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On the comparison of bacteriophage populations

Anne Bergeron1, Marie-Jean Meurs1, Romy Valiquette-Labonté1, and
Krister M. Swenson2

1 Université du Québec à Montréal, Canada
2 LIRMM, Université de Montpellier, CNRS, France

Abstract. The production of cheese and other dairy products relies on
the constant monitoring of viruses, called bacteriophages, that attack
the organisms responsible for the fermentation process. Bacteriophage
species are characterized by a stable core genome, and a ‘genetic reser-
voir’ of gene variants that are exchanged through recombination. Phylo-
genetic analysis of phage populations are notably difficult due not only
to extreme levels of horizontal exchange at the borders of functional
modules, but also inside of them.
In this paper we present the first known attempt at directly model-
ing gene flux between phage populations. This represents an important
departure from gene-based alignment and phylogenetic reconstruction,
shifting focus to a genetic reservoir-based evolutionary inference. We
present a combinatorial framework for the comparison of bacteriophage
populations, and use it to compute recombination scenarios that gener-
ate one population from another. We apply our heuristic, based on this
framework, to four populations sampled from Dutch dairy factories by
Murphy [15]. We find that, far from being random, these scenarios are
highly constrained. We use our method to test for factory-specific diver-
sity, and find that there was likely a large amount of recombination in
the ancestral population.

Find instructions for reproducing the results at:
https://bitbucket.org/thekswenson/phage_population_comparison
The code is publicly available at:
https://bitbucket.org/thekswenson/phagerecombination

1 Introduction

Bacteriophages – or simply phages – are viruses that infect bacteria. They are
the most abundant and diverse organisms on the planet, and are found in every
community where bacteria thrive: soil, water, air, lungs, guts, sewers, plants, and
milk [10]. Where their presence intersects human activity, they can be beneficial,
when they are used in therapies to combat bacterial infections [5], or detrimental,
when they destroy batches of dairy fermentation in artisanal or industrial food
factories [14]. Due to their economic impacts, dairy bacteriophage populations
have been extensively sequenced in the last few years. These populations can be
separated by geography [6,7,15], by time [11,12], or by their bacterial host [4].

https://bitbucket.org/thekswenson/phage_population_comparison
https://bitbucket.org/thekswenson/phagerecombination
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Bacteriophages are divided into species, characterized by a common core
genome distributed along their single chromosome, where genes appear in the
same order for each member of the species. Between these regions of core genome,
there is a variable genome composed of regions that are shared by some members
of the family, but not all of them. In an individual phage, the variable region
between two consecutive regions of core genome may be empty, or may have one
or more variants that are presumed to perform the same biological function, but
with different proteins [4, & references therein].

Kupczok [11] sequenced 34 dairy phages from a single German dairy factory,
sampled over three decades. Their analyses concluded that, over such a period
of time, point mutations were “[...] unlikely to constitute the major driver of
phage genome evolution”. However, the variable genome of the sequenced phages
changed considerably over time: “The frequent gene loss and regain suggest the
existence of a pangenome (i.e. genetic reservoir) that is accessible by genetic
recombination.”

1.1 Recombinations and mosaicism in phage genomes

Genetic recombination allows two phages to exchange or borrow significant parts
of their genomes, creating novel viruses. These exchanges take place inside a
single cell, and are presumed to occur either between two co-infecting phages, or
by an infecting phage and a prophage (i.e. a phage genome that inserted itself
into a host bacterium). When the exchanges occur between similar sequences,
recombinations are called homologous, and when they occur between unrelated
sequence they are called illegitimate.

A striking feature of the comparison of phage genomes is their extreme mo-
saicism, where regions of unrelated sequences alternate with regions of very high
similarity, as illustrated in Figure 1.

High
similarity

High
similarity

No detectable
similarity

Phage 1

Phage 2

Fig. 1: Alignments of phage genomes exhibit alternating regions of high similarity
and unrelated regions.

A few decades ago, Botstein [2] proposed a theory of modular evolution for
bacteriophages based on homologous recombinations. In this model, recombi-
nations are mediated by flanking regions of high sequence similarity. DePaepe
[8] characterized biological mechanisms that could be responsible for such re-
arrangements, calling them relaxed homologous recombinations, and qualifying
them as “...strangely dependent on the presence of sequence homology, but highly
tolerant to divergence”.
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Recombination that does not follow the Botstein model also likely plays an
important role in phage evolution. Pedulla [16] found three recent recombina-
tions in Mycobacteriophages that have no flanking regions of similarity. Yahara
[19] analyzed recombination within soft-core genes (i.e. the genes that exist in at
least 90 % of the phages they studied) of Helicobacter pylori prophages, showing
extreme sequence divergence that they attribute to recombination within genes.

Thus, phages are particularly ill suited to traditional evolutionary analyses
using multiple sequence alignment. The extraordinary mosaicism implies that
not any set of genes with the same function can be used for phylogenetic in-
ference, since in this case shared function does not imply homology. Instead,
Brussow [3] recommends that evolutionary histories should be established us-
ing only the homologous sequences belonging to the same functional module
(i.e. what we call a variant in the present article). Yet, to make matters worse,
the high dissimilarity attributed to pervasive recombination within genes makes
phylogenetic reconstruction on individual variants very difficult [19].

1.2 Recombination between phage populations

The conditions of high mosaicism in bacteriophages motivate a fresh perspective
on evolutionary history inference, one that uses the fact that a population of
phages represent a genetic reservoir that is constantly testing combinations. To
this end, in a previous work we inferred a recombination scenario within a popu-
lation of phages while explicitly using the Botstein model of recombination with
flanking homologous regions [18]. The present article differs from our previous
work in two important ways:

1. here we infer recombination scenarios between phage populations instead of
within them, and

2. our present model can accomodate flanking homology or ignore it.

When building our modules we assume the existence of flanking homology “an-
chors” between every adjacent module (see Section 3.1 for details on how we
constructed our modules).

Our work is timely, given that “little is known about genetic flux by recombina-
tion between populations”[19]. While it represents a first attempt at reconstruct-
ing the evolution of phages in such a global sense, we expect this perspective to
increase in importance as phage sequencing becomes more prevalent.

Dutch dairy factories In Murphy [15], phages are sampled across geographic
regions. They sequenced 38 phage genomes from four Dutch dairy factories, and
added to their dataset phages of the same species from various countries and con-
tinents (Australia, Canada, Denmark, France, Germany, Ireland, Italy, Poland,
United Kingdom, United States, and New Zealand). By using hierarchical clus-
tering on protein families presence/absence data, they were able to – mostly
– separate continents and countries. However, this technique was not able to
separate the four Dutch factories.
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Factory 1
A: A---AAAA-A-A-AAAA-A----A-AA-AAAAAAAAAA----AAAAAAA--AAA-AAAA-A-AA---A--A-A--A--AAAA-A
B: B---BAA-BABA-AABA-A-B-B-BBB-BABBABAB-BB------BBABBBBBA-A--B-B-BB-----BB-BBBB-BBAAA-A
C: B---BA-A-A-A-AACA-CC--C--CA-BCCCACCCCBC-CCCC-CCACCCBBACA--CCCCCC-C---CACC--CC-C-CACA
D: D---BA-D-A-D-AABA-ACD-D-BCA-DADDDDADDD-------DDABD-DBA-A-DD-ADDD-----BB-D--DC-DADADA
E: B-E-BAA--A-AEAACE-AC--E--C--EAEEECAE-B------EEEAECCBBA-E--E-A-EE-C--E-A-E--E--EAEADE
F: B---BA-A-A-A-AACA-CCF-C--CA-BCCCACCCCBC-CCCC-CCAFCCBBACA--CCCCFC-C---CACC--CC-F-CACA
G: D---BA-D-A-D-AABA-AC--D-BCA-DADDEDAGDD-------DDABD-DBA-A-DD-ADDD-----BB-G--D--GADADA
H: BH--BA-A-A-A-AACA-CC--C--CA-BCCCACCCCBC-CCCC-CCAHCCBBACA--CCCCHH-CH--BB-H--CC-HAEACA
I: B-E-BAA--A-AEAACE-AC--E--C--EAEIECAE-B------EEIAECCBBA-E--I-A-EE-C----A-I--E--I-EA-E
J: A---AAAA-A-A-AAAA-AJ---A-AA-AAAAAAAAAA----AAAJAAA--AAA-AAAJ-A-JJ---A--A-A--J--JAAA-A
K: D---BA-D-A-D-AABA-AC--D-BCA-DADDDDADDD-------DDABD-DBA-A--K-ADKK---KKBB-K--DC-KAAADA
L: L---BAL----A-A-BAL-C-L---LA-DALLDLAL-B------ELLALL-DBA-L-DL-A-L--L----A-L--L--LAAADA
M: A---AAAA-A-A-AAAA-AJ--MA-CA-AAAAAAAAAA----AAAMAAM-MMBM-AAAJ-A-MA---A--A-MM-J--MAAA-A
Factory 2
N: N---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAAMAAN-MMBM-AAAJ-A-MJ---A--A-N--A--NAAA-A
O: O---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAAMAAO-MMBM-AAAJ-A-OO---A--A-O--A--OAAA-A
P: P---BAAA-A-A-AAAE-AC--E--C--EAEPECAE-B------EEEAECCBBA-E--E-A--P-CH---A-P--E-BP-EA-E
Q: BH--BA-A-A-A-AAC--CC--C--CA-BCCQACCCCBC-CCCC-CCAQCCBBACA--CCCCQH-CH--BB-Q--CC-QAEACA
Factory 3
R: A---AAAA-A-A-AAAA-AJ--RA-CA-AAAAARAAAA----AAARAAA--AAA-AAAR-A-AJ---A--A-R--A--RAAA-A
S: A---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAASAAA--AAA-AAAJ-A-AA---A--A-A--A--SAAA-A
T: L---BAA-BABA-AABA-A-B-T-BBB-BABBABAB-BB------TTATL-DBA-L--T-B-TT----TBB-T--B--TAAA-A
U: L---BAA-BABA-AABA-A-B-T-BBB-BABBABAB-BB------TUAUBBBBA-L--T-B-TT----TBB-T--B--UAAA-A
V: L---BAA-BABA-AABA-A-B-T-BBB-BABBABAB-BB------TTAVBBBBA-L--T-B-TT-----BB-VBBB--VAAA-A
W: W---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAAWAAA--AAA-AAAJ-A-AJ---A--A-A--J--WAAA-A
X: X---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAAMAAX-MMBM-AAAJ-A-OO---A--A-X--A--XAAA-A
Y: Y---B--D-A-A-AABALA-Y-----A-AAYYAYA---C------YYAAD-YB--A-AY-A-Y------BB-Y--Y--YAA--A
Z: B---BAA-BABA-AABA-A-B-Z-BBB-BABBABAB-BB------BBABBBBBA-A--B-B-ZB-----BB-BBBB-ZZAAA-A
a: B---BAA-BABA-AABA-A-B-a-BBB-BABBABAB-BB------BBABBBBBA-A--B-B-aB-----BB-BBBB-ZaAAA-A
b: b---AAA--AbA-AABALA------bA-AAAbAbAbAA----AAAbbAA--AAA-AAAb-A-bb------A-b--A--bAAA-A
c: L-E-BAL-cAbA-AAcALA-B---Bc--BCcc---c-BB-----ELcAcBBBBA-A--c-A--c-C---BB-c--CCBcAAA-A
d: A---AAAA-A-A-AAAA-A----A-AA-AAAAAAAAAA----AAAMAAA--AAA-AAAJ-A-ddd--A--A-d--J--dAAA-A
Factory 4
e: D---BA-D-A-D-AABA-AC--D-BCA-DADDDDAeDD-------DDABD-DBA-A--K-ADee---KK-A-e--D--eAAA-A
f: L---BA-A-A-A-AACA-CC--C--CA-BCCCACCCCBC-CCCC-CCAfCCBBACA--CCCCCf-CH--BBCf--CC-f-CACA
g: B--gBA-gcA-A-gABA-A--Lg--gAg-AgggCAggB-g----EggAgLgDBACL--g-A-gg-C---BB-g--g--g-AADA
h: A---AAAA-A-A-AAAA-A----A-AA-AAAAAAAAAA----AAAMAAA--AAA-AAAJ-A-ddd--A--A-d--J--hAAA-A
i: B--gBA-gcA-A-gABA-A--Lg--gAg-AgggCAggB-g----EgiAiLgDBACL--g-A-gg-C---BB-g-Bg--iAAADA
j: j---B--A-A-A-A-BALA---j---A--AjjACAjDD-------D--jD-DBA-A--j-A-jj-C-A-BB-jj-CC-jAAA-A
k: L---AAAA-A-A-AAAA-AJ---A-AA-AAAAAAAAAA----AAAMAAA--AAA-AAAk-A-kbd--A--A-k--J--kAAA--
l: O---AA---A-A-AAAA-A----A-AA-AAAAAAAAAA----AAAllAA--AAA-AAAk-A-lbd--A--A-l--J--l-AA-A

(a) Grouping by factories

Group A 
A: A---AAAA-A-A-AAAA-A----A-AA-AAAAAAAAAA----AAAAAAA--AAA-AAAA-A-AA---A--A-A--A--AAAA-A
J: A---AAAA-A-A-AAAA-AJ---A-AA-AAAAAAAAAA----AAAJAAA--AAA-AAAJ-A-JJ---A--A-A--J--JAAA-A
M: A---AAAA-A-A-AAAA-AJ--MA-CA-AAAAAAAAAA----AAAMAAM-MMBM-AAAJ-A-MA---A--A-MM-J--MAAA-A
N: N---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAAMAAN-MMBM-AAAJ-A-MJ---A--A-N--A--NAAA-A
O: O---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAAMAAO-MMBM-AAAJ-A-OO---A--A-O--A--OAAA-A
R: A---AAAA-A-A-AAAA-AJ--RA-CA-AAAAARAAAA----AAARAAA--AAA-AAAR-A-AJ---A--A-R--A--RAAA-A
S: A---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAASAAA--AAA-AAAJ-A-AA---A--A-A--A--SAAA-A
W: W---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAAWAAA--AAA-AAAJ-A-AJ---A--A-A--J--WAAA-A
X: X---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAAMAAX-MMBM-AAAJ-A-OO---A--A-X--A--XAAA-A
d: A---AAAA-A-A-AAAA-A----A-AA-AAAAAAAAAA----AAAMAAA--AAA-AAAJ-A-ddd--A--A-d--J--dAAA-A
h: A---AAAA-A-A-AAAA-A----A-AA-AAAAAAAAAA----AAAMAAA--AAA-AAAJ-A-ddd--A--A-d--J--hAAA-A
k: L---AAAA-A-A-AAAA-AJ---A-AA-AAAAAAAAAA----AAAMAAA--AAA-AAAk-A-kbd--A--A-k--J--kAAA--
l: O---AA---A-A-AAAA-A----A-AA-AAAAAAAAAA----AAAllAA--AAA-AAAk-A-lbd--A--A-l--J--l-AA-A
Group B
B: B---BAA-BABA-AABA-A-B-B-BBB-BABBABAB-BB------BBABBBBBA-A--B-B-BB-----BB-BBBB-BBAAA-A
T: L---BAA-BABA-AABA-A-B-T-BBB-BABBABAB-BB------TTATL-DBA-L--T-B-TT----TBB-T--B--TAAA-A
U: L---BAA-BABA-AABA-A-B-T-BBB-BABBABAB-BB------TUAUBBBBA-L--T-B-TT----TBB-T--B--UAAA-A
V: L---BAA-BABA-AABA-A-B-T-BBB-BABBABAB-BB------TTAVBBBBA-L--T-B-TT-----BB-VBBB--VAAA-A
Z: B---BAA-BABA-AABA-A-B-Z-BBB-BABBABAB-BB------BBABBBBBA-A--B-B-ZB-----BB-BBBB-ZZAAA-A
a: B---BAA-BABA-AABA-A-B-a-BBB-BABBABAB-BB------BBABBBBBA-A--B-B-aB-----BB-BBBB-ZaAAA-A
Group C
C: B---BA-A-A-A-AACA-CC--C--CA-BCCCACCCCBC-CCCC-CCACCCBBACA--CCCCCC-C---CACC--CC-C-CACA
F: B---BA-A-A-A-AACA-CCF-C--CA-BCCCACCCCBC-CCCC-CCAFCCBBACA--CCCCFC-C---CACC--CC-F-CACA
H: BH--BA-A-A-A-AACA-CC--C--CA-BCCCACCCCBC-CCCC-CCAHCCBBACA--CCCCHH-CH--BB-H--CC-HAEACA
Q: BH--BA-A-A-A-AAC--CC--C--CA-BCCQACCCCBC-CCCC-CCAQCCBBACA--CCCCQH-CH--BB-Q--CC-QAEACA
f: L---BA-A-A-A-AACA-CC--C--CA-BCCCACCCCBC-CCCC-CCAfCCBBACA--CCCCCf-CH--BBCf--CC-f-CACA
Group D
D: D---BA-D-A-D-AABA-ACD-D-BCA-DADDDDADDD-------DDABD-DBA-A-DD-ADDD-----BB-D--DC-DADADA
G: D---BA-D-A-D-AABA-AC--D-BCA-DADDEDAGDD-------DDABD-DBA-A-DD-ADDD-----BB-G--D--GADADA
K: D---BA-D-A-D-AABA-AC--D-BCA-DADDDDADDD-------DDABD-DBA-A--K-ADKK---KKBB-K--DC-KAAADA
e: D---BA-D-A-D-AABA-AC--D-BCA-DADDDDAeDD-------DDABD-DBA-A--K-ADee---KK-A-e--D--eAAA-A
Group E
E: B-E-BAA--A-AEAACE-AC--E--C--EAEEECAE-B------EEEAECCBBA-E--E-A-EE-C--E-A-E--E--EAEADE
I: B-E-BAA--A-AEAACE-AC--E--C--EAEIECAE-B------EEIAECCBBA-E--I-A-EE-C----A-I--E--I-EA-E
P: P---BAAA-A-A-AAAE-AC--E--C--EAEPECAE-B------EEEAECCBBA-E--E-A--P-CH---A-P--E-BP-EA-E

(b) Grouping by genome organization

Fig. 2: (a) The variable parts of the 38 phage genomes of Murphy [15], color-
coded by factory. Each letter stands for a variant spanning the interval between
two regions of the core genome. (b) Highly similar genome organization is ob-
served in 31 of the 38 phage genomes. Using the color-coding of panel (a), we see
that each of the 5 groups has a representative in at least two different factories.

Figure 2a shows the variable parts for the 38 phage genomes of [15], color-
coded by factory. Each letter stands for a variant spanning the interval between
two consecutive anchors (i.e. regions of core genome), and dashes represent
empty variants. The phages were grouped by similar genome organizations and
variants. Seven of these phages were in groups occurring in only a single fac-
tory, having few shared modules with the other factories, so were removed from
consideration. Figure 2b shows the 31 remaining phages. The comparison of
Figures 2a and 2b implies that each factory hosts a crew of different phages,
that is more or less conserved across factories, suggesting a common ancestral
population.

We apply the algorithm described in this paper to the populations from each
pair of the Dutch factories. The lengths of the calculated recombination scenarios
are used to infer relative properties of population diversity between the factories.
Experiments are performed to determine if factories have specific qualities, and
to demonstrate a likely high amount of ancestral recombination within phage
populations.

Paper outline In this paper, we introduce the concept of recombination sce-
narios, describing how a phage population can be derived from another.

The next section gives the basic definitions and properties, Section 2.2 presents
the theoretical basis of the greedy heuristics, and Section 2.3 derive lower bounds
adapted to specific characteristics of biological data. Finally in Section 3, our
heuristic is used to compare the four dairy factories of Figure 2a.



On the comparison of bacteriophage populations 5

2 Methods

2.1 Basic definitions and properties

A phage species is a set of phage genomes whose core genome contains the same
numberm of distinct regions, called anchors, thus the same numberm of variable
regions called modules. Each module has two or more variants within the species.
In this paper, we work with circularized versions of phage genomes3.

Phage A a

Module 1

b

c

a

a

Module 2

b

c

a

Module 3

b

a

b

a

Module 4

b

a

c

Phage B

Phage C

Phage D

Anchor 0 Anchor 1 Anchor 2 Anchor 3 Anchor 0

Compact representations

Phage A: 
Phage B:
Phage C:
Phage D:

aaaa
bbbb
ccaa
aabc

a

A recombination between Phages A and B 
using Anchors 1 and 3 yields two new phages

a|aa|a
b|bb|b

abba
baab

Fig. 3: Each phage in a set can be represented by the sequence of its variants.
For each module, an arbitrary symbol is assigned to each variant, including
empty variants. This compact representation captures the different assortments
of modules within the population. Intervals are sequences of consecutive modules
in the circular order. A recombination exchanges intervals between two parents,
creating two new phages.

By representing variants of a module by single symbols such as a, b, c, . . ., it
is possible to represent individual members of a species by the sequence of their
variants, as in Figure 3. Anchors are numbered from 0 to m− 1 in the clockwise
direction, where m ≥ 2 is the number of modules.

More formally, given sets of variants Vi for each module i, a phage p can be
represented by p = p0p1 . . . pm−1 where pi ∈ Vi. The recombination operation at

3 After invading a cell, linear phage genomes are often circularized. This is due to a
variety of mechanisms: a circular configuration may protect phages from degradation
by the defense mechanisms of the bacteria; it may allow the phage genome to be
duplicated as a plasmid, or to be integrated in the host genome; or it may be used
to initiate a rolling circle replication procedure that leads to a concatenamer [17].
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anchors a and b between two phages p and q yields new phages c and d:

p = p0p1 . . . pa−1|pa . . . pb−1|pb . . . pm−1
q = q0q1 . . . qa−1|qa . . . qb−1|qb . . . qm−1

yields
c = p0p1 . . . pa−1|qa . . . qb−1|pb . . . pm−1
d = q0q1 . . . qb−1|pa . . . pb−1|qb . . . qm−1.

The recombining phages are called parents, and the newly constructed phages,
their children, the pair {c, d} is a pair of twins. Comparisons between phage pop-
ulations are based on the following relation, which is the main focus of this paper:

Definition 1. Given two populations P and Q, a recombination scenario from
P to Q is a sequence of recombinations that constructs all phages of Q using
phages of P and their descendants. When there exists at least one recombination
scenario from P to Q, we say that P generates Q, and we write P → Q. The
number of recombinations in a shortest scenario is `PQ.

There is a simple way to check whether P → Q. Indeed we have:
Proposition 1. The relation P → Q holds if and only if, for each module, every
variant that appears in Q also appears in P .
If follows from Proposition 1 that the existence of P → Q does not imply the
existence of Q→ P , since certains variants of modules of population P may have
been lost in the recombination process. The operation P → Q has the following
properties:
Proposition 2. For any population P , P → P and `PP = 0. If P → Q and
Q→ R, then P → R, and `PR ≤ `PQ + `QR.

Since the measure `PQ is not symmetric, it is not a distance, but it is always
possible to convert it to a distance by considering the sum `PQ + `QP . However,
with actual biological data, it turned out to be much more interesting to com-
pare `PQ and `QP .

The central problem that we address in this paper is the following:

Problem 1. Given phage populations P and Q such that P → Q, compute a
recombination scenario of length `PQ.

The computational complexity of Problem 1 is currently unknown, even when
|Q| = 1. The main theoretical hurdle is that the notion of breakpoint, which is
central to most genome rearrangement problems, is not well-defined: it is often
impossible to determine a priori the number, nature, or positions of breakpoints.

In order to develop approximate solutions, we need objective functions that
are guaranteed to decrease at each iteration of the process, these are developed
in Section 2.2, where a first greedy heuristics is outlined. Evaluating the per-
formances of the heuristics requires theoretical lower bounds for the length of a
recombination scenario. These bounds are derived in Section 2.3.
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2.2 Minimum covers

We define a circular interval (s..t) as the subset of integers {s, s+1, . . . , t}, where
additions are done modulo m. An interval in a phage p is denoted by p(s..t);
a phage interval p(s..t) is contained in a phage interval q(s′..t′) if the circular
interval (s..t) is contained in (s′..t′), and pk = qk for all k in (s..t).

In particular, the equality of phage intervals p(s..t) = p(s..t) imply that they
share the same modules with the same variants.

Definition 2 (Covers and minimum covers).
Let P be the population of parents, and Q the population of children. A cover

of a child c is a set C(c) = {p1(s1..t1), p2(s2..t2), . . . , pn(sn..tn)} of n intervals,
where each phage pk ∈ P , and such that:

1. The union
⋃

k∈{1..n} p
k(sk..tk) is equal to c;

2. No interval in C(c) is contained in another interval of C(c).
3. Each interval pk(sk..tk) is maximal, in the sense that neither pk(sk − 1..tk),

nor pk(sk..tk + 1) is contained in phage c;

A minimum cover is a cover with the smallest number of intervals.

(a) (b)

Fig. 4: (a) A cover of a circular phage, in black, by intervals of four potential
parents. (b) A minimum cover extracted from cover (a).

Figure 4 gives an example of a cover and a minimum cover. The condition
that no interval of a cover is contained in another implies that, in a cover, all left
bound sk are distincts and all right bounds tk are distincts. Thus the intervals of
a cover can be ordered along the circle by their distinct and increasing left bounds
sk, and we can refer without ambiguity to a pair of consecutive intervals of a
cover p(sk..tk) and q(sk+1..tk+1). These can be used to propose a first definition
of breakpoints induced by covers:

Definition 3 (Breakpoint interval). Given two consecutive intervals of a
cover p(sk..j−1) and q(i..tk+1), where i ≤ j, of a child c, then the interval (i..j)
of anchors is called a breakpoint interval.
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q

ci-1 c i c j-1 cj
pj-1
qj-1

pi
qi

pi-1
qjqi-1
pjp

c psk
qtk+1

sc k
ctk+1

Fig. 5: Breakpoint interval. All variants of modules in shaded areas are equal.
A recombination of p and q with anchors a ∈ (i..j) and b outside the interval
(sk..tk+1) will create the interval c(sk..tk+1) of child c.

Note that when i = j, there is a single anchor in the interval, and this
corresponds to the classical notion of a breakpoint. However, breakpoint inter-
vals can be arbitrary wide in the general case. Figure 5 illustrates the concept.
Breakpoint intervals correspond to anchors that can be used to construct the
union of two consecutive intervals. Indeed, a recombination of phages p and q,
with anchors a ∈ (i..j) and b outside the union of p(sk..j − 1) and q(i..tk+1),
that is b ∈ (tk+1 + 1..sk), will create the interval c(sk..tk+1) of child c. Such a
recombination is said to repair the breakpoint interval.

Proposition 3 (Upper bound). Let s(c) be the size of a minimum cover by
P for each child c ∈ Q, then there exists a recombination scenario from P to Q
of length less or equal to R(Q) =

∑
c∈Q(s(c) − 1). Each recombination in the

scenario lowers the value of R(Q) by at least 1, and by at most 2|Q|.

Proof. A recombination can repair at most two breakpoint intervals, and there
always exists a recombination that repairs one breakpoint interval of a child. In
the worst case, each child will be reconstructed independently, and with recom-
binations that repair only one breakpoint interval, except for the last one, since
a child with a minimum cover of size 2 can always be constructed in one recom-
bination. In the best case, all children share the same two breakpoint intervals
in their minimum covers, implying that R(Q) may decrease by as much as 2|Q|.

From Proposition 3, we can sketch a greedy heuristics that tests all candidate
recombinations and selects an optimal one. Performance, in terms of computer
ressources, is not a priority, unless some steps have the potential to lead to com-
binatorial explosions.

Greedy heuristics
Input: Two populations P , Q such that P → Q, and P ∩Q = ∅
While Q 6= ∅

1. Compute the size s(c) of a minimum cover for each phage c ∈ Q, and R(Q).
2. If there exists c such that s(c) = 2, remove c from Q. Output the recombi-

nation that creates c.
3. Else output a recombination that maximizes R(Q)−R′(Q), where R′(Q) is

computed after simulating each possible candidate recombination.
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Fortunately, due to applications in surveillance systems, the problem of com-
puting minimum covers of circles has received a lot of attention. Lee and Lee [13]
gave a solution in O(|S|) if the intervals of S are maximal elements, in terms
of inclusion, and the intervals are sorted by their increasing starting points. In
this case, there is at most one interval in S that begins, or ends, at any point in
(0..m− 1). Let I be an interval in S that ends at t, its successor succ(I) is the
– unique – interval that contains (t mod m), and has the largest starting point.
The algorithm described in [13] finds a minimum cover by iterating the function
succ(I). When the iteration begins with the largest interval of S, a minimum
cover is found after at most 2m iterations.

However, in general, minimum covers are far from unique: many pairs of
parents can repair a breakpoint interval, and a child may have alternate minimum
covers that do not share any breakpoint interval. Moreover, there exists the
theoretical possibility that a shortest scenario must use breakpoint intervals of
covers that are not minimal (see Example 1 of Annex 1).

Our first experiments with phage data appeared to yield “pretty good” results.
Many recombinations were shared by two or more children, and many children
were constructed using exactly

⌊
s(c)+1

2

⌋
recombinations, where s(c) is the size

of a minimal cover of child c, which is a strict lower bound for a single child.
Quantifying “pretty good” without relying on minimum covers is discussed

in the next section.

2.3 Lower bounds

In this section, we explore under which conditions some breakpoints are manda-
tory, in the sense that they belong to any cover. As we will show, it is easy to
construct example with no mandatory breakpoints. Thus, a lower bound based
on mandatory breakpoints has the potential to be useless in the general case,
but, in datasets that come from the comparison of phages populations, they are
sufficiently abundant to provide practical lower bounds.

The formal definition is based of the detection of useful breakpoints, that
identify intervals that no single parent can cover, but that are covered by two
consecutive intervals of a cover.

Definition 4. A useful breakpoint is an interval c(i − 1, j) of a child c in Q,
that is not contained in any parent of P , but such that both c(i − 1, j − 1) and
c(i, j) are. A useful breakpoint is thus the interval spanning a breakpoint interval
together with its two flanking modules.

A useful breakpoint can be erased by simply adding to the set of parents P a
new parent that contains the interval c(i− 1..j): Example 1 of Annex 1 shows a
population whose only child has 9 breakpoint intervals, but only two of them are
useful. On the other hand, in phage comparisons, almost all breakpoint intervals
are useful.

Two sets overlap if their intersection is non-empty, and neither is contained
into the other. When the sets of anchors of two or more useful breakpoint overlap,
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    Parents
      A: a a a a a a a a a a a a a
      B: b b b b b b b b b a b a a
      C: c c c c c c c c c c b c c
      D: d d d d d d c d d d d a a
    Children
      X: a d b c d c c d b a b a a
      Y: a a b c c d c c a a b c a
Anchors:0 1 2 3 4 5 6 7 8 9 0 1 2 0 

Fig. 6: In this example child Y has 6 mandatory breakpoint. Five have a single
anchor: a|b with anchor {2}, b|c with anchor {3}, c|d with anchor {5}, c|a with
anchor {8}, c|a with anchor {12}; and one has two anchors d|c|c with anchors
{6, 7}. One region, in gray, contains two overlapping useful breakpoint, a|a|b
with anchors {9, 10}, and a|b|c with anchors {10, 11}. Breakpoints in blue are
exclusive to Y, breakpoints in red are exclusive to X, and the three breakpoints
in violet are shared.

then there exists alternative covers of different lengths for that region. We want
to eliminate this possibility:

Definition 5 (Mandatory breakpoint). A mandatory breakpoint of a child
c in Q is a useful breakpoint whose set of anchors does not overlap any other
such set of anchors.

In Figure 6, all breakpoints of child X are mandatory, and we can deduce a
cover from these breakpoints by constructing the sequence of parents that are
exchanged at each breakpoint. In this case the only possible cover is ADBCDCDBA.

However, child Y = aabccdccaabca that has two overlapping useful break-
point: a|a|b with anchors {9, 10}, and a|b|c with anchors {10, 11}. This yield
two different covers of Y, one of length 9, ABCDCABCA, and one of length 8,
ABCDCACA.

We say that two mandatory breakpoints c(i− 1, j) and d(i− 1, j) are shared,
if they have the same set of anchors and a common pair of parents (p, q) that
can repair them. Then either c(i− 1, j) = d(i− 1, j), or c(i− 1, j) and d(i− 1, j)
are a pair of twins constructed by the same recombination.

In Figure 6, there is one pair of equal mandatory breakpoints between chil-
dren X and Y at anchor {3} with parents B and C, and two pair of twins, one
with anchor {5}, and one with anchors {6, 7}, both with parents C and D.

Being based on equality, the ‘shared’ relation is an equivalence relation on
the set of mandatory breakpoints. In the example of Figure 6, child Y has 6
mandatory breakpoints and X has 8. Three of them are shared, thus there are
11 breakpoints that must be repaired, yielding a minimum of 6 recombinations,
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since a recombination repairs at most two shared mandatory breakpoints (see
Example 2 of Annex 1 for a recombination scenario of length 6).

In general, we have:

Proposition 4. Let P and Q be two populations such that P → Q, let M be
the number of shared mandatory breakpoints of children in Q with respect to P ,
then the length of a shortest recombination scenario is at least r(Q) =

⌊
M+1

2

⌋
.

3 Experiments

3.1 Dataset construction

In order to identify core and variable genomes, we aligned the 38 genomes of
the Murphy study [15] using the Alpha aligner [1]. This aligner identifies the
core and variable genomes, the core becoming the anchors between the variable
regions that comprise the modules. For this experiment, we used the default
values of the software. Alpha was the preferred alternative to a painstaking and
time consuming breakpoint analysis done by hand, where sequence similarity is
queried using a tool such as BLAST. Alpha is adapted specifically to phages,
and identifies major breakpoints and variants in a single automated step.

Each phage pj from the collection receives an identifier that is a single unique
letter, and a new variant for module i in phage pj receives the identifier of pj
as its variant identifier. This yields the set of strings displayed in Figure 2a,
which is processed by the greedy algorithm. Each phage belongs to one of four
factories, identified by F1, F2, F3 and F4 in the original paper. The number of
phages per factory are, respectively, 13, 4, 13 and 8.

When computing a recombination scenario from a source factory to a target
factory, we may encounter a variant that occurs only in the target and not in
the source. We call such a variant a missing variant. The algorithm deals with
missing variants in two ways: if stretches of missing variants are shared by two
or more children in the target factory, supplementary chromosomes that contain
these stretches are added to population P ; if stretches of missing variants are
unique to a child, the importation of each stretch counts as one recombination,
and these recombinations can be done at the end of the scenario. These strategies
simulate the ‘genetic reservoir’, and should be sound as long as the stretches are
not too long.

3.2 Comparing factories

Each factory was compared with the three others, resulting in 12 recombination
scenarios whose length varied from 29 to 158. Table 1 presents various statistics of
these scenarios, and a gap ratio that compares the performance of the heuristics
to both the lower bound r(Q), given by Propostion 4. and the upper bound
R(Q), given by Proposition 3. If L ≤ R(Q) is the length of an actual scenario,
we score it with the formula:

Gap ratio =
(R(Q)− L)

(R(Q)− r(Q))
.
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Gap ratios range from 0, for the worst scenario, to 1 for a scenario whose length
is equal to r(Q).

Since `PQ depends on the number of phages to reconstruct, we also give in
Table 1 the average length needed to reconstruct one children.

Table 1: Comparisons of four Dutch dairies. Scenario F1 → F2 computed by the
greedy algorithm has 29 recombinations, and theoretical lower bound of 24, and
upper bound of 47, yielding a gap ratio of 0.78; among the 29 recombinations,
20 were used to import missing data; the size of target factory F2 is 4 phages,
thus the average length of the scenario is 7.25 recombinations per phage.

Factories Scenario
Length

Lower
Bound
r(Q)

Upper
Bound
R(Q)

Gap
ratio

Missing
Data

Target
Dairy
Size

Average
Length

F1 → F2 29 24 47 0.78 20 4 7.25
F1 → F3 112 88 213 0.81 77 13 8.62
F1 → F4 84 60 161 0.76 53 8 10.50
F2 → F1 158 111 358 0.81 190 13 12.15
F2 → F3 149 107 402 0.86 105 13 11.46
F2 → F4 109 80 231 0.81 79 8 13.63
F3 → F1 152 90 361 0.77 101 13 11.69
F3 → F2 53 39 90 0.73 40 4 13.25
F3 → F4 110 81 209 0.77 73 8 13.75
F4 → F1 151 109 282 0.76 100 13 11.62
F4 → F2 54 42 90 0.75 36 4 13.50
F4 → F3 151 103 370 0.82 94 13 11.62

Gap ratios range from 0.73 to 0.86, which is promising, given our very con-
servative lower bounds, that assume that all recombinations occur between pairs
of mandatory breakpoints; and given the fact that the upper bounds, based on
minimum covers, cannot be lowered in the general case. Indeed, upper bounds
are reached on recombination scenarios in which children do not share break-
points, and on parents who contribute at most a single interval of contiguous
modules in a child. In our dataset, specialized subpopulations were apparent in
Figure 2, implying that children of these subpopulations did not share break-
points, and parent sthat contribute a single interval of contiguous modules in a
child are used to model the “genetic reservoir”.

Another interesting aspect of these comparisons is that Factory F1 is obvi-
ously the best ‘constructor’, with an average of 8.79 recombinations to recon-
struct all other factories, compared to 12.90 for Factory F3, for example. On the
other hand, F4 is the hardest to construct, being the highest result for each of
the other factories.

3.3 Shared evolution

We tested how much shared evolution there was when creating the phages from
one factory using the phages from another. To do this, we compared the sce-
nario lengths from Table 1 to the scenario lengths obtained separately from each



On the comparison of bacteriophage populations 13

factory to each phage individually. The results are shown in Table 2. The table
shows that, by considering the phages in the target factories simultaneously, we
economize 12, 1.75, 15.7, and 7.6 recombinations per phage for target factories
F1, F2, F2, and F4 respectively.

Table 2: Creating each phage individually instead of creating all phages from a
factory at once. Each individual phage for a factory was created independently
of the others. The sum of the lengths of the recombination scenarios creating all
phages from F1, using the phages from F2, is in the first row: 61 more recombi-
nations were required to do this as compared to creating all phages of F1 with
shared recombinations. Overall, to create F1 from each of the other factories we
use 13.63 recombinations more per phage.

Factories Scenario
Length

Sum of
Individual
Lengths

Difference Economy
per Phage

F2 → F1 158 219 61
F3 → F1 152 230 78 13.23
F4 → F1 151 184 33
F1 → F2 29 31 2
F3 → F2 53 55 2 2.75
F4 → F2 54 61 7
F1 → F3 112 131 19
F2 → F3 149 247 98 15.85
F4 → F3 151 244 89
F1 → F4 84 100 16
F2 → F4 109 150 41 10.25
F3 → F4 110 135 25

Due to the limited numbers of phages sampled from each factory, the variants
from a target factory was not always present in a source factory. These missing
variants played a role in our comparison, as they favored single-recombination
replacement of longer stretches in the single-target comparisons. As described in
Section 3.1, each stretch of missing variants that did not exist in any phage of
a target factory were counted as a single recombination. Consider one of these
stretches defined on a target factory with a single phage. Adding phages to this
factory can only fragment these stretches, implying more stretches and more
recombinations.

This gives single phage targets a significant advantage, in that they will
have longer stretches of missing variants that each can be repaired with a single
recombination. Despite this advantage enjoyed by the single phage targets, we
observe large savings in all cases.
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3.4 Population structure

How distinctive are the populations within the factories? We approached this
question by conducting experiments to test how random the structure is within
the factories. The test statistic that we used was the sum of the scenario lengths
over all pairs of factories.

The first null hypothesis was that the phages were randomly partitioned into
factories of sizes 13, 4, 13, and 8. We tested this hypothesis by repeatedly (n
times) partitioning the data uniformly at random into the prescribed sizes and
rerunning the experiment of Section 3.2. This gave us the null distribution on
the test statistic. A single sample T-test against this null distribution yielded
a p-value lower then 10−6 even with n = 20. For larger n the p-value dropped
precipitously.

The second null hypothesis we tested took into account the group structure
as defined in Figure 2b. The null hypothesis was that the phages were randomly
distributed to the factories while preserving the group structure within each
factory. That is, define a group structure vector [A,B,C,D,E] for a factory, con-
taining the frequency of each group in the factory. We construct four random
factories with the following frequency vectors:

F1 = [3, 1, 3, 3, 2],
F2 = [2, 0, 1, 0, 1],
F3 = [5, 5, 0, 0, 0], and
F4 = [3, 0, 1, 1, 0].

We run the experiment of Section 3.2 on n of these randomly constructed facto-
ries to obtain the null distribution on our test statistic. A single sample T-test
against this null distribution for n = 100 gives a p-value is less than 10−11.

4 Discussion and Conclusion

In this paper, we described the first combinatorial framework for the comparison
of bacteriophage populations using recombinations. Our work represents a shift
to a more global perspective of evolutionary analysis for bacteriophages, since
the alignment-centric view breaks down in the presence of large amounts of
recombination [3,19].

Our experiments show that the populations of phages sampled within the
factories are not random, suggesting isolated evolution within individual facto-
ries. They also illuminate the potentially large amount of shared evolution in the
recombination histories leading to the factories that we see today, supporting the
genetic reservoir hypothesis.

While the application of our methods to the Dutch factories gives us insight
into the relative diversity of phages in one factory with respect to another, our
application is “still seriously data limited” due to the disproportionately sparse
sampling of phage populations [3]. We expect the gene reservoir paradigm of
variant sharing between populations to gain tremendous significance as better
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samplings become possible. There are signs that this time could be near, as a
recent survey estimates the number of different phage species in the ocean to be
more than 195,000 [9].

The problem of recombination scenario inference is a tricky one, whose com-
putational complexity remains unknown. However, with some realistic assump-
tions on real data, we were able to give good solutions to comparisons arising
from biological data. There are still many combinatorial problems that arise
from this framework, which include increasing the lower bound — since we used
a very conservative approach — and the development of better algorithms to
find recombination scenarios.

Dataset

Bacteriophage genomes used in this paper identified by their one letter code,
their name, and their accession number.
A Phi17 KP793114 B Phi13.16 KP793116
C Phi19 KP793103 D PhiJF1 KP793129
E Phi43 KP793110 F Phi4 KP793101
G PhiG KP793117 H PhiA.16 KP793102
I PhiD.18 KP793107 J PhiL.18 KP793120
K PhiF.17 KP793113 L Phi5.12 KP793108
M PhiM.16 KP793128 N Phi109 KP793121
O Phi93 KM091443 P Phi129 KP793112
Q PhiLj KP793133 R Phi155 KP793130
S Phi16 KP793135 T Phi44 KP793124
U Phi114 KP793115 V Phi15 KM091442
W Phi40 KP793127 X Phi145 KM091444
Y Phi10.5 KP793119 Z Phi19.3 KP793105
a Phi19.2 KP793111 b PhiL.6 KP793122
c Phi4.2 KP793123 d PhiM.5 KP793126
e PhiF0139 KP793118 f PhiA1127 KP793106
g PhiC0139 KP793109 h Phi91127 KP793125
i PhiB1127 KP793104 j PhiS0139 KP793134
k PhiE1127 KP793131 l PhiM1127 KP793132
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Annex 1

Example 1. A shortest scenario is not necessarily tied to a minimum cover.

Parents:
  A: Xoooooooo
  B: oXXoooooo
  C: oooXXoooo
  D: oooooXXoo
  E: oooooooXX
  F: oXooooooX
  G: ooXXooXXo
  H: ooooXXooo

Child:
  J: XXXXXXXXX

Recombination 1
  G: ooXX|oo|XXo
  H: oooo|XX|ooo

  1: ooXX|XX|XXo
  2: oooo|oo|ooo

Recombination 2
  F: oX|oooooo|X
  1: oo|XXXXXX|o

  3: oX|XXXXXX|X
  2: oo|oooooo|o

Recombination 3
  A: X|oooooooo|
  3: o|XXXXXXXX|

  J: X|XXXXXXXX| *
  2: o|oooooooo|

Fig. 7: A recombination scenario of length 3, thus minimal.

Child J in Figure 7 has a minimum cover of size 5, namely ABCDE. Thus a
shortest scenario must have at least 3 recombinations. Using the minimum cover,
there is a trivial scenario of length 4, but there is an alternate one of length 3
that uses the cover AFGHGF, which is not a minimal cover.
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Example 2. A recombination scenario of length 6 for the example of Figure 6.

Parents
  A: aaaaaaaaaaaaa
  B: bbbbbbbbbabaa
  C: ccccccccccbcc
  D: ddddddcddddaa
Children
  X: adbcdccdbabaa
  Y: aabccdccaabca

Recombination 1
  C: ccccc|c|ccccbcc
  D: ddddd|d|cddddaa

  1: ccccc|d|ccccbcc
  2: ddddd|c|cddddaa

Recombination 2
  A: aaaaaaaa|aa|aaa
  1: cccccdcc|cc|bcc

  3: aaaaaaaa|cc|aaa
  4: cccccdcc|aa|bcc

Recombination 3
  B: bb|bbbbbbbab|aa
  3: aa|aaaaaacca|aa

  5: aa|bbbbbbbab|aa
  6: bb|aaaaaacca|aa

Recombination 4
  4: ccc|ccdccaabc|c
  5: aab|bbbbbbaba|a

  Y: aab|ccdccaabc|a *
  7: ccc|bbbbbbaba|c

Recombination 5
  2: d|ddddccd|dddaa
  5: a|abbbbbb|babaa

  8: a|ddddccd|babaa
  9: d|abbbbbb|dddaa      

Recombination 6
  Y: aa|bc|cdccaabca
  8: ad|dd|dccdbabaa

  X: ad|bc|dccdbabaa *
 10: aa|dd|cdccaabca

Fig. 8
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