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The contact angle of a liquid drop moving on a real solid surface depends on the speed and direction
of motion of the three-phase contact line. Many experiments have demonstrated that pinning on
surface defects, thermal activation and viscous dissipation impact contact line dynamics, but so far
efforts have failed to disentangle the role of each of these dissipation channels. Here, we propose a
unifying multi-scale approach that provides a single quantitative framework. We use this approach
to successfully account for the dynamics measured in a classic dip-coating experiment performed
over a unprecedentedly wide range of velocity. We show that the full contact line dynamics up to
the liquid film entrainment threshold can be parametrized by the size, amplitude and density of
nanometer-scale defects. This leads us to reinterpret the contact angle hysteresis as a dynamical
cross-over rather than a depinning transition.

PACS numbers:

When a liquid drop spreads on a solid surface, shear
flow in the meniscus creates viscous dissipation that
causes the apparent contact angle θM at the macroscopic
scale to shift from its static value θY [1]. Due to the di-
vergence of the viscous shear stress at the contact line,
each decade of length scale down to the molecular size
contributes equally to this dissipation. This problem has
been thoroughly studied and its understanding has now
reached a consensual agreement [2, 3]. Integrating the
meniscus profile from the molecular scale, where the mi-
croscopic contact angle θµ is assumed to be at equilib-
rium, up to the macroscopic boundary condition – which
can be a reservoir, a drop, a channel – provides a relation
between θM and the capillary number Ca ≡ ηU/γ, which
is the contact line velocity U normalized by the liquid-
vapor surface tension γ and the liquid viscosity η [4, 5].
This purely hydrodynamic approach fails to account for
the logarithmic time-relaxation of the contact angle fre-
quently observed at low velocity [6–9]. In a seminal paper
by Blake [10], it was first suggested that even the molecu-
lar discreteness of a solid could generate a rugged energy
landscape [11] and cause the contact line dynamics to be
thermally activated. Kramers theory predicts that ther-
mal activation yields a relation between the contact line
velocity and the microscopic contact angle θµ of the form:

|Ca| ∝ exp

[
γ`2 |cos θµ − cos θY |

kBT

]
(1)

where kB is the Boltzmann constant, T the temperature
and ` a characteristic length of activation [12]. Direct ex-
perimental evidence of this temperature-dependent acti-
vation over nano-scale defects present on the solid surface
was obtained by [6]. It has also been proposed that the
pinning and depinning events at work in the activated
motion of the contact line could also be responsible for
the contact angle hysteresis [13–15].

Contact angle dynamics is thus a demanding multi-
scale problem. Despite several attempts [8, 9, 16, 17], 
this phenomenon is lacking a unifying picture capable 
of accounting for both viscous dissipation (acting at all 
scales) and activated dynamics (acting at the nanometer 
scale). Furthermore, thermal activation has neither been 
rigorously related to the defects of the solid surface, nor 
to the wetting hysteresis.

Here, we propose a unified description that combines 
a hydrodynamic description of the liquid flow at large 
scales and a Langevin description of the contact line mo-
tion at the nano-scale. We have studied both theoreti-
cally and experimentally the classic  dip-coating geome-
try [9, 18–23], where an apparently flat plate is pulled out 
of or dipped into a liquid bath at a fixed velocity. As 
shown by the fit in Fig. 1a, our multi-scale approach 
accounts for the entire range of dynamics. We are able to 
achieve a quantitative description over 5 decades in Ca up 
to the film entrainment threshold [18, 20–24] by adjusting 
the mean characteristics of the nano-scale defects 
(density, amplitude and spacing) that are inevitably 
present on the plate. Finally, we show that the contact 
angle hysteresis, which is usually thought to be related 
to the critical mechanical force needed to unpin the 
contact line from the defects [25], is instead related 
to a cross-over between a low-velocity activated regime 
and a high-velocity viscous regime.

Framework – We consider a plate covered with nano-
scale heterogeneities that is withdrawn vertically and at 
constant velocity U from a liquid bath. Due to transient 
pinning on defects, the contact line as well as the en-
tire liquid-vapor interface are distorted and explore many 
disordered configurations when the plate is moved, as 
schematized in Fig. 1b. These configurations are not di-
rectly observable, rather our aim is to understand how 
heterogeneities and thermal noise impact measurable av-
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FIG. 1: (color online) (a) Height Z of the contact line as a function of the capillary number Ca, in the limit Ż → 0 (Z is rescaled

by the capillary length `γ =
√
γ/ρg where ρ is the liquid density and g the acceleration of gravity). Circles: experimental

data. Solid line: theory. Inset: schematic of the dip-coating experiment in the frame of reference of the bath. (b) Schematic
of the contact line deformation over defects in the frame of reference of the plate. (c) Schematized energy landscape along the
reaction path. Left: realistic Right: idealization.

eraged properties of the interface such as the capillary
rise Z.

In order to develop a statistical description of the con-
tact line, we assume that the fluctuations around the av-
erage are small enough to remain in the linear regime and
perform a modal decomposition of the interface shape.
We first consider the zero mode, which is invariant along
the x direction (transverse to the direction of motion) and
average it over microscopic configurations. This average
interface is controlled by viscous, capillary and gravita-
tional forces only. The effect of disorder on the plate is
embedded in the boundary condition at the plate: the
microscopic contact angle θµ. The effect of thermal fluc-
tuations is hidden in the liquid parameters γ and η. The
average shape can be accurately described using hydro-
dynamics in the lubrication approximation extended to
large slopes [26]. This allow one to remove the viscous
dissipation associated with the zero mode from the mea-
sured Z(Ca) and to deduce the contact angle at the nano-
scale, θµ(Ca). The effect of defects present on the plate
and the viscous dissipation of higher order modes are
embedded in the relation Ca versus θµ.

Next we consider fluctuations of the interface around
the zero mode as well as variations in time of the mean
contact line position ζ(t). We assume that hetero-
geneities are able to pin the contact line locally over a
length significantly larger than the atomic size so that
the interface can still be described in the framework of
continuum hydrodynamics. The timescale of the fluc-
tuations of the instantaneous position of the contact

line, written as ζ(t) + ε(x, t), with < ε >= 0, is much
smaller than the relaxation time of the macroscopic pro-
file which sets the nano-scale contact angle θµ: the con-
tact line is thus driven at constant force per unit length
γ(cos θµ−cos θY ). The goal is then to compute the time-

averaged drift velocity U =< ζ̇ > of the mean instanta-
neous contact line position ζ(t) when the line is submit-
ted to a constant force. To account for thermal noise, we
make use of reaction-rate theory. Following reaction-path
theory [27, 28], we reduce the full dynamics of ε(x, t) to
the dynamics of the single reaction coordinate ζ assum-
ing that all other degrees of freedom relax much faster
to the minimal free energy at fixed ζ. This reaction co-
ordinate therefore evolves in an effective random energy
landscape U(ζ) which has multiple valleys and barriers.
By effective we mean that it originates from the surface
heterogeneities but also accounts for the relaxation of all
other degrees of freedom besides ζ. The dissipation is
the final ingredient needed to write a Langevin equation
for ζ. Viscous dissipation associated with the stationary
motion of the zero mode has already been taken into ac-
count, and it sets the value of the applied force through
θµ. However, fluctuations of the interface are responsible
for an extra dissipation, which leads to a friction force of
the form −βηζ̇. β is a dimensionless function of ζ which
can be calculated in the lubrication approximation [32].
Finally, the Langevin equation governing the motion of
the contact line reads:

βηζ̇ = γ(cos θµ − cos θY )− dU
dζ

+

√
2βηkT

λ
W(t) (2)
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where W (t) is a noise obeying the normalisation condi-

tion: < W(t)W(t′) >= δ(t − t′).
Obtaining θµ from the experiment – The dip-coating 

experiment illustrated in the inset of Fig. 1a is performed 
in a silicon oil (Rhodorsil V100) composed of chains of' 
150 monomers of length ' 0.3 nm. The molecular size, 
given by the Gaussian radius, is equal to `µ ' 3.6 nm. The 
viscosity and surface tension under experimental 
conditions are η = 116 mPa.s and γ = 23 mN.m−1. Simi-
lar results have been obtained using V50 (η = 54 mPa.s). 
The plate is a piece of silicon wafer coated with a layer of 
fluoropolymer FC725 (3M) approximately 0.5 µm thick. 
The plate velocity U is controlled by a translation stage 
and varied between 1 µm.s−1 and 4 mm.s−1. The dynam-
ics is obtained by analyzing transients [22], which allows 
us to go beyond the entrainment  threshold  (which oc-

curs here at Ca = 7.2 10−3). The average height Z with 
respect to the bath is determined from a front-view image 
(25 Hz CCD camera) of the plate, in the limit of vanish-

ing Ż  (Fig. 1).   Using  a  subpixel correlation technique 
we achieve an precision of 1 µm. Variations in the bulk 
liquid bath level due to the excluded volume, which re-
sults from the finite thickness of the wafer, are detected 
using the reflection of a sharp tip from the surface of the 
bath. The microscopic contact angle θµ(Ca), defined at 
the scale `µ, is deduced from the measurements of Z(Ca) 
using lubrication equations extended to arbitrary slopes 
[26, 32].

The resulting curve of cos θµ vs Ca is displayed in Fig. 
2. To first approximation, it shows a nearly loga-rithmic 
dependance of the form given in Eq. 1. This is the 
signature of a thermally-activated process. The best fit to 
Eq. 1 gives a slightly different activation length in the 
advancing (` = 7.6 nm) and receding (` = 5.9 nm) 
directions.

For a given height of the contact line, the macroscopic 
contact angle θM can be properly defined from the cap-
illary rise using asymptotic matching. Far from the con-
tact line, the influence of both viscosity and surface het-
erogeneities are negligible in front of gravity and capil-
larity and therefore the shape of the interface becomes 
asymptotically that of a static meniscus whose macro-
scopic contact angle with the plate is nonetheless se-lected 
by small-scale processes. Contact angle dynamics are 
commonly reported as cos θM rather than Z. Fig. 2 shows 
the cos θM which has been obtained from the ex-
perimentally measured Z using the capillary rise. It can be 
seen that θµ and θM coincide at small capillary num-ber, 
which implies that the viscous dissipation of the zero 
mode is negligible and that the surface disorder, whose 
influence is characterized by θµ, provides the dominant 
dissipative process in this region of the dynamics.

Solving the Langevin equation – We now want to use the 
Langevin equation to derive the dynamics of the mi-
croscopic contact angle. To this aim, we need to build the 
free energy U(ζ) from the defect properties. For simplic-
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FIG. 2: Cosine of the free surface angle as a function of the
capillary number Ca. Circles: experimental macroscopic an-
gle cos θM = (Z/`γ)

√
1− 0.25(Z/`γ)2. Squares: experimen-

tal microscopic angle cos θµ. Solid lines: theory for the mi-
croscopic angle and for the macroscopic angle. The depinning
thresholds at zero temperature are indicated by arrows. In-
set: close-up of the advancing branch (Ca < 0).

ity, we consider a periodic series of defects of wavenumber
q = 2π/λ along both directions of the surface. Following
Joanny and de Gennes [13], in the limit of small defor-
mation, we consider that the contact line can be divided
into independent pieces of length λ and evaluate the ef-
fect of a single defect of size d. This can be seen as a
mean-field approximation that models an effective defect
and a typical distance between defects of λ. The total
free energy U per unit length contains two contributions:
the solid surface-tension landscape, assumed to be com-
posed of Gaussian defects, and the disturbance of the
liquid surface, which results in an elastic-like restoring
force. From the average position ζ of the contact line,
the position ψ of contact line on the defect and the di-
mensionless defect amplitude h we write the density of
free energy as the sum of a contribution from the de-

fects
√

π
2 γhd erf

(
ψ

d
√
2

)
and of a contribution from the

liquid-vapor interface, written as 1
2γκ q(ζ − ψ)2, where

κ ∼ sin2 θY /(2 ln(λ/d)) is a dimensionless spring con-
stant [13]. Following reaction-rate theory, for a given
value of the average contact line position ζ, the posi-
tion of the contact line on the defect ψ(ζ) is selected by
minimizing this free energy with respect to ψ [32]. One
obtains the energy landscape U(ζ) represented in Fig. 1c.

The average drift velocity U =< ζ̇ > is then obtained
by numerical integration of the Langevin equation. The
model has four physically-meaningful parameters, θY , h,
λ and d, which determine the different characteristics of
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the curve cos θµ vs Ca (Fig. 2). θY is the contact angle at 
vanishing velocity. λ governs the typical slope far below 
the depinning transition where the dynamics is logarith-
mic. The asymmetry between the advancing and √reced-
ing directions is controlled by ∼ hλ/d. Finally, h λ/d 
controls the location of the depinning point and of the 
velocity CaT, below which the system is close enough to 
thermal equilibrium to give a linear relation between the 
force (cos θµ − cos θY ) and the velocity Ca.

Discussion The best fit to the data therefore provides 
a determination of the four parameters. Figure 1a shows 
that this minimal model fits the entire range of exper-
imental data over all of the regimes. The wettable de-
fect diameter d ' 2.5 nm is significantly smaller than the 
distance λ ' 18 nm between defects. Under these condi-
tions, the contribution of the contact-line “elasticity” to 
the energy U(ζ) is important: the maximum deformation 
of the contact line (ζ − ψ) is relatively large and induces 
a ratchet-like effect [32], which explains the asymmetry 
between the advancing and receding directions. The am-
plitude h = 0.14 is low enough to give a monovalued 
function U(ζ) (Fig. 1) so that for a given average po-
sition ζ of the CL there is a unique position ψ(ζ) on 
the defect. In this situation, where the heterogeneities 
are termed “weak”, advancing and receding contact lines 
pass by the same microscopic configuration at a given 
location ζ.

The model also predicts the relation between cos θµ 
and Ca in the limit of vanishing temperature for the 
same four fit parameters. This can be seen from Eq. 2, 
where for vanishing temperature (T = 0) the contact 
line is at equilibrium (ζ̇ = 0) as long as the driving force 
γ(cos θµ − cos θY ) is within the range of the force dU/dζ. 
The depinning angles (Θr ' 47.8◦ and Θa ' 58.4◦) indi-
cated by arrows in Fig. 2 have been determined from the 
extremal values of dU/dζ [32]. This range corresponds 
to a truly static contact angle hysteresis, which applies 
only for vanishing temperature. In this case, between 
these angles the contact line is pinned and beyond them 
the velocity asymptotically increases linearly with cos θµ. 
As seen in Fig. 2, the depinning transition (near Ca = 1) 
is blurred at finite temperature, but its presence still has 
a strong effect on the dynamics of θµ. Here the depinning 
transition within the thermally-activated regime can not 
be reached experimentally.

The description we propose here accounts for the full 
range of contact line dynamics and therefore must also 
describe the so-called contact angle hysteresis commonly 
seen when liquid drops move on real solids. The mea-
sured amplitude of the hysteresis has so far been linked 
to the location of the depinning transition. However, it 
is clear above that in practice the depinning transition 
is not reached. To explain this, one must realize that 
a typical procedure to measure the hysteresis involves 
inflating or deflating a drop and waiting a certain time 
until the drop edge is determined to cease moving. This

pseudo-equilibrium condition depends on the apparatus 
resolution and in practice corresponds to waiting only 
for the first, fast phase of relaxation. The hysteresis in 
this case coincides with a cross-over between the high Ca 
regime where large-scale viscous dissipation dominates, 
and a low Ca regime where dissipation occurs mainly at 
the defect scale. For practical purposes, we can define a 
point of cross-over between regimes as the capillary num-
ber Caco for which the difference between cos θM in the 
advancing and receding directions is twice the difference 
between cos θµ. For this system, we find Caco = 1.5 10−3 

and an advancing contact angle of θrµ ' 50.4◦ for a re-
ceding contact angle of θµa ' 57.3◦ (Fig. 2). So, (θµa − θrµ) 
would quantify the hysteresis measured by standard pro-
cedures. Except when strong macroscopic defects are 
present on the solid surface, such a “hysteresis” is not 
directly connected to the maximum pinning force of the 
defects, which is measured by (Θa − Θr).

Finally, we comment on the difference between our ap-
proach and the static picture proposed by Joanny and de 
Gennes. In the latter picture, weak defects do not trigger 
multistability with respect to ψ, at a constant mean 
contact line position ζ: there is no hysteresis for the 
microscopic configuration of the contact line when ζ is 
varied in one direction or the other [11, 13, 29]. Here, we 
use a dynamic description where the contact line position 
ζ becomes a dynamic variable [30, 31]. Multiple local 
minima (and therefore hysteresis) appear when ζ is moved 
and no longer imposed. The model we propose here is 
appropriate as long as the defects are small enough such 
that the deformations of the contact line are smaller than 
the capillary length, provided that they are remain weak. 
We expect strong heterogeneities to lead to a substantially 
different behavior. In this case, the depinning transition 
may occur before the viscous cross-over if the disorder-
induced dissipation becomes larger than the viscous 
dissipation associated with the overall motion of the 
contact line. Future experiments will have to test this 
scenario, in particular using surfaces whose 
heterogeneities are controlled in order to investigate the 
transition from weak to strong heterogeneities.
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