
HAL Id: hal-03875928
https://hal.science/hal-03875928

Submitted on 28 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parameter synthesis of polynomial dynamical systems
Alberto Casagrande, Thao Dang, Luca Dorigo, Tommaso Dreossi, Carla

Piazza, Eleonora Pippia

To cite this version:
Alberto Casagrande, Thao Dang, Luca Dorigo, Tommaso Dreossi, Carla Piazza, et al.. Parameter
synthesis of polynomial dynamical systems. Information and Computation, 2022, 289, pp.104941.
�10.1016/j.ic.2022.104941�. �hal-03875928�

https://hal.science/hal-03875928
https://hal.archives-ouvertes.fr

Parameter Synthesis of Polynomial Dynamical Systems

Alberto Casagrandea, Thao Dangb, Luca Dorigoc,d, Tommaso Dreossie, Carla
Piazzac, Eleonora Pippiaf

aUniversity of Trieste, Italy
bUniversity of Grenoble Alpes, France

cUniversity of Udine, Italy
dFondazione Bruno Kessler, Italy

eInsitro, California
fElectrolux, Italy

Abstract

Parametric dynamical systems emerge as a natural formalism for modeling natu-
ral and engineered systems ranging from biology, epidemiology, and medicine to
cyber-physics. Parameter tuning is a complex task which, in many cases, is per-
formed exploiting heavy simulations that have high computational complexity
and do not ensure the correctness of the synthesized systems. In this manuscript,
we consider the problem of parameter synthesis for discrete-time polynomial sys-
tems. We propose a formal method based on Bernstein coefficients that allows
refining the set of parameters according to a temporal specification defined as
a Signal Temporal Logic formula. We prove that the synthesized system is cor-
rect with respect to the specification and we demonstrate the scalability of the
approach by implementing it in the C++ library Sapo, also available within a
stand-alone application and as a web application. Finally, we illustrate the tool
usage and the interface through a simple yet realistic epidemiological model and
consider an intriguing application enhancing the accuracy of the verification of
neural networks.

Keywords: Parametric Dynamical Systems, Bernstein Coefficients, Signal
Temporal Logic, Neural Network Verification.

Introduction

Dynamical systems are standard mathematical models used to describe the
temporal evolution of systems (e.g., see [13, 36]). Parameters allow specifying
and analysing the behaviour of a possibly infinite set of models at one time (e.g.,
see [69]). In the case of partial knowledge over the observed system parameters,

Email addresses: acasagrande@units.it (Alberto Casagrande),
thao.dang@univ-grenoble-alpes.fr (Thao Dang), dorigo.luca001@spes.uniud.it (Luca
Dorigo), tommasodreossi@gmail.com (Tommaso Dreossi), carla.piazza@uniud.it (Carla
Piazza), pippia.eleonora@gmail.com (Eleonora Pippia)

Preprint submitted to Information and Computation September 9, 2022

they allow drawing general conclusions despite the lack of information. They are
also helpful in abstracting stochastic noise when this has no dramatic effects on
global behaviour. During the design phases of engineered systems, parameters
have to be refined to guarantee the desired result. In the context of parametric
dynamical systems, we are interested in defining algorithmic techniques for solv-
ing both reachability analysis and parameter synthesis. Reachability analysis
aims to determine the values assumed by the system variables during an evolu-
tion that starts from an initial set of states. Instead, parameter synthesis refines
the set of parameters to ensure that the reachable states satisfy a specification.

A dynamical system is either discrete-time or continuous-time depending on
whether the changes occur in discrete time instants or in continuous time, re-
spectively. The typical formalisms used to describe discrete-time and continuous-
time dynamical systems are difference and differential equations, respectively.
In this work, we consider discrete-time dynamical systems since, in most con-
texts, the system under analysis can be observed only at fixed time instants. In
some cases, discrete numerical integration methods (e.g., Euler, Runge-Kutta)
are applied in the study of continuous-time models, see, e.g. [1, 8, 2] where dis-
cretization is used to compute discrete step dynamics and, then, the continuous-
time flowpipe is over-approximated.

We focus, in particular, on parametric discrete-time dynamical systems in
which the dynamics are polynomials. Many works exist on the analysis of linear
systems, whose properties, such as convexity preservation, allow to define effi-
cient algorithms, e.g., for computing sets of reachable points. Some attempts
for tackling the reachability problem in the case of nonlinearity used approxi-
mation and symbolic computation techniques. A recent and detailed review of
the state-of-the-art in the context of reachability analysis can be found in [2].

Polynomial systems allow us to exploit the properties of Bernstein coeffi-
cients [34] to over-approximate the reachability problem. By imposing linear
dependence on the parameters, we can rely on linear optimization algorithms
to efficiently solve our problem.

As far as parameter synthesis is concerned, we use temporal logic for spec-
ifying the properties of interest. Temporal logics were introduced in formal
verification of hardware and software systems for defining specifications involv-
ing runtime acceptable computations [61]. Their success in that field is not only
due to their balance between expressive power and ease-of-use, but also to the
development of efficient algorithms for checking whether a system satisfies a
temporal logic specification (e.g., see [18]).

Temporal logic has found applications outside formal verification, for in-
stance, in monitoring. Within this context, the system is treated as a black
box whose observable behaviours can be analysed by evaluating the satisfaction
of the desired temporal specification. Signal Temporal Logic (STL [55, 56])
has been introduced for specifying properties of dense-time real-valued sig-
nals. It is particularly suitable for monitoring both industrial case studies (e.g.,
see [47, 46, 23]) and biological systems (e.g., see [25, 67, 20]). It has also been
used in the study of parametric systems (e.g., see [7, 43]) where parametric
disturbance rejection properties are formalized in STL and then verified. One

2

of its exciting aspects is its semantics: in addition to the classical semantics,
where the result of the evaluation of a formula is a truth value, STL offers
a quantitative semantics that gives the idea of “how robustly” a property is
satisfied [33, 9, 40].

In our setting, we exploit Bernstein coefficients’ properties again and we
automatically infer new linear constraints on the parameters. Such constraints
ensure that the specification is satisfied.

Recently several methods and tools have been developed for reachability
analysis and parameter synthesis. Some examples are HyTech [41], d/dt [6],
Breach [24], SpaceEx [35], Ariadne [10], Flow* [17], pyHybridAnalysis [15, 16],
dReach [52], CORA [3], DynIbex [57], JuliaReach [11], Kaa [51], and HyPro [64].
Similarly to what we present here, Breach performs parameter synthesis. How-
ever, it exploits linearizations to compute the flow over a finite set of points.
On the other hand, Flow* and HyPro deal with non-linear systems by exploit-
ing Taylor model arithmetic techniques. They also handle hybrid systems, but
not parametric ones. More detailed comparison can be found in [58] where
a methodology that integrates different tools for the design of cyber-physical
systems is described. ARCH-COMP (International Workshop on Applied Veri-
fication of Continuous and Hybrid Systems - Competition) reports the state of
the art in the field, see, e.g., [37, 38].

This manuscript extends [22] and [28]. On the one hand, we present the
algorithms described in [22] trying to keep the technicalities as simple as possible
and give more intuitions through simple examples. On the other hand, we
introduce some improvements to obtain more precise results. As far as the
implementation is concerned, we extended the C++ library Sapo introducing
the input language SIL and a web application, significantly improving usability.
Finally, we briefly show the usefulness of Sapo in the contexts of epidemiological
models and neural networks analysis.

The work is organized as follows. Section 1 formally introduces our setting
and the problems we consider. Section 2 gives more details on the dynamics and
on the set of points/parameters we manipulate. Such details are necessary for
defining our reachability algorithm. Section 3 focus on the parameter synthesis
problem. Sapo library, stand-alone tool, and the web application are described
in Section 4. Section 5 presents applications in two different realms, while
Section 6 concludes the work and presents some possible future developments.

1. Preliminaries

In this section, we describe the formal notions at the basis of our work. We
are interested in dynamical systems, i.e., phenomena evolving in time, and we
focus on models of such systems in which time evolves through discrete steps.
Specifically, we consider polynomial discrete-time dynamical systems whose pa-
rameters are used to tune the model to match given observations. We also
present a formal language for specifying the expected evolutions of the system
called Signal Time Temporal Logic (STL) [55] that was originally introduced in
the context of monitoring.

3

1.1. Parametric Dynamical Systems

Let us start with basic notions [48] necessary to define dynamical systems.
The state of a system is a description that is sufficient to predict the system’s

future. In this work, we deal with memoryless systems, i.e., systems for which
at time t it is possible to predict the future states without recurring to states
prior to t. The space of all the possible system states is called the state space
of the dynamical system.

The nature of a dynamical system is related to the structure of time it relies
on. If the time of a system ranges on non-negative real values, then the system
is called continuous, while if the time is described by naturals, then the system
is said to be discrete. The evolution of the system over time is a continuous
trajectory (in the continuous-time case) or a sequence (in the discrete-time case)
of states through the state space.

The rules that allow us to determine the state of the systems are called
dynamics or laws of evolution. Typically the dynamics of dynamical systems
are described by differential equations or difference equations depending on
whether they are continuous-time or discrete-time, respectively. Finally, the
initial condition is the state at an initial time from which an evolution starts.

Parametric discrete-time dynamical systems are dynamical systems that
evolve in discrete time and include parameters in their definition.

Definition 1 (Parametric Discrete-Time Dynamical System). A parametric
discrete-time dynamical system is a tuple D = (X ,P, f) where:

• X ⊆ Rn is the state space;

• P ⊆ Rm is the parameter space;

• f : X × P → X is a function.

The evolutions of parametric discrete-time dynamical systems are governed
by difference equation of the form:

xt+1 = f(xt,p) (1)

where x ∈ X is the state of the system, p ∈ P are the parameters, and t ∈ N
is a discrete-time variable. During the evolution of the dynamical system the
state variables can change their values, while the parameters remain constant.

Definition 2 (Trajectory of Parametric Discrete-Time Dynamical System). A
trajectory of a parametric discrete-time dynamical system D = (X ,P, f) starting
from an initial state x ∈ X with parameters p ∈ P is a function ξpx : N → X
such that ξpx is the solution of the difference equation xt+1 = f(xt,p) with initial
condition x, that is:

ξpx (0) = x and ∀t ∈ N>0, ξ
p
x (t+ 1) = f(ξpx (t),p). (2)

Let D = (X ,P, f) be a parametric discrete-time dynamical system, X0 ⊆ X
be a set of initial conditions, and P ⊆ P be a set of parameters. The set of all

4

possible trajectories of D with initial conditions in X0 and parameters in P is
defined as:

Ξ(X0, P) = {ξpx0
| x0 ∈ X0,p ∈ P, and ξpx0

is a trajectory of D}. (3)

Given two states x,x′ ∈ X , we say that x′ is reachable from x in time
0 ≤ t < +∞ if there are a parameter p ∈ P and a trajectory ξpx of S starting
in x such that x′ = ξpx (t). The set of all the states reached by the system from
x0 ∈ X with parameter p ∈ P is defined as:

Reachp(x0) = {x′ | x′ = ξpx0
(t), t ∈ N}. (4)

We can extend the notion of reachability to sets, that is, given a set of initial
conditions X0 ⊆ X and a parameter set P ⊆ P, the reachable set is the set of
all the states reachable by the system:

ReachP (X0) =
⋃

x0∈X

⋃
p∈P

Reachp(x0). (5)

The definition of reachable set reflects the behaviour of the considered dy-
namical system for an infinite amount of time. However, we might be interested
in studying a model for a bounded time horizon. In particular, let I = [a, b]
be a closed bounded interval of N. The set of states reachable within the time
interval I is defined as:

Reachp
I (x0) = {x′ | x′ = ξpx0

(t), t ∈ I} (6)

ReachP
I (X0) =

⋃
x0∈X0

⋃
p∈P

Reachp
I (x0). (7)

Example 1. Let us introduce a simple yet significant example that will be used
throughout the paper to help the reader. SIR is a classic 3D epidemic model [50]
that describes the spread of an epidemic disease in the simplest possible form.
In the SIR model the population is partitioned into 3 classes: S susceptible, I
infected, and R removed. Two parameters characterize the disease: β represents
the transmission rate, i.e., the probability for a susceptible to become infected
once there is a contact with a sick person; α models the recovery rate, i.e., the
inverse of the time required for moving from infected to removed. The susceptible
individuals at time t+1 are the susceptible individuals at time t decremented by
the individuals that at time t+1 become infected, i.e., decremented by β ∗St ∗It.
Similarly, the infected at time t+1 gain the new infected and lose the removed,
i.e., α ∗ It. Finally, the removed are incremented with the new removed. Every
removed individual is considered immune to the disease in this simple model. In
this work, we will refer to a normalized population of size 1, i.e., the system’s
variables will range from 0 to 1.

With our notation an SIR model is defined as D = (X ,P, f) where:

• X = [0, 1]3 is the state space described by the variables S, I, and R;

5

• P = [0, 1]2 is the parameter space described by the parameters α and β;

• f : X × P → X is defined as

St+1 = St − βStIt
It+1 = It + βStIt − αIt
Rt+1 = Rt + αIt

Let us consider the case of β = 0.5 and α = 1/5. If the initial point x0 is
(S0, I0, R0) where S0 = 0.99, I0 = 0.01, and R0 = 0, we have:

Reach
(0,5,1/5)
[0,6] (x0) = {(0.99, 0.01, 0), (0.98505, 0.01295, 0.002),

(0.978672, 0.0167382, 0.00459),

(0.970481, 0.0215812, 0.00793764),

(0.96000914, 0.02773698, 0.01225387),

(0.94669527, 0.03550347, 0.01780127),

(0.92988978, 0.04520825, 0.02490196)}

0.94
0.96

0.98
2

4
·10−2

0

1

2

·10−2

x0

x1

x2

x3

x4

x5

x6

S

I

R

Figure 1: The set Reach
(0,5,1/5)
[0,6]

(x0), where x0 = (0.99, 0.01, 0), described in Example 1. The

points are labelled as xi instead of ξpx0
(i) to simplify the plot.

As soon as one of the parameters or one of the variables is estimated through
an interval, we obtain an infinite set of points.

1.2. Synthesis Language: Signal Temporal Logic

Temporal logics [61] are well-known formalisms for specifying desirable prop-
erties of systems under investigation. In formal verification, temporal logic

6

properties are used to identify system’s bugs. Model-checking algorithms take
as input a model and a temporal formula and return a counter-example if the
model does not satisfy it, i.e., a proof of the existence of unwanted behaviours.
In our setting, we use temporal logic formulas to synthesize a set of parameters
that guarantees the temporal property.

Example 2. Let us consider the SIR model described in Example 1 again and
imagine that we do not know the transmission rate β. We may try to estimate
it by using some statistics. For instance, if we know that the number of infected
ranged is in the interval [0.01, 0.02] at time 0, while it roses to [0.015, 0.03] after
6 days, and if we also know that the recovery time is 4 days, i.e., α = 1/4, then
we can intuitively deduce that the transmission rate cannot be too close to 1.

Signal Temporal Logic (STL [55, 56, 26]) formalizes properties of dense-time
real-valued signals, i.e., functions defined on dense intervals. In our context, the
trajectories of a dynamical system are the signals over which STL formulas are
evaluated. We specifically focus on STL formulas in positive normal form over
a bounded time horizon.

Let Σ = {σ1, σ2, . . . , σk} be a finite set of predicates mapping Rn into
Boolean values. For a given j ∈ {1, 2, . . . , k}, the predicate σj is of the form
σj = sj(x1, x2, . . . , xn) ≤ 0 where sj : Rn → R is a function over the variables
x1, x2, . . . , xn.

A Signal Temporal Logic formula is generated by the following grammar:

φ := σ | ¬φ | φ ∧ φ | φ ∨ φ | φUIφ (8)

where σ ∈ Σ is a predicate and I = [a, b] is a bounded closed interval of N. For
t ∈ N, the shifted interval t+ I is the set {t+ t′ | t′ ∈ I}. A STL formula is in
positive normal form when does not use the negation operator ¬.

There are two elements that distinguish STL from other logics:

• the predicates σ are evaluated on real-values, that in our case are the
states of the dynamical system;

• the temporal operators φUIφ are decorated with intervals that determine
the temporal windows on which the operators are defined.

Other standard temporal operators can be derived as follows:

• true ⊤ ≡ 0 ≤ 0;

• false ⊥ ≡ 1 ≤ 0;

• ¬⊥ ≡ ⊤ and ¬⊤ ≡ ⊥;

• release φ1R[a,b]φ2 ≡ (φ2U[a,b](φ1 ∧ φ2)) ∨ (φ2U[b+1,b+1]⊤);

• eventually in the future FIφ ≡ ⊤UIφ;

• always in the future GIφ ≡ ⊤U[a,a](⊥R[0,b−a]φ).

7

Any STL formula ϕ can be rewritten as an equivalent STL formula in positive
normal form φ such that φ ≡ ϕ (e.g., see [63]). Because of this result, in the
remaining part of this manuscript, we exclusively deal with STL formulas in
positive normal form.

Example 3. The property informally described in Example 2 can be stated as:

F[6,6](0.015 ≤ I ≤ 0.03).

x0

x1

x2

x3

x4

x5

x6

1 2 3 4 5

·10−2

0.000

0.005

0.010

0.015

0.020

0.025

I

R

Reached Set
0.015 ≤ I ≤ 0.03

Figure 2: The evaluation of the STL formulas F[6,6](0.015 ≤ I ≤ 0.03) on the trajectory ξpx0

described in Example 1. The points are labelled as xi instead of ξpx0
(i) to simplify the plot.

The formula does not hold because ξpx0
(6) does not satisfy the formula 0.015 ≤ I ≤ 0.03.

An interesting aspect of STL is its semantics. Two semantics for STL for-
mulas can be defined: qualitative semantics, also known as Boolean semantics,
and quantitative semantics. Intuitively, the former establishes the truth value
of a formula over a trace, telling us whether a formula holds or not; the latter
provides additional information on how robustly a trace satisfies (or not) a for-
mula. This article refers to the qualitative semantics of STL which is defined
over trajectories as follows.

Definition 3 (Qualitative Semantics [55]). Let D = (X ,P, f) be a parametric
discrete-time dynamical system. Let ξpx be a trajectory of D starting from x ∈ X
with parameter p ∈ P. Let t ∈ R≥0 be a time instant, and φ be an STL
formula. The qualitative semantics of φ at time t over ξpx is given by the
following inductive definition:

8

ξpx , t |= σ iff σ(ξpx (t)) is true
ξpx , t |= φ1 ∧ φ2 iff ξpx , t |= φ1 and ξpx , t |= φ2

ξpx , t |= φ1 ∨ φ2 iff ξpx , t |= φ1 or ξpx , t |= φ2

ξpx , t |= φ1UIφ2 iff ∃t′ ∈ t+ I s.t. ξpx , t
′ |= φ2 and

for all t′′ ∈ [t, t′], ξpx , t
′′ |= φ1

We say that a trajectory ξpx satisfies φ, denoted by ξpx |= φ, if and only
if ξpx , 1 |= φ. Notice that the semantics is given with respect to t = 1, while
usually t = 0 is considered. In other terms is like if we are considering only
formulas starting with a next operator. It will become clear soon that this is a
reasonable requirement for talking about synthesis.

Example 4. Let us consider again the bounded trajectory described in Exam-
ple 1. It satisfies the formula:

G[0,3](I ≤ 0.025),

since the maximum value reached by I among ξpx0
(0), ξpx0

(1), ξpx0
(2), and ξpx0

(3)
is 0.0215812. Instead, it does not satisfy the formula:

(I ≤ 0.02)U[0,3](R ≥ 0.01),

since I ≤ 0.02 becomes false in ξpx0
(3), while R ≥ 0.01 is not yet true.

x0

x1

x2

x3

x4

x5

x6

1 2 3 4 5

·10−2

0.000

0.005

0.010

0.015

0.020

0.025

I

R

Reached Set
I ≤ 0.025

(a) The trajectory ξpx0
satisfies the STL for-

mula G[0,3]I ≤ 0.025 since x0, x1, x2, and x3

satisfy the formula I ≤ 0.025.

x0

x1

x2

x3

x4

x5

x6

1 2 3 4 5

·10−2

0.000

0.005

0.010

0.015

0.020

0.025

I

R

Reached Set
I ≤ 0.02
R ≥ 0.01

(b) Since x0, x1, x2, and x3 do not satisfy
R ≥ 0.01 and I ≤ 0.02 doesn’t hold on x3, ξ

p
x0

does not satisfy (I ≤ 0.02)U[0,3](R ≥ 0.01).

Figure 3: The evaluation of the two STL formulas G[0,3]I ≤ 0.025 and (I ≤ 0.02)U[0,3](R ≥
0.01) on the trajectory ξpx0

described in Example 1. In order to simplify the plot, the points
are labelled as xi meaning ξpx0

(i).

1.3. Parametric Reachability and Synthesis Problems

Within the above described context, i.e., models defined in terms of paramet-
ric discrete-time dynamical systems and properties specified as STL formulas,
we are ready to formalize two problems of interest: reachability computation
and parameter synthesis.

9

Definition 4 ((Bounded) Parametric Reachability Computation). Let D =
(X ,P, f) be a dynamical system, X0 ⊆ X be a set of initial conditions, P ⊆ P
be a set of parameters, and I be a closed interval of N .

The Parametric Reachability Computation problem asks to compute the set
of points that can be reached with a trajectory of D starting from x ∈ X0 and
p ∈ P , i.e., it asks to compute the set ReachP (X0).

The Bounded Parametric Reachability Computation problem asks to com-
pute the set of points that can be reached with a trajectory of D starting from
x ∈ X0 and p ∈ P within the time interval I, i.e., it asks to compute the set
ReachP

I (X0).

As one can imagine in the general case both reachability and bounded reach-
ability are not computable (see, e.g., [42, 12]). However, in Section 2 we will
discuss how bounded reachability can be over-approximated in the case of poly-
nomial systems.

Definition 5 (Parameter Synthesis). Let D = (X ,P, f) be a dynamical system,
X0 ⊆ X be a set of initial conditions, P ⊆ P be a set of parameters, and φ be
an STL specification. The Parameter Synthesis Problem asks to compute the
largest subset Pφ ⊆ P such that ∀x0 ∈ X0,∀p ∈ Pφ, ξ

p
x0
|= φ, where ξpx0

is a
trajectory of D.

Now that we have the definition of the problem it is natural to observe that
we had to refer the notion of satisfiability to time t = 1, since at time t = 0 the
set X0 is given. Hence, it makes no sense to consider parameter refinement at
time t = 0, since they have not been used yet.

Again, while the problem is in general not computable, in Section 3 we
will present a method for under-approximating the solution over polynomial
systems.

2. Parametric Reachability Computation

2.1. Set Based Reachability

In the context of formal verification, the interest is not only in simulating one
specific trajectory of a dynamical system starting from a given initial condition,
but also in computing a flowpipe that contains all the states reachable by the
system from a possibly infinite set of initial conditions.

A standard methodology for computing flowpipes in the case of parametric
discrete-time dynamical systems consists of the following steps:

• Choice of a domain DX providing finite representations for the set of
points to be manipulated. The domain should allow any set of points
to be both over and under-approximated. The most used domains are
ellipsoids, hyper-rectangles, zonotopes.

• Choice of a domain DP providing finite representations for the set of
parameters to be considered.

10

• Choice of a family F of admissible functions to be used in the dynamical
systems. For instance, linear systems or polynomial systems.

• Definition of an algorithm reachStep that for each representable set
of points X ∈ DX, each representable set of parameters P ∈ DP , and
each admissible function f ∈ F , approximates the set of points f(X,P) =
{f(x,p) | x ∈ X and p ∈ P} with a representable set of points X ′ ∈ DP .

Notice that in the general case the set of points f(X,P) could be not exactly rep-
resentable in the chosen domain of sets of points DX. For instance, if one con-
siders hyper-rectangles and quadratic functions, the image of a hyper-rectangle
is not a hyper-rectangle. Hence, the algorithm has to approximate such image
with a new hyper-rectangle.

Given a set X0 ∈ DX, a set of parameters P ∈ DP , a function f ∈ F , and a
time interval I = [a, b], Algorithm 1 can be used to compute an approximated
solution of the bounded reachability problem, i.e., to approximate ReachP

I (X0),
by iterating reachStep computations.

Algorithm 1 Reachability

1: function reach(X0, P, f , a, b)
2: X ← X0

3: Y ← ∅
4: for i = 1, . . . , b do
5: X ←reachStep(X,P, f)
6: if i ≥ a then
7: Y ← Y ∪ {X}
8: end if
9: end for

10: return Y
11: end function

In the next section, we will focus on our choice of the domains DX and
DP and on the family F of polynomial functions and describe our reachStep
algorithm based on Bernstein coefficients.

2.2. Sets of Points and Sets of Parameters: Polytopes

The domain that we consider for sets of points is that of polytopes.

Definition 6. A polytope Q ⊂ Rn is a closed, compact, bounded subset of Rn

such that there is a finite set of half-spaces H = {h1, . . . , hm} whose intersection
is Q, that is:

Q =

m⋂
i=1

hi (9)

where a half-space h = {x | dxT ≤ c} is a set characterized by a non-null
normal vector d ∈ Rn and an offset c ∈ R.

11

The linear constraints that generate the half-spaces can be organized in a
matrix D ∈ Rm×n called template and a vector c ∈ Rm called offset vector, in
short offsets. The polytope generated by the template D and the offset vector
c is denoted by ⟨D, c⟩. Notice that not all the pairs ⟨D, c⟩ define a nonempty
polytope.

Example 5. Let us consider the SIR model of Example 1 again. Imagine
that we start observing the system after some days from the initial spread of
the disease. It can be the case that we do not precisely know the number of
susceptible, infected, and removed, but we only have some estimations saying
that the number of removed is at most the 2% of the population. This means
that we can consider the following polytope:

S ≥ 0
I ≥ 0
R ≥ 0
R ≤ 0.02
S + I ≥ 0.98

The corresponding template matrix and offset vector are

D =

−1 0 0
0 −1 0
0 0 −1
0 0 1
1 1 0

 c =

0
0
0

0.02
0.98

Our reachability algorithm fixes a template matrix and computes at each

step a new offset. Boxes and parallelotopes are particular classes of polytopes
and are helpful in our context to provide canonical representations. Boxes are
n-dimensional generalizations of rectangles.

Definition 7 (Box). A set B ⊂ Rn is a box if and only if it can be expressed
as the Cartesian product of n intervals, that is:

B = [x1, x1]× · · · × [xn, xn] =

n∏
i=1

[xi, xi], (10)

where xi, xi ∈ R, for i ∈ {1, . . . , n}.

It is easy to see that a box B = [x1, x1] × · · · × [xn, xn] is a polytope since

12

it can be represented by a template D ∈ R2n×n and offsets c ∈ R2n where:

D =

1 . . . 0
...

. . .
...

0 . . . 1
−1 . . . 0
...

. . .
...

0 . . . −1

c =

x1

...
xn

−x1
...
−xn

(11)

The unit box is the box [0, 1]× [0, 1]× · · · × [0, 1].
A parallelotope is a centrally symmetric convex polytope whose opposite

facets are parallel. It can be represented as a collection of linear constraints.

Definition 8 (Parallelotope). Let Λ ∈ R2n×n be a template matrix such that,
for each i ∈ {1, 2, . . . , n}, Λi = −Λi+n, and let c ∈ R2n. The parallelotope
generated by Λ and c is the polytope:

⟨Λ, c⟩ = {x | Λx ≤ c}. (12)

Example 6. We consider again the SIR model. A parallelotope over the vari-
ables of the system is given by:

Λ =

−1 0 0
−1 −1 0
0 0 −1
1 0 0
1 1 0
0 0 1

 c =

−0.8
−0.95

0
0.85
1
0

According to the definition, each line in Λ and c defines a linear inequality on
S, I, and R which corresponds to a half-space in S × I × R. For instance,
the second line defines the inequality −S − I ≤ −0.95; the associated half-space
consists of all the points that do not lay below the green line in Figure 4. Since
all the inequalities belong to the same system defined by ⟨Λ, c⟩, all of them must
hold at the same time. Thus, the parallelotope is the intersection of all the
corresponding half-spaces.

In this example, ⟨Λ, c⟩ constrains the variable S to lay in [0.8, 0.85], the
variable R to be 0, and the sum of S + I to belong to the interval [0.95, 1].
Figure 4 depicts a projection of ⟨Λ, c⟩ itself on the plane R = 0.

The above representation is also called constraint representation. Another
way to characterize parallelotopes, similar to the one adopted for zonotopes [19],
is to fix a point of origin and use vectors to define the parallelotope. From
Equation (11), it is immediate that boxes are parallelotopes.

Definition 9 (Parallelotope Generator Representation). Let U = {u1,u2, . . . ,
un} be a set of linearly independent unit vectors in Rn and β = (β1, β2, . . . , βn)

13

0.78 0.8 0.82 0.84 0.86 0.88

0.1

0.15

0.2

−
S
≤
−
0.
8

S
≤

0
.8
5

−S −
I ≤ −0.95

S +
I ≤

1

S

I

Figure 4: The projection on the plane R = 0 of the paralletope ⟨Λ, c⟩ described in Example 6.
Each line in Λ and c defines a linear inequality on S, I, and R which corresponds to a half-
space in S× I×R. The paralletope is the intersection of all the half-spaces. The gray colored
region depicted in this figure is the projection of ⟨Λ, c⟩.

be a vector of coefficients. We consider the set G of generators defined as G =
{g1 = β1u

1,g2 = β2u
2, . . . ,gn = βnu

n}. Moreover, let q be a point in Rn. The
parallelotope generated by G and q is:

Pgen(G,q) =

q+

n∑
j=1

λjg
j | (λ1, . . . , λn) ∈ [0, 1]n

 . (13)

This representation is called generator representation. The vectors gj are
called generators of the parallelotope and q is called base vertex. Given a set
of generators G = {g1,g2, . . . ,gn} and a base vertex q, we also represent the
parallelotope generated by G and q with the notation:

Pgen(G,q) = {γ(q,G)(λ1, . . . , λn) | (λ1, . . . , λn) ∈ [0, 1]n}, (14)

where γ(q,G)(λ1, . . . , λn) is the linear function defined as:

γ(q,G)(λ1, . . . , λn) = q+

n∑
j=1

λjg
j . (15)

The generator representation of parallelotopes resembles the way in which zono-
topes are usually defined, i.e., as the sets {c+

∑m
j=1 λjg

j | (λ1, . . . λm) ∈ [−1, 1]m}
where c is the center of the zonotope and g1, . . . ,gm are its generators. This

14

similarity is not surprising as the parallelotopes in Rn are special kinds of zono-
topes having exactly n linearly independent generators. However, it is worth
noticing that our representation of parallelotopes uses base vertices as opposed
to the zonotope definition which refers to the zonotope centers. This choice
affects the domain of the coefficient λ1, . . . λn, which is reduced from [−1, 1]n
to [0, 1]n in parallelotope representation, and emphasizes that any parallelotope
can be seen as the affine transformation of the unit box [0, 1]n. The reachability
algorithm described in the remaining part of this section extensively uses this
property.

Standard algebraic procedures can be used to switch from one representation
to the other and back (e.g., see [27]).

Example 7. Let us consider the parallelotope described in Example 6. In order
to compute a parallelotope generator representation for it, we can proceed as
follows. We consider as base vertex the point of the parallelotope obtained by
minimizing all the variables, i.e., q = (0.8, 0.15, 0). We compute the vectors
that go from q to the other vertexes and normalize them. So we obtain U =
{(0.7071,−0.7071, 0), (0, 1, 0), (0, 0, 1)} and β = (0.07071, 0.05, 0). This means
that the parallelotope is defined as the set of points whose coordinates satisfy:

q+ λ1g
1 + λ2g

2

where q = (0.8, 0.15, 0), g1 = (0.05,−0.05, 0), g2 = (0, 0.05, 0), and λ1, λ2 ∈
[0, 1]. In this case, g3 and λ3 disappear since β3 = 0. This is because R has a
single value instead of ranging in a proper interval in Example 6.

0.78 0.8 0.82 0.84 0.86 0.88

0.1

0.15

0.2

q

g1

g2

S

I

Figure 5: The projection on the plane R = 0 of the paralletope ⟨Λ, c⟩ described in Example 6,
its base vertex q = (0.8, 0.15, 0), and the generators g1 = (0.05,−0.05, 0) and g2 = (0, 0.05, 0).

Figure 5 depicts the projection of the plane R = 0 of the parallelotope de-

15

scribed in Example 6 together with the base vertex q = (0.8, 0.15, 0) and its
generators.

Parallelotopes can be used to decompose polytopes through parallelotope
bundles.

Definition 10 (Parallelotope Bundle). A parallelotope bundle B = {P1, . . . , Pb}
is a finite set of parallelotopes whose intersection, denoted by I(B) = ∩bi=1Pi,
generates a polytope.

The polytope I(B) represented by a parallelotope bundle B corresponds to
the set of all the templates and offsets of the parallelotopes that constitute B
itself. The following Lemma can be easily proved (see [30]) and establishes an
upper bound on the number of parallelotopes necessary to represent a polytope.

Lemma 1 (Polytope Decomposition). Any polytope Q ⊂ Rn defined by m
constraints can be represented by a bundle involving ⌈m/n⌉ parallelotopes.

Example 8. Intuitively the polytope described in Example 5 can be decomposed
in the two parallelotopes defined as follows:

• in the parallelotope P1 the variable S ranges in [0, 0.98], the variable I
ranges in [0, 0.98], and the variable R ranges in [0, 0.02];

• in the parallelotope P2 the sum S + I ranges in [0, 0.98], the variable I
ranges in [0, 0.98], and the variable R ranges in [0, 0.02].

As far as the domain for sets of parameters is concerned, we refer again to
polytopes: P ⊆ P is going to be a polytope. While the described representations
for sets of states in terms of boxes and parallelotopes are at the basis of our
algorithm, the polytopes representing sets of parameters will be handled as
systems of linear inequalities with variables in P.

2.3. Admissible Functions: Polynomials

The family of functions that we consider for defining dynamical systems is
based on polynomials.

Definition 11 (Parametric Polynomial System). A parametric polynomial sys-
tem D = (X ,P, f) is a parametric discrete-time dynamical system in which
f : X × P → X is such that f(x,p) = (f1(x,p), . . . , fn(x,p)) and each of the fi
is a polynomial and it is linear over p.

Bernstein coefficients and their properties are valuable tools for bounding
polynomials. In [30], we investigated the use of Bernstein coefficients for the
over-approximation of bounded reachability in the case of polynomial systems
without parameters. Since this work deals with parametric dynamical systems,
we want to bound parametric polynomials of the kind fi(x,p) : Rn × Rm → R.
Thus, we have to extend the definition of Bernstein basis to the parametric case.

16

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

S

I

P1

P2

Figure 6: The projection on the plane R = 0 of the polytope ⟨D, c⟩ described by Example 5.
⟨D, c⟩ can be decomposed in the two parallelotope P1 and P2 and, as a consequence, in the
bundle B = {P1, P2}. The intersection of the bundle parallelotopes equals the polytope, i.e.,
I(B) = P1 ∩ P2 = ⟨D, c⟩

We will see that all the presented properties related to the Bernstein coefficients
also hold when parameters are involved.

A multi-index is a vector i = (i1, i2, . . . , in) where each ij ∈ N. Given two
multi-indices i and d of the same dimension, we write i ≤ d (d dominates
i) if for all j ∈ {1, 2, . . . , n}, ij ≤ dj . We also write i/d for the multi-index

(i1/d1, i2/d2, . . . , in/dn) and
(
d
i

)
for the product of the binomial coefficients(

d1

i1

)(
d2

i2

)
. . .

(
dn

in

)
.

Let us now focus on each of the components of the function f . To avoid
using further indexes we denote it as π(x,p) : Rn × Rm → R.

A parametric polynomial π(x,p) : Rn × Rm → R is usually represented in
the power basis as:

π(x,p) =
∑
i∈Iπ

ai(p)x
i, (16)

where Iπ is the set of multi-indexes of the polynomial π over the variables x
and the coefficients ai(p) : Rm → R, for i ∈ If , are functions defined over the
parameters p ∈ Rm. In the case of parametric polynomial systems we further
required a linear dependence over P, i.e., the coefficients ai(p) are linear in p.

Example 9. Consider the parametric polynomial π(x1,x2,p1) = 1/3p1 x
2
1 −

1/2p1 x2+1/4x1x2+1/2. Its non-null parametric coefficients are a(2,0)(p1) =
p1/3, a(0,1)(p1) = −p1/2, a(1,1)(p1) = 1/4, and a(0,0)(p1) = 1/2.

Bernstein basis polynomials of degree d are basis for the space of polynomials
of degree at most d over Rn. For x = (x1,x2, ...,xn) ∈ Rn, the i-th Bernstein

17

polynomial of degree d is defined as:

B(d,i)(x) = βd1,i1(x1)βd2,i2(x2) . . . βdn,in(xn) (17)

where, for any real number x ∈ R and for any d, i ∈ N,

βd,i(x) =

(
d

i

)
xi(1− x)d−i. (18)

Example 10. It is easy to verify that β0,0(x) = 1, β1,0(x) = 1−x, β1,1(x) = x,
β2,0(x) = (1− x)2, β2,1(x) = 2x(1− x), and β2,2(x) = x2. Thus,

B((2,1),(0,1))(x) = β2,0(x1)β1,1(x2) = (1− x1)
2x2.

Analogously, B((2,1),(0,0))(x) = (1 − x1)
2(1 − x2), B((2,1),(1,0))(x) = 2x1(1 −

x1)(1 − x2), B((2,1),(1,1))(x) = 2x1(1 − x1)x2, B((2,1),(2,1))(x) = x2
1x2, and

B((2,1),(2,0))(x) = x2
1(1− x2).

Any parametric polynomial π(x,p) : Rn×Rm → R can be represented using
Bernstein basis as:

π(x,p) =
∑
i∈Iπ

bi(p)B(d,i)(x) (19)

where, for each i ∈ Iπ, the parametric Bernstein coefficient, is defined as:

bi(p) =
∑
j≤i

(
i
j

)(
d
j

)aj(p). (20)

The parametric Bernstein coefficients are functions of the form bi(p) : Rm → R.
However, the bi(p) have a linear dependence on p.

Example 11. Consider again the parametric polynomial presented in Exam-
ple 9, i.e., π(x1,x2,p1) = 1/3p1x

2
1− 1/2p1x2 +1/4x1x2 +1/2. For illustrative

purposes, we study only the multi-index (1, 1), the corresponding parametric

18

Bernstein coefficient is:

b(1,1)(p1) =

(
(1,1)
(1,1)

)(
(2,1)
(1,1)

)a(1,1)(p1) +

(
(1,1)
(0,1)

)(
(2,1)
(0,1)

)a(0,1)(p1)

+

(
(1,1)
(1,0)

)(
(2,1)
(1,0)

)a(1,0)(p1) +

(
(1,1)
(0,0)

)(
(2,1)
(0,0)

)a(0,0)(p1)

=

(
1
1

)(
1
1

)(
2
1

)(
1
1

)a(1,1)(p1) +

(
1
0

)(
1
1

)(
2
0

)(
1
1

)a(0,1)(p1)

+

(
1
1

)(
1
0

)(
2
1

)(
1
0

)a(1,0)(p1) +

(
1
0

)(
1
0

)(
2
0

)(
1
0

)a(0,0)(p1)

=

(
1
1

)(
2
1

)a(1,1)(p1) +

(
1
0

)(
2
0

)a(0,1)(p1)

+

(
1
1

)(
2
1

)a(1,0)(p1) +

(
1
0

)(
2
0

)a(0,0)(p1).

Since
(
n
0

)
= 1 and

(
n
1

)
= n for any n ∈ N,

b(1,1)(p1) =
1

2
a(1,1)(p1) + 1a(0,1)(p1) +

1

2
a(1,0)(p1) + 1a(0,0)(p1).

As noticed in Example 9, the non-null parametric coefficients of the investigated
polynomial are a(2,0)(p1) = p1/3, a(0,1)(p1) = −p1/2, a(1,1)(p1) = 1/4, and
a(0,0)(p1) = 1/2. Thus,

b(1,1)(p1) =
1

2

1

4
+ 1(−p1/2) +

1

2
0 + 1

1

2

=
1

8
+

4

8
− p1/2 = 5/8− p1/2.

Analogously, we obtain the parametric Bernstein coefficients b(0,0)(p1) = 1/2,
b(0,1)(p1) = (1 − p1)/2, b(1,0)(p1) = 1/2, b(2,0)(p1) = p1/3 + 1/2, and
b(2,1)(p1) = 3/4− p1/6.

Since the parametric polynomial π(x1,x2,p1) has the degree d = (2, 1), its

19

Bernstein representation is:

π(x1,x2,p1) =b(0,0)(p1)B(d,(0,0))(x) + b(0,1)(p1)B(d,(0,1))(x)
+ b(1,0)(p1)B(d,(1,0))(x) + b(1,1)(p1)B(d,(1,1))(x)
+ b(2,0)(p1)B(d,(2,0))(x) + b(2,1)(p1)B(d,(2,1))(x)

=
1

2

(
(1− x1)

2(1− x2)
)
+

1− p1

2

(
(1− x1)

2x2

)
+

1

2
(2x1(1− x1)(1− x2)) +

(
5

8
− p1

2

)
(2x1(1− x1)x2)

+

(
p1

3
+

1

2

)
(x2

1(1− x2)) +

(
3

4
− p1

6

)
(x2

1x2).

We now extend the range enclosing property of Bernstein coefficients to the
parametric case. Let P ⊂ Rm be a polytope.

Lemma 2 (Parametric Range Enclosing [27]).

min
i∈Iπ

min
p∈P

bi(p) ≤ π(x,p) ≤ max
i∈Iπ

max
p∈P

bi(p), (21)

for all x ∈ [0, 1]n and p ∈ P , where bi(p), for i ∈ Iπ, are the parametric
Bernstein coefficients of π.

Proof. Since we let p linearly range over P , this is an immediate consequence
of the range enclosing property of Bernstein coefficients that states that the
minimum and maximum Bernstein coefficients of a non-parametric polynomial
π are a lower bound and an upper bound of the image of π over the unit box
domain, respectively [14].

Example 12. Let us consider once more the parametric polynomial described
by Example 9 and assume that p1 ranges in P = [0, 10]. Since p1 is linear
in bi(p1), either bi(0) = minp1∈P (bi(p1)) and bi(10) = maxp1∈P (bi(p1)) or
bi(10) = minp1∈P (bi(p1)) and bi(0) = maxp1∈P (bi(p1)). By Lemma 2, the
polynomial π(x1,x2,p1) ranges in the interval between mini∈Iπ{bi(0),bi(10)}
and maxi∈Iπ{bi(0),bi(10)} when x ∈ [0, 1]2. Moreover, because of the values of
the Bernstein coefficients evaluated in Example 11, mini∈Iπ{bi(0),bi(10)} =
b(0,1)(10) = −9/2 and maxi∈Iπ{bi(0),bi(10)} = b(2,0)(10) = 23/6. Thus,
the image of x ∈ [0, 1]2 through the polynomial π(x1,x2,p1) is contained by
[−9/2, 23/6] (see Fig. 7).

2.4. Single Step Reachability Algorithm

In [30], we presented an algorithm for single-step reachability in the case of
polytopes and polynomial functions without parameters. In particular, we ex-
ploited Bernstein coefficients to compute a polytope that over-approximates the
image of a given polytope produced by a polynomial transformation. The idea
can be generalized to the case of parametric polynomial functions provided that
one can determine the minimum and the maximum of a parametric Bernstein

20

0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

2

4

6

z = b(2,0)(10) = 23/6

z = b(0,1)(10) = −9/2

x1

z

Figure 7: The projection of π(x1,x2,p1) = p1 ∗ x2
1/3 − p1 ∗ x2/2 + x1 ∗ x2/4 + 1/2 on the

plane x2 = 0 for x ∈ [0, 1]2 and p1 ∈ [0, 10]. Under these conditions, π(x1,x2,p1) lays in the
interval [−9/2, 23/6] for all x ∈ [0, 1]2. See Example 9, 10, 11, and 12 for all the details.

coefficient over the set P of parameters. We recall here the main ingredients of
the procedure and refer the reader to [27] for all the details.

Let us start from the trivial case of the unit box [0, 1]n. So let X = [0, 1]n,
P be a polytope, f = (f1, . . . , fn) be polynomial, and proceed as follows:

1. for each j = 1, . . . , n compute the Bernstein coefficients bi(p) of the poly-
nomial fj , with i ∈ Ifj ;

2. for each Bernstein coefficient bi(p) of fj determine the minimumminj(i) =
minp∈P bi(p) and the maximum maxj(i) = maxp∈P bi(p). This is possi-
ble since we are bounding a linear function over a polytope;

3. for each j = 1, . . . , n consider the minimum minj = mini∈Ifj minj(i) and
the maximum maxj = maxi∈Ifj maxj(i).

The output box, which over-approximates f([0, 1]n, P), is [min1,max1]× · · · ×
[minn,maxn]. The reader should be aware that the parameter selection that
minimizes or maximizes one of the Bernstein coefficients may differ from that
that minimizes or maximizes another coefficient. So, while the returned box cer-
tainly over-approximates the set reachable in one step, the larger the parameter
set, the coarser the over-approximation.

Example 13. Let us consider the SIR model of Example 1. Let S, I, and R
range in [0, 1], while β ∈ [0.1, 0.2] and α ∈ [0.5, 0.6]. The Bernstein coefficients
for the dynamic law of S are in {0, 1, 1 − β}, while those for I are in {0, 1 −
α, 1+β−α}, and those for R are in {0, 1, α, 1+α}. Notice that some coefficients
are repeated more than once for each function, e.g., 0. However, since we are

21

only interested in minimum and maximum values, the repetitions are irrelevant.
The minimum coefficient for S is 0, while the maximum is 1. The minimum
value for I is 0 and the maximum is 0.7 (1 + β − α = 0.7 when β = 0.2 and
α = 0.5). Finally, the minimum value for R is 0 and the maximum is 1.6
(1 + α = 1.6 when α = 0.6). So, the set reached after one step is a subset of
[0, 1]× [0, 0.7]× [0, 1.6]. It is worth noticing that the values for α that maximize
I and R –i.e., 0.5 and 0.6, respectively– are different.

If the parameters set is β ∈ [0.1, 0.15] and α ∈ [0.5, 0.55], then the symbolic
Bernstein coefficient sets are the same we computed above. Thus, the minima for
S, I, and R and the maxima for S do not change, whereas the maxima for I and
R are 0.65 (1+β−α = 0.65 when β = 0.15 and α = 0.5) and 1.55 (1+α = 1.55
when α = 0.55), respectively. So, when β ∈ [0.1, 0.15] and α ∈ [0.5, 0.55], the
parallelotope [0, 1]× [0, 0.65]× [0, 1.55] is an over-approximation of the reachable
set in one step from the unit box.

In both the cases, if we want to compute a further reachability step, we cannot
reuse the above-described method because the initial set is no more a unit box.
The next paragraph presents a generalization of the method that deals with any
kind of parallelotopes.

If we are instead interested in bounding the image of a parallelotope ⟨Λ, c⟩
we have to first rely on its generator representation, e.g., following these steps:

1. compute the generator representation of ⟨Λ, c⟩. Let γ(q,G)(λ1, . . . , λn) be
the linear function over the unit box that occurs in such representation;

2. for each k = 1, . . . , 2n let Λk be k-th row of the template matrix Λ.
Consider the function Λk(f(γ(q,G)(λ1, . . . , λn),p)) over [0, 1]

n × P ;

3. determine the Bernstein coefficients of Λk(f(γ(q,G)(λ1, . . . , λn),p)). Iden-
tify the maximum c′k of such coefficients over P . Since both γ(q,G) and
Λk are linear, in the function Λk(f(γ(q,G)(λ1, . . . , λn),p)) the dependence
on p is still linear and the maximum can be found exploiting linear op-
timization techniques. Moreover, the property of Bernstein coefficients
ensures that Λk(f(γ(q,G)(λ1, . . . , λn),p)) ≤ c′k over [0, 1]n×P , and hence,
Λk(f(x,p)) ≤ c′k over ⟨Λ, c⟩ × P .

The output parallelotope which over-approximates f(⟨Λ, c⟩, P) is ⟨Λ, c′⟩, where
c′ = (c′1, . . . , c

′
2n). The procedure is sketched in Algorithm 2.

Algorithm 2 Parallelotope-based reachability step

1: function reachStep(X = ⟨Λ, c⟩, P, f)
2: for k ∈ {1, . . . , 2n} do
3: γ(q,G)(λ1, . . . , λn)←con2gen(X) ▷ Compute generator function
4: c′k ←maxBernCoeff(Λk(f(γ(q,G)(λ1, . . . , λn),p)), P) ▷ Compute

maximum coefficient
5: end for
6: return X ′ = ⟨Λ, c′⟩
7: end function

22

Example 14. Let us now compute another step from the set reached in Exam-
ple 13. We are considering the set [0, 1]× [0, 0.7]× [0, 1.6] that can be represented
by the parallelotope {x |ΛxT ≤ c} where

Λ =

−1 0 0
0 −1 0
0 0 −1
1 0 0
0 1 0
0 0 1

 c =

0
0
0
1
0.7
1.6

 .

This means that q = (0, 0, 0) and γ(q,G)(λ1, λ2, λ3) = (λ1, 0.7λ2, 1.6λ3). The
Bernstein coefficients of the polynomials in the variables λ1, λ2, λ3 are:

ρS = λ1 − 0.7βλ1λ2

ρR = 0.7λ2 + 0.7βλ1λ2 − 0.7αλ2

ρI = 1.6λ3 + 0.7αλ2

The Bernstein coefficients of ρS are in {0, 1, 1 − 0.7β}, those of ρR are in
{0, 0.7(1− α), 0.7(1 + β − α)}, and those of ρI are in {0, 1.6, 0.7α, 1.6 + 0.7α}.
By minimizing and maximizing them over β ∈ [0.1, 0.2] and α ∈ [0.5, 0.6] we get
the new intervals for S, I, and R, i.e., S ∈ [0, 1], I ∈ [0, 0.49], and R ∈ [0, 2.02].

If the initial set is (S, I,R) ∈ [0, 1] × [0, 0.65] × [0, 1.55], γ(q,G)(λ1, λ2, λ3)
is (λ1, 0.65λ2, 1.55λ3) and the Bernstein coefficients sets for the dynamic laws
of S, I, and R are {0, 1, 1 − 0.65β}, {0, 0.65(1 − α), 0.65(1 + β − α)}, and
{0, 1.55, 0.65α, 1.55 + 0.65α}, respectively. Thus, if β ∈ [0.1, 0.15] and α ∈
[0.5, 0.55], (S, I,R) ranges in [0, 1]× [0, 0.4225]× [0, 1.9075].

In the case of polytopes, the bundle decomposition allows us to efficiently
solve the problem of defining a function from [0, 1]n to a generic polytope Q.
However, this is crucial only for transforming the input, while the directions for
computing the new offset vector can be changed or combined differently in the
bundles during the computation. Consequently, in [30], we described two differ-
ent strategies for computing the new bundle. One of them is faster to compute,
while the other is the more precise of the two. The above considerations, that
allow us to generalize the methods presented in [30] to the parametric case, also
apply to such strategies [27].

The presented algorithms correctly compute an over-approximation of the
reachable set, as proved by Lemma 2. It is worth noticing that the proposed
strategy is memory-less and the evaluated evolution from a point does not con-
sider the parameter values that let that point be reached. While this approach
simplifies the parametric reachability problem and, in some sense, makes it solv-
able, it produces an over-approximation of the solution that gets coarser and
coarser as the evolution proceeds because, at each step, we admit any value in
the parameter set as a valid choice for the parameter values.

Example 15. Let us consider the classical SIR model (see Example 1) and
its evolution from x0 = (0.99, 0.01, 0.0) when α ∈ {1/5, 4/5} and β = 1/2.

23

Since α and β are parameters, their values should be fixed once for all, thus,

ξ
(1/5,1/2)
x0 and ξ

(4/5,1/2)
x0 are the only valid trajectories from x0 and, for instance,

ξ
(1/5,1/2)
x0 (2) = (0.9786718, 0.0167382, 0.00459) and ξ

(4/5,1/2)
x0 (2) = (0.98162695,

0.00481305, 0.01356).
If we over-approximate the reachable set by avoiding to select α once for

all and preserving the choice between α = 1/5 and α = 2/5 at each evolution
step, we produce an infinite number of “spurious” trajectories and, in particular,

in two steps we can reach ξ
(4/5,1/2)
x1 (1) = (0.9786718, 0.0089682, 0.01236) where

x1 = ξ
(1/5,1/2)
x0 (1).

While the proposed algorithm exclusively deals with dense sets of parameters,
it applies the just-mentioned approach to over-approximate the flowpipe.

x1

x2

x0 = x′
0

x′
1

x′
2

ξp
′

x1
(1)

ξpx′
1
(1)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·10−2

0.000

0.005

0.010

0.015

I

R

ξ
(1/5,1/2)
x0

ξ
(4/5,1/2)
x0

Mixing α

Figure 8: Each step of the reachability procedure admits any possibile value in the parameter
set. Thus, when the parameter set is not a singleton, the algorithm follows also “spurious”
trajectories along which the parameters changes. The trajectory ξpx0

described in Example 1

for p = (1/5, 1/2) and p′ = (4/5, 1/2). The points ξpx0
(i) and ξp

′
x0

(i) are labelled as xi and x′
i,

respectively. The triangles depict two points that are included in the over-approximation of
the reachable set exclusively because the algorithm selected two different values for α during
the two-time step horizon.

As far as computational complexity is concerned, the most expensive part of
the computation is the Bernstein coefficients’ computation. However, since the
template parallelotopes do not change during the evolution of the reach set, the
coefficients can be symbolically computed once for all and instantiated at each
step. This approach significantly reduces the complexity (see [27]).

24

3. Parameter Synthesis

The parameter synthesis problem requires handling flows of parametric traces
that, in most cases, cannot be exactly computed, as we saw in the previous sec-
tion. Therefore, we need to find a compromise between precision and tractability
of the problem. For this reason, we introduce the notion of approximated sets
of trajectories which allows us to deal with the synthesis problem.

Let D = (X ,P, f) be a discrete-time dynamical system, X0 ⊆ X , and P ⊆ P.
The set of trajectories Ξ(X0, P) of D can be over-approximated by the flowpipe

W(X0,P) = {Xt | t ∈ N and for t > 0 it holds Xt = f(Xt−1, P)}.

The over-approximating flowpipe W(X0,P) can be computed with the set-
integration algorithms presented in Section 2. However, it is worth noticing
that this is an over-approximation of Ξ(X0, P) since the relationship between a
single trace and its corresponding parameter is not kept.

We can define a semantics on flowpipes that reflects the parameter synthesis
problem. In particular, we define the following synthesis semantics.

Definition 12 (Synthesis Semantics). Let D = (X ,P, f) be a discrete-time
dynamical system, W(X0,P) be a flowpipe with X0 ⊆ X and P ⊆ P, t ∈ N be a
time instant, and φ be an STL formula in positive normal form. The synthesis
semantics Φ(φ,W(X0,P), t) of φ at time t over the flowpipe W(X0,P) is given by
the following inductive definition:

Φ(σ,W(X0,P), t) = Pσ, where Pσ ⊆ P is the largest subset s.t.

∀x0 ∈ W(X0,P)(t),∀p ∈ Pσ, σ(f(x0,p)) is true

Φ(φ1 ∧ φ2,W(X0,P), t) = Φ(φ1,W(X0,P), t) ∩ Φ(φ2,W(X0,P), t)

Φ(φ1 ∨ φ2,W(X0,P), t) = Φ(φ1,W(X0,P), t) ∪ Φ(φ2,W(X0,P), t)

Φ(φ1UIφ2,W(X0,P), t) =
⋃

t′∈t+I

(Φ(φ2,W(X0,P), t
′)∩

⋂
t′′∈[t,t′]

Φ(φ1,W(X0,P), t
′′))

(22)

From an intuitive point of view, Φ(φ,W(X0,P), t) returns a subset Pφ ⊆ P
of parameters that ensures that φ is satisfied at time t starting from any point
in X0 and assigning to the parameters any value in Pφ. Again, the synthesis
semantics at time t returns a set Pφ that steers the system from time t+ 1 on.
This is slightly counterintuitive since the semantics usually returns evaluations
referring to the time instant in which they are applied. However, it is consistent
with our choice on the semantics of STL.

We say that a flowpipeW(X0,P) satisfies a formula φ, denoted withW(X0,P) |=
φ if and only if Φ(φ,W(X0,P), t) = P . By using Definition 12 and structural
induction on φ, it is easy to see that Φ(φ,W(X0,P), t) is idempotent on P , i.e.,
Φ(φ,W(X0,Pφ), t) = Pφ where Pφ = Φ(φ,W(X0,P), t). Thus, W(X0,Pφ) |= φ.
This statement, which is formally reported in the following theorem, asserts

25

that the synthesis semantics provides a refined set of parameters that satisfies
the formula φ.

Theorem 1. If Φ(φ,W(X0,P), 0) = Pφ, then W(X0,Pφ) |= φ.

Since W(X0,P) over-approximates Ξ(X0, Pφ) with Pφ ⊆ P , if φ is satisfied
by W(X0,P), then it is satisfied also by Ξ(X0, Pφ). The following lemma shows
that the parameters generated by the synthesis semantics are also valid for the
exact trajectories of a dynamical system.

Lemma 3. If Φ(φ,W(X,P), t) = Pφ, then for each x ∈ X and for each p ∈ Pφ

it holds that ξpx , t |= φ.

Proof. By structural induction on φ.

• (σ) Let p ∈ Pσ,x ∈ X, xt−1 = ξpx (t−1), and Xt−1 =W(X,P)(t−1). Since
Pσ ⊆ P we have that xt−1 ∈ Xt−1 and xt = f(xt−1,p) ∈ f(Xt−1, Pσ).
Hence, by definition of Pσ we have that σ(xt) is true, i.e., the thesis;

• (φ1 ∧ φ2) Let Φ(φ1,W(X0,P), t) = Pφ1
and Φ(φ2,W(X0,P), t) = Pφ2

. We
have that Pφ = Pφ1

∩ Pφ2
. Let p ∈ Pφ and x ∈ X, since p belongs to

both Pφ1 and Pφ2 , by inductive hypothesis we have that ξpx (t) |= φ1 and
ξpx (t) |= φ2. Hence, we get the thesis;

• (φ1 ∨ φ2) Similar to the conjunction;

• (φ1UIφ2) By definition, if p ∈ Pφ, there exists t′ ∈ t + I such that

p ∈ P t′

φ2
∩

⋂
t′′∈[t,t′] P

t′′

φ1
, where P t′

φ2
= Φ(φ2,W(X0,P), t

′) and P t′′

φ1
=

Φ(φ1,W(X0,P), t
′′). Hence, by inductive hypothesis on φ1 and φ2, we

get the thesis.

As a consequence, we are correctly under-approximating the original param-
eter synthesis problem, as stated by the following theorem.

Theorem 2. If Φ(φ,W(X0,P), 0) = Pφ, then Ξ(X0, Pφ) |= φ.

Proof. This is an immediate consequence of Lemma 3.

In summary, we proved that all the trajectories starting in X0 and having
parameters in Pφ, where Pφ is the result of the synthesis semantics of φ on the
flowpipe W(X0,P), satisfy the formula φ. Thus, the synthesis semantics can be
used to produce under-approximations of the parameter synthesis problem (see
Definition 4).

In the rest of this section, we will see how to synthesize a set P ′ such that
Ξ(X0, P

′) |= φ in the case of the domains and systems defined in Section 2. Our
goal will be achieved by exploiting the synthesis semantics and, in particular,
Φ(φ,W(X0,P), 0). Even though this last set would be the largest subset of P
satisfying the specification, it will be enough to under-approximate it, rather

26

than exactly compute it, because, if Ξ(X0, P) |= φ, then Ξ(X0, P
′) |= φ too for

any subset P ′ of P .
We will proceed by induction on the structure of φ and rely on the main

procedure described in Algorithm 3 which takes in input a set of states X0 ⊆ X ,
a set of parameters P ⊆ P, a function f describing the evolution of the system,
and an STL formula φ in positive normal form, and produces a refinement
Pφ ⊆ P .

Algorithm 3 Parameter synthesis.

1: function ParaSynth(X0, P, f , φ)
2: if φ = σ then ▷ Predicate
3: return RefPredicate(X0, P, f , σ)
4: end if
5: if φ = φ1 ∧ φ2 then ▷ Conjunction
6: return ParaSynth(X0, P, f , φ1) ∩ ParaSynth(X0, P, f , φ2)
7: end if
8: if φ = φ1 ∨ φ2 then ▷ Disjunction
9: return ParaSynth(X0, P, f , φ1) ∪ ParaSynth(X0, P, f , φ2)

10: end if
11: if φ = φ1UIφ2 then ▷ Until
12: return UntilSynth(X0, P, f , φ1UIφ2)
13: end if
14: end function

3.1. Basic Refinement Step φ ≡ σ

Let us consider the case of sets of points in the domain of parallelotopes, set
of parameters in the domain of polytopes and polynomial functions with a linear
dependence on the parameters. Let us also assume that σ ≡ s(x) ≤ 0, where s
is a linear function. In this case, similarly to what has been done in Section 2.4,
we can compute the Bernstein coefficients that are going to be linear in the pa-
rameters. By imposing the parametric Bernstein coefficients to be nonpositive,
we obtain a set of new linear constraints that we add to the definition of the
set of parameters. Specifically, if X0 = ⟨Λ, c⟩, the RefPredicate procedure
operates as follows:

1. compute the generator representation of ⟨Λ, c⟩. Let γ(q,G)(λ1, . . . , λn) be
the linear function over the unit box that occurs in such representation;

2. consider the function s(f(γ(q,G)(λ1, . . . , λn),p)). The image of this func-
tion over [0, 1]n×P coincides with the image of s(f(x,p)) over ⟨Λ, c⟩×P ;

3. determine the Bernstein coefficients bi(p) of s(f(γ(q,G)(λ1, . . . , λn),p));

4. add to P all the constraints of the form bi(p) ≤ 0.

We now present two examples, dealing with different formulas and two sets
of initial conditions, to clarify the RefPredicate procedure.

27

Example 16. Let us consider the SIR model described by Example 1 and let us
synthesize a set of parameters satisfying the STL formula

I ≤ 0.365

when S ∈ [0, 1], I ∈ [0, 0.7], R ∈ [0, 1.6], β ∈ [0.1, 0.2] and α ∈ [0.5, 0.6].
First of all, the generator for [0, 1] × [0, 0.7] × [0, 1.6], i.e., γ(q,G)(λ1, λ2, λ3) =
(λ1, 0.7λ2, 1.6λ3), is found (see the first part of Example 14). Then, the al-
gorithm computes s(f(γ(q,G)(λ1, . . . , λn),p)), where s(x,p) ≤ 0 is the con-
straint to be satisfied. In this example, s(f(γ(q,G)(λ1, . . . , λn),p)) is 0.7(λ2 +
βλ1λ2 − αλ2)− 0.365 (see the first part of Example 14). Finally, the algorithm
finds s(f(γ(q,G)(λ1, . . . , λn),p)) Bernstein coefficients, i.e., {−0.365, 0.335 −
0.7α, 0.335 + 0.7β − 0.7α}, and refines the parameter set by using the con-
straints bi(p) ≤ 0, for each coefficient bi(p). Thus, the synthesized parameter
set is such that α ∈ [0.5, 0.6], β ∈ [0.1, 0.2], −0.365 ≤ 0, 0.335 − 0.7α ≤ 0,
and 0.335 + 0.7β − 0.7α ≤ 0, which is equivalent to α ≤ 0.6, β ≥ 0.1, and
α− β ≥ 67/140.

If, instead, the initial conditions are S ∈ [0, 1], I ∈ [0, 0.65], R ∈ [0, 1.55],
β ∈ [0.1, 0.15] and α ∈ [0.5, 0.55], γ(q,G)(λ1, λ2, λ3) = (λ1, 0.65λ2, 1.55λ3) (see
Example 14) and s(f(γ(q,G)(λ1, . . . , λn),p)) is 0.65(λ2 + βλ1λ2 − αλ2)− 0.365.
Thus, the corresponding Bernstein coefficients are −0.365, 0.285 − 0.65α, and
0.285+0.65β−0.65α and the algorithm returns the set such that α ∈ [0.5, 0.55],
β ∈ [0.1, 0.15], −0.365 ≤ 0, 0.285− 0.65α ≤ 0, and 0.285 + 0.65β − 0.65α ≤ 0,
which are equivalent to α ≤ 0.55, β ≥ 0.1, and α− β ≥ 57/130.

0.48 0.5 0.52 0.54 0.56 0.58 0.6

0

0.1

0.2

α

β

α ≥ 67/140

α− β ≥ 67/140

α ∈ [0.5, 0.6]
β ∈ [0.1, 0.2]

(a) The synthesized set when S ∈ [0, 1], I ∈
[0, 0.7], R ∈ [0, 1.6], β ∈ [0.1, 0.2] and α ∈
[0.5, 0.6].

0.48 0.5 0.52 0.54 0.56 0.58 0.6

0

0.1

0.2

α

β

α ≥ 57/130

α− β ≥ 57/130

α ∈ [0.5, 0.55]
β ∈ [0.1, 0.15]

(b) The synthesized set when S ∈ [0, 1], I ∈
[0, 0.65], R ∈ [0, 1.55], β ∈ [0.1, 0.15] and
α ∈ [0.5, 0.55].

Figure 9: The synthesized parameter set for the SIR model presented in Example 1 satisfying
the formula I ≤ 0.365. See Example 16 for the details.

Example 17. Let us consider the SIR model described by Example 1 and let us
synthesize a set of parameters satisfying the STL formula

R ≤ 2

28

when S ∈ [0, 1], I ∈ [0, 0.7], R ∈ [0, 1.6], β ∈ [0.1, 0.2] and α ∈ [0.5, 0.6].
The generator representation γ(q,G)(λ1, λ2, λ3) equals (λ1, 0.7λ2, 1.6λ3), and

s(f(γ(q,G)(λ1, . . . , λn),p)) is 1.6λ3+0.7αλ2−2 (see the first part of Example 14).
The Bernstein coefficients of s(f(γ(q,G)(λ1, . . . , λn),p)) are −2,−0.4, 0.7α− 2,
and 0.7α − 0.4 and the algorithm returns the set such that α ∈ [0.5, 4/7] and
β ∈ [0.1, 0.2].

If, instead, the initial conditions are S ∈ [0, 1], I ∈ [0, 0.65], R ∈ [0, 1.55],
β ∈ [0.1, 0.15] and α ∈ [0.5, 0.55], γ(q,G)(λ1, λ2, λ3) = (λ1, 0.65λ2, 1.55λ3) and
s(f(γ(q,G)(λ1, . . . , λn),p)) is 1.55λ3 + 0.65αλ2 − 2 (see the last part of Exam-
ple 14). Thus, the corresponding Bernstein coefficients are −2, −0.45, 0.65α−
2, and 0.65α − 0.45 and the original parameter set, α ∈ [0.5, 0.55] and β ∈
[0.1, 0.15], is returned.

3.2. Conjunction and Disjunction Formulas

In the case of formulas of the form φ1 ∧φ2, if ParaSynth(X0, P, f , φ1) and
ParaSynth(X0, P, f , φ2) return two polytopes Pφ1

and Pφ2
defined as a set

of linear constraints, it is sufficient to put together all the constraints and we
obtain the set Pφ1∧φ2

.
On the other hand, in the case of formulas of the form φ1 ∨ φ2, we have to

accumulate the outputs of the two calls. A similar issue will occur in the case
of the until operator described in the next subsection.

Example 18. Let us synthesize the parameter set satisfying the STL formula

I ≤ 0.365 ∧R ≤ 2

on the SIR model described by Example 1 when S ∈ [0, 1], I ∈ [0, 0.7], R ∈
[0, 1.6], β ∈ [0.1, 0.2] and α ∈ [0.5, 0.6]. Under these conditions, the synthesized
set for I ≤ 0.365 is such that α ≤ 0.6, β ≥ 0.1, and α − β ≥ 67/140 (see the
first part of Example 16), while that for R ≤ 2 is such that α ∈ [0.5, 4/7] and
β ∈ [0.1, 0.2] (see the first part of Example 17). Their intersection is empty
because α − β ≥ 67/140 is not even satisfied by the maximum of α, i.e., 4/7,
and the minimum for β, i.e., 0.1.

If, instead, the initial conditions are S ∈ [0, 1], I ∈ [0, 0.65], R ∈ [0, 1.55],
β ∈ [0.1, 0.15] and α ∈ [0.5, 0.55], then, the synthesized set for I ≤ 0.365 is such
that α ≤ 0.55, β ≥ 0.1, and α − β ≥ 57/130 (see the last part of Example 16),
while that for R ≤ 2 is such that α ∈ [0.5, 0.55] and β ∈ [0.1, 0.15] (see the last
part of Example 17). Their intersection equals the former.

3.3. Until Formulas

The function UntilSynth(X,P, φ1U[a,b]φ2) (Algorithm 4) refines the set
P with respect to an until formula φ1U[a,b]φ2. It is structured in three main
blocks, depending on the values a, b that define the interval of the until formula.
The cases are the following:

1. a > 0 and b > 0: the interval is far from time 0;

2. a = 0 and b > 0: the interval starts at time 0 and ends somewhere else;

29

0.5 0.52 0.54 0.56 0.58 0.6
0

5 · 10−2

0.1

0.15

0.2

0.25

α

β

Synthesized for I ≤ 0.365
Synthesized for R ≤ 2

(a) The synthesized set when S ∈ [0, 1], I ∈
[0, 0.7], R ∈ [0, 1.6], β ∈ [0.1, 0.2] and α ∈
[0.5, 0.6].

0.5 0.52 0.54 0.56 0.58 0.6
0

5 · 10−2

0.1

0.15

0.2

0.25

α

β

Synthesized for I ≤ 0.365
Synthesized for R ≤ 2

(b) The synthesized set when S ∈ [0, 1], I ∈
[0, 0.65], R ∈ [0, 1.55], β ∈ [0.1, 0.15] and
α ∈ [0.5, 0.55].

Figure 10: The synthesized parameter set for the SIR model presented in Example 1 satisfying
the formula I ≤ 0.365 ∧R ≤ 2. See Example 18 for the details.

3. a = 0 and b = 0: the interval coincides with the single time instant 0.

Intuitively, the function UntilSynth recursively transforms the cases 1 and 2
into the base case 3.

Before defining the algorithm, it is worth to point out that a single until
formula φ1U[a,b]φ2 may require several basic refinements. Consider, for instance,
the case where φ1 always holds and φ2 holds at several time instants inside
[a, b]. Here, the number of basic refinements that φ1U[a,b]φ2 requires equals the
number of time instants in which φ2 holds. This means that an until can admit
several valid refinements. Some of the refined parameter sets might be included
in others, but since we do not know it in advance, we need to compute and
accumulate all the possible solutions.

Let us now analyse the three cases constituting the structure of UntilSynth
(Algorithm 4):

1. a > 0 and b > 0: the until formula is satisfied if φ1 holds until φ2 is true
inside the interval [a, b]. We first refine the parameters at time 0 over
φ1, obtaining the subset Pφ1

(Line 3). Then the algorithm performs a
reachability step using the valid parameter set Pφ1

to produce the new set
X ′ (Line 4). Now the algorithm proceeds with the recursive call (Line 5).
This can be seen as a step towards the interval [a, b], except that instead
of restoring the synthesis from time 1, we shift the interval backwards;

2. a = 0 and b > 0: there are two ways to satisfy the until formula:

(a) φ2 is satisfied right now at time 0;
(b) φ1 holds until φ2 is satisfied before the time instant b.

In the first case, we need to refine the parameter set with respect to φ2.
In the second case, the algorithm refines with respect to φ1, then the
procedure performs a reachability step under the refined parameter set
Pφ1

, obtaining the new set X ′. Similarly to the previous case, we execute

30

Algorithm 4 Until synthesis.

1: function UntilSynth(X0, P, f , φ1U[a,b]φ2)
2: if a > 0 and b > 0 then ▷ Outside interval
3: Pφ1 ← ParaSynth(X0, P, f , φ1) ▷ Check φ1

4: X ′ ← ReachStep(X0, Pφ1 , f)
5: return UntilSynth(X ′, Pφ1

, f , φ1U[a−1,b−1]φ2)
6: end if
7: if a = 0 and b > 0 then ▷ In interval
8: Pφ1 ← ParaSynth(X0, P, f , φ1) ▷ Check φ1

9: Pφ2 ← ParaSynth(X0, P, f , φ2) ▷ Check φ2

10: X ′ ← ReachStep(X0, Pφ1
, f)

11: return Pφ2
∪ UntilSynth(X ′, Pφ1

, f , φ1U[a,b−1]φ2)
12: end if
13: if a = 0 and b = 0 then ▷ Base
14: return ParaSynth(X0, P, f , φ2)
15: end if
16: end function

a step forward by shortening the interval by one. The procedure then
returns the union of Pφ2 and the result provided by the recursive call;

3. a = 0 and b = 0: this is the base case of the recursive calls. It suffices to
refine P with respect to φ2 and return Pφ2 .

Example 19. Let us consider once more the original SIR model as presented by
Example 1 when the initial values for S, I, and R range in [0, 1], and the param-
eters α and β belong to [0.1, 0.2] and [0.5, 0.6], respectively. Let us synthesize
the parameters α and β such that the STL formula

F[1,1] (I ≤ 0.365 ∧R ≤ 2)

does hold. First of all, this formula is translated into the corresponding U -
based formula, ⊤U[1,1] (I ≤ 0.365 ∧R ≤ 2), as explained in Section 1.2. Then,
Algorithm 4 performs the following steps:

1. synthesize the parameters for the formula ⊤;
2. compute an over-approximation of the set reachable by using the evaluated

parameters;
3. further restrict α and β by synthesizing their admissible values for the

formula ⊤U[0,0] (I ≤ 0.365 ∧R ≤ 2) by using as initial set that computed
during step 2.

The formula ⊤ always holds by definition, thus, step 1 does not change the
parameter set. So, step 2 is equivalent to that reported in the first part of
Example 13 and it computes the parallelotope (S, I,R) ∈ [0, 1]× [0, 0.7]× [0, 1.6].
Then, Algorithm 4 reduces step 3 to synthesizing a set for the formula I ≤
0.365∧R ≤ 2 by using the just-mentioned conditions as initial region. We know
that the resulting set is empty from the first part of Example 18.

31

Instead if the initial parameter set is α ∈ [0.5, 0.55] and β ∈ [0.1, 0.15], step 2
computes the set (S, I,R) ∈ [0, 1]× [0, 0.65]× [0, 1.55] as detailed in the last part
of Example 13. Thus, step 3 synthesizes a parameter set satisfying the formula
I ≤ 0.365 ∧ R ≤ 2 when the initial conditions are those just-mentioned and
β ∈ [0.1, 0.15] and α ∈ [0.5, 0.55]. As seeing in the last part of Example 18, the
algorithm returns the non-empty set α ≤ 0.55, β ≥ 0.1, and α− β ≥ 57/130.

The correctness of the above described algorithms in synthesizing a set of
parameters that guarantees the STL specification is ensured by the correctness
of the reachability algorithm that at each step over-approximates the set of
reachable points together with Theorem 2.

As far as the computational complexity is concerned, in [22] it has been
shown that the synthesis could require a number of reachability steps, basic
refinements, unions and intersections which is exponential with respect to the
dimension of the STL formula. The dimension of a formula includes both the
number of operators and the size of the observed time horizon. Some scalability
tests are available in [22, 27], where time intervals having length up to 120 and
formulas with increasing nesting of until operators up to 20 have been considered
on an Ebola system involving 5 variables and 6 parameters (see Section 6.2.4
and Tables 6.1 and 6.2 in [27]).

3.4. Parameter Splits

The described method guarantees the synthesis of a subset of parameters
satisfying the specification over all the possible starting points. In many cases,
we can obtain an empty set of parameters because of the over-approximations
of the reached points accumulated during the computation. In particular, we
do not store, for each point x in the reach set, the parameters that have allowed
the model to flow to that very point and we propagate x in the future steps by
using all the parameter values that are considered valid up to that step. This
approach is hazardous when the initial set of parameters is large and produces
an extremely conservative over-approximation of the real reach set.

Moreover, our procedure refines only the parameters directly involved in the
dynamics of the variables occurring in the specification. Thus, when a parameter
does not appear in the dynamic of a variable v occurring in the specification,
but it rules the evolutions of other variables involved in the dynamic of v itself,
we cannot refine the parameter set and we return an empty answer.

We take care of both issues by introducing an automatic split procedure
over the parameters set. If we have not identified any parameter satisfying the
specification, sapo resets the computation to time 0 and autonomously splits the
set of parameters into two subsets over each of the hyperplanes defining it. For
instance, we get four sub-rectangles in the case of two parameters ranging over
a rectangle. Then, each subset is refined independently. The splitting step is
iterated until either a non-empty parameter set is synthesized or the maximum
number of iterations allowed by the user has been reached. Since each split
exponentially increases the computational requirements, users should carefully
choose a trade-off between efficiency and precision.

32

Sapo

Base

converter
Bundle

Linear

System Set
Model

STL

formula

Parallelotope
Linear

System
Vars

Generator

Figure 11: Tool architecture.

Example 20. If we try to synthesize a parameter set starting from α ∈ [0.5, 0.6]
and β ∈ [0.1, 0.2] and satisfying the formula

F[1,1]I ≤ 0.365 ∧R ≤ 2

on the evolution of the SIR model of Example 1 when initial conditions are
(S, I,R) ∈ [0, 1]3, we obtain an empty set (see the first part of Example 19).

However, if we split the initial parameter set into the four subsets [0.5, 0.55]×
[0.1, 0.15], [0.5, 0.55]×[0.15, 0.2], [0.55, 0.6]×[0.1, 0.15], and [0.55, 0.6]×[0.15, 0.2]
and we consider the union of the synthesized sets for the investigated formula
by using as initial parameter sets each of the mentioned subsets independently,
we obtain a different result. As a matter of the facts, the set synthesized from
the first of them is non-empty (see the last part of Example 19).

4. Sapo: Set-based Analysis of Parametric Polynomial systems

4.1. Sapo Core

The reachability and parameter synthesis algorithms described in the previ-
ous sections have been implemented in Sapo [28, 27]: an open source tool for the
formal analysis of discrete-time polynomial dynamical systems freely available
at https://github.com/dreossi/sapo.

Figure 11 sketches Sapo architecture. The Model and STL modules imple-
ment dynamical systems and temporal logic properties, respectively. The initial
set of points, X0, and the parameter set, P , can be defined using the modules
Bundles and LinearSystemSet. The main module Sapo performs the reachabil-
ity and parameter synthesis computation. The BaseConvertermodule symboli-
cally computes the Bernstein coefficients of polynomials. Thanks to the method
described in [29, 21], Sapo symbolically evaluates these coefficients only once
and, then, fetches and numerically instantiates them during the computation.

33

https://github.com/dreossi/sapo

4.2. sapo and Sapo Input Language (SIL)

Originally, Sapo was meant to be a library rather than a stand-alone tool.
Users were forced to represent models using the C++ programming language
and write the code for calling the aimed analysis methods. Moreover, a new com-
pilation was required every time either the model or the reachability/synthesis
problem changed. In order to simplify the usage of Sapo and broaden its user
base, we developed a stand-alone application, named sapo, that avoids recom-
pilations by accepting in input problems described by the Sapo Input Language
(SIL for short). This tool is an efficient and practical alternative to the Sapo

library for non-expert users; it also embeds for free some nice features –such as
multi-threading computations– that, during the writing of this article, were not
fully integrated by the Sapo C++ API.

sapo takes in input SIL file which consist of four main sections:

Header which, among the other options, specifies whether a synthesis or a
reachability analysis must be performed;

Symbols definition which declares the variables, the parameters, the con-
stants, the dynamics, and, whenever needed, the STL specification;

Matrices definition which defines the template matrices and the initial set;

Footer which contains some Sapo-specific options to fine-tune its behaviour.

Pairs of rows in the parallelotope template matrices are linearly dependent
and, in these pairs, each line can be obtained from the other one by multiplying
the latter by −1 (e.g., see the template matrix Λ of Example 14).

In order to reduce specification redundancy and decrease user effort, SIL
decouples the template matrices of all the bundles used during the computation
into two components: the vector of the planes/directions and the template
vector whose values specify the directions of each parallelotope. Under this
convention, the initial set is declared by specifying an interval of admitted values
for each direction.

Section 5.1 presents a case study together with some SIL examples. Please,
refer to the SIL page of the project wiki for a complete overview of the syntax.

Thanks to SIL, the sapo application avoids the need for a recompilation at
each new analysis. The class Driver interprets the input provided in SIL format
and returns an InputData object to represent the model description and, possi-
bly, its specification. As soon as it is executed, the sapo tool creates an instance
of the Driver class and, through it, parses the input. The resulting InputData

object is used to fill a Model object and create a sapo opt object to represent
the computation options reported in the input. Then, the application creates
an instance of the class Sapo and performs the reachability or the synthesis
analysis by calling either the Sapo::reach or the Sapo::synthesize, respec-
tively. Finally, it prints the results: in the case of reachability, users obtain a
temporal sequence of sets representing the flowpipe, while, when the synthesis
analysis is requested, the tool also shows the set of synthesized parameters. In

34

https://github.com/dreossi/sapo/wiki/Sapo-Input-Language

both cases, the sets are represented as the union of the solution sets of some
linear inequalities.

4.3. Web Application

With the main aim of relieving the user from installing Sapo and from up-
dating it any time a new version is released, we developed a web interface for
the sapo tool which, among the other features, can plot flowpipes and sets of
synthesized parameters.

The web interface named webSapo, allows the user to input variables, system
dynamics, and parameters. According to the user’s choices for the domains of
variables and parameters, it establishes which matrices must be input by users
and automatically creates the others. If the addressed problem is parameter
synthesis, it also offers a section for the STL specification.

Once the investigated problem has been analysed, the results are locally
saved and they can be depicted in both 2D or 3D plots. The step-by-step
evolution of the reached set can be also presented as a sequence of images.

Among all its features, webSapo also supports off-line computations: any
sapo output file in JSON format can be loaded by webSapo and the analysis
results can be plotted as they were just computed by webSapo itself.

The webSapo source code can be downloaded from https://github.com/

LucaDorigo/webSapo and a manual for it is available on the project wiki page.
A free-to-use online webSapo service is offered at http://encase.uniud.it:

3001.

5. Case Studies

In this section we consider two case studies drawn from real scenarios meant
to provide a better insight on the Sapo potentials. Here, we do not present
any scalability test because, on the one hand, designing adequate tests having
increasing complexity and avoiding empty parameter set scenarios is not an
easy task, on the other hand, completely factitious models may miss to provide
realistic results. Some scalability tests performed on Sapo are instead presented
in [27].

5.1. COVID-19 Simple Model

The SIR example allows us to keep the description simple, show the main
functionalities of Sapo, and, at the same time, make some consideration on the
current COVID-19 outbreak.

Many models of COVID-19 can be found in the literature (e.g., see [5, 39,
32]). Here we are not interested in depth investigating these models. Some of
them are very complex, for instance, involving partial differential equations or
stochasticity, and a full paper could be devoted to their implementation and
analysis with Sapo. Instead, we aim to present our framework using fascinating
yet simple examples.

35

https://github.com/LucaDorigo/webSapo
https://github.com/LucaDorigo/webSapo
https://github.com/LucaDorigo/webSapo/wiki
http://encase.uniud.it:3001
http://encase.uniud.it:3001

Let us consider a more realistic SIR model with two extra parameters: Vac-
cination rate µ and loss of immunity rate γ. The system dynamics are:

St+1 = St − βStIt − µSt + γRt

It+1 = It + βStIt − αIt
Rt+1 = Rt + µSt − γRt + αIt

To capture the evolution of COVID-19 pandemic, let us assume that:

• the transmission rate β ranges in [0.055, 0.1]. This is equivalent to an R0

rate ranging in [0, 77, 1.4];

• the recovery rate α ranges in [0.05, 0.07], i.e., between 14 days and 20 days
are necessary for recovery;

• the vaccination rate µ ranges in [0.00001, 0.001], i.e., we assume that we
can vaccinate at most 0.1% of the susceptible individuals each day. We
consider that only a low fraction of the population can be vaccinated each
day, i.e., we are assuming that we want to rely on the existing vaccination
centers and not on the hub built during the emergency. Notice that to be
more precise µ represents the rate of susceptible individuals that each day
are vaccinated and over which the vaccine has efficacy;

• the loss of immunity rate γ ranges in [0.0027, 0.0055], representing that
the immunity duration lays between 180 and 360 days.

In order to model the situation in Italy in October 2021 at time 0, we also
assume that:

• R ranges in [0.7, 0.8]. This accounts of all the individuals that are either
vaccinated or recovered from the disease;

• I ranges in [0.001, 0.1]. This range is a pessimistic estimation in which we
assume a very high number of asymptomatic individuals;

• S ranges in [0.2, 0.3]. This value is due to the other choices.

One could be initially interested in forecasting the pandemic situation within
100 days, i.e., computing the set of points reachable within 100 steps. The model
together with the just-mentioned problem is described by the following SIL file.

problem: reachability;

iterations: 100;

var s;

var i;

var r;

param beta in [0.055, 0.1];

36

param mu in [0.00001, 0.001];

param gamma in [0.0027, 0.0055];

param alpha in [0.05, 0.07];

dynamic(s) = s - beta*s*i - mu*s + gamma*r;

dynamic(i) = i + beta*s*i - alpha*i;

dynamic(r) = r + mu*s - gamma*r + alpha*i;

direction s in [0.2, 0.3];

direction i in [0.001, 0.1];

direction r in [0.7, 0.8];

The last three lines in the SIL file define the directions vector and the inter-
vals vector representing the initial parallelotope. The expression between the
reserved words direction and in could be any expression linear in s, i, and r;
for instance, 3 ∗ s/4 + r or s− 2 ∗ i+ r/3.

Since our example uses the canonical directions, i.e., our parallelotopes are
boxes, the last three lines can be omitted by specifying the box boundaries
during the variable declarations as follows:

var s in [0.2, 0.3];

var i in [0.001, 0.1];

var r in [0.7, 0.8];

Figure 12, which was produced by webSapo, depicts the number of infected
individuals over time as computed by sapo.

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time

i

Figure 12: COVID-19 infected individuals over time. This image was produced by webSapo

and then modified for editorial needs.

It is easy to see that this number surges after around 80 days. Thus, one
could be interested in synthesizing the parameters that ensure that the number

37

of infected stays below 0.1 within the next 100 days. Since this last property
corresponds to the STL formula G[0,100] i < 0.1, our goal can be achieved by
replacing the word reachability with synthesis in the first line of the SIL
file and, at the same time, by adding the line

spec: G[0,100] i < 0.1;

at the end of it.
Figure 13 depicts a graphical representation, produced by webSapo, of the

synthesized values for α and β.

0.055 0.06 0.065 0.07 0.075 0.08 0.085
0.05

0.055

0.06

0.065

0.07

β

α

Figure 13: Synthesized values of β and α with respect to G[0,100](i < 0.1). This image was
produced by webSapo and then modified for editorial needs.

The meaning of the result is quite intuitive: since we cannot revaccinate a
high fraction of the population, we have at least to introduce restrictions on
the circulation that reduce the transmission rate β below 0.9. Moreover, β
has to be further reduced by introducing more stringent measures if we cannot
provide treatments, such as antiviral drugs, that increase the recovery rate α.
As a matter of fact, a low recovery rate increases the probability for an infected
individual to transmit the disease to a susceptible one. Figure 14 depicts the
evolution of the infected with respect to the synthesized parameters.

Finally, one could adjust the vaccination rate µ and loss of immunity rate γ.
Let us assume that we can allow the transmission rate β to grow up to 0.15 (i.e.,
R0 = 2.1), i.e., we would prefer to avoid restrictions. On the other hand, we
are prepared for investing in massive revaccination, i.e., µ can grow up to 0.1 of
the susceptibles. This approach is not realistic when most of the population is
susceptible, but it becomes feasible after the first round of vaccination when the
susceptibles are a low fraction of the population. Moreover, this is one of the
parameters we are interested in synthesizing, so we let it range in a large interval
and check whether it gets reduced after the computation. We are now interested
in ensuring that the infected are less than 15% until the susceptible are less than

38

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

Time

i

Figure 14: COVID-19 infected individuals over time when using parameters satisfying
G[0,100](i < 0.1). This image was produced by webSapo and then modified for editorial needs.

10% within the next 100 days, i.e., we are considering the specification

(I < 0.15)U[0,100](S < 0.1).

In this case, the parameter splitting procedure is necessary to obtain a non-
empty result. Since sapo does not split parameter set during the synthesis by
default, we added the line:

max_parameter_splits: 3;

in the header of the SIL file. This syntax sets the maximum number of admitted
parameter splits; in this case, three. The first synthesis round considers the
whole initial parameter set. If the synthesis produces a non-empty set, sapo
returns the result. Otherwise, the parameter set is split in 2n sub-sets and the
process is repeated until either the maximum number of splits has been reached
or sapo synthesizes a non-empty set of parameters. It is worth noticing that a
non-empty set may be returned during the first round. However, in the worst
case scenario, the synthesis takes exponential time with respect the maximal
number of admitted splits. Because of this, we decided to let users tune this
option according to their wishes.

Figure 15 represents the 2D projection of the synthesis over γ and µ and it
proves that the parameter set was split during the computation. As expected,
the picture shows that if the loss of immunity rate γ is high, i.e., the immunity
period is short, we need to invest in revaccination drastically, i.e., µ has to be at
least 0.075. Let us notice again that the splits are the key ingredient to getting
a non-empty result.

The above described examples have been run on a MacBook Pro M1 2020,
with 16GB of RAM, taking less than a second, a part from the last one that

39

0.003 0.0035 0.004 0.0045 0.005 0.0055
0.05

0.06

0.07

0.08

0.09

0.1

γ

µ

Figure 15: 2D projection of the synthesis over γ and µ. This image was produced by webSapo

and then adapted to the editorial style of this journal.

took around 34 seconds with multi-threading and 118 with single-threaded com-
putation.

5.2. Enhancing Accuracy of Neural Networks Analysis

In this section we illustrate another potential application of Sapo, which is
formal analysis of neural networks (NN). This problem has become crucial in the
recent development of autonomous applications such as robots, self-driving vehi-
cles, and medical devices. Indeed, neural networks are increasingly used in such
applications thanks to their approximation power and ability to “learn” from
data, demonstrated by their high performance in image classification, natural
language processing and speech recognition (see for example [53, 49]). However,
assuring the safety and robustness of their usage, in particular under the impact
of adversarial inputs or perturbations, is still challenging. Beyond classification
purposes, NN can be used to approximate and implement complex control laws,
and verifying a closed-loop system with such neural network controllers requires
the ability to approximate the image of an input set by a neural network within
a given error bound. Various set propagation and reachability computation
from formal verification and abstract interpretation of dynamical systems have
been applied to address this problem (see, e.g. [70, 31, 44, 45, 68]). While the
application of these approaches does not pose serious theoretical problems, com-
putational complexity is an issue mainly because of the non-linearities of activa-
tion functions and the large size of practical neural networks. Piecewise-linear
approximations, which are commonly used in these approaches, provide good
accuracy for ReLU activation functions, but may lead to overly conservative
results for sigmoid activation functions. Polynomial/rational approximations
and the Bernstein techniques can thus be combined to enhance the accuracy for
parts of the network with high sensitivity. This is what we want to demonstrate
in this section. In particular, we focus on the usage of Sapo for reachability

40

r

i s

Figure 16: The reachable set after synthesis. This image was produced by webSapo and then
modified for editorial needs.

41

computation in the non-parametric case, while some considerations on possi-
ble extensions to the parameter synthesis functionalities conclude this section.
Therefore, in [60, 59], we propose an algorithm for accurately computing the
image of activation functions, by first approximating them using polynomial and
rational functions and then applying the Bernstein techniques on the resulting
functions.

Let us now demonstrate the idea with feed-forward neural networks. Each
layer l of such a network N has the form:

hl(x) = s(ℓl(x)),

where ℓl is a linear function, while s is an activation function. Given an initial set
of values for x, the image of the neural networks is the result of the application
of all the layers, denoted by N(x). First, our algorithm [60, 59] approximates
the functions hl by polynomials. Then it over-approximates the outputs of
the activation functions hl using Sapo, parametric reachability computation.
In [60], we show how hyperbolic tangent activation functions are approximated
using polynomials. In particular, given a desired degree we can sample the
hyperbolic tangent in the confident interval and we can tune the coefficients
of the polynomial function in order to minimize the maximum absolute error,
using, for instance, the polyfit function available in MATLAB®. Considering
degree 5, we obtained the following polynomial:

tanh(x) ≈ 0.9568x− 0.2107x3 + 0.02354x5

with maximum error below 0.01.
An implementation of this algorithm is then integrated in the tool ERAN

(ETH Robustness Analyzer for Neural Networks software) [66], which is a well-
developed platform implemented in Python. It has been used for proving NN
robustness against adversarial perturbations based on changes in pixel intensity
and geometric transformations of images. What makes this tool also powerful is
that it supports convolutional, feedforward, and residual networks with different
types of activation functions. The tool deals with hyperbolic tangent activation
functions via piecewise-linear approximations which, as mentioned earlier, can
lead to imprecise results.Combining ERAN and the Bernstein techniques im-
plemented in Sapo enables benefitting from the advantages of both, namely
the accuracy of image approximations for activation functions of Sapo, and the
optimized propagation of sets through NN layers of ERAN. Indeed, ERAN prop-
agates the dependency between the neurons through the layers by grouping k
activation functions [65]. Note that propagating the full dependency between
the neurons is prohibitively expensive, and the group size k is a user-defined
parameter for fine-tuning the tradeoff between accuracy and computation cost,
by retaining the dependency only between the outputs of the activation func-
tions of the same group. ERAN over-approximates the inputs to these groups
by sets of fixed form (also a way to reduce the geometric complexity of the sets
generated through the propagation) which can be represented using the paral-

42

lelotope bundles of Sapo. While ERAN uses a piecewise-linear approximation
to deal with hyperbolic tangent activation functions, our Sapo-based algorithm
uses the Bernstein expansion.

We illustrate now the advantage of this combination with two examples. One
involves two neural network controllers for a robotic arm, and the other involves
the neural network benchmarks provided by ERAN. The second example aims at
showing the accuracy advantage of combining Sapo with ERAN by a comparison
between this combination and ERAN alone. Their implementations are available
at https://github.com/PippiaEleonora/SapoForNN.

Neural Network Controllers. The neural networks here are trained using data
generated by a nominal discrete-time feedback PID controller for a robotic arm
provided by MathWorks®. The aim is to control the trajectory of this system
while the value of the input reference signal r(·) randomly changes in [−0.5, 0.5]
every 10 seconds. The control uk at time k is the result of the neural network on
10 inputs: the reference signals rk, rk−1, rk−2, rk−3; the outputs yk, yk−1, yk−2,
yk−3; the controls uk−1, uk−2. Note that since PID controllers have memory
and in order to capture it using a feedforward neural network, previous values
of the variables should be fed as inputs to the network.

Two neural networks trained using different data sets are considered: one
“bad” using data with diverging behaviour and one “good” with correct be-
haviour. We train two different neural nets with 2 hidden layers with 30 neurons
each. We call the first neural network NNbad since it has a diverging behaviour
as shown in Figure 17 for the constant reference with value −0.2. The second
is called NNok since it has a correct behaviour shown in Figure 18.

Figure 17: Comparison of the control output
for NNbad and a standard PID controller.

Figure 18: Comparison of the control output
for NNok and a standard PID controller.

We define a noise factor ϵ = |r| · p where p has three values of p = {0.01%,
0.1%, 0.5%}. We run our algorithm where the first 4 inputs rk, . . . , rk−3 take
constant value −0.2, the next 4 inputs have the range [−0.2 − ϵ,−0.2 + ϵ] and
the last two have the range u = 10y. We obtain the approximations in Table 1.

Here we use the above-described algorithm combining Sapo and ERAN to
compute the set of reachable states under uncertain inputs for the two net-
works. The computation using our algorithm confirms the expected results,
i.e., the “bad” network diverges, while the “good” one does not. For instance,
when the perturbation p is at most 1% the “bad” network reaches the interval
[−7.812, 1.049], while the “good” one remains in [−4.146, 0.528]. We can see

43

https://github.com/PippiaEleonora/SapoForNN
https://ch.mathworks.com/help/deeplearning/ug/design-model-reference-neural-controller-in-simulink.html
https://ch.mathworks.com/help/deeplearning/ug/design-model-reference-neural-controller-in-simulink.html

p NNbad NNok

0.01% [-2.344, -1.684] [-2.133, -1.862]

0.1% [-5.342, 1.313] [-3.368, -0.627]

0.5% [-18.673, 14.600] [-8.850, 4.858]

Table 1: Interval approximation of NNbad and NNok adding the noise factor ϵ.

that the output interval of NNbad is 2.4 times the size of the output interval of
NNok, and this result is coherent with the behaviour of the two nets.

Sapo-ERAN versus ERAN. Our goal here is to evaluate if our algorithm us-
ing Sapo is more precise compared to ERAN which uses piecewise-linear ap-
proximations. In the experiments, we use a neural network with hyperbolic
tangent activation functions for image recognition provided by ERAN (named
mnist_tanh_3_50.tf). We describe in the following the results obtained for
different sizes of the input box. The group size parameter k is 3, meaning that
the activation functions of each layer are considered in groups of size 3.

We run ERAN and Sapo-ERAN over different input boxes (e.g., [−6, 6],
[0, 1], and [3, 5]) obtaining that Sapo-ERAN always returned a region included
in the one returned by ERAN and, in particular, the rate between the volumes
of the regions produced by the former and that of produced by the latter is
always about 0.008. In Table 2, we report the outputs for the input box [−1, 1].

Variable ERAN Sapo-ERAN

n. 1 [-0.4212406, 0.5770473] [0.0163105, 0.5726539]

n. 2 [-0.3896767, 0.0377295] [-0.3207002, -0.0517504]

n. 3 [-0.3349207, 0.2658570] [-0.1952389, 0.2020677]

n. 4 [-0.3848480, 0.0126727] [-0.3804094, -0.0099185]

n. 5 [-0.2343316, 0.3914449] [0.0450511, 0.3863766]

n. 6 [0.0583854, 0.4344926] [0.1958679, 0.3695503]

n. 7 [0.1373136, 0.4805078] [0.1809298, 0.3411388]

n. 8 [0.2759886, 0.8369578] [0.4734756, 0.8258935]

n. 9 [0.0675532, 0.8206135] [0.1222727, 0.5918586]

n. 10 [-0.0174709, 0.5043359] [-0.0100259, 0.4139967]

Table 2: ERAN and Sapo-ERAN outputs for the input box [-1,1].

In the examples on neural networks we exploited the reachability function-
alities of Sapo over systems without parameters. In the current implementation

44

of Sapo the dynamics can be parametric with a linear dependence on the pa-
rameters. Such linear dependence allows the synthesis algorithms to rely on
linear optimization subroutines. It would be very interesting if we could keep
the linear functions defining the neural network parametric and synthesize the
parameters that guarantee the expected behaviours. Unfortunately, the depen-
dence on the parameters does not remain linear when the activation function
is applied. We can easily synthesize linear parameters added at the level of the
activation function, while it is more natural to have them in the linear part. The
extension of Sapo with non linear optimization is currently under investigation,
since it is of interest also in other applicative domains.

6. Conclusion and Future Work

We described algorithms for reachability and synthesis of parametric poly-
nomial dynamical systems based on Bernstein coefficients that are implemented
in the Sapo C++ library. We also presented a stand-alone application sapo

that integrates these algorithms and avoids the need for problem recompila-
tions. This stand-alone tool implements all the features offered by the Sapo

library, presents them in a simplified interface, and offers some free extra bonus
such as multi-threading. We are aware that libraries are usually more flexible
than stand-alone applications and ease integrations in other tools and, because
of this reason, sapo is meant to be an alternative way of using the Sapo library
rather than a replacement for it.

The webSapo application further extends the audience of Sapo to any pos-
sible user on the internet. We presented two examples: the first from epidemi-
ological models using a simple yet realistic COVID setting; the second from
neural networks reachability analysis.

Sapo is a well-established tool, but we still consider to add features and ex-
pand its applicability domain. In the near future, it will support continuous dy-
namic laws and hybrid models. In particular, it will be able to over-approximate
a flowpipe within a time interval by explicitly adding a time variable ranging in
the interval itself. We also aim to support disturbances, control inputs, and we
intend to integrate a model checker.

As far as the implementation is concerned, while Sapo already partially sup-
ports multi-threading and parallelizes the computation after parameter splits,
we plan to extensively use this technology in linear algebra and symbolic op-
erations too. Moreover, we would like to implement status dump, so to save
the status of an incomplete analysis at wish and restart it afterward, and MPI
multi-processing to distribute the computation on a cluster.

Another intriguing technical development consists of computing Bernstein
coefficients and, more in general, each bundle’s single evolution step by using
GPU. In this case, the aimed efficiency boost will be related to convex compo-
nents’ complexity rather than their number. As far as the synthesis is concerned,
the latter approach is symmetrical to the thread-based one: the more Sapo can
refine a set of parameters without nullifying it, the less parameter splittings are
performed.

45

Finally, we plan to explore the use of Sapo in other applicative contexts such
as security verification [62], performances analysis [4], and blockchain [54].
Acknowledgments Alberto Casagrande is partially supported by the INdAM-
GNCS project “InSANE: Investigating Sparse Algorithms in the post von Neu-
mann Era”.

Thao Dang is partially supported by the ANR-JST CREST project CyPhAI
funded by the French National Research Agency ANR and Japan Science and
Technology Agency JST, and the project Modylam (Plan Cancer, INSERM).

Carla Piazza is partially supported by the Italian PRIN project “Non-
interference and Reversibility Analysis in Private Blockchains (NiRvAna)” -
20202FCJMH and by the INdAM/GNCS project “LESLIE: LogichE non-claSsi-
che per tooL Intelligenti ed Explainable”.

We thank Alessandro Grisafi and Gianluca Ermacora for their contribution
on the first version of the GUI for sapo.

References

[1] Matthias Althoff and Goran Frehse. Combining zonotopes and support
functions for efficient reachability analysis of linear systems. In 2016 IEEE
55th Conference on Decision and Control (CDC), pages 7439–7446. IEEE,
2016.

[2] Matthias Althoff, Goran Frehse, and Antoine Girard. Set propagation tech-
niques for reachability analysis. Annual Review of Control, Robotics, and
Autonomous Systems, 4:369–395, 2021.

[3] Matthias Althoff and Dmitry Grebenyuk. Implementation of interval arith-
metic in CORA 2016. In Proc. of the 3rd International Workshop on Ap-
plied Verification for Continuous and Hybrid Systems, pages 91–105, 2016.

[4] Giacomo Alzetta, Andrea Marin, Carla Piazza, and Sabina Rossi. Lumping-
based equivalences in markovian automata: Algorithms and applications to
product-form analyses. Information and Computation, 260:99–125, 2018.

[5] Julien Arino and Stéphanie Portet. A simple model for COVID-19. Infec-
tious Disease Modelling, 5:309–315, 2020.

[6] Eugene Asarin, Thao Dang, and Oded Maler. The d/dt tool for verifica-
tion of hybrid systems. In International Conference on Computer Aided
Verification, pages 365–370. Springer, 2002.

[7] Eugene Asarin, Alexandre Donzé, Oded Maler, and Dejan Nickovic. Para-
metric identification of temporal properties. In Runtime Verification, RV,
pages 147–160. Springer-Verlag, 2012.

[8] Stanley Bak and Parasara Sridhar Duggirala. Simulation-equivalent reach-
ability of large linear systems with inputs. In International Conference on
Computer Aided Verification, pages 401–420. Springer, 2017.

46

[9] Ezio Bartocci, Luca Bortolussi, and Laura Nenzi. On the robustness of
temporal properties for stochastic models. In Hybrid Systems and Biology,
HSB, volume 125 of EPTCS, pages 3–19, 2013.

[10] Luca Benvenuti, Davide Bresolin, Pieter Collins, Alberto Ferrari, Luca
Geretti, and Tiziano Villa. Ariadne: Dominance checking of nonlinear
hybrid automata using reachability analysis. In International Workshop
on Reachability Problems, pages 79–91. Springer, 2012.

[11] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin,
and Christian Schilling. Juliareach: a toolbox for set-based reachability. In
Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, pages 39–44, 2019.

[12] Thomas Brihaye, Laurent Doyen, Gilles Geeraerts, Joël Ouaknine, Jean-
François Raskin, and James Worrell. On reachability for hybrid automata
over bounded time. In International Colloquium on Automata, Languages,
and Programming, pages 416–427. Springer, 2011.

[13] Michael Brin and Garrett Stuck. Introduction to Dynamical Systems. Cam-
bridge University Press, 2002.

[14] G. Cargo and O. Shisha. The Bernstein form of a polynomial. Journal of
Research of the National Bureau of Standards, 70, 01 1966.

[15] Alberto Casagrande and Tommaso Dreossi. pyHybridAnalysis: A Package
for Semantics Analysis of Hybrid Systems. In Digital System Design, DSD,
pages 815–818, 2013.

[16] Alberto Casagrande, Tommaso Dreossi, Jana Fabriková, and Carla Piazza.
ϵ-semantics computations on biological systems. Inf. Comput., 236:35–51,
2014.

[17] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An
analyzer for non-linear hybrid systems. In Computer Aided Verification,
CAV, pages 258–263, 2013.

[18] Edmund M. Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled,
and Helmut Veith. Model checking. MIT press, 2018.

[19] Harold Scott Macdonald Coxeter. Regular polytopes. Courier Corporation,
1973.

[20] Thao Dang, Tommaso Dreossi, Eric Fanchon, Oded Maler, Carla Piazza,
and Alexandre Rocca. Set-based analysis for biological modeling. In
Automated Reasoning for Systems Biology and Medicine, pages 157–189.
Springer, 2019.

[21] Thao Dang, Tommaso Dreossi, and Carla Piazza. Parameter synthesis us-
ing parallelotopic enclosure and applications to epidemic models. In Hybrid
Systems and Biology, HSB, pages 67–82, 2014.

47

[22] Thao Dang, Tommaso Dreossi, and Carla Piazza. Parameter synthesis
through temporal logic specifications. In Formal Methods, FM, pages 213–
230, 2015.

[23] Jyotirmoy V. Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing
Jin, Garvit Juniwal, and Sanjit A. Seshia. Robust online monitoring of
signal temporal logic. Formal Methods in System Design, 51(1):5–30, 2017.

[24] Alexandre Donzé. Breach, a toolbox for verification and parameter synthe-
sis of hybrid systems. In Computer Aided Verification, CAV, pages 167–170.
Springer, 2010.

[25] Alexandre Donzé, Eric Fanchon, Lucie M. Gattepaille, Oded Maler, and
Philippe Tracqui. Robustness analysis and behavior discrimination in en-
zymatic reaction networks. PLOS One, 6(9):e24246, 2011.

[26] Alexandre Donzé, Thomas Ferrere, and Oded Maler. Efficient robust mon-
itoring for STL. In Computer Aided Verification, CAV, pages 264–279.
Springer, 2013.

[27] Tommaso Dreossi. Reachability Computation and Parameter Synthesis for
Polynomial Dynamical Systems. PhD thesis, Université Grenoble Alpes;
Università degli Studi di Udine, 2016.

[28] Tommaso Dreossi. Sapo: Reachability computation and parameter syn-
thesis of polynomial dynamical systems. In Proceedings of the 20th Inter-
national Conference on Hybrid Systems: Computation and Control, pages
29–34, 2017.

[29] Tommaso Dreossi and Thao Dang. Parameter synthesis for polynomial
biological models. In Hybrid Systems: Computation and Control, HSCC,
pages 233–242, 2014.

[30] Tommaso Dreossi, Thao Dang, and Carla Piazza. Reachability computation
for polynomial dynamical systems. Formal Methods in System Design,
50(1):1–38, 2017.

[31] S. Dutta, X. Chen, S. Jha, S. Sankaranarayanan, and A. Tiwari. Sherlock - a
tool for verification of neural network feedback systems: Demo abstract. In
Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, HSCC ’19, pages 262–263, 2019. https://doi.
org/10.1145/3302504.3313351.

[32] Ralf Engbert, Maximilian M Rabe, Reinhold Kliegl, and Sebastian Reich.
Sequential data assimilation of the stochastic SEIR epidemic model for
regional COVID-19 dynamics. Bulletin of mathematical biology, 83(1):1–
16, 2021.

48

https://doi.org/10.1145/3302504.3313351
https://doi.org/10.1145/3302504.3313351

[33] Georgios E. Fainekos and George J. Pappas. Robustness of temporal logic
specifications for continuous-time signals. Theoretical Computer Science,
410(42):4262–4291, 2009.

[34] Rida T. Farouki. The Bernstein polynomial basis: A centennial retrospec-
tive. Computer Aided Geometric Design, 29(6):379–419, 2012.

[35] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi
Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and
Oded Maler. SpaceEx: Scalable verification of hybrid systems. In Computer
Aided Verification, CAV, pages 379–395. Springer, 2011.

[36] Oded Galor. Discrete dynamical systems. Springer Science & Business
Media, 2007.

[37] Luca Geretti, Julien Alexandre Dit Sandretto, Matthias Althoff, Luis
Benet, Alexandre Chapoutot, Xin Chen, Pieter Collins, Marcelo Forets,
Daniel Freire, Fabian Immler, Niklas Kochdumper, David P. Sanders, and
Christian Schilling. ARCH-COMP20 Category Report: Continuous and
Hybrid Systems with Nonlinear Dynamics. In Goran Frehse and Matthias
Althoff, editors, ARCH20. 7th International Workshop on Applied Verifi-
cation of Continuous and Hybrid Systems (ARCH20), volume 74 of EPiC
Series in Computing, pages 49–75. EasyChair, 2020.

[38] Luca Geretti, Julien Alexandre Dit Sandretto, Matthias Althoff, Luis
Benet, Alexandre Chapoutot, Pieter Collins, Parasara Sridhar Duggirala,
Marcelo Forets, Edward Kim, Uziel Linares, David P. Sanders, Christian
Schilling, and Mark Wetzlinger. ARCH-COMP21 Category Report: Con-
tinuous and Hybrid Systems with Nonlinear Dynamics. In Goran Frehse
and Matthias Althoff, editors, 8th International Workshop on Applied Ver-
ification of Continuous and Hybrid Systems (ARCH21), volume 80 of EPiC
Series in Computing, pages 32–54. EasyChair, 2021.

[39] Giulia Giordano, Franco Blanchini, Raffaele Bruno, Patrizio Colaneri,
Alessandro Di Filippo, Angela Di Matteo, and Marta Colaneri. Modelling
the COVID-19 epidemic and implementation of population-wide interven-
tions in Italy. Nature medicine, 26(6):855–860, 2020.

[40] Iman Haghighi, Noushin Mehdipour, Ezio Bartocci, and Calin Belta. Con-
trol from signal temporal logic specifications with smooth cumulative quan-
titative semantics. In 2019 IEEE 58th Conference on Decision and Control
(CDC), pages 4361–4366. IEEE, 2019.

[41] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A
model checker for hybrid systems. In Computer Aided Verification, CAV,
pages 460–463. Springer, 1997.

[42] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? In Symposium on Theory of
computing, STOC, pages 373–382. ACM, 1995.

49

[43] Bardh Hoxha, Adel Dokhanchi, and Georgios Fainekos. Mining parametric
temporal logic properties in model-based design for cyber-physical systems.
International Journal on Software Tools for Technology Transfer, 20(1):79–
93, 2018.

[44] C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu. Reachnn: Reachability
analysis of neural-network controlled systems. ACM Trans. Embed. Com-
put. Syst., 2019. https://doi.org/10.1145/3358228.

[45] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee. Verisig:
verifying safety properties of hybrid systems with neural network con-
trollers. In Proceedings of the 22nd ACM International Conference on Hy-
brid Systems: Computation and Control, HSCC ’19, pages 169–178, 2019.
https://arxiv.org/abs/1811.01828.

[46] Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V. Deshmukh, and Sanjit A Se-
shia. Mining requirements from closed-loop control models. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
34(11):1704–1717, 2015.

[47] Kevin D. Jones, Victor Konrad, and Dejan Nickovic. Analog prop-
erty checkers: a DDR2 case study. Formal Methods in System Design,
36(2):114–130, 2010.

[48] Rudolf Emil Kalman, Peter L. Falb, and Michael A. Arbib. Topics in
mathematical system theory, volume 33. McGraw-Hill New York, 1969.

[49] U. Kamath, J. Liu, and J. Whitaker. Deep Learning for NLP and
Speech Recognition. Springer International Publishing, 2019. https:

//www.springer.com/gp/book/9783030145958.

[50] William O. Kermack and Anderson G. McKendrick. A contribution to
the mathematical theory of epidemics. In Royal Society of London A:
Mathematical, Physical and Engineering Sciences, volume 115, pages 700–
721. The Royal Society, 1927.

[51] Edward Kim and Parasara Sridhar Duggirala. Kaa: A Python implemen-
tation of reachable set computation using bernstein polynomials. EPiC
Series in Computing, 74:184–196, 2020.

[52] Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke. dReach: δ-
Reachability Analysis for Hybrid Systems. In Tools and Algorithms for the
Construction and Analysis of Systems, TACAS, pages 200–205. Springer,
2015.

[53] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with
deep convolutional neural networks. Neural Information Processing Sys-
tems, 25:1097–1105, 01 2012. http://doi.org/10.1145/3065386.

50

https://doi.org/10.1145/3358228
https://arxiv.org/abs/1811.01828
https://www.springer.com/gp/book/9783030145958
https://www.springer.com/gp/book/9783030145958
http://doi.org/10.1145/3065386

[54] Ivan Malakhov, Carlo Gaetan, Andrea Marin, and Sabina Rossi. Workload
prediction in btc blockchain and application to the confirmation time esti-
mation. In Performance Engineering and Stochastic Modeling, pages 3–21.
Springer, 2021.

[55] Oded Maler and Dejan Nickovic. Monitoring temporal properties of con-
tinuous signals. In Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, pages 152–166. Springer, 2004.

[56] Oded Maler, Dejan Nickovic, and Amir Pnueli. Checking temporal prop-
erties of discrete, timed and continuous behaviors. Pillars of computer
science, pages 475–505, 2008.

[57] Olivier Mullier, Alexandre Chapoutot, and Julien Alexandre dit Sandretto.
Validated computation of the local truncation error of Runge–Kutta meth-
ods with automatic differentiation. Optimization Methods and Software,
33(4-6):718–728, 2018.

[58] Pierluigi Nuzzo, Alberto L Sangiovanni-Vincentelli, Davide Bresolin, Luca
Geretti, and Tiziano Villa. A platform-based design methodology with
contracts and related tools for the design of cyber-physical systems. Pro-
ceedings of the IEEE, 103(11):2104–2132, 2015.

[59] Eleonora Pippia. Optimization and Modeling Techniques for Food Service
Appliances. PhD thesis, Università degli Studi di Udine, 2021.

[60] Eleonora Pippia, Thao Dang, and Alberto Policriti. Image approximation
for feed forward neural nets. In Verification of Neural Networks Workshop,
VNN 2020, 2020.

[61] Amir Pnueli. The temporal logic of programs. In Symposium on Founda-
tions of Computer Science, SFCS, pages 46–57. IEEE, 1977.

[62] Sabina Rossi. Model checking adaptive multilevel service compositions. In
International Workshop on Formal Aspects of Component Software, pages
106–124. Springer, 2010.

[63] Sadra Sadraddini and Calin Belta. Robust temporal logic model predictive
control. In 2015 53rd Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 772–779, 2015.

[64] Stefan Schupp, Erika Abraham, Ibtissem Ben Makhlouf, and Stefan
Kowalewski. HyPro: A C++ library of state set representations for hy-
brid systems reachability analysis. In NASA Formal Methods Symposium,
pages 288–294. Springer, 2017.

[65] Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin Vechev.
Beyond the single neuron convex barrier for neural network certification.
Advances in Neural Information Processing Systems, 32, 2019.

51

[66] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev.
Boosting robustness certification of neural networks. In International Con-
ference on Learning Representations, 2018.

[67] Szymon Stoma, Alexandre Donzé, François Bertaux, Oded Maler, and Gre-
gory Batt. STL-based analysis of TRAIL-induced apoptosis challenges the
notion of type I/type II cell line classification. PLoS computational biology,
9(5):e1003056, 2013.

[68] H.-D. Tran, X. Yang, D. M. Lopez, P. Musau, L. V. Nguyen, W. Xiang,
S. Bak, and T. T. Johnson. NNV: the neural network verification tool for
deep neural networks and learning-enabled cyber-physical systems. CoRR,
abs/2004.05519, 2020.

[69] Paul P. J. van den Bosch and Alexander C. van der Klauw. Modeling,
identification and simulation of dynamical systems. crc Press, 2020.

[70] W. Xiang, H. Tran, and T. T. Johnson. Output reachable set estimation
and verification for multilayer neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 29(11):5777–5783, 2018. https:

//arxiv.org/abs/1708.03322.

52

https://arxiv.org/abs/1708.03322
https://arxiv.org/abs/1708.03322

	Preliminaries
	Parametric Dynamical Systems
	Synthesis Language: Signal Temporal Logic
	Parametric Reachability and Synthesis Problems

	Parametric Reachability Computation
	Set Based Reachability
	Sets of Points and Sets of Parameters: Polytopes
	Admissible Functions: Polynomials
	Single Step Reachability Algorithm

	Parameter Synthesis
	Basic Refinement Step
	Conjunction and Disjunction Formulas
	Until Formulas
	Parameter Splits

	: Set-based Analysis of Parametric Polynomial systems
	Core
	and Input Language (SIL)
	Web Application

	Case Studies
	COVID-19 Simple Model
	Enhancing Accuracy of Neural Networks Analysis

	Conclusion and Future Work

