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Résumé — Cet article présente un processus de détection de 

défauts pour un processus multimode. Le modèle de semi-Markov 

caché est utilisé pour détecter le mode de fonctionnement du 

processus. Chaque mode est estimé par la valeur des statistiques T2 

et Q du modèle d'entraînement qui sera utilisé lors de l'étape 

d'évaluation. Les résultats obtenus sont robustes avec un taux de 

détection de 99,88%. 

 

Mots-clefs — analyse en composantes principales, détection 

des défauts, modèle semi-Markov caché, processus multimode, 

processus Tennessee Eastman 

Abstract— This article presents a fault detection process for a 

multi-mode process. The Hidden semi-Markov model is used to 

detect the way the process works. Each mode is estimated by the 

value of the T2 and Q statistics of the training model that will be used 

in the evaluation step. The results obtained are robust with a 

detection rate of  98.30%. 

 

Keywords — fault-detection, HSMM, multimode process, 

principal component analysis, Tennessee Eastman Process 

I. INTRODUCTION 

Fault detection and process monitoring are very important 
for estimating abnormal functioning. The objective is to 
guarantee the reliable operation of a system, a high-quality 
production in complete safety. With the rise of Industry 4.0, 
the connected factory makes it possible to have access to a 
large amount of data (operating history, solicitations, 
manufacturing recipes, failures, measurements from sensors, 
etc.). Under these conditions, to detect abnormal process 
events several multivariate statistical process monitoring 
(MSPM) approaches were developed [1]. MSPM methods are 
basically algorithms that can be used for extracting important 
information from large multivariable data sets such as plant 
data. For fault detection, the Principal Component Analysis 
(PCA) model of the process is developed, based on normal 
operating process data. It is then used to verify the new 
measurement data. The differences between the new 
measurement data and their projections to the built model, the 
residuals, are then subjected to some sort of statistical test to 

determine if they are significant. Usually the statistic, also 
called Squared Prediction Error (SPE) or known as Q statistic, 
and the Hotelling's (T2) statistic are used to represent the 
variability in the residual subspace and principal component 
subspace [2]. The Q statistic shows how well a new sample 
fits into the PCA model built on previous measurement data. 
It is a measure of the difference (residual) between the sample 
and its projection onto the principal components retained in 
the model. As an example, the measurements of three process 
variables with the result of PCA method are shown in Fig. 1. 

Fig. 1. Data projection on two PCs  

It should also be noted that numerous industrial processes 
exhibit multiple operational modes and transitions as a result 
of a variety of variables, posing a challenge to the Prognostic 
and Health Management (PHM). Data-driven models such as 
the Markov model can be adopted for mode identification in 
the multimode process [3], [4]. This paper combines the 
Markov model, PCA, T2, and Q statistics to improve the fault 
detection ability in the multiple mode process.  

In this work, we use hidden semi-Markov model for 
detecting the operation mode or Operation Condition (OC), 
then PCA is adapted for monitoring the data in each OC. The 
process starts with data training. First, give the initial 
parameters of HSMM. Then training the data by the forward-
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backward algorithm [5] for HSMM and re-evaluating the 
parameters. For each mode, we analyse the possible 
correlations between the different data by the PCA method. 
We calculate T2, the Q-statistic, the adaptive parameters of T2 
and the Q-statistic. The following work consists of detecting 
potential defects in the test data. Under these conditions, these 
statistics can be used for fault detection in multimode 
processes. The case study focuses on the Tennessee Eastman 
(TE) process simulation. 

The remainder of this paper is structured as follows. In 
Section II, we describe the preliminaries of HSMM theory, 
PCA for failure detection, and the parameters of adaptive T2 
and Q statistics. The next section outlines the proposed 
method. Section IV describes the TEP process, multi-
operational conditions of TEP, and illustrations of TEP for 
failure detection. The obtained results are discussed in Section 
V, and some findings and concluding remarks are drawn in 
Section VI. 

II. PRELIMINARIES 

A. Hidden Semi-Markov Model 

Assume a discrete-time semi-Markov process with a set of 

(hidden) states {1,..., }S M= . The state sequence 

1{ ,..., }TQ s s=  is denoted by 1:Ts , where ts S  is the state at 

time t. And the observation sequence 1{ ,..., }TO o o=  by 1:To  

where to V  is the observation at time t with 1{ ,..., }kV v v=  

is the set of observable values. This semi-Markov chain is 
defined by the following parameters: 

• Initial probabilities { }m =  where 1( )m P s m = =  

with 1mm
 = ; 

• Transition probabilities { }mnA a=  where 

1( | )mn t ta P s n s m+= = =  with  1mnm n
a


= and 

0mma = ;  

• Observation or emission probabilities { ( )}m kB b v=  

where ( ) ( | )m k t k t mb v P o v q s= = = ; 

• Duration probabilities { }mdp p=  where 

1: 1( | )md t t d tp P s m s m+ + += = =  where (1,..., )d D  and 

D is maximum duration in state m. 

The model HSMM is defined as ( , , , )HSMM A B p = . For 

details, the entire set of model parameters can be estimated 
using the forward-backward algorithm described in [6].
  

B. Principal Component Analysis for Fault Detection 

PCA reduces dimensionality by iteratively extracting 
uncorrelated linear combinations of the original variables, 
known as Principal Components (PC). They are obtained by 
using linear combinations of these variables and are 
orthonormal. Before applying PCA, the process data should 
be normalized to zero means and unit variance by subtracting 
the training data's mean and dividing by the training data's 
standard deviation. Then the normalized process data matrix 

n sX R   can be decomposed as: 

 T
X = TP + E  () 

where: n represents the number of samples, s represents the 

number of variables, n T  is score matrix, s P R  

refers to the loading matrix, and n sE R is residuals matrix. 

When PCA is utilized in process monitoring, the retained 
PCs are frequently summarized using the so-called the 
Hotelling T2 statistic, and the residuals are summarized using 
the Q statistic or squared predictive error (SPE). The detection 
is done by comparing the expected behavior to that provided 

by the PCA model. Given The PCA model estimated y, the T2 
and Q statistics can be computed as follows [4]: 

 2 1 T TT −= yP(Λ) P y  () 

 ( )( )T T TQ = − −y I PP I PP y  () 

where I is the identity matrix; 1 2( , ,..., )diag   =Λ is the 

estimated covariance matrix of principal component scores. 

The detectability of fault is determined by the thresholds 

Q and 2T  for the Q  and 2T  statistics, respectively [7]. 

These thresholds are derived by applying the appropriate 
distribution law at a specified confidence level (1- α). 
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where c  is the critical value of the normal distribution for a 

level of confidence of (1- α). And r is number of PCs retain. 

The fixed thresholds 𝑇𝛼
2 is in formula (6). 
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where ( , )F l g l −  is the critical value at a significance level 

 with l and g l−  degrees of freedom of the Fisher‐Snedecor 

distribution. Variable l, g and   are the number of principal 

components, number of samples and acceptable false alarm 
rate, respectively. 

C. Adaptive parameter for Q and T2 statistic 

Exponentially Weighted Moving Average (EWMA) was 
widely used as a statistical method for process monitoring. 
Suppose that we observe sequence statistics obtained from 
PCA projections of monitored process measurements 

1 2[ , ,..., ]nQ q q q=  and 2

1 2[ , ,..., ]nT t t t= , and suppose the Q  

statistic is evaluated using a limited window length EWMA 
control chart, which acts as a backward exponential filter. The 
filtered jth sample is given by:  
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The parameter 𝑐𝑞  is a weighting factor greater than 1, and 

it determines the rate at which older samples enter into the 

calculation of 
'

jq . 
qw  represents the filter window length for 

Q  fault detection index; ie, it is the number of samples used 

by the filter. By this approach, the jth sample is considered 

faulty if 
'

jq Q . 

The adaptive threshold for the Q  statistic [7] at the jth 

sample is: 
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Similarly, the adaptive threshold for the T2 statistic [7] at 
jth sample is: 
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where wt and ct are the adaptation window length and 
weighting factor for the T2 statistic, respectively. 

III. PROPOSED METHODOLOGY 

The proposed methodology can be seen in Figure 2. The 
fault detection process begins offline, with the training of 
normal or healthy data. It can be continued with testing data 
that contains faults.  

The offline model training steps are as follows: 

1) Selection of training data: healthy data from the 

system. This data can have many variables. 

2) Clustering: this divides the data into several segments. 

Set the number of segments equal to the number of states (M). 

The clustering method used is Agglomerative. 

3) Setting the initial value of HSMM parameters: that is, 

give initial values for  A, B, p, and . A vector of  and matrix 

of A can be set randomly to satisfy 1mm
 = , 1,mnm n

a


=   

and 0mma = . The results of clustering can be used to assign 

initial values to matrix B. Assume that data in each operation 

mode obeys unimodal Gaussian distribution, 

( , ),i i ix  N  1,2,...,i M= . The maximum duration in 

each state (Di) can be taken from the results of clustering. 

Dmax is the longest sojourn time of all states. So, p matrix can 

be set as random vectors satisfying the condition 
max

1
( ) 1

D

it
p t

=
= . 

4) Forward-backward HSMM training: it is training 

healthy data to obtain updated parameter values. The forward 

variables for HSMM are defined by:     
1,..., :t T=  

| 1 1 1| 2 1| 2( , ) ( ) ( ) ( ) ( , 1)t t t m m t t t tm d S m p d b o m d − − − − − −= + + () 

with the initial value:  

 
1|0 ( , ) ( )m mm d p d =  () 

For convenience in the forward recursion, variables   and   
are defined with respect to the conditional probability of a 

state ending at t given 
1

to  and with respect to the conditional 

probability of a state beginning at t+1 given 
1

to .  

 
*

| 1( ) ( ,1) ( )t t t m tm m b o  +=  () 

 ( ) ( )t t nmn
m n a =   () 

The ratio of filtered probability by: 
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b o

a m d−
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The backward variables is: 

, 1,...,1:t T T= −  
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1

*

1

( ) ( ), 1
( , )

( , 1) ( ), 1

t m t

t

t m t

m b o d
m d

m d b o d






+

+

 =
= 

− 
      () 

For convenience in the backward recursion, denoted variables 

*  and *  by: 

 * ( ) ( , )t m tn
p d m d =   () 

 * *( )t mn tn
a n =   () 

The smoothed probability that a transition from state m to state 
n at t occurs, it is defined by: 

 *

1( , ) ( ) ( )t t mn tm n m a n  −=  () 

And the probability that state m is entered at t and lasts for d 
time units is: 

 1( , ) ( ) ( ) ( , )t t m tm d m p d m d  −=  () 

The marginal probability distribution can be obtain as: 

 
* *

1| | 1 1( ) ( ) ( ) ( ) ( ) ( )t T t T t t t tm m m m m m     − − −= + −  () 

The re-estimation of the model parameters are given below: 

 
|

|

( , )
ˆ

( , )

t Tt

mn

t Tn t

m n
a

m n




=


 

 () 

 
|

|

( ) ( )
ˆ ( )

( )

t T t kt

m k

t Tt

m I o v
b v

m





=
=




 () 



23ème Congrès Lambda Mu de l’IMdR 10 au 13 octobre 2022, EDF Lab Paris Saclay 
 

 
|

|

( , )
ˆ ( )

( , )

t Tt

m

t Td t

m d
p d

m d




=


 

 () 

 
1|

1|

( )
ˆ

( )

T

m

Tm

m

n





=


 () 

5) Calculation of T2 and Q statistics: it calculates the 

statistical values of T2, Q, 
2T , and Q  of the training data 

using the formulas (2), (3), (4), and (6), respectively. We 

calculate it for each state. The eigen vectors and eigen values 

from this stage will be used for the calculation of T2 and Q in 

the online stage with the new test data.  

6) Finding adaptive parameters for T2 and Q: Adaptation 

window length that ensures adequate sample averaging and 

an adaptation weighting factor that produces a false alarm 

rate of zero percent in the training set. These parameters will 

be used to evaluate the test data threshold in the online stage. 

Fig. 2. Flowchart of proposed method 

 

The steps for test data by online monitoring are: 

1) Input test data: real-time test data, which may contain 

healthy and failed data. 

2) Decoding HSMM: given the observation 1

To , we can 

estimate the hidden states that start at time t with the 

Maximum a Posteriori (MAP) using equation: 

 
1

( , )

|
( , )

( , ) arg max ( , | )

arg max ( , )

def
T

t m tt
m d

t T
m d

q P s start at t d o

m d

 



=      =

=   
 () 

3) Calculation of T2 and Q statistics: this calculation uses 

the eigen values and eigenvectors from the training process. 

This applies to each state's estimate.  

4) Evaluate adaptive threshold of T2 and Q: it evaluates 

the T2 and Q of the test data using 
2T , and Q , 

2,adT , and 
adQ from the training data. This process is carried out in each 

estimation state. 

5) Combine index of T2 and Q for fault detection: 

combining the two statistics simplifies the fault detection 

process. 

 
2

2,
* (1 )*new ad ad

T Q
CI z z

T Q

   
= + −   

  
 () 

where z is 0.5 to balance SPE and T. The process is diagnosed 
as fault, if CInew >1 or CInew<0. 

IV. TENNESSEE EASTMAN PROCESS 

In this section, the proposed methodology is applied to the 
Tennessee Eastman Process (TEP). 

A. Process description 

The TEP was created by the Eastman Chemical Company 
to provide a realistic industrial process for evaluating process 
control and monitoring methods [8]. The process consists of 
five major units: a reactor, condenser, compressor, separator, 
and stripper; and it contains eight components: A, B, C, D, E, 
F, G, and H. 

The gaseous reactants A, C, D, and E and the inert B are 
fed to the reactor where the liquid products G and H are 
formed. The species F is a by-product of the reactions. The 
reactions in the reactor are: 

 

( ) ( ) ( ) ( ), 1,

( ) ( ) ( ) ( ), 2,

( ) ( ) ( ), ,

3 ( ) 2 ( ), ,

A g C g D g G liq Product

A g C g E g H liq Product

A g E g F liq Byproduct

D g F liq Byproduct

+ + →

+ + →

+ →

→

 () 

The reactions are irreversible, exothermic, and 
approximately first-order with respect to the reactant 
concentrations. The reaction rates are Arrhenius functions of 
temperature where the reaction for G has a higher activation 
energy than the reaction for H, resulting in a higher sensitivity 
to temperature. 

The reactor product stream is cooled through a condenser 
and then fed to a vapor-liquid separator. The vapor exiting the 
separator is recycled to the reactor feed through a compressor. 
A portion of the recycle stream is purged to keep the inert and 
byproduct from accumulating in the process. The condensed 
components from the separator (Stream 10) is pumped to a 
stripper. Stream 4 is used to strip the remaining reactants from 
Stream 10, which are combined with the recycle stream via 
Stream 5. The products G and H exiting the base of the stripper 
are sent to a downstream process which is not included in the 
diagram (Fig3). 

The revision of the Tennessee Eastman Process provided 
by [9]. The piping and instrumentation diagram (P&ID) of the 
process with extended measurements is shown in Fig 3. 
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Fig. 3. A process flowsheet for the Tennessee Eastman Process (TEP) 

 

B. Multi operation condition of TEP 

Generate training data using Tennessee Eastman (TE) 
process simulation. We utilized the model designed to 
operate in "Mode 1" conditions. The conventional TE 
process is a unimode process. This procedure introduces 
three operation conditions (OC-1, OC-2, and OC-3), which 
are shown in Table I, to test the multi-mode approaches. 
While the other setting parameter values are set the same for 
the three OCs.  

TABLE I.  FOUR PROCESS OPERATION MODES IN TE PROCESS  

Setpoint Label OC-1 OC- 2 OC- 3 

Production 22.89 22.89 18,40 

Mol % G 50 60 50 

Separator level 40 50 50 

The simulated model has 12 manipulated input variables 
(XMV (1) to XMV (12)) and 73 measured output variables 
(XMEAS (1) to XMEAS (73)). The considered data consists 
of 31 variables listed in (Table II). 

TABLE II.  DESCRIPTION OF THE SELECTED MONITORING DATA 

VARIABLES 

Variable Description 

XMV (1) D feed flow valve (stream 2)  

XMV (2) E feed flow valve (stream 3)  

XMV (3) A feed flow valve (stream 1)  

XMV (4) Total feed flow valve (stream 4)  

XMV (6) Purge valve (stream 9)  

XMV (7) Separator pot liquid flow valve (stream 10)  

XMV (8) Stripper liquid product flow valve (stream 11)  

XMV (10) Reactor cooling water flow  

XMV (11) Condenser cooling water flow  

XMEAS (1) A feed (stream 1) 

XMEAS (2) D feed (stream 2)  

XMEAS (3) E feed (stream 3)  

XMEAS (4) Total feed (stream 4)  

XMEAS (5) Recycle flow (stream 8)  

XMEAS (6) Reactor feed rate (stream 6)  

XMEAS (7) Reactor pressure  

Variable Description 

XMEAS (8) Reactor level  

XMEAS (9) Reactor temperature  

XMEAS (10) Purge rate (stream 9)  

XMEAS (11) Product separator temperature  

XMEAS (12) Product separator level  

XMEAS (13) Product separator pressure 

XMEAS (14) Product separator under flow (stream 10)  

XMEAS (15) Stripper level  

XMEAS (16) Stripper pressure  

XMEAS (17) Stripper underflow (stream 11)  

XMEAS (18) Stripper temperature  

XMEAS (19) Stripper steam flow  

XMEAS (20) Compressor work  

XMEAS (21) Reactor cooling water outlet Temperature  

XMEAS (22) Separator cooling water outlet temperature  

The mode shift probability matrix for three OCs is set 
as: 

A= 0 1 0 

 
0 0 1 

 
0.75 0.25 0 

The duration for each OC follows Gaussian distribution 

( )2, ,i i N  where [80,60,70],i =  [10,10,10],i =  

and max 100.D =  The training set consists of one simulation 

that runs for 2000 hours with normal (healthy) process 
operation. Data were collected with a sampling interval of 
0.5 hours, resulting in 4000 observations. Figure 4 illustrates 
the transition of OC in respect to time. 

Fig. 4. Transition of operating conditions of a training data  
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C. TE Process fault detection illustration  

The test set corresponds to a healthy process operation 
that runs for 300 hours (the sampling interval is 0.5 hours). 
At least 600 samples were observed with the operation 
condition displacement according to the probability shifting 
mode. The test set is used to evaluate the obtained PCA 
model and the constructed monitoring scheme. It is usually 
used to calculate false alarms contributed by the Q and T2 
statistics. 

Twenty‐two fault sets are generated by different runs 

and different times of occurrence of fault, each run 
corresponds to one of the process faults described in Table 
III. 

TABLE III.  FAULT DESCRIPTIONS FOR SIMULATIONS  

No Description Type – 

disturbance 

flags 

Fault 

occurs time 

Fault 
1 

Feed ratio of A/C, 
composition constant of B 

(stream 4) 

Step –  
IDV (1) 

100 h  
(in mode 2) 

Fault 
2 

Composition of B, ratio 
constant of A/C (stream 4) 

Step – 
 IDV (2) 

100 h  
(in mode 2) 

Fault 

3 

Feed temperature of D 

(stream 2) 

Step –  

IDV (3) 

100 h 

 (in mode 2) 

Fault 
4 

Inlet temperature of reactor 
cooling water 

Step –  
IDV (4) 

100 h  
(in mode 2) 

Fault 

5 

Inlet temperature of 

condenser cooling water 

Step – 

 IDV (5) 

100 h  

(in mode 2) 

Fault 
6 

Header pressure loss of 
C—reduced availability 

(stream 4) 

Step –  
IDV (7) 

100 h  
(in mode 2) 

Fault 

7 

Feed composite of A, B, 

and C on (stream 4) 

Random –  

IDV (8) 

180 h  

(in mode 3) 

Fault 

8 

Feed temperature of D 

(stream 2) 

Random – 

IDV (9) 

180 h  

(in mode 3) 

Fault 
9 

Feed temperature of C 
(stream 4) 

Random - 
IDV (10) 

180 h  
(in mode 3) 

Fault 

10 

Inlet temperature of reactor 

cooling water 

Random - 

IDV (11) 

180 h  

(in mode 3) 

Fault 
11 

Inlet temperature of 
condenser cooling water 

Random - 
IDV (12) 

180 h 
 (in mode 3) 

Fault 

12 

Reaction kinetics Slow drift - 

IDV (13) 

180 h  

(in mode 3) 

Fault 
13 

Valve of reactor cooling 
water 

Stiction   - 
IDV (14) 

180 h 
(in mode 3) 

Fault 

14 

Valve of condenser 

cooling water 

Stiction   - 

IDV (15) 

250 h  

(in mode 1) 

Fault 
15 

(unknown); deviations of 
heat transfer within 

stripper (heat exchanger) 

Random - 
DV (16) 

250 h  
(in mode 1) 

Fault 

16 

(unknown); deviations of 

heat transfer within reactor 

Random - 

IDV (17) 

250 h  

(in mode 1) 

Fault 

17 

(unknown); deviations of 

heat transfer within 

condenser 

Random - 

IDV (18) 

250 h  

(in mode 1) 

Fault 
18 

(unknown); re-cycle valve 
of compressor, underflow 

separator (stream 10), 

underflow stripper (stream 
11) and steam valve 

stripper 

Stiction   - 
IDV (19) 

250 h  
(in mode 1) 

Fault 
19 

(unknown) Random - 
IDV (20) 

250 h  
(in mode 1) 

Fault 

20 

Mode shifts from mode 1 

to mode 3 

Step 250 h  

(in mode 1) 

Fault 
21 

Mode shifts from mode 1 
to mode 3 

Step 50 h 
(in mode 1) 

Fault 

22 

Mode shifts from mode 2 

to mode 1 

Step 100 h  

(in mode 2) 

Figure 5 illustrates test data with fault type 9. The test 
data is the orange dotted line. This data is based on normal 
data (solid blue line), then assigned a type 9 fault occurs 
time at 180 in OC-3. 

Fig. 5. Transition of operating conditions of a test data: Fault 9 

 

V. RESULTS AND DISCUSSION 

In this section, the proposed methodology is applied to 
solve the fault detection issue of the Tennessee Eastman 
Process (TEP). This simulation is named HSMM&PCA 
because the first part is estimating the operation condition 
called “state” in HSMM through clustering, parameter 
initialization, HSMM training and decoding stages. The 
second process is data modeling using PCA, including 

calculations of T2, Q, 2T , Q , 2,adT and .adQ  At the end of 

online monitoring, a combination index called CInew can 
be used to find faults.  

Figure 6 illustrates the result of estimating the state using 
HSMM for Fault 9 test data. HSMM estimates the state very 
well for this data. 

Fig. 6. State estimation of test data (Fault 9) using HSMM 

 

The TE process data test refers to the data test scenario 
from Lou and Wang [4]. This study proposes the HSMM-
PCA method and compares it with the Mixture Bayesian 
PCA (MBPCA) [9], and the HMM [3] method. So, we can 
compare the simulation results with the results in the article. 
Fault determination using various indexes. HSMM-PCA 
uses the cumulative index (CI), MBPCA considers T2 and Q 
values, and HMM uses the NLLP index. We show the 
results of detecting Fault 9 data from these methods in 
Figure 7.(a) to Figure 7.(g). At 180 h, the faults occurred. 
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Fig. 7. Fault detection of Fault 9 data test  

 

The figure shows that the MBPCA and HMM can detect 
a few faults. The HSMM-PCA method can detect half 
faults. Meanwhile, the HSMM&PCA method that we 
propose can detect large corpus of faults. Table IV listed the 
detection rates of the four methods. If only using the T2, Q, 
and CInew indexes, the maximum fault detection results are 
for Fault 1-Fault 6, Fault 14-Fault 22 data. Meanwhile, for 
Fault 7-Fault 13, there are still detection errors. However, 
for these datasets, the CInew index can increase the detection 
rate by 5%. Overall, we can conclude that the HSMM&PCA 
method is the best, with an average detection rate of 98.30%. 

TABLE IV.  DETECTION RATES (%) OF SIMULATIONS IN TE PROCESS  

Test 

data 

MBPCA HMM 
HSMM 

-PCA 
HSMM&PCA 

T2 Q NLLP CI T2 Q CInew 

Fault 1 2.00 99.50 100.00 100.00 100.00 100.00 100.00 

Fault 2 20.25 65.75 97.25 98.50 100.00 100.00 100.00 

Fault 3 2.00 1.50 0.75 3.50 100.00 100.00 100.00 

Fault 4 2.25 1.50 76.25 99.75 100.00 100.00 100.00 

Fault 5 3.00 1.50 1.50 3.75 100.00 100.00 100.00 

Fault 6 3.00 95.75 100.00 100.00 100.00 100.00 100.00 

Fault 7 15.00 59.80 96.25 98.33 94.67 94.67 94.67 

Fault 8 3.33 2.50 2.92 4.58 94.67 94.67 94.67 

Fault 9 2.50 2.50 15.42 53.75 94.67 94.67 94.67 

Fault 

10 
2.08 3.75 80.83 97.50 94.67 94.67 94.67 

Fault 

11 
2.50 2.50 2.50 12.08 94.67 94.67 94.67 

Fault 
12 

72.80 91.25 96.25 97.92 94.67 94.67 94.67 

Fault 

13 
2.08 2.50 78.33 95.42 94.67 94.67 94.67 

Fault 

14 
2.00 6.00 1.00 9.00 100.00 100.00 100.00 

Fault 
15 

2.00 6.00 1.00 9.00 100.00 100.00 100.00 

Fault 

16 
3.00 9.00 71.00 89.00 100.00 100.00 100.00 

Fault 

17 
6.00 10.00 57.00 77.00 100.00 100.00 100.00 

Fault 
18 

1.00 6.00 17.00 83.00 100.00 100.00 100.00 

Fault 

19 
29.00 70.00 97.00 97.00 100.00 100.00 100.00 

Fault 

20 
5.00 5.00 2.00 92.00 100.00 100.00 100.00 

Fault 
21 

2.28 12.60 1.00 62.80 100.00 100.00 100.00 

Fault 

22 
2.25 7.75 6.00 100.00 100.00 100.00 100.00 

Mean 8.42 25.58 45.51 67.45 98.30 98.30 98.30 

VI. CONCLUSIONS 

In this study, the HSMM method succeeded in detecting 
the mode of a system that applies multiple operating 
conditions. And data monitoring in each OC is done by the 
PCA model. The use of adaptive parameters T2, Q, and a 
combination of both indexes can increase the fault detection 
rate. This is verified in the revised model of the TE Process.  
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