented as multiplicity automata[END_REF][START_REF] Bergadano | Learning behaviors of automata from multiplicity and equivalence queries[END_REF], the framework is used to prove learnability of multiplicity automata which compute functions mapping strings to elements of a field. In this case, the name MQ is retained even when the answer is the value of the computed function, which may not be Boolean. The same approach is followed in [START_REF] Weiss | Learning deterministic weighted automata with queries and counterexamples[END_REF] where MQ is used to refer to the function that returns the probability of the last symbol in a string.

EQ provides means for determining to what extent the hypothesis automaton produced by the learner approximates the target one. In the case of exact learning, this query checks whether they both produce the same outcome to MQ for all strings. When MQ are not binary, such as for PDFA, it could be useful to relax equality in order to learn similar hypotheses that tolerate small discrepancies. For instance, in [START_REF] Clark | PAC-learnability of probabilistic deterministic finite state automata[END_REF][START_REF] Tappler | L*-based learning of markov decision processes (extended version)[END_REF][START_REF] Weiss | Learning deterministic weighted automata with queries and counterexamples[END_REF] equality is replaced by a similarity relation. However, that similarity relation is not an equivalence as it lacks transitivity.

In the context of DFA, it is known that using appropriate data structures, such as trees, and efficiently processing counterexamples lead to significant gains in terms of computation time [START_REF] Isberner | The TTT algorithm: A redundancy-free approach to active automata learning[END_REF][START_REF] Kearns | An Introduction to Computational Learning Theory[END_REF]. To the best of our knowledge, these approaches have not yet been explored for active learning of PDFA. The algorithms proposed in [START_REF] Beimel | Learning functions represented as multiplicity automata[END_REF][START_REF] Kaznatcheev | Weighted automata are compact and actively learnable[END_REF] rely on MQ that compute the probability of a string and on an observation table to store the results. In [START_REF] Tzeng | Learning probabilistic automata and markov chains via queries[END_REF], MQ return state distributions, that is, the probability that the target probabilistic automaton enters a state after reading an input string. This requires knowing the number of states of the target in advance. These works focused on theoretical results without implementations of them being publicly available. In [START_REF] Feng | Learning-based compositional verification for synchronous probabilistic systems[END_REF], learning PDFA is a building block of an assume-guarantee framework for verification of probabilistic systems. MQ asks for the probability of accepting a string and results are stored in an observation table. However, the overall goal is not to learn a PDFA equivalent to a hidden target but only an appropriate assumption for doing a compositional proof of correctness. To achieve this, the algorithm uses an EQ that relies on language inclusion of PDFA and probabilistic model-checking. All these works rely on exact equality of MQ outcomes. To deal with noise in distributions, WL * [START_REF] Weiss | Learning deterministic weighted automata with queries and counterexamples[END_REF] proposes a non-equivalence similarity relation between probability distributions and develops an algorithm to learn similar hypotheses according to it. Note that WL * uses clustering to group responses to MQ stored in the table.

Based on these observations, we formulate a learning framework for PDFA where the teacher's answers to MQ are probability distributions over the symbols a string could be continued with. These are called next-symbol probability distributions. Besides, in the case the learner is allowed to produce hypotheses whose next-symbol probability distributions are approximations of the target ones, we propose to resort to quantization as an abstraction which allows us to define a coarser equivalence relation than the latter. This ensures the learnt automaton to be equivalent to the target one modulo this relation. Finally, we propose and implement QuaNT, a learning algorithm for PDFA that uses an adaptation of the tree structure of [START_REF] Kearns | An Introduction to Computational Learning Theory[END_REF]. In order to assess its performance, we compared QuaNT to a clustering-based algorithm that uses an observation table and a tolerance-based non-equivalence similarity relation, similar to WL * . The experiments carried out showed that QuaNT was orders of magnitude more efficient.

The paper is organized as follows. Section 2 gives core definitions and results of interest. Section 3 presents our PDFA learning algorithm QuaNT. Section 4 discusses experimental results. Section 5 summarizes the contributions.

PDFA

Let Σ be a finite alphabet and Σ $ to be the set Σ ∪ {$}, where $ is a special terminal symbol not in Σ. ∆(Σ $ ) is probability simplex over Σ $ . A PDFA A over Σ is a tuple (Q, q in , π, τ ), where Q is a finite set of states, q in ∈ Q is an initial state, π : Q → ∆(Σ $ ) associates a probability distribution over Σ $ to each state, and τ : Q × Σ → Q is the transition (total) function. Fig. 1(a-b) depicts an example. Let P q be the probability distribution over Σ * , such that P q = P (s|q) is the probability of s ∈ Σ * from state q ∈ Q, defined as:

P (λ|q) = π(q)($), λ is the empty string, P (σs|q) = π(q)(σ) • P (s|τ (q, σ)), σ ∈ Σ, s ∈ Σ * A PDFA A computes a function f A from Σ * to [0, 1]
. For any string s ∈ Σ * , f A (s) = P qin (s). For instance, the PDFA in Fig. 1 maps the empty string λ to 0 and every string a n , n ≥ 1, to 0.5 n . We define τ * (q, s) to be the natural extension of τ to strings, that is, the state reached by A when going through s starting at state q: τ * (q, λ) = q τ * (q, σs) = τ * (τ (q, σ), s)

Similarly, we define π * (s|q) to be the probability distribution of the state reached by A when going through s from state q:

π * (s|q) = π(τ * (q, s))

We denote by τ * (s) and π * (s) the state reached when going through s from the initial state q in and the associated distribution, respectively.

State equivalence

We define the relation ≡ as follows: for every q, q ∈ Q, q ≡ q if for every s ∈≡, π * (s|q) = π * (s|q ). Clearly, ≡ is an equivalence relation between states. Proposition 1.

∀q 1 ≡ q 2 ∈ Q, 1) π(q 1 ) = π(q 2 ), and 2) ∀σ ∈ Σ, τ (q 1 , σ) ≡ τ (q 2 , σ). That is, ≡ is a congruence. It follows that ≡ induces a quotient PDFA A/ ≡ = (Q/ ≡ , [q in ] , π/ ≡ , τ / ≡ ),
where Q/ ≡ is the set of equivalence classes, [q] ∈ Q/ ≡ denotes the class of q ∈ Q, and for any q ∈ Q, the probability distribution is π/ ≡ ([q]) = π(q), and the transition function is τ / ≡ ([q] , σ) = [τ (q, σ)] for any σ ∈ Σ.1 Proposition 2. For every PDFA A, A/ ≡ computes the same function as A.

Therefore, ≡ can be extended to PDFA. For every PDFA A and B, A ≡ B if their respective initial states q A in and q B in are equivalent, that is,

q A in ≡ q B in . Corollary 1. A ≡ B implies f A = f B .
The converse does not hold in general.

Minimality

A PDFA is minimal if any other PDFA that computes the same function has no less states [START_REF] Beimel | Learning functions represented as multiplicity automata[END_REF]. The simple PDFA in Fig. 1 is minimal since clearly the function cannot be computed by a PDFA with a single state. Based on ≡ we define a weaker notion of minimality as follows. A PDFA A is said to be weakly minimal if for every q, q ∈ Q, q ≡ q .By definition, for every PDFA A, A/ ≡ is weakly minimal. Proposition 3. Every minimal PDFA A is also weakly minimal. The converse does not hold in general.

An example of Proposition 3 is the PDFA in Fig. 1. However, the converse is not true, that is, there are weakly minimal PDFA which are not minimal. Consider for instance PDFA A and B in Fig. 2. We have that f B ((ab

) n+1 ) = (0.1 • 0.2)(0.2 • 0.1) n • 0.3 = (0.1 • 0.2) n+1 • 0.3 = f A ((ab) n+1
), for n ≥ 0. For any other string s = (ab) n+1 , f A (s) = f B (s) = 0. Hence, A and B compute the same function. Moreover, they are both weakly minimal because π * (λ|q) = π * (λ|q ) for every pair of states q, q ∈ Q, for each one of the automata, respectively. But B is certainly not minimal because it has more states than A. This example also shows that f A = f B does not entail A ≡ B.

Similarity of distributions

The equivalence defined above is not robust in the sense that two states whose probability distributions differ very slightly are not equivalent. Consider the PDFA A ε (c) in Fig. 1, where ε ∈ (0, 0.5]. It maps every string a n , n ≥ 1, to (0.5 -ε) n-1 (0.5 + ε). This PDFA is not equivalent to PDFA A in Fig. 1. However, f Aε tends to f A as ε tends to 0. Moreover, π(q 1 ) tends to π(q 1 ). Previous works have addressed this issue by introducing a tolerance parameter t. In [START_REF] Weiss | Learning deterministic weighted automata with queries and counterexamples[END_REF], states are compared using the probability of the last symbol of a non-empty string defined as:

π q (sσ) = π * (s|q)(σ) where σ ∈ Σ $ , s ∈ Σ * , q ∈ Q (1)
It is said that q, q are t-equal,

for t ∈ [0, 1], denoted q ≈ t q , if L ∞ (π q , π q ) ≤ t where L ∞ (v, v ) = max x |v(x) - v (x)|. PDFA A and B are t-equal, denoted A ≈ t B, if q A in ≈ t q B
in . However, this approach does not lead to an equivalence relation between states. That is why, to cope with small perturbations in probabilities while preserving equivalence between states, we propose to resort to a quantization defined over π * as follows.

Let κ ∈ N, κ ≥ 1, be a quantization parameter. For n ∈ N, 0 ≤ n < κ -1, we define I n κ to be the left-closed right-open interval nκ -1 , (n + 1)κ -1 , and for n = κ -1, the closed interval nκ -1 , 1 . Now, for every real number x ∈ [0, 1], we define x κ = I n κ such that x ∈ I n κ . For instance, for κ = 2, we have the quantization [0, 0.5), [0.5, 1]. Two numbers x, y ∈ R are κ-equivalent, denoted x = κ y if x κ = y κ . This definition extends naturally to ∆(Σ $ ). We denote ∆(Σ $ ) κ the partition of ∆(Σ $ ) induced by κ. For δ ∈ ∆(Σ $ ), δ κ is called the quantization vector of δ. For example, (0.1, 0.3, 0.6) 2 = (I 0 2 , I 0 2 , I 1 2 ). Being = κ an equivalence relation, we can define a quantized version of ≡ as follows: q ≡ κ q if for every s ∈ Σ * , π * (s|q) = κ π * (s|q ). This induces a unique quotient over states Q/ ≡κ . Moreover, ≡ κ can be extended to PDFA: for every PDFA A and B, A ≡ κ B if q A in ≡ κ q B in . This allows extending the notion of weakly minimality defined over ≡ to ≡ κ : A is said to be κ-weakly minimal if for every q, q ∈ Q, q ≡ κ q . However, unlike ≡, its quantized version ≡ κ does not induce a unique quotient PDFA because π/ ≡κ ([q] κ ) can be any distribution in π(q) κ . Therefore, we define

A/ ≡κ = {B | A ≡ κ B ∧ |Q A / ≡κ | = |Q B |}
, that is, the set of κ-weakly minimal PDFA which are κ-equivalent to A.

To illustrate quantization, consider the PDFA A (a) and A ε (c) in Fig. 1. Suppose ε ∈ (0, 0.1). For κ = 5, we have the quantization [0, 0.2), . . . , [0.8, 1]. Then, π(q 1 )(a) 5 = I 2 5 = [0.4, 0.6) = π(q 1 )(a) 5 , since 0.4 < 0.5 -ε < 0.5, and π(q 1 )($) 5 = I 2 5 = [0.4, 0.6) = π(q 1 )($) 5 , since 0.5 < 0.5 + ε < 0.6. Thus, we have that q i ≡ 5 q i . Hence, A ≡ 5 A ε . Proposition 4. For every q, q , if q ≡ κ q then q ≈ κ -1 q .

PDFA Learning: QuaNT

QuaNT is a learning algorithm that constructs a PDFA by interacting with a teacher which makes use of oracles MQ QuaNT and EQ QuaNT . It has three major differences with WL * . First, MQ QuaNT returns the next-symbol probability simplex of a string, that is MQ QuaNT (s) = π * (s) for s ∈ Σ * ; while MQ WL * (s) returns π qin (s), where π is defined in [START_REF] Angluin | Learning regular sets from queries and counterexamples[END_REF]. Second, it relies on quantization rather than on tolerance for comparing probability distributions. Since our quantization method induces a congruence, there is no need for clustering states. Third, along the lines of [START_REF] Kearns | An Introduction to Computational Learning Theory[END_REF] and [START_REF] Isberner | The TTT algorithm: A redundancy-free approach to active automata learning[END_REF] algorithms, QuaNT builds a classification tree instead of a table. Similarly to these algorithms, tree leafs are PDFA states identified by so-called access strings and inner nodes are distinguishing suffixes. Nevertheless, in QuaNT the tree is not binary but n-ary, where n is the number of different classes which ∆(Σ $ ) is partitioned into, and tree arcs and leafs are labelled with elements of ∆(Σ $ ) κ and ∆(Σ $ ), respectively. N-ary classification tree Given s ∈ Σ * , we denote [s] κ the class of the state reached by traversing s in the target PDFA A, i.e., [τ * (s)] κ . Hereinafter, we omit the quantization parameter κ when clear from context. The tree T Acc,Dis maintains a set Acc of access strings and a set Dis of distinguishing strings where for every pair of distinct strings s, s ∈ Acc: [START_REF] Angluin | Learning regular sets from queries and counterexamples[END_REF] [s] = [s ], (that is, τ * (s) ≡ κ τ * (s )), and (2) ∃d ∈ Dis s.t. π * (sd) = κ π * (s d). The distinguishing string that labels the root of the tree is always λ which is also an access string, so that the initial state of the PDFA can be accessed. Proposition 5. The number of leaves of T is at most |Q/ ≡κ |. Fig. 3 (left) shows an example of n-ary classification tree. The quantization parameter is κ = 10. Tree leafs correspond to the states of the PDFA shown on the right, identified with their associated access strings: Acc = {λ, 0, 1, 10}. Every leaf is labeled with a vector corresponding to the probability distribution of the state, where the first element is the probability of $, the second element is the probability of 0, and the last element is the probability of 1. For example: π(q λ ) = (0, 0.5, 0.5). Tree arcs are labeled with quantization vectors. To simplify the visualization, only partition indexes are shown. For instance, (0, 5, 5) corresponds to the quantization vector (I 0 10 , I 5 10 , I 5 10 ). The root λ of the tree has an arc for each one of the classes in which quantization partitions the set of probability distributions of the states of the PDFA. In the example, there are three, namely quantization vectors (0, 5, 5), [START_REF] Angluin | Learning regular sets from queries and counterexamples[END_REF][START_REF] De La Higuera | Grammatical Inference: Learning Automata and Grammars[END_REF][START_REF] Bergadano | Learning behaviors of automata from multiplicity and equivalence queries[END_REF], and (1, 3, 6), corresponding to distributions (0, 0.5, 0.5), (0.1, 0.6, 0.3), and (0.1, 0.3, 0.6), respectively. The tree explains that states q λ and q 1 are not equivalent, i.e., [λ] = q λ ≡ q 1 = [1], because π * (λ|q λ ) = π(q λ ) = π(q 1 ) = π * (λ|q 1 ), and they are distinguished by λ ∈ Dis. They are also not equivalent to q 0 and q 10 for the same reason. These two states, which have the same probability distribution, are indeed distinguished by the string 1 ∈ Dis because π * (1|q 0 ) = π(q 10 ) = π(q 1 ) = π * (1|q 10 ).

Finding the class of a state (sifting) Given a string s ∈ Acc, the tree allows to efficiently determine its class To this end, we define the sifting operation as follows. Sift starts at the root of T . Let d ∈ Dis be the distinguishing string at the current node of the tree. In this case, we perform a membership query to get MQ QuaNT (s d) and then we descend to the subtree labeled with such quantization vector. Sift continues in this manner until a leaf s ∈ Acc is reached, in which case, [s] = [s ]. If there is no arc labeled with the same quantization vector, we have discovered a new class and must update the tree (sift-update) by adding s to Acc with probability MQ QuaNT (s ) and a new arc (d, MQ QuaNT (s d) , s ). Sifting can be efficiently implemented because the number of membership queries is bounded by the depth of T , and finding quantization vectors and asking membership queries can be cached to minimize the number of vector comparisons and queries to the target system, respectively.

Building a tentative hypothesis A Given a tree T , it is easy to construct A using sift. Each state of A is uniquely identified with an access string in Acc. For each state q s , s ∈ Acc, and symbol σ ∈ Σ, τ (q s , σ) = q s , where s = sift(sσ), and π(q s ) is the probability distribution associated with the leaf node s. In the case that sift generates an update, the building process is restarted. Because of Prop. 5, this eventually terminates. Moreover, by construction, A is a PDFA.

Equivalence queries For EQ QuaNT we use an adaptation of Hopcroft-Karp where states are compared as follows: π( q) κ = π(q) κ , where q is a state of the target PDFA A and q is a state of the hypothesis PDFA A.

Processing a counterexample Let γ be a counterexample returned by EQ QuaNT , that is π * A (γ) = κ π * A (γ). Let γ i be the i-th symbol of γ, γ[i] be the prefix of γ of length i, i.e., γ[i] = γ 1 ...γ i , s i = sift(γ[i]), and s i the string associated to the state τ * A (γ[i]). Let 1 ≤ j ≤ |γ| be the first index such that s j = s j . This means that [ s j ] = [s j ] and s j-1 = s j-1 , but the states reached by A and A after traversing γ[j -1] are not equivalent since when continued with γ j they reach non-equivalent states. That is, [s j-1 ] = [γ[j -1]]. Therefore, T has to be updated by adding a new leaf node γ[j -1] representing the newly discovered class. Then, γ[j -1] is added to Acc. Now, let d ∈ Dis be the least common ancestor in T of s j and s j . Then γ j d is a distinguishing string for s j-1 and γ[j -1]. In terms of tree operations, the leaf s j-1 is replaced by an inner node γ j d and two children, namely s j-1 and γ[j -1].

Complete algorithm Algorithm 1 shows QuaNT pseudocode. The algorithm begins by executing BuildSin-gleStatePDFA which creates an initial hypothesis A, with a single state q λ with a loop for each symbol and executes

Experiment 2

In this experiment 10 random PDFA of nominal size n = 100 were generated for alphabet size m = 2, 4, 8, 16, 32. We compared QuaNT and L * p with κ = 1000 and t = κ -1 . Each algorithm was run 10 times for each PDFA. Fig. 5a shows the learning time medians for every alphabet size. As it can be seen L * p seems to be more sensitive to the growth in the alphabet size.

Experiment 3

In this experiment, we compare the algorithms for different values of tolerance and quantization parameter: κ = 10, 100, 500, 1000, 2000, 3000, with t = κ -1 . For every parameter configuration 10 random PDFA of nominal size n = 300 and alphabet size m = 2 were generated, and each algorithm was run 10 times for each PDFA. Fig. 5b shows the median learning times. As it can be seen both algorithms appear to stabilize its execution time after some parameters sizes (κ = 500, t = 1/1000).

Experiment 4

Here, QuaNT was evaluated on bigger nominal sizes n = 1000, 2000, 5000, fixing κ = 1000 and m = 2. For every parameter configuration, 10 random PDFA were generated and each algorithm was run 10 times for each PDFA. Fig. 6b shows median learning times. Clearly, QuaNT still manages to learn PDFA from systems that are intractable for L * p . Assuming a linear speedup of 0.2n from Experiment 4.1, the learning time of a PDFA of size 5000 would be almost a month for L * p .

Experiment 5

In previous experiments it is noted that nearly all states in the randomly generated PDFA have distinct next symbol distributions, that is, most states are distinguished by λ, thus producing shallow tree structures (depth 1 or 2 QuaNT maintains similar sizes to those observed in experiment 1 (Fig. 7b).

Conclusions

We defined a robust notion of similarity of states in PDFA based on a congruence over states and a quantization of their probability distributions. This induces a precisely defined inductive bias for PDFA learning as a set of quantized weakly minimal PDFA. Based on this, we developed a new PDFA active MAT-learning algorithm called QuaNT which uses an n-ary tree to efficiently learn a PDFA in the hypothesis space. In order to empirically assess the efficiency of QuaNT, we presented an adaptation of WL * , namely L * p , which works with a non-equivalence similarity relation over distributions and an observation table. Algorithms were compared on a number of randomly generated PDFA. The experiments confirmed notable execution time gains achieved by QuaNT.

Proof of Proposition 2 Clearly, for all q, q ∈ Q, if q ≡ q then P (s|q) = P (s|q ) for every s ∈ Σ * . Hence, P (s| [q in ]) = P (s|q in ).

Proof of Proposition 3 Suppose that A is not weakly minimal. Then, there are states in A which are equivalent. Thus, A/ ≡ , which computes the same function as A, has strictly less states than A, which contradicts the hypothesis.

Proof of Proposition 4 q ≡ κ q implies π * (s|q) = κ π * (s|q ) for all s ∈ Σ * . Therefore, π q (sσ) = κ π q (sσ) for all s ∈ Σ * , σ ∈ Σ $ . Then, |π q (sσ) -π q (sσ)| ≤ κ -1 for all s ∈ Σ * , σ ∈ Σ $ . Hence, q ≈ κ -1 q . 

Proof of

Proof of Proposition 6

Termination First notice that all inner operations terminate. Second, when a counterexample is returned, the number of leaves of T increases by at least 1. Therefore by Proposition 5 and the fact that |Q/ ≡κ | ≤ |Q|, QuaNT terminates. Correctness When QuaNT terminates, the hypothesis A constructed is such that Q = Q/ ≡κ , π = π/ ≡κ , τ = τ / ≡κ . Therefore A ≡ κ A.
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  [s ]. That means either finding an access string s ∈ Acc such that [s ] = [s] or creating a new class by adding s to Acc.
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  ). In order to analyze cases where states share next symbol distributions we parameterized the PDFA random generation by a number d of distributions to use. The algorithm first randomly generates a set of d distributions and then labels each state by uniformly picking one in this set. Regarding structure sizes, L * p 's observation table grows bigger than previous experiments, being negatively affected by smaller values of d. However

For this experiment, 10 random PDFA over a binary alphabet (m = 2) of nominal size n = 300 were generated for different values of d (ranging from 2 to 16). Each algorithm was run 10 times for each PDFA. For QuaNT, κ = 1000, and for L * p , t = κ -1 (Prop 4). Fig.

7a

shows learning time medians for every d value. Notably, L * p execution time still grows faster than QuaNT's. The only case where QuaNT achieves worse learning time than L * p is for d = 2. Otherwise, QuaNT significantly benefits from the increase in d.

This quotient is different from[START_REF] Thollard | Probabilistic DFA inference using Kullback-Leibler divergence and minimality[END_REF] defined by a partition resulting from merging states according to a compatibility criterion which is not an equivalence relation.
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MQ QuaNT (λ) to get the probability distribution for the state. Then, it calls EQ QuaNT ( A, κ), which either returns ⊥ and terminates or a counterexample γ enabling the initialization of the tree. The first tree T has a root labeled with the distinguishing string λ and two children, one with the access string λ and the other with the counterexample γ. Once T is initialized, the main loop of the algorithm begins. It consists in using T to build a PDFA A, then using EQ QuaNT to compare it with the target PDFA A. If a counterexample is returned, T is updated, resulting in new states being discovered. Otherwise it means all states in Q/ ≡κ have been found which implies A ≡ κ A. Proposition 6. For any PDFA A, QuaNT terminates and computes a PDFA A ∈ A/ ≡κ .

Experiments

In this section we present the results of the experiments carried out to compare QuaNT with a clustering-based algorithm that uses an observation table and a tolerance-based non-equivalence similarity relation, similar to WL * , that we call L * p (see Appendix A). We compared the learning algorithms on randomly generated PDFA. The generation technique works in two steps. First, it constructs random DFA over Σ. Second, DFA are transformed into PDFA by assigning a probability distribution over Σ $ to every state. The first step uses the method described in [START_REF] Nicaud | Random deterministic automata[END_REF] based on results from [START_REF] Carayol | Distribution of the number of accessible states in a random deterministic automaton[END_REF]. Let n be the desired number of reachable states of a DFA, called its nominal size. The method consists in randomly generating DFA of a total of n • m • ρ -1 m possibly unreachable states, for m = |Σ|, where

and W 0 is the Lambert-W function, and then computing its accessible part by a depthfirst traversal. It is important to remark that this method does not guarantee the actual size of the accessible part to be exactly n, but to be normally distributed around n. To obtain exactly n accessible states, the method could be repeated using a rejection algorithm. However, in practice, this proved to be very inefficient, being almost impossible to generate DFA of accessible size bigger than 100 in reasonable time. All experiments threw perfect scores for all computed metrics (word error rate, normalized discounted cumulative gain, log probability error [START_REF] Weiss | Learning deterministic weighted automata with queries and counterexamples[END_REF]) for all algorithms on the same test set of strings. Therefore, the analyses of the experimental results are mainly focused on execution time and structure size. For ease of comparison, figures show trend lines.

Experiment 1

In this experiment we compared QuaNT and L * p . For this, 10 random PDFA over a binary alphabet (m = 2) of nominal sizes n = 100, 200, 300 were generated, and each algorithm was run 10 times for each PDFA. For QuaNT κ = 1000, and for L * p , t = κ -1 (Prop 4). Fig. 4a shows learning time medians for every actual size. Notably, L * p execution time grows much faster than QuaNT's. Indeed, QuaNT achieves a speedup of approximately 0.2n, reaching around 60x for the biggest PDFA (see Fig. 6a). This experiment also showed that the size of L * p 's observation table grows bigger than QuaNT's tree which partly explains the gains in execution time (Fig. 4b).

A L * p

Here we present L * p , a variant of WL * [START_REF] Weiss | Learning deterministic weighted automata with queries and counterexamples[END_REF]. Similarly, it uses an observation table O P re,Suf for storing outcomes of MQ L * p , where P re ⊂ Σ * is the set of prefixes (stored in row indices) and Suf ⊂ {$} ∪ Σ + is the set of suffixes (stored in column indices). For every p ∈ P re and s ∈ Suf , O P re,Suf [p, s] = MQ L * p (ps) = π qin (ps), where π is defined in [START_REF] Angluin | Learning regular sets from queries and counterexamples[END_REF]. Unlike WL * , P re is divided in two parts [START_REF] De La Higuera | Grammatical Inference: Learning Automata and Grammars[END_REF], namely RED which are the rows used to construct states, and BLUE which are the rows representing continuations. The algorithm ensures that for every row in RED all its continuations are in P re. L * p consists of three main steps. The first one expands O P re,Suf through the use of MQ L * p until it becomes closed and consistent. The second one constructs a hypothesis automaton using a greedy clustering technique rather than DBScan. The third one calls EQ L * p with the proposed hypothesis. For this we adapted Hopcroft-Karp algorithm for checking t-similarity. When A and A are found to be not t-similar, EQ L * p returns a counterexample which is added to RED together with all its prefixes, and all their continuations to BLUE (provided they are not already in RED). These steps are repeated as long as EQ L * p yields a counterexample, otherwise it stops and returns the last hypothesis.

B Proofs

Proof of Proposition 1 1. By hypothesis, π * (λ|q 1 ) = π * (λ|q 2 ). By definition, π * (λ|q i ) = π(q i ), i = 1, 2. Therefore, π(q 1 ) = π(q 2 ).

2. By hypothesis, ∀s ∈ Σ * , π * (σs|q 1 ) = π * (σs|q 2 ). By definition, π * (σs|q i ) = π * (s|τ (q i , σ)), i = 1, 2. Thus, ∀s ∈ Σ * , π * (s|τ (q 1 , σ)) = π * (s|τ (q 2 , σ)). Hence, τ (q 1 , σ) ≡ τ (q 2 , σ).