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Abstract

We prove, using p-adic Hodge theory for open algebraic varieties, that for a smooth projective
variety over a field k& C C of finite type over @, the complex abel jacobi map vanishes if the etale
abel jacobi map vanishes. This implies that for a smooth projective morphism f : X — S of smooth
complex algebraic varieties over a field k C C of finite type over Q and Z € Z¢(X, n)f’azo an algebraic
cycle flat over S whose cohomology class vanishes on fibers, the zero locus of the etale normal function
associated to Z is contained in the zero locus of the complex normal function associated to Z. From
the work of Saito or Charles, we deduce that the zero locus of the complex normal function associated
to Z is defined over k if the zero locus of the etale normal function associated to Z is not empty.
We also prove an algebraicity result for the zero locus of an etale normal function associated to an
algebraic cycle over a field k of finite type over Q. By the way, we get that the Hodge conjecture
implies the Tate conjecture for smooth projective varieties over fields of finite type over Q and for
smooth projective varieties over p-adic fields (in particular we get Tate conjecture for divisors), and
a for a smooth projective morphism f : X — S of smooth complex algebraic varieties over a subfield
k C C of finite type over Q, the locus of Hodge Tate classes inside the locus of Hodge classes of f.

1 Introduction

Let X be a connected smooth projective variety over C. The Abel-Jacobi map associates to a
cycle Z € Z%(X) homologically equivalent to 0 of codimension d, a point AJ(X)(Z) € J%(X) in the
intermediate Jacobian of X. In family, if f : X — S is a smooth projective morphism of smooth con-
nected complex varieties and Z € Z4(X) is a relative cycle on S of codimension d homologicaly trivial on
fibers, the Abel-Jacobi map provides a holomorphic and horizontal section of the relative intermediate
Jacobian : vz : S — J%(X/S) called the associated normal function. By a Brosnan-Pearlstein theorem,
the zero-locus V(vz) C S and more generally the torsion locus V(vz) C Viers(vz) C S of vz is an
algebraic subvariety ([3]). If X/S and Z are defined over a subfield k¥ C C, we conjecture in the spirit
of the Bloch-Beilinson conjectures, that the zero-locus of the normal function is also defined over k (see

[7)-

On the other hand, if k is of finite type over Q, X is a connected smooth projective variety
over k, and p is a prime number, we can define via the continuous étale cohomology with Z,, coefficients
an etale Abel-Jacobi map which associate to a cycle Z € Z4(X,n) homologically equivalent to 0 of codi-
mension d, an element AJP(X)(Z) € HY(G, H**~'="(X},Z,)) of the first degree Galois cohomology of
the absolute galois group G := Gal(k/k) with value in the etale cohomology of X with Z,, coefficients.
In family, we get, for f : X — S a smooth projective morphism of smooth connected varieties over k and
Z € Z4X,n) a relative cycle on S of codimension d homologicaly trivial on fibers, a normal function
vy P associated to Z € Z9(X,n) and thus a zero-locus V(15 ") C S and more generally a torsion locus

V(V5P) C Viers(vy?) € S of v which are subsets of closed points of S. For o : k < C an embed-
ding, and V' C S a subset, we denote V¢ := myc(S) (V) C Sc where m ¢ (S) : Sc — S is the projection.



Let £ of finite type over Q and f : X — S a smooth projective morphism of smooth connected
varieties over k. Let Z € Z9(X) arelative cycle. F. Charles then proves that for any embedding o : k < C

e assuming that R2¢~1£3"(C) has no global sections then V(5 ")c = V(vz) ([7])

e if V(vz)(k) is non-empty then it is defined over k ([8]).

In this work, we show that, for a field k of finite type over Q, X a connected smooth projective
variety over k, Z € Z%(X, %) an (higher) algebraic cycle homologically equivalent to 0 of codimension d,
and p € N a prime number, if AJ*?(X)(Z) = 0 then AJ,(X)(Z) := AJ(X¢)(Zc) = 0 for any embedding
o : k< C (ct. theorem 6). This implies by definition that for f : X — S a smooth projective morphism
of smooth connected varieties over a field k of finite type over Q, and Z € Z4(X, %) a relative cycle on S
of codimension d homologicaly trivial on fibers,

V;Eors(yztﬁp)c C V;Eors (VZ)

for any embedding o : k < C without any assumption (c.f. corollary 3(i)). We deduce that if V(v ) is
not empty, V (vz) is defined over the algebraic closure k of k (c.f. corollary 3(ii)).

The proof of theorem 6 uses p-adic Hodge theory for open varieties to relate de Rham cohomology and
its Hodge filtration to p-adic étale coholomogy with its Galois action. Theorem 6 follows indeed from the
fact that by proposition 3(i), proposition 2 and proposition 1, we have for a field k of finite type over Q,
U € SmVar(k), and embeddings o : k — C, g, : k — C, for a prime p € N, for each j,! € Z, a canonical
injective map

HIGL(U) « B (Ur, Z,) (1) < FUHI(UE",2i7Q) @ Qpy o HIWGL(U)(0) = ev(U)(w(a)),

p,ev

which is by construction functorial in U € SmVar(k) (see theorem 1). More precisely, if the étale Abel-
Jacobi image of a cycle Z is zero,

e there exist a Galois invariant class « in the étale cohomology of ((X x 00")\Z); with non-zero
boundary, where k is an algebraic closure of k,

e then, by p adic Hodge theory for (X x O")\Z, « define a logarithmic de Rham class w(«), laying
inside the right degree of the Hodge filtration of ((X x O")\Z);  where k,, C C, is the p-adic
op

completion of k with respect to an embedding o, : k — C, (c.f.proposition 3(i) and proposition 2)

e taking the image of this class by the complex period map with respect to an embedding ¢’ : k' — C
extending the given embedding o : k < C where k' C l%gp is a subfield over which w(«)y, is defined,
we get a Betti cohomology class ev((X x O")\Z)(w(a)r) of (X x O")\Z)E™ with 2imQ coefficients
(c.f. proposition 1),

e this last class (1/2im)ev((X x O")\Z)(w(«)r) induce a splitting of the localization exact sequence
of mixed Hodge structures :

0 — H*-1on(xan Q) Lo H2H((X x OM\2)&m, )P & HE(X x Om)er, Q)7 = Q49 (d) — 0,
which means that the complex Abel-Jacobi image de Z is zero.

By the way, since for X € PSmVar(k), Lg’e(i (X) is compatible with cycle class maps, we get in particular
that Hodge conjecture implies Tate conjecture. In particular, we get Tate conjecture for divisors for
smooth projective varieties over fields of characteristic zero.

In section 6, we show that, for f: X — S a smooth projective morphism of connected smooth varieties
over a field k of finite type over Q, Z € Z¢(X, %) an (higher) algebraic cycle homologically equivalent to

0 of codimension d, and p a prime number for all expect finitely many prime numbers p € N

Vtors(l/?’p) =TnN S(O) c S,



where T' C S is the image of closed points of a constructible algebraic subset of

oy’

BAA(X x DN ZD), /S;, ) o= HP /j (O(xxmr 2y, - Fb) € Vectga(S, )

by the projection pg : E%=1((X xO"\IZ));. /S;. ) — Si_, where l%gp C C, is the completion of k with
respect to o, (c.f. definition 7 and theorem 7(i)). We also give a local version for Vio,s (V;fp) C S (et

theorem 7(ii)). The proof use on the one hand proposition 3(ii), and on the other hand De Yong alterations
to get a stratification S = U,eaS* by locally closed subsets and alterations 7 : (Xgo X O0™)* — Xgo x O
such that

fom®: ((X x D”)g@,waflqzn) - Sgdp

is a semi-stable morphism. We then use the p adic semi-stable comparison theorem for semi-stable
morphisms f": (X', D') — §', with ", X', D" € SmVar(k,,), that is satisfying
e f: X’ — S is smooth projective, D’ C X’ is a normal crossing divisor,

e foralls € ', D! C X! is a normal crossing divisor and (X}, D’) has integral model with semi-stable
reduction,

(or more generally for log smooth morphism of schemes over (O; , Np)), which gives, for each j € Z a
p
canonical filtered isomorphism

H fla(U') : ijin,Uéct ®z, OBst.s — R fl114,(0ur, Fy) ®0,, OBy g1

which is for each s € S’ compatible with the action of the Galois group Gal(C,/k(s)), the Frobenius and

the monodromy: for all but finitely many primes p, k,,(s) is unramified for all embeddings o, : k — C,
and all s € §', so that we get a Frobenius action on R’ f/ ;. (O, Fy)s = Hpp(U}) for all s € 5.

This also give (see theorem 8) together with proposition 3(ii) and proposition 1, for f : X — S a
smooth projective morphism, with S, X smooth over a subfield o : k < C of finite type over Q, and p
any but finitely many prime numbers and o, : k¥ — C, an embedding, the locus of Hodge-Tate classes
(Hij*prxit (d))¥, where G = Gal(k/k) and k C C is the algebraic closure of k inside C,

~

1o (X/8) Wk/«:(S)*(Hij*@p,xzt ()¢ =
< FUEpp(X/S) N (Uaea(Bpr(XE /87 )®0s,  OBuse )*N)) >q,
p p op op
< (FYEpr(Xc/Sc) N R f.Qxan) @ Qp = HL; a(Xc/Sc) ®g Qp,
s+ ev(Xye)) (1/2im)w(o)p(s))s " = w,;/l(c(s) tk(s) > C,se S
inside the locus of Hodge classes HL; 4.(X/S) :== HL; (Xc/Sc) C E%R(X@/SC), which is a countable
union of algebraic subvarieties by the work of Deligne, Catani and Kaplan, where

o B} p(X/S) = HI [(Ox,Fy) = RIf.0% g and E},p(Xc/Sc) := H' [,(Ox., Fy) are the filtered
algebraic vector bundles over S and Sc respectively which have the Gauss-Manin integrable con-
nexion,

o S =1l,epS® is a stratification by locally closed algebraic subsets, A being a finite set,

o ™ : X% — Xga being alterations, in particular we get sub vector bundles 7%* : E%R(XSQ/SO‘) =
ELp(X/8) |50 = Epp(X*/5%),



® Tk, (Sa)*E{)R(Xa/Sa) - E%,R(ngp /Sgdp) is the canonical subset of closed points, ks, C C,

being the p adic completion of k£ with respect to oy,
o mc(S): Sc — S and Tk ke, (S) : S,;Up — S are the projections.

I am grateful for professor F.Mokrane for help and support during this work as well as O.Wittenberg
for mentioning me an article of Jannsen on l-adic cohomology.

2 Preliminaries and Notations

e Denote by Top the category of topological spaces and RTop the category of ringed spaces.
e Denote by Cat the category of small categories and RCat the category of ringed topos.

e For § € Cat and X € S, we denote S/ X € Cat the category whose objects are Y/ X := (Y, f) with
YeSand f:Y — X is a morphism in S, and whose morphisms Hom((Y”, /'), (Y, f)) consists of
g:Y'" =Y in S such that fog=f'.

e For § € Cat denote GrS := Fun(Z, S) is the category of graded objects.

e Denote by Ab the category of abelian groups. For R a ring denote by Mod(R) the category of (left)
R modules. We have then the forgetful functor or : Mod(R) — Ab.

e Denote by AbCat the category of small abelian categories.
e For (S§,05) € RCat a ringed topos, we denote by

— PSh(S) the category of presheaves of Og modules on S and PSho, (S) the category of presheaves
of Og modules on S, whose objects are PSho, (S)? := {(M,m), M € PSh(S),m : M ® Os — M},
together with the forgetful functor o : PSh(S) — PSho,(S),

— C(S) = C(PSh(S)) and Co4(S) = C(PShp(S)) the big abelian category of complexes of
presheaves of Og modules on S,

— Cogs2)1i(S) := C(2)7a(PShog(S)) C C(PShog(S), F, W), the big abelian category of (bi)filtered
complexes of presheaves of Og modules on § such that the filtration is biregular and PShog (2) ra (S) =
(PShos (S), F, W).

e Let (S,05) € RCat a ringed topos with topology 7. For F' € Cog(S), we denote by k : F — E (F)
the canonical flasque resolution in Co4(S) (see [5]). In particular for X € S, H*(X, E,(F)) =
H* (X, F).

e For f: 8 — S a morphism with §,8" € RCat, endowed with topology 7 and 7’ respectively, we
denote for F' € Cp4(S) and each j € Z,

— f*i= HID(S, koad(f*, £.)(F)) : HI(S, F) — Hi(S', f*F),
— f*i= HIT(S, ko ad(f*med, £,)(F)) : HI(S, F) — HI(S', fmolF),

the canonical maps.
e For X € Cat a (pre)site and p a prime number, we consider the full subcategory
PShy, (X) C PSh(N x X), F = (Fy)pen, p"F, =0, Fopa/p" = Fp
Cz,(X) := C(PShz, (X)) C C(N x X) and
Ly = Lpx = ((Z/p"Z)x) € PShy, (X)

the diagram of constant presheaves on X.



e Let f: X" — X a morphism of (pre)site with X', X’ € Cat. We will consider for F' = (F},)nen €
Cz,(X) the canonical map in C(X")

T(f*, Jm)(F) : f* lim F, — lim f°F,

neN neN
Recall that filtered colimits do NOT commute with infinite limits in general. In particular, for
f:+ &" = X amorphism of (pre)site and F' = (F},)nen € PShz, (X)), fm o f*F, is NOT isomorphic
to f*lim _ Fn in PSh(X”’) in general.

e Denote by Sch C RTop the subcategory of schemes (the morphisms are the morphisms of locally
ringed spaces). For X € Sch, we denote by

— Sch’* /X < Sch /X the full subcategory consisting of objects X’/X = (X', f) € Sch /X such
that f: X’ — X is an morphism of finite type

— X¢ < Sch’* /X the full subcategory consisting of objects U/X = (X,h) € Sch /X such that
h:U — X is an etale morphism.

— X®™ < Sch’* /X the full subcategory consisting of objects U/X = (X, h) € Sch /X such that
h:U — X is a smooth morphism.

For a field k, we consider Sch /k := Sch /Speck the category of schemes over Speck. We then
denote by

— Var(k) = Sch’* /k < Sch /k the full subcategory consisting of algebraic varieties over k, i.e.
schemes of finite type over k,

— PVar(k) € QPVar(k) C Var(k) the full subcategories consisting of quasi-projective varieties
and projective varieties respectively,

— PSmVar(k) € SmVar(k) C Var(k) the full subcategories consisting of smooth varieties and
smooth projective varieties respectively.

For a morphism of field ¢ : k — K, we have the extention of scalar functor

QrK :Sch/k —Sch /K, X = X =Xk, =X K, ([ X' 2 X)= (fr=f®]: X — Xk).
which is left ajoint to the restriction of scalar

Resy i : Sch /K — Sch /k, X = (X,ax) = X = (X,00ax), (f: X' > X)— (f: X' = X)

The adjonction maps are

— for X € Sch /k, the projection my/x(X) : Xxg — X in Sch /k, for X = U;X; an affine open
cover with X; = Spec(A;) we have by definition 7y, 5 (X;) = np/x (As),

— fOI‘XESCh/K,IXAK:X;)XK:XXKK(X)kKiH SCh/K, where Ag : K®p K — K is
the diagonal which is given by for z,y € K, A (z,y) =x — y.

The extention of scalar functor restrict to a functor
@K : Var(k) = Var(K), X = Xg =Xk, =X K, (f: X' > X)) (fk = fo1: X} — Xk).

and for X € Var(k) we have m,/x(X) : Xx — X the projection in Sch /k. An algebraic variety
X € Var(K) is said to be defined over k if there exists Xy € Var(k) such that X ~ X, ®; K
in Var(K). For X = (X,ax) € Var(k), we have Sch’* /X = Var(k)/X since for f : X' — X a
morphism of schemes of finite type, (X', ax o f) € Var(k) is the unique structure of variety over k
of X’ € Sch such that f becomes a morphism of algebraic varieties over k, in particular we have



— X¢ < Sch'! /X = Var(k)/X,
— Xm < Sch’ /X = Var(k)/X.
A morphism f: X' — X with X, X’ € Var(K) is said to be defined over k if X ~ X, ®; K and

X'~ X[®, K are defined over k and 'y =T'y, @, K C X’ x X is defined over k, so that fo®r K = f
with fo : X(/) — Xp.

For X € Sch and s € N, we denote by X(,) C X its points of dimension s, in particular X5y C X
are the closed points of X.

For X € Sch and k a field we denote by X (k) := Homgen(Speck, X) the k points of X. We get
X (k)in C X the image of the k-points of X. For k C k" a subfield, AY (k);, = kN Cc kN c AY and
AY (K )in = miper (AY)(K'Y) € AY.

For X € Sch, we denote X?¢* C Sch /X the pro etale site (see [2]) which is the full subcategory of
Sch /X whose object consists of weakly etale maps U — X (that is flat maps U — X such that
Ay : U — U xx U is also flat) and whose topology is generated by fpqc covers. We then have the
canonical morphism of site

vy : XP 5 X (U — X)) (U — X)

For F € C(X*),
ad(vy, Rvx.)(F) : F — Rvx..vx F

is an isomorphism in D(X¢), in particular, for each n € Z

vy == H'D(X, k) : HI, (X, F) = Hp,,

(X, vy F)
are isomorphisms, where
k:=koad(vy,vx«)(Eet(F)) : Eet(F) = vxswEpet (WX F)
is the canonical map in C(X ) which is a quasi-isomorphism. For X € Sch, we denote
- Zp =lim vk (Z/p"7Z)xer € PSh(XP¢') the constant presheaf on X,
— lpx = (p()) : Zy, — Vi (Z/pZ)xe the projection map in PSh(N x XP¢).

Let k a field of characteristic zero and kg C k a subfield. We say that k is of finite type over
ko if k is generated as a field by ko and a finite set {a1,...,a,} C k of elements of k, that is

k=ko(aq,...,qa,). If kis of finite type over ko then it is of finite transcendence degree d € N over
ko and k = ko(aa, ..., aq)(ag+1) with {a1,...,aq41} C k such that ko(aq, ..., @q) = ko(x1,...,2q)
and ag41 is an algebraic element of k over ko(as, . .., aq). Note that if k is of finite type over kg then

it is NOT algebraicly closed. We denote k the algebraic closure of k. Then k is also transcendence
degree d over k.

Let C a field of characteristic zero. Let X € Var(C). Then there exist a subfield ¥ C C of finite
type over Q such that X is defined over k that is X ~ X ®; C with Xy € Var(k).

Let k C Q be a number field, i.e. a finite extension of Q. There exists a finite set of prime number
d(k) such that for all prime number p € N\d(k) we have for all each embedding o, : k — C,
Qynk=0Q.
Let X = (X,0x) € RCat a ringed topos, we have in C(X) the subcomplex of presheaves of abelian
group
OLx : Q% 0g = %, s.t. for X? € X andp €N,
W 10g(X°) =< dfar/ for N+ Ndfa,/ fa, fa € T(X°,0x)* >C Q5 (X?),

where Q% := DR(X)(Ox) € C(X) is the De Rham complex and I'(X°, Ox)* C I'(X°,Ox) is the
subring consisting of inversible elements for the multiplication.



Let X € Var(k). Considering its De Rham complex Q% := DR(X)(Ox), we have for j € Z its De
Rham cohomology H} (X)) := H/(X,Q%). If X € SmVar(k), then H},,(X) = HZ, (X, Q%) since
Q* € C(SmVar(k)) is A! local and admits transfert (see [5]).

Let X € Var(k). Let X = U;_, X, an open affine cover. For I C [1,...,s], we denote X := N;er X;.
We get X, € Fun(P([1,...,s]), Var(k)). Since quasi-coherent sheaves on affine noetherian schemes
are acyclic, we have for each j € Z, H,p(X) = I'(X,, Q%.).

Denote by AnSp(C) C RTop the full subcategory of analytic spaces over C, and by AnSm(C) C
AnSp(C) the full subcategory of smooth analytic spaces (i.e. complex analytic manifold). For
X € AnSp(C), we denote by X* C AnSp(C)/X the full subcategory consisting of objects U/X =
(X,h) € AnSp(C)/X such that h : U — X is an etale morphism. By the Weirstrass preparation
theorem (or the implicit function theorem if U and X are smooth), a morphism r : U — X with
U,X € AnSp(C) is etale if and only if it is an isomorphism local. Hence for X € AnSp(C), the
morphism of site 7y : X¢ — X is an isomorphism of site.

Denote by CW C Top the full subcategory of CW complexes. Denote by Diff(R) C RTop the full
subcategory of differentiable (real) manifold.

Let k C C a subfield. For X € Var(k), we denote by

an yet T e (XE)
any : X(C __> Xan et [ Xf:t /

the morphism of site given by the analytical functor.

Let k C C a subfield. For X € Var(k), we denote by
a(X) : Cxgn = Qxan
the canonical embedding in C'(X&"). It induces the embedding in C'(Xg&")

LQiWZ/C,XEn a(X

B(X) : QiWZXEn E— (CXE" QXan

For X € SmVar(k), a(X) is a quasi-isomorphism by the holomorphic Poincare lemma.

Let k C C, a subfield. For X € Var(k), we denote by

pet
QXC Jlog,0 "= L VXQXOC /omog, | g € O(ch )

neN
and
Lpet OLxgi o
Bpet(Xc,) : Zpoet = }%N (2] p L) xper —2— Qcht log —> %Vxﬂxggp/pnoc Qcht

the canonical embedding in C(X(gzt), where the last equality is standard. We get the following

commutative diagram in C' (Xgit)

T(vy,lim Q° .
(vx (_‘ ne )( cht /P"Och) OLX&”,O
[ ] [ ]
et : _— -
OLxver nggt,log Xget log,0 QXP‘”

Cp
L
X[g;t
ﬂper (Xle )

=lim Vi (Z/p D) xoer



We will write for short

o . 0O° .
OLX = OLXE;,O : QXg;t,log70 — QXéypct

the embedding in C(Xgit). We will also consider

m o (OLx @ 1) : Qypet 1oy, 0 @ Lp = Vget jog,0 O Lp e = Lo, WEA A-w0

in C(X(Cpit).

For X € Sch noetherian irreducible and d € N, we denote by Z¢(X) the group of algebraic cycles of
codimension d, which is the free abelian group generated by irreducible closed subsets of codimension
d.

— For X € Sch noetherian irreducible and d € N, we denote by Z¢(X,e) C Z%(X x O°) the
Bloch cycle complex which is the subcomplex which consists of algebraic cycles which intersect
[0* properly.

— For X € Var(k) irreducible and d,n € N, we denote by Z4(X,n)?-% c Z2(X, )%= the the
subabelian group consisting of algebraic cycles which are homologicaly trivial.

— For f: X — S a dominant morphism with S, X' € Sch noetherian irreducible and d € N, we
denote by Z4(X, )/ C Z%(X,e) the subcomplex consisting of algebraic cycles which are flat
over S.

— For f: X — S a dominant morphism with S, X € Var(k) irreducible and d,n € N we denote
by Z4(X, n)?}?;g C Z4(X,n)/?=0 the subabelian group consisting of algebraic cycles which
are flat over S and homological trivial on fibers.

We denote I" := [0,1]™ € Diff(R) (with boundary). For X € Top and R a ring, we consider its
singular cochain complex

%o (X, R) == (Z Hompop(I*, X)¥) ® R

sing

and for | € 7Z its singular cohomology H'

sing(X7 R) = H"C
functoriality the complex

sing

(X, R). In particular, we get by
O;(,Rsing € CR(X)’ (U C X) = :ing(U’ R)
We will consider the canonical embedding

C*tainzyc(X) : Chy (X, 2i7Z) — C

sing sing

(X,0),a—axl

whose image consists of cochains a € Cging(X, C) such that a(7y) € 2inZ for all v € Z Homop, (I*, X).

We get by functoriality the embedding in C(X)

C*LQiTrZ/(C,X : C;(,%Trl,sing — C;(,(C,siny
(U C X) = (Ciginzyc(U) 1 Chg (U, 2iTZ) — CF,,, (U, C))

We recall we have
— For X € Top locally contractile, e.g. X € CW, and R a ring, the inclusion in Cgr(X)
cx : Bx — Cx, Rsing 18 by definition an equivalence top local and that we get by the small

chain theorem, for all I € Z, an isomorphism H'cx : H'(X, Rx) = H. . (X, R).

ing
sing
— For X € Diff(R), the restriction map
rx : ZHomDiﬂ'(R)(H*vX)V — G (X7 R)a W= w ((b = w(¢))

sing

is a quasi-isomorphism by Whitney approximation theorem.



e Let X € AnSm(C). Let X = U!_;D; an open cover with I; ~ D(0,1)?. Since a convex open subset
of C? is biholomorphic to an open ball we have Dy := N;cD; ~ D(0,1)¢ (where d is the dimension
of a connected component of X). We get Do € Fun(P([1,...,7]), AnSm(C)).

e For k a field, we denote by Vect(k) the category of vector spaces and Vect; (k) the category of
filtered vector spaces. Let k C K a field extension of field of characteristic zero.

— For (V, F) € Vect ¢;(k), we get a filtered K vector space (V @y K, F) € Vect ¢y (K) by F/(V ®
K) := (F'V)®; K. In this case, we say that the filtration F on V ®j K is defined over k.

— For (V',F) € Vectyy(K) and h = V @ K =5 V' and isomorphism of K vector space, we
get (V, Fp) € Vectypy(k) by F/V := h=Y(FIV') NV (considering the canonical embedding
n:V—=Ve,K, nv):=vel).

— For (V, F) € Vect;(k), we have FI(V @, K)NV = FIV.

= For (V', F) € Vectyy(K) and h: V @) K =5 V' and isomorphism of K vector space, we have
h((F}V)®y K) C FIV'. Of course this inclusion is NOT an equality in general. The filtration
F on V' is NOT defined over k in general.

e We also consider

— Top, the category whose objects are couples (X,Y) with X € Top and Y C X a subset and
whose set of morphisms Hom((X',Y”), (X,Y)) consists of f : X’ — X continuous such that
Y' C YY) (le. f(Y)CY),

— RTop, the category whose objects are couples (X,Y) with X = (X,0x) € RTopand Y C X
a subset and whose set of morphisms Hom((X’,Y”), (X,Y")) consists of f : X’ — X of ringed
spaces such that Y’ C f=1(Y),

— Top? the category whose objects are couples (X, Z) with X € Top and Z C X a closed
subset and whose set of morphisms Hom((X’, Z’), (X, Z)) consists of f : X’ — X continuous
such that f~1(Z) c Z’' (ie. f(X'\Z') C X\Z), in particular we have the canonical functor
Top? — Top,, (X, Z) — (X, X\2),

— RTop? the category whose objects are couples (X,Z) with X = (X,0x) € RTop and Z C X
a closed subset and whose set of morphisms Hom((X’, Z’), (X, Z)) consists of f: X’ — X of

ringed spaces such that f~!(Z) C Z', in particular we have the canonical functor RTop? —
RTOan (Xa Z) = (XaX\Z)

A (generalized) cohomology theory is in particular a functor H* : Top, — GrAb, e.g singular
cohomology
HZ . :Top® — GrAb, (X,Y) — H% (X,Y,R).

sing sing

where R is a commutative ring. It restrict to a functor H* : Top? — GrAb, (X, Z) — H}(X) :=
H* (X, X\2).

e Denote Sch? ¢ RTop? the subcategory whose objects are couples (X, Z) with X = (X,Ox) € Sch
and Z C X a closed subset and whose set of morphisms Hom((X', Z"), (X, Z)) consists of f : X' —
X of locally ringed spaces such that f~*(Z) c Z'.

e Let k a field of characteristic zero. Denote SmVar?(k) € Var?(k) C Sch? /k the full subcategories
whose objects are (X, Z) with X € Var(k), resp. X € SmVar(k), and Z C X is a closed subset,
and whose morphisms Hom((X’, Z’) — (X, Z)) consists of f : X’ — X of schemes over k such that
4z cz.

e Let k a field of characteristic zero. Let

H* : SmVar?(k) — Gr AbCat, (X, Z) — Hy(X)



a mixed Weil cohomology theory in sense of [9] (e.g. (filtered) De Rham, etale or Betti cohomology,
Hodge or p adic realization). For X € SmVar(k) and Z C X a closed subset, we denote

Hy(X)? :=ker(Hjy(X) — H*(X)).

For X € SmVar(k) and Z € Z4(X,n)?-%, we consider the subobject H24~1(U)I%] ¢ H?*~1(U)

where j: U := (X x O")\|Z] — X x 0" is the complementary open subset, given by the pullback
by HZ(X x O")@ .= [Z] ¢ HZY(X x O™)°

0 — H2-1(X x ") = H2-=1(X) — > H2-1(U) — 2+ g24(X x ")) — >0

00— H2-Y(X x O") = B2 (X) — > H2-1(1)2) 2 g24(X x 012 = [2] — >0

of the first row exact sequence. In particular the second row is also an exact sequence.

We denote by log Sch the category of log schemes whose objects are couples (X, M) := (X, M, a)
where X = (X,0x) € Sch, M € Shv(X) is a sheaf of monoid and o : M — Ox is a morphism of
sheaves of monoid. In particular we have a canonical functor

Sch? — logSch, (X, Z) = (X, Mz), Mz := (f € Oxs.t.fix\z € Ox\z) C Ox

Let k a field of characteristic zero. We denote by log Var(k) C log Sch /k the full subcategory of log
varieties.

Let p be a prime number. For K a p adic field (i.e. a finite extension of Q,), we consider the
canonical functor of Huber (see [5])

R : Var(K) — Sch /Ok, X — R(X) := (X,0%) = X©,0% := (f € Ox, s.t.|f(z)|, < 1Vz € X(Ok))
where O C K is the ring of integers of K.

For k a field, we denote by Vect(k) = Mod(k) the category of vector spaces over k and C(k) :=
C(Vect(k)) the category of complexes of vector spaces over k, by Vect ;i (k) the category of filtered
vector spaces over k and Cy;; (k) := Cyy(Vect(k)) the category of filtered complexes of vector spaces
over k.

We assume all field have a transcendence basis at most countable, so that field of characteristic zero
admit embeddings in C and in C,, for each prime number p € N.

We have the followings facts :

e Let k a field of characteristic zero. Denote G := Gal(k/k) its absolute Galois group. Then the
functor

I'(k)(—) : PSh(k®) — Mod(k,G), F + T'(k, F)

is an equivalence of category whose inverse is
G(=) : Mod(k, G) — PSh(k®), V s G(V) := V := ((K'/k) s VAWK /R),
In particular, for each V € Mod(k,G) and j € Z, we get an isomorphism

HIG(V) : HI(G, V) = Extl,(k, V).

10



e For X € Sch, we have v5Q%.. = Q2%,.: and hence isomorphisms

H*T(X, k) - HE (X, Q%) = HE,

(X’ Q;(Pet)a

where
k:=koad(vy,vx.) (=) : Eet(Q%et) = VxaFpet (Q%per)

is the canonical map in C(X*) (which is a quasi-isomorphism),

e Let k a field of characteristic zero. The complex of presheaves
Ql'og € C(SmVar(k)), X — Q})log(X)
is A! local and admits transfers. Hence for X € SmVar(k)
H'T(X, k) : H (X, Q% 10g) = HE(X, Qcer 10g)
are isomorphisms.

e Let k£ C K a field extension.

— Let X € Var(k). We have then the canonical isomorphism in Cayi(x k), fit(Xk)
w(k/K) : (Q% @ K, Fy) = (., Fb)

given by the universal property of derivation of a ring.

— Let X € SmVar(k). Let X € PSmVar(k) a smooth compactification of X with D := X\X a
normal crossing divisor. We have then the canonical isomorphism in C s (x/k), it (X5 )

w(k/K) : (Q% (log D) @ K, Fy) = (9%, (log D), F)

given by the preceeding point. In particular, we get for all j,1 € Z,
« FLlHw(k/K) : FLH), o(X) @x K = FLH) (X k),
x Hw(k/K): H)p(X) = HLp(Xk)C.

e An affine scheme U € Sch is said to be w-contractible if any faithfully flat weakly etale map V' — U,
V' € Sch, admits a section. We will use the facts that (see [2]):

— Any scheme X € Sch admits a pro-etale cover (r; : X; — X);esr with for each i € I, X; a
w-contractile affine scheme and r; : X; — X a weakly etale map. For X € Var(k) with k a
field, we may assume I finite since the topological space X is then quasi-compact.

— If U € Sch is a w-contractible affine scheme, then for any sheaf F' € Shv(U?*"), H;.,(U, F) =0
for i # 0 since T'(U, —) is an exact functor.

Let o : k < C a subfield of finite type over Q. Consider k¥ C k C C the algebraic closure of k. Let
X € Var(k). Let p a prime number. Let o, : kK — C, an embedding. We have then for k'/k a field
extension and o’ : k' — C and o}, : k' < C, field embedding such that o, = ¢ and 0,,, = 0}, the

11



following diagram in C(N x X )

lexgn:(/p*) anx x B(X) °
al x x Zp,Xa‘:m <—— anxsx ZXU‘:“"” — allxx QXEn

ad(an},anX:(Zp/’Xcﬁ/
ad( XvVX*)(Zp,XGt) lPYX,;
P Xpt T VX xpet = VX;;*ZPcht Q(anx)
Tk
OL e
i> 0°
Xt log Xet
T(V;(vl'&n)(*) l(""k//cp(xk/)) Q(ﬂ'k’/cp(xk’))
OLXpet
Qe
Pet 1og,O Xg;f

with as above

7 e (X55)

mre(XEY)

t an t an
any : X&" o~ Xt 25 X Xg' any @ X@" ~ X4 25 X X5

We also have for X € Var(k), the canonical map

Hin(X): HY, (xan,z) 2070,

sing

Hj' (X(gnaZ;D) :_> Hj(X(EZlnvzp)

sing
(ank)”! (X))

H,(Xc, Zy) H,(X5, Zp)

for each j € Z, where H7 (an%) is an isomorphism by the comparaison theorem between etale cohomology
and Betti cohomology with torsion coefficients (see SGA4).

Let p € N a prime number. Let k& C C, a subfield. Let X € SmVar(k). Take a compactification
j: X — X with X € PSmVar(k) such that D := X\ X C X is a normal crossing divisor. Then for each
J €L,

Hpp(Xc,) = HT(Xe,, Ezar (., (log De,), Fy)) = HT(Xc,, Eper(, (log De, ), 1)) € Vectfia(Cy).

By the complex case which follows from the Hodge decomposition, we see after taking an isomorphism
o : C, = C that the spectral sequence associated to I'(Xc,, E.ar(Q%. (log Dc,), Fy)) € Cru(Cp) is Ey

Cp ]
degenerate. However there is no canonical splitting of the filtration on H7, r(Xc,) (it depend on the
choice of a basis of this C,, vector space, or on the choice of such an isomorphism o). Then the canonical
embedding in Cra(X¢")

OLx :=j5.0Lx :j*QB(CPJOg)O — QB(CP (log Dc,) — j*Q}CP
induces in cohomology

HIOLx : Hy 0y (X, Q% 1og.0) = H

pet pet

(Xc,, Q%! (log De,)) = FUH] p(Xe,) = Hpp(Xc,).
Similarly, the canonical embedding in C; (Xgit)
mo(OLx ® 1) : (., oo ® %) = Ve, (log De,) = 4.,
induces in cohomology
HY(mo (OLx ® 1)) : By (Xc,, O 100 ©Zp) =
HY

rer(Xc,, Q% (log De,) = F'Hp(Xe,) < Hpp(Xc,).

12



However HYOLy is NOT strict for the induced filtration on cohomology. Consider, for each j € Z, a
(non canonical) splitting

6;(X) : Hpp(Xe,) = @ozi<jHlop(Xc,, Q. (log De,)) = Bosi<jHpe(Xe,, ¥ (log De,))

in Vect(C,). We then have the following map in Vect(Zy)
OL% = 0;(X) " o (®o<i<; HOLT) :
. i1
Hi)et( Cp>s Qch,log,O ® Zp) = @OSISjH;laet(Xva QJXCP,log,o ® Zp)

0;(X)~!

® JHOLY? . .
—=E X @occ H (X, Q&Ci (log Dc,)) ——— Hpr(Xc,),

where the equality follows from the fact that the differential of Q% log,0 vanishes (all the logarithmic
forms are closed) so that we get a canonical splitting. Note that H/OLx is NOT equal to Ong. In fact

we have for w € H.,(Xc,, Qthl log.0 ® Zp)

m 060;(X) o HOLx(w) = HOL  (w)

where 7 : ©o<i<;H)o

(Xc,, Q. (log De,)) — H,

Lot (Xc, QJXTCl (log Dc,)) is the projection.
P

3 Integral complex and p-adic periods of a smooth algebraic
variety over a field k of finite type over Q

3.1 Complex integral periods

Let k a field of characteristic zero.
Let X € SmVar(k) a smooth variety. Let X = U{_; X; an open affine cover. We have for o : k — C
an embedding, the evaluation period embedding map which is the morphism of bi-complexes

ev(X)s : T(X,,Q%,) = ZHompig(I°, X&",)¥ ® C,
wy € DX, Q) = (ev(X)y(wy) - ) € ZHompin (I, XE})Y @ C = evf(wy)(6)) := | w))

given by integration. By taking all the affine open cover (j; : X; — X) of X, we get for o : k — C, the
evaluation period embedding map

ev(X) = hg ev(X)e: hﬂ (X, Q%,) — hﬂ ZHomDiH(R)(F,XEf’.)V ® C
It induces in cohomology, for j € Z, the evaluation period map

Hiev(X) = Hev(X)s: Hhp(X) = HT(X.,0%,) — HL,, (X&",C) = H7 (Homp;g(r) (I°, X&) @ C).

sing
which does NOT depend on the choice of the affine open cover by acyclicity of quasi-coherent sheaves on
affine noetherian schemes for the left hand side and from Mayer-Vietoris quasi-isomorphism for singular
cohomology of topological spaces and Whitney approximation theorem for differential manifolds for the
right hand side.

Remark 1. We also have for o : k — C the composition

v(X)3

e Z(X)(i)oan">~
—>ZHOmDiﬁ'(R)(H.,X€ ) ®(C )®

ev(X) (X., QX ) HomFun(A',Var(k)) (D;,etu XO)V ®C
where ¢ : I® < D}, is the embedding, which is given by integration : for wh € D(X, Q%) and ¢ €

HomFun(A’,Var(k)) (Di,eﬁ XI):
Qb[ / ¢l an*
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Let X € SmVar(k). Note that

H*RD(X¢", Ezar(2(anx))) H*RD(XE&", (X))
_ 5

H*ev(XC) : HBR(Xc)

Hpp(Xg") Ging (X" C)

sing

is the canonical isomorphism induced by the analytical functor and the quasi-isomorphism «(X) :
Cxan = Qxon in C(X{"). Hence,

Q(m X *ev
Hev(X) = Hpp(X) “550 Hpp(Xe) 25 H, (X7, C)
is injective. The elements of the image H*ev(X)(Hpg(X)) C HY,,(X&", C) are the periods of X.

Let X € SmVar(k) a smooth variety. Let X = U:_; X; an open affine cover with X; := X\D; with
D; C X smooth divisors with normal crossing. Let ¢ : £ < C an embedding and X" = U;_;ID; an
open cover with I; ~ D(0,1)%. Since a convex open subset of C? is biholomorphic to an open ball we
have Dy := NierD; =~ D(0,1)% (where d is the dimension of a connected component of X). Denote by
Jo : XJeNDe — X is the open embeddings. We then have the period morphism of tri-complexes

ev(X¢g")e.e : T(XJE N D, Q}En) — ZHomp;g (I*, X&7)Y @ C,

[N}

wh ; € N(X{ENDy,any Q) —
(evh 5(wh ) : ¢, € ZHompia(I', X8 N D) ® C v evl (wh ,)(@h ) = / o )

given by integration. We have then the factorization

j ] j j IQ(w
Hieo(X) : Hp(X) = H (X, Q%) = HI, (X, Q%) /et
j j . j ° Jooan . . an .
H]DR(X(C) = HY (X(C, QX) = Hfs,t(X(Cu Qxet) —X> H]I‘(X”C ) D., QXEn)

Hjev(X{:“‘):’. Hj

sing

(X&" NDs,C) = H? (Hompig () (I°, X, nD,)Y ®C).

where for the left hand side, the first equality follows from the fact that Q® € C(SmVar(k)) is A! local and
admits transferts, and the equality of the right hand side follows from Mayer-Vietoris quasi-isomorphism
for singular cohomology of topological spaces.

Remark 2. Let X € SmVar(k) a smooth variety. Let X = Ui_, X; an open affine cover with X; := X\D;
with D; C X smooth divisors with normal crossing. Let o : k — C an embedding and X&" = Uj_;D;
an open cover with D; ~ D(0,1). Since a conver open subset of C? is biholomorphic to an open ball we
have Dy := NierD; ~ D(0,1)¢ (where d is the dimension of a connected component of X ). Denote by
Je: Xf)("c NDe — Xf)("c the open embeddings. Then,

Je oank, = Q(je o anx,) : ['(Xe ¢, Qxe) = T(XJE ND,, Q2 En)

is a quasi-isomorphism by the Grothendieck comparaison theorem for De Rham cohomology and the
acyclicity of quasi-coherent sheaves on noetherian affine schemes.

Lemma 1. Let k C C a subfield. Let X € SmVar(k) a smooth variety. Let (r; : X; — X)i<i<s an affine
etale cover. Let X" = U_,D; an open cover with D; ~ D(0,1)%. Let
l l j
w=| > wh ;] = > [w] ;] € H'T(X{E N Da, Qe )
I,J,l,cardl+cardJ+Il=j I,J,l,cardl+cardJ+l=j
Then the following assertions are equivalent :

(i) Hiev(X)(w) € H?,

sing

(X", 2imQ),
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(ii) for all I,J,1 such that cardl + cardJ +1=j , there exist a lift
(] € HIT(XE% 1Dy, %)

of [wlU] with respect to the spectral sequence associated to the filtration on the total complex asso-
ciated to the bi-complex structure such that

H'eo(X¢&M)1, ,(la),4]) € HY

sing

(X2 N Dy, 2irQ).

Proof. Follows immediately form the fact that ev(Xg");, define by definition a morphism of spectral
sequence for the filtration given by the bi-complex structure. O

Lemma 2. Let k C C a subfield. Let m: X' — X a proper generically finite (of degree d) morphism with
X, X' ElSmVar( ). Let w € Hp,p(X). Then ev(X)(w) € HY, (X&", 2imQ) if and only if ev(X")(r*w) €
H. (X", 2imQ).

sing

Proof. Since ev(X')(m*w) = m*ev(X)(w) € H (X", C), the only if part is obvious whereas the if part

follows from the formula of 7, — dI. e 0

The main proposition of this section is the following :

Proposition 1. Let k a field of characteristic zero. Let X € SmVar(k). Let o : k — C an embedding.

Let p € N a prime number and oy, : k — Cp, an embedding. Let j € Z. Let w € HLp(X) == H/(X,Q%) =
pet(X 95 ) f ‘
w = Tg/c, (X)*w S H]OLx( pet(X(C Q;(get,log,o))
P

then Hev(X)(w) € Hsjmg(X(‘Cm, 2imQ). We recall (see section 2) the inclusion OLx : QXpe, og.0 Q;{pet
n C(X(Cpit) is the sub-complex of logarithmic forms.

Proof. Let ‘ ‘ ‘

we H o (X) = B (X, Q%) = HIT(X.,0%).
where (r; : X; = X)i<i<s is an affine etale cover. Let X&" = U]_;D; an open cover with I; ~ D(0 1)<

Denote jr; : X; NDy < X7 the open embeddings. Then by definition HYev(X)(w) = Hﬂev(X‘m)(]f o
an’, w) with
jaoank, w € HIT(XJE N Dy, Qxan).

Now, if w = H'OLx (H, (XC Qs

X2 log, »))s we have a canonical splitting

pet

w—Zw” ! Zw’] Le H] x(Xc,), whi™h e HIT "(Xe,, QXP” log.0): whi=t HJOLXM( Li=hy,

L]
P(X(Cp 3 Epet (Qxfct log,O
cp 1108

level are trivial since all the logarithmic forms are closed. Let 0 <[ < j. Since X € SmVar(k) admits a
pro-etale cover (r; : X; — X)i1<i<n with X; w-contractible (see section 2), and since Q;(pet = v Q%
AN C Cp

, F})) being E7 degenerated with a canonical splitting: the differentials at the F4

there exists an affine etale cover r = r(w=!) = (r; : X; — X)1<;<n of X (depending on w!I~!) such
that

whi = = (W}’ )] € HjOLXg:t (H'™'T(Xc, 00 . 105,0) C HT(Xe, 0, 92%, )-
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By lemma 2, we may assume, up to take a desingularization 7 : X’ — X of (X, U;(r;(X\X;))) and replace
w with 7*w, that r;(X;) = r(X;(w)) = X\D; with D; C X smooth divisors with normal crossing For
1 <1<, we get

Wil =3 dfur ) fn A Adfu ) fu € T(Xe,r, )

v

For [ =0, we get _ _
wI = [(/\])] € HJF(XCT”],OXCPJ), A € F(AX(CT”],ZP)XgetI)
P

There exists &’ C C,, containing k such that wlLJ;l e ' X 1, Qle/) for all 0 <[ < j. Take an embedding
o’ : k' = C such that oj; = 0. We then have

juoank, w=j3((mi-wi’Nocicy) = Wiy )irs € HIT(XEE N Dy, Qyan).

where for each (I, J,1) with cardl + cardJ +1 = j,
wy' = i e DX NDy, ).
We have by a standard computation, for each (I, J,1) with cardl + cardJ +1 = j,
Ho(X7eNDy, Z) =<1, Yeardl > -
On the other hand,
o Wi =G5S, dfu/ fo Ao Ndfu/ fu) € T(XEE N Dy, Oan) for 1 <1<,

. w%,JLJ = Ar is a constant by Baire theorem on X{%ND;.

Hence, for p € P([1,---,s]) with cardy = I, we get, for I = 0 HleU(X(‘Cm)I,J(w%fLJ) = 0 and, for
1<1<y,

Hl'ev(X&);, J(wlLI 7) 25,,# € 2inmZ.

where v, == v, -+ -vu,- We conclude by lemma 1. O

Let k a field of characteristic zero. Let X € SmVar(k). Let X = Uj_;X; an open affine cover with
X; := X\D; with D; C X smooth divisors with normal crossing. Let o : k — C an embedding. Let p € N
a prime number and o, : k — C, an embedding. By proposition 1, we have a commutative diagram of
graded algebras

* Hev(X) * an
HDR(X) Hsmg(X(C 7C)
C TH*C*L%”Q/C(XE")
" . N H*ev(X) N an o
H OLX( pet(X(C QX£€t710g)O))mHDR(X> Hsmg(X(C ’27’7TQ)
P

where
C™ainqc(XE") : Cong (X", 2imQ) = O (X", C)

sing sing

is the subcomplex consiting of a € Cbmg(X@", C) such that o(7) € 2iwQ for all y € C'Js»ing (X&", Q). Recall
that

H*ev(Xg) = H*RT(XE", a(X)) 0 D(XE", E,or(Qanx))) : Hipp(Xc) = HE, (X8, C)

sing
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is the canonical isomorphism induced by the analytical functor and a(X) : Cxar — Qg%m, which gives

the periods elements H*ev(X)(Hpp(X)) C HE,o(XE", C). On the other side, for 0 : C, = C an
isomorphism, the induced map

H*ev(Xc) : H*OLX(H;et(XCpa93(5;,1og,o)) = H19irq/c Hging (X¢", 2i7Q)
is NOT surjective in general since the left hand side is invariant by the action of the group Aut(C) (the
group of field automorphism of C) whereas the right hand side is not. The fact for a de Rham cohomology
class of being logarithmic is algebraic and invariant under isomorphism of (abstract) schemes.

3.2 p adic integral periods

Let k a field of finite type over Q. Denote k the algebraic closure of k and G = Gal(k/k) the absolute
Galois group of k. Let X € SmVar(k) a smooth variety. Take a compactification X € PSmVar(k) of X
such that D := X\ X C X is a normal crossing divisor, and denote j : X < X the open embedding. Let
p € N a prime number. Consider an embedding o, : k < C,. Then k C k C Cp, and k C l%,,p c C,,
where I%gp is the p-adic field which is the completion of k£ with respect the p adic norm given by o,,.

Denote G'UP = Gal((Cp/lAfUp) = Gal(@p/ffgp) the Galois group of /%gp. Recall (see section 2) that Ly, =

Cp
; pet . 15 . pet
fm o u}(Z/p"Z)XE; € Shv(Xg ") and nggt,log,o = lim o V;(ng? P € C(Xg ). We have
P P

then the commutative diagram in Cy ¢y & ( X(tcl:,pet>
. = Epet(a(X) R
]*Epet (BdT,ch ) F) . E)Pet((QXCP (10g DCp)’ Fb) ®Oxcp (OBdr,XCp Jog> F)) )
Bpet(jatypet)i=Bper(1=11); TEpet(mO(OLX®I)):—Epet((w®>\)>—>(w®>\))
’ j*Epct(Lxget)
JeEpet (@ch ) JeEpet (e 1og.0 @ Loy, Fy)

where for j' : U’ — X’ an open embedding with X’ € RTop and 7 a topology on RTop we denote for
m: j.Q — Q' with @ € PSho(U’), Q' € PSho(X') the canonical map in Co(X')

E9(m); : 5. E2(Q) — E2(7.Q) = BO(Q),

giving by induction the canonical map E.(m); : j+E(Q) — E-(Q') in Co(X’). The main results of [15]
state that

e the map in Cg,, i (Xgn’pet)

p

O‘(X) : (Bdr,X%p Jlog Df%p ) F) — (Q}{k (log ngdp)v Fb) ®OXIEU (OBdr,X%p Jlog D%p ) F)

ap P

is a filtered quasi-isomorphism, that is, the induced map in Cy, ;4 (Xg:’p )
P fil,Goy

a(X) == a(X)c, : (Bdr,ch,logDcva) — (Q}(Cp (log Dc,), Fy) ®0ch (OBdr,ch,logDvaF)
is thus a filtered quasi-isomorphism,
e the map in Dz, gy
T(ax,ax,®)(Rjxly xet) : RU(Xc,, Ly xet) @z, Barc,, F) — RF(XCP, (Bdr,ffcp,log Dcva))

is an isomorphism.
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Hence, we get the isomorphism in D¢ (Bgy, égp)
Ra(X) := RT'(Xc,, a(X)) o T(ax,ax,®)(RjLy xet) :
RT(Xc,, Zp x<t) ®z, Barc,, F) = RI‘(XCP, ( }(5; (log Dc,,), Fy) ®0ch (OBdr,ch)log De, F))
= RI(Xc,, ( X VBy) @0 Jerag(Oxc,: Fb) ©ox, (OBar xc,, F))
which gives for each n € Z a filtered isomorphism of Ggp—modules
H"Ra(X) : HY(Xc,, Zp xet) @ Bayc, — HgR(Xi%p) ®,;Up Bar,c,

so that we can recover the Hodge filtration on H}, 5 (X) by the action of G'Up. Let p € N € §(k, X) a prime
number (any but finitely many) so that k,, = Frch(W(Of%p /pOf%p)) and so that the canonical model
(X©,D°) € Sch? /Oy, of (X,;U Dy ) € PSmVarz(lAfUp) has good or semi-stable reduction modulo p.
The main result of [1] spay that the emﬁedding in C((Xiip yFalt)

koyp’ P

O‘(X) : IBEst,X log a'*Q;(f?J (log D];(T ) ®Oxo OEst,ng ,log

kgp

is a filtered quasi-isomorphism compatible with the action of the Frobenius ¢, and the monodromy N,

note that we have a commutative diagram in C;( Xg:,pet)
a(X) .
IBst,)i(gp,log OBst,ch ,Jlog ®OX QXCP (10g D(Cp) .

lc lc
a(X)

Bar, xc, tog = OBq, %, 10g ®0ox U, (log Dc,)
This gives if (X ]S) , Nu,0) is log smooth, for each j € Z, a filtered isomorphism of filtered abelian groups
op

HIiT(ax,Bst) !

HJRO((X) : Hgt (XCp7ZP) ®ZP Bst,fcgp _— ‘E[gt(()(7 N)Falt)(Bst,X%p ,log)

HjRF((XgU ,D;  ),a(X))

ko

H%JR(XE )®fc

B -
op op stk

compatible with the action of Gal(C,/ iﬂgp), of the Frobenius ¢, and the monodromy N.

Definition 1. Let k a field of finite type over Q. Denote k the algebraic closure of k and G = Gal(k/k) the
absolute Galois group of k. Let X € SmVar(k) a smooth variety. Take a compactification X € PSmVar(k)
of X such that D := X\X C X is a normal crossing divisor, and denote j : X — X the open embedding.
Let p € N a prime number. Consider an embedding o, : k — C,. Then k C kcC Cp and k C l;:gp c G,
where I%gp is the p-adic field which is the completion of k with respect the p adic norm given by o,. For
o€ Hgt(X@p,Zp), we denote

w(a) == HR(X)(a ® 1) € H},p(Xc,) @c, Borc,
and if p € N\d(k, X)
w(@) == H/Ra(X)(a @ 1) € Hp(X; )@

the associated de Rham class by the p adic periods. We recall

HRa(X) : H},(Xc,, Zy xt) @ Barc, = Hpp(Xy, ) @, Barc,

p
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is the canonical filtered isomorphism of Ggp -modules, and

H]RQ(X) : Hgt(XCp’ZP) ®ZP Bst,fcgp ; H%R(Xl%ap) ®f€ap Bst,fcgp

is the canonical filtered isomorphism compatible with the action of égp, of the Frobenius ¢, and the
monodromy N.

We have the following key propositions :

Proposition 2. Let k a field of finite type over Q. Let X € SmVar(k). Take a compactification
X € PSmVar(k) of X such that D := X\X C X is a normal crossing divisor. Let p € N € 6(k,X) a
prime number. Consider an embedding oy, : k — C,. Let j,l € Z. We have then

F'H) p(Xe,) N H,(Xc,,Zy) = H (mo (OLx ® I))(Q}imw ®Zp) C Hhp(X;, )®

o) @k, Btk

where we recall the map in Cry (Xgit)
mo(OLx ®1I)): Sccp,log,o QRZy, — QS(CP (logDc,), w @A = X-w

given in section 2. Hence for o € Hgt(X(cp,Zp) such that w(a) € FlH%)R(XCP) (see definition 1), there
exists (Ai)i<i<n € Zp and

j l
(wrii<i<n € nyet(ch,Q}Ep,log,o)

such that
. - .
w(a) = Z N - wr; € Hiet(XCp’QXTci (1OgD(Cp)) = FIHJDR(XCP)'
1<i<n
Proof. Follows from the fact that the logaritmic classes are the ones which are Frobenius invariant.
Indeed, o € H!,(Xc,,Z,) is such that w(a) € F'HY,,(Xc,) if and only if there exists an w-contractile
pro etale cover (r; : X; — X)1<i<, such that
J Q! (@] OB, - p
w(O‘) eH P(X',va X (IOngcg )®O;(o st,X; ,log) :
kop P Ip
On the other hand, the sequence

° I'(Xe,c,,mo(OLx®I))
0— F(X.y(cp, QXii,log,O ® Z;D) -

F(X.,CP,Q;(? (log ngp) ®oy0 OBSthfcc,p)
op

F(XO,CP 7(¢P71)®];:Up (C:D)

I'(Xec,, Q;{Zé (log ngp) ®0,0 OBst,X%p )
kop
is exact (by the local surjectivity of ¢, — I). Hence o € Hgt(XCp,Zp) is such that w(a) € FZH{)R(XCP)
if and only if
i o>l 0 , ¢
’LU(O() eH P(X.’CP’QX)? (log Df%p) ®OXO OBst,XiCU ,log) ’
op P

i i o>] j o>]
= H'T(Xe,mo (OLx ®1))(H'T'(Xsc,, QX%:pqlog,O ® Zyp)) = Hyper(Xc, Qx%cp,log,o @ Zp).
O

Proposition 3. Let k a field of finite type over Q. Denote k the algebraic closure of k. Denote G :=
Gal(k/k) its absolute Galois group. Let X € SmVar(k) a smooth variety. Take a compactification
X € PSmVar(k) of X such that D := X\X C X is a normal crossing divisor, and denote j : X — X the
open embedding. Let p € N a prime number. Consider an embedding o, : k — C,,. Denote k C I%gp cC,

being the p-adic competion with respect to the p adic norm induced by o},. Then égp = Gal(Cp/l;:gp) C
G := Gal(k/k).
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(i) Let o € H? +(Xc,,Zyp). Consider then its associated De Rham class (see definition 1)
w(e) := H'Ra(X)(a @ 1) € H},,(Xc,) ®c, Barc, .

Then o € HJ,(Xc,,Zy)(1)% if and only if w(a) € F'H)p(X; ) = F'Hpp(Xe,) N Hpp(X; ).
That is we have

H}\(Xc,, Zp) () @z, Qp =< F'Hpp(X; )N HY(Xe,  Zy) >0,C Hy(Xc,, Zpxt) @ Barc,,

where < — >q, denote the Q, vector space generated by (—). Note that Hgt(X@ p) and F! H%)R(X )
are canonically embedded as subabelian groups of Hgt(XCp,Zp,Xct) ® Bar.c, by (=)@ 1 and a(X) o
((—) ® 1) respectively.

(ii) Let o € H? (X3, Z,)(1). Consider, see (i),
w(@) = w(mgc, (X)) € Hpp(Xe,) @c, Barc, .

Then o« € H1, (X5, Zy)(1)C if and only if w(a) € FIH)(X) = FIH,x(Xc,) N Hhp(X). That is
we have

H,(X5, Zp) (1) ®2, Qp =< F'H}, o (X) N HL(X3, Zy) >q,C HY(Xc,, Zy xt) @ Barc,,

where < — >q, denote the Q, vector space generated by (—). Note that H,(X7,7Z,) and FIH%)R(X)
are canonically embedded as subabelian groups of Hgt(ch,Zpyxen) ®Barc, by (=) @1 and a(X) o
((—) ® 1) respectively.
Proof. (i):Follows immediately from the fact that H JRa(X) is a filtered quasi-isomorphism compatible
with the Galois action of G, by [15].
(ii):Let « € HJt(XC Z,,)¢ Take a basis ((o)1<i<t, (i) ip1<i<s) € HZ(Xc,, Zy) such that for 1 <i < ¢,
a; € H t(XC »)¢. We have

’LU(Oé) = Z Ai,w(a)w(ai) € H%)R(ch)

1<i<s

Assume by absurd that w(a) ¢ H? ,(X). There exist a finite type extenion k' /k, k' € C, (depending
on w(a)) such that w(a) € Hpp(Xy). By assumption the orbit Aut(k' /k) - w(a) C Hpr(Xy) of w(«)
under Aut(k’'/k) is non trivial (i.e. contain more then one element). Then there exist a prime number
! and an embedding o] : k' — C; such that the extension I%;i/kgl is non trivial (i.e. IAC(;{ + kg, ) where

oy = oy, and such that w(a) = 7, 3, (Xe)"w(e) ¢ H%)R(Xfc ), where mp, 5 (Xw) @ Xp = X i
] a{ ) 71 (ri a{
the projection, recall that H},,(Xw) = H},z(X) ®p k'. By injectivity of
T i, (Xwr)" Hi, g (Xp) — HjDR(Xfa,)a
i 71
the orbit Gal(/%gi/l%m) - Aw(a) C Hpgr(X;, ) of w(a) = wk,/k, (Xg)*w(e) under Gal(l%l’jl,/l%,,l/) C
7

Aut(k'/k) is non trivial (i.e. contain more then one element). By the main result of [15] (see above), we
get

HIRa(Xe,) " (Mw(a)) & (H,(X5, Z1) @2, Barc,) 7t

Consider the pairing of G modules

5(_7 _) Hpet(XCp;Bd’r‘ (C ) ®k/ Hpet (X(Cl ) Bdr (Cl) — H;)Cetl(X(Cp®k/C”]BdT,Cp ®k' Bd’r‘,(cl)
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and

a(Xe,)®a(Xe,))
o(Xc,e,00)  TpBar,xe, @ T Bar,x,, ———

w(2)
™ (%, ®ox,, OBarxc,) @r 7 (Vx, ®ox, OBar,xc,) —
QS{CP@]C/CL ®7T;OXCP ®k’7TL*OXcl OBdT»—XCP Qg OBdhXcl = DR(X)(OBancp S/ OBdT,XCZ)
. . . . . pet
is the canonical map in CG(,; <G, (ch®k’(cl) and
o T, = Tc,/c0.C (Xc,) t Xe,o,.0 = Xc,
e T = WCL/(Cp®erL (X(cl) : X(Cp@k’(cl — X(CL
are the base change maps. By the commutative diagram of GU; X GU{ modules
((—)®1)°771’c//xcp®k,xc (X7)~ ((—)®1)°WE//cp®k,cl (Xz)" .

Hl (X5, Zy) ®z, Barg,

J J
H) o (Xe,@0cs Bar, xc, ®r Bar, x, Hyo(Xp, Zt) ®z, Barc,

lHjO‘(X%@k/Cz)

H Ra(Xc,) Hg)et (ch®k,(cl , DR(X)(OBdT’XCP (% OBdT,XcL ) HI Ra(Xc))

(@Vomy, e, (Xp)” ()BVomy e, (Xiu)®
Mk,cl><xk/>*T \

j j ((5)®1)omyr ¢, (X4 ) j
H{,r(Xc,) ®c, Barc, Hpp (X)) H] p(Xc,) ®c, Barc,

Th ycpy (X )™
we have for 8, € Hl,,(Xp, Zp) @z, Barc, B € Hloy(Xp, Z1) ®z, Barc,,

a(Xe,0,0)(0(Bp, B1) = a(Xe,)(By) - a(Xe,)(Br) € B (Xe,o,,¢,, DR(X)(OBay ¢, @k OBarc,))-

Note that since WE’/(C;,@;C/CZ)(XE’) : XCp®k/CL — Xfc’ is flat ((—) ® 1) o WE’/(C;,@,C/(CZ)(XE’)* and ((—) &
1) oz /(Cp®k/<Cz)(X w)" are injective, (the morphism involved in the base change are without torsion).
Denote d = dim(X). Consider the canonical projection

7 : Xc, x X¢, = Xc,@,.c;, given by on X° C X open affine

ﬂ-((xla to axd)v ('rllv T 7$:i)) = (‘rl ®$/1, T, Td ® I:i)7
where X¢, x X¢, is endowed with the product topology. Then the commutative diagram

*

ngt(XCp(@k/C“Bdr,Cp Ok Barc,) = ngt(ch x Xc,, 7 (Bar,c, @i Barc,))
la(ch(@k/cl) W(—)O(W*G(ch)®7f*a(Xcl))l
H, ., (X¢ @, cs DR(X)(OBar x., ® OBar,x,,)) ——H ,(Xc, x X¢,, DR(X)(OBur,x., @1 OBar.x.,))

together with the p adic Poincare lemma on X¢, and the [ adic Poincare lemma on Xc,, the fact that 7*
is injective (note that the product topology is less fine then the pro-etale topology on X¢, X X¢, and
that the map Ox o ¢, = Oxc, x, Xe, is torsion free), show that a(Xc,e,,c,) is injective. Hence

a®l= 5(04, 1) = 5(1, HjRa(X(cl)_l(w(a))) S ngt(XCp®k/Cl7Bdr7Cp R Bdn@z)v
that is there exists A\, € &’ such that

a =\ H'Ra(X¢,) ™ (w(a)) = H/ Ra(Xc,) ™ (Aaw(a) € H)\(Xc,0,c.rBarc, @ Barc,)-
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Since a and w(«) are CA?% invariant, Ao, € Q,. This gives

7

_ B - .
a = H'Ro(Xc,) ™ (Naw(a)) & Hpor(Xe, 0,00, Zp @ Bare,)
Contradiction. We thus have w(a) € H%,R(X). Conversely if o ¢ H,(Xz,Z,)(1)¢, we get similarly
w(a) ¢ Hj,p(X). The result then follows from (i) and the equality F'H{, 5(X) = F'H{, 5 (Xc, )NH, r(X)
given by the filtered isomorphism in C'y;;(Xc, )

w(k/C,) : (% (log D), Fy)) @5, C, = (Q;—(CP (log Dc¢,), Fy)

which say that the Hodge filtration is defined over k: see section 2. O

Theorem 1. (i) Let k a field of finite type over Q. Denote k its algebraic closure and G = Gal(k/k)
its absolute Galois group. Let X € SmVar(k). Let o : k < C an embedding. Let p € N\d(k, X)
a prime number. Let o, 1 k — Cp, an embedding. For each j,l € Z, we get from proposition 3(1),
proposition 2, and proposition 1, a canonical injective map

HIG(X) : H(X5, Z,) () > FUHI (X8, 2imQ) ©g @y, - HUGE (X)(a) = ev(X)(w(a),

D,ev
with w(a) == H' Ra(X)(a® 1) € H}o(X) C H%)R(ch) ®c, Bsi,c, (see definition 1), and

FUHI (X", 2inQ) := HY_(X&",2irQ) N F'H), (X&) € HI (X&",C).

sing
By construction, for f : X' — X a morphism with X, X' € SmVar(k) and p € N\é(k, X, X") a

prime number, we have the commutative diagram

HIWGL (X))

)
LP,C’U

H]( Xz, Zy) (1) ——"— F'HI(X¢",2inQ) ®¢ Q; -

; ;
19 (X0 2106 — e O g ran o
et( i p)( ) ( c > “TQ) X QP

(i) Let K C C, ap-adic field such that Frac(W(Ok)) = K. Let X € SmVar(K) such that its canonical
model X© € Sch /Ok has good or semi-stable reduction modulo p. Denote G, = Gal(Q,/K) its
absolute Galois group. Let o : K — C an embedding. For each j,l € Z, we get from proposition
3(1), proposition 2, and proposition 1, a canonical injective map

HIGr (X)) : HY(Xc,,Zp) ()% — F'HY (X", 2inQ) ®g Qp, a — HISr'(X)(a) = ev(X)(w(a)),
with w(a) == H' Ra(X)(a® 1) € H}o(X) C H%)R(XCP) ®c, Bst,c, (see definition 1), and

FUHI (X¢",2inQ) == HY (XE", 2inQ) N F'HY, ,(X¢") € HY (X¢",C).
By construction, for f: X' — X a morphism with X, X’ € SmVar(K),we have the commutative
diagram

G

) HI.SP (x
HI,(Xe,, Zy) ()% — ot )

l'f*

Hgt(X{va Zp)(1)r

FUHI(X2", 2i7Q) ©g Q, .

B

HjLSqul(X/) Iag] "an .
—— = F'HI(X&, 2inQ) ®q Q)

Note that (i) implies (i).
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Proof. (i):Follows from (ii). _ _
(ii):By proposition 3(i), w(a) € FlH{)R(Xf%p) C H},p(Xc,) ®c, Bst,c,- By proposition 2,

w(o) = Z Nwri € Hhp(Xc,), (wri)i<i<r € Hiet(XCp;Q;(%i7log7O); (Ni)1<i<r € Zp.
1<i<r

Then, for each 1 < i <,

e by proposition 1, ev(X)(wr;) € HY _(X&", 2irQ),

sing
® Wr; = HjOLx(wLi) S FlH%)R(X(CP),
that is, wr; € FIH/(X&",2inQ). Hence,

ev(X)(w(a)) = Z Niev(X)(wri) € FLHI(XE", 2irQ) ®¢ Q.

O

Remark 3. Let k a field of finite type over Q. Let X € SmVar(k). Let p € N be a prime number.
Let o : k = Cp, and o : k — C be embeddings. Note that for w € HI (X, Q%..) such that ev(X)(w) €
HginngE”,2in), w is NOT logarithmic in general and v(X)(ev(X)(w)) € H.,(X;,Qp) is NOT G =
Gal(k/k) equivariant in general, where

/p*

Y(X): b7 (X¢" Q) — H.ging(XEn?QP) = Hgt(X;cman) = Hgt(XEva)-

sing
is given in section 2.

Corollary 1. (i) Let k a field of finite type over Q. Let X € PSmVar(k). The the Hodge conjecture

for X implies the Tate conjecture for X. In particular we get Tate conjecture for divisors of X.

(i) Let K a p-adic field. Let X € PSmVar(K). The the Hodge conjecture for X implies the Tate
conjecture for X. In particular we get Tate conjecture for divisors of X.

(iii) Letk a finite field. Let X € PSmVar(k). The the Hodge conjecture for X implies the Tate conjecture
for X. In particular we get Tate conjecture for divisors of X.

Proof. (i):Follows from theorem 1(i) : for X € PSmVar(k) and Z € Z4(X,n)?=°, we get H2?~".54 (X)([Z]) =

p,ev

Z], hence the Hodge conjecture for X implies the Tate conjecture for X since H?¥~",5 4 (X) is injective.
g ] ] p,ev y

Since we have by the exponential sequence Hodge conjecture for divisors, we get Tate conjecture for
divisors of X.

(ii):As for (i) it follows from theorem 1(ii).

(iil):Follows from (ii) by base change of etale cohomology with respect to proper morphisms. O

4 The complex and etale Abel Jacobi maps and normal function

4.1 The complex Abel Jacobi map for higher Chow group and complex nor-
mal functions

Let k a field of finite type over Q. Consider an embedding o : k < C. Then k C k C C, where k is the
algebraic closure of k. We have then the quasi-isomorphism a(X) : Cxgr < Q%an In C(Xgm).
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e For X € SmVar(k), we consider
(Hhp(X),F), H (X&",Z), H (X)) € M HMj, g (k) C Vectyiu(k) x; Ab
where F' is the Hodge filtration on H%)R(X) ®y, C and
HIRD(XE", a(X)) : HI (XE",C) = H, o (X) @ C

Recall the geometric mixed Hodge structures (see [5]) are mixed Hodge structure by the Hodge
decomposition theorem on smooth proper complex varieties.

e For f: X — S a morphism with S, X € SmVar(k), we consider
(H'Rf.rag(Ox, Fy), H Rf,Zxan, H Rf. (X)) € MHMp gin(S) C PShp1,0)i(S) X1 Prir,e(SE")
where

H'Rf.a(X) : HRf,Cxan = DR(S)(0fiH’Rf.raqg(Ox, Fp) @ C = H? / Ox ®;, C)
;

Recall the geometric mixed Hodge modules (see [5]) are mixed Hodge modules by a theorem of
Saito for proper morphisms of smooth complex varieties.

Let X € SmVar(k). We have for j,d € N, the generalized Jacobian

JpH(X) = HI(Xg",C)/(F'H! (X&",C) @ HY (X¢",Z))

g

where F is given the Hodge filtration on H? (X) ®; C and
HIRD(XE", (X)) : H (X&",C) = HI 1 (X) @y C.
If X € PSmVar(k) and 2d > n, J»4(X) is a complex torus since
(Hp(X), F), HI (X", Z), HIRD(XE", (X)) € HMj (k) C MHMy g (k)
is a pure Hodge structure. For X € PSmVar(k), we have a canonical isomorphism of abelian groups
1K) 2 JPUX) S Bty o (29 (d), (yp(X), Y (XE", Z), HRT(XE", o(X)))).

Definition 2. Let X € SmVar(k) irreducible. Let X € PSmVar(k) a compactification of X with D :=
X\X C X a normal crossing divisor. The map of complezes of abelian groups (see [4])

Rx : 24X, ) = CP(X&", D&), Z — Rx = (Tz,Qz, Rz)

where C?(X“",Dg") 1s the Deligne homology complex induces the complex Abel Jacobi map for higher
Chow groups

AJ (X)) : 24X, n)050 — Ja-t=nd(X) 7 AJ,(X)(Z) := D"Y(R)),

hom

Ry = Ry — Uy + Ty, ; with 0Ty = Ty, 0y = Qz

where -
D CP(Xg") - CP(Xe", DY)

is the Poincare dual for Deligne homology.
Theorem 2. Let k C C a subfield. Let X € PSmVar(k).
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(i) For Z € Z4X,n)9=° we have

hom?

AJo(X)(Z) = I24(X)7H0 — (HER ' ™(X), HE, '~ (XE", Z), H* 77" RD(XE", a( X))

sing
(3*55%,0)
(Hp (X x O\ 2)), HZL (X x O™\ 2))&", Z), H** 7" RT((X x O™)\[Z)E", a(X x O))17)
(8,0,0)
RN
(Hl (X x O"), H3E, 7/ (X x O™E, Z), RT 7/ (X x O™")E", a(X x O™)# = 25" (n — d) = 0)

where j : (X x O")\|Z] — X x O" is the open embedding and
HEhy 121 (X < OMZ € HE (X < O7), HEL (X x OM\|Z)P) € HEG (X % 0\ 2).
are the subobjects given by the pullback of the class of Z (see section 2).
(it) Let Z € Z4X,n)9=0. Then AJ,(X)(Z) = 0 if and only if there exist w € Hay (X x O™)\|Z])1]

such that e
—w e FUHEE (X x OM\|Z]),
~ eo(X x D"\ |Z])(w) € BES((X x O\ 2], Z(2im))
— Jw # 0.
Proof. (i):See [6].
(ii):Follows from (i) O

Let f : X — S a morphism with S, X € SmVar(k). We have for j,d € N such that HRf,Cxan is

a local system and FdeRf*Hdg(OX, Fy) Cc HI ff (Ox) are locally free sub Og modules, the generalized
relative intermediate Jacobian '

JPX/8) = (H'Rf,Cxan ® Ogan)/(F*(HIRf.Cxan @ Ogan) & HI Rf.Zxan)

where F is given by the Hodge filtration on H’ ff (Ox) and

H'Rf.a(X): HRf,Cxen — DR(S)(Hj/f(OX)).

A generalized normal function is then a section v € I'(S&", J24(X/S)) which is horizontal (i.e. Vv = 0).
For s € S, we get immediately that i¥™°4J74(X/S) = JJ4(X,). In particular we get for f : X — S a
smooth projective morphism with S, X € SmVar(k) and j,d € N, the relative intermediate Jacobian

JPUX/S) = (H'Rf.Cxan ® Ogan)/(F*(HIRf.Cxan @ Ogan) & H Rf.Zxan)

where F is given by the Hodge filtration on H’ ff(OX) = Hij*QB(/S and H'Rf.a(X). A normal

function is then a section v € I'(S&", J2¢(X/S)) which is horizontal. For f : X — S a smooth projective
morphism with S, X € SmVar(k), we have a canonical isomorphism of abelian groups

NX/S) : JEUX/S) = Bxcthyparcs) (Za 2 (d), (H Rf.rrag(Ox, Fy), HI Rf.Zxgn, H Rf.0(X))).

Definition-Proposition 1. Let f : X — S a morphism with S, X € SmVar(k). Let j : S° <= S an
open subset such that for all j,d € Z, j*Hij*(CXEn is a local system and j*F HIRf.pa,(Ox, Fy) C
§*HI ff(OX) is a locally free sub Og module. Let o : k — C an embedding. Let d,n € N. We have then,
denoting X° := X xg S° and using definition 2, the map

ATo(X°/8°) : Z4(X,m) oy = T(SE™, T3 14X /8%) CT(SE™, @acspomisn ot " (X)),

o’

Z = AJ,(X°)8)(Z) = vz = ((s € S2) — (AJ (X)(Zs) € J2 " 14(X,)))
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where Z4(X, n);,?;? C Z4X,n)H9=Y denote the sub-abelian group consisting of algebraic cycles Z with
Zs =17 € Z4Xs,n)720, and o’ : k(s) = C is the embedding given by s extending o : k — C, denoting

hom’

again s := wk/C(S)(s) € S, my)c(S) : Sc — S being the projection.
Proof. Standard : to show that
vz = (s € Sg) = AJo(X,)(Zs) € T(S2", Byesponisazt " H(Xy))

is holomorphic and horizontal we consider a compactification f:X — Sof fwith X € SmVar(k) and use
trivializations of f : (X", (X\X)¢*") — S¢*" which gives trivialization of the local system j* R f.Zgan
(see [4] for example). O

Corollary 2. Let f : X — S a smooth projective morphism with S, X € SmVar(k). Let d,n € N. For
7 € 24X, n)f’}?;f, we have
Al (X/8)(Z) = I24X/S) (0 = (H** " "Rfinag(Ox, Fy), H** """ Rf.Zxan, H** """ Rf.a(X))

(G*.5%,0) ~ _ _ )
L (HPR(F 0 §)sniag(Oxxmmn 21 Fo) H2X P R(f 0 ) Z(x xmmn | z))en

HYLR(f o j)aa(X x O)\|2]) 17 222

(H*Rfurag RT3 (Ox xn, Fo), (H* Rf. R\ 2 Zx ximyan ), RET 710X x O = 2% (n — d) — 0)

where j : (X x O")\|Z| — X x O" is the open embedding and

(H*'Rf *HngPZ(\igZ?iqmn)[Z] C H*Rf *HngFZ(Tngiqu

(H*R(f 0 j)enagZ{x%mmp 2" € HR(f 0 )erag{x Smmy\ 2|
are the subobjects given by the pullback of the class of Z.

Proof. Follows from theorem 2 by definition of the Abel Jacobi map and by the base change for mixed
hodge modules. O

We have the following main result of [3] :

Theorem 3. Let f: X — S a smooth projective morphism with S, X € SmVar(k). Let d,n € N. Let
ok — C an embedding. For Z € Z4(X, n)Jf"’,?;?, the zero locus V(vz) C Sc of

pnz = AJ.(X/S)(Z) € T(S¢", J24=1=md(X/S))

is an algebraic subvariety.

Proof. See [3]: if S € PSmVar(k) is a compactification of S with S\S = U;D; C S a normal crossing
divisor, there exist an analytic subset ¥(rz) C Sc such that V(vz) = L(vz)NSc. By GAGA X(vz) C Sc
is algebraic subvariety. Hence V(vz) C Sc is an algebraic subvariety. O

4.2 The etale Abel Jacobi map for higher Chow group and etale normal
functions

Let k a field of finite type over Q. Let k the algebraic closure of k and denote by G = Gal(k/k) its galois
group. Let p € N a prime integer.

Definition 3. Let X € SmVar(k) irreducible. Let X € PSmVar(k) a compactification of X with D :=
X\X C X a normal crossing divisor. Denote G = Gal(k/k) the absolute galois group. The cycle class
map

R s 20X )0 5 B (XD 2) > HE(X,D 2y,
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to continuous etale cohomology induces the etale Abel Jacobi map for higher Chow groups
AJet,p(X) Zd(X n)hom - EXtG(kv Heztdilin(Xfcv DEvzp))v
Z v Aderp(X)(Z) = L'RYV(Z) [ L*RE7 (2),

where L is the filtration given by the Leray spectral sequence of the map of sites ax :: X — Spec(k).

Theorem 4. Let X € PSmVar(k). Denote G = Gal(k/k) the absolute galois group.
(i) For Z € Z4X,n)?>

9=0 " we have

Aderp(X)(2) = (0= Hftd*l*n(Xz;,Z ) £ HEH((X % O\ |25 Z) )
it Hig (X x O");, Zy )7 =k(n—d) —0)
with j : (X x O")\|Z| — X x O" the open embedding, and
H|Z\ (X x O, 2,)P) H\z| et (X x O")g, Zy),
HE (X x O\ 205, Zp) ) € HETH (X x O"\IZ D, Zy)
are the subobjects given by the pullback by the class of Z (see section 2).
(ii) Let Z € Z4X,n)9=0. Then AJe,(X)(Z) = 0 if and only if there exist
a € Hy (X x O\ Z), Zp)'?)
such that o € HZH(((X x O")\|Z|)z, Zp)C and da # 0.

Proof. (i):See [14].
(ii): Follows from (i). O

Definition 4. Let f: X — S a morphism with S; X € SmVar(k). Let j : S° < S an open subset such
that for all j € Z, j*Hij*ZnXE is a local system. Let d,n € N. We have then, denoting X° := X xgS5°
and using definition 3, the map
o o ,0= o . - —n— ~
Aletp(X?/5°) - Z4X, n);:hom? —I(s s Dsesy, s EXtéal(E/k(s))(k7H62td 1(Xs,kvzp)))7
Z AJet7p(XO/SO)(Z) = y;t’p =
(5 € Soy) = (et (X)(Zs) € Extly i oy (Bs HA" (X, 1.2,)))
where Z4(X, n)?’,?;g c 24X, n)f’azo denote the subabelian group consisting of algebraic cycles Z with
Zs=1i*7 € ZYXg,n)hom. Recall that ig: {s} — Sy C S is a closed Zariski point of S.
We now localize, for each prime number [ and each embedding o; : k < C; the definition given above.

Definition 5. Let X € SmVar(k) irreducible. Let X € PSmVar(k) a compactification of X with D :=
X\X C X a normal crossing divisor. Let o : k — C; an embedding. Then k C k C C;, where k is
the algebraic closure of k and k C /%gl C C; where kgl is the completion of k with respect to o;. Denote
Gy, = Gal(Ciky,). The cycle class map

RGP 24X, n)o= Hid(fé\) et(xkvl,Dkvl,Zp) — Hggfn(X@dl,Dkdl,Z,,),

to continuous etale cohomology induces the etale Abel Jacobi map for higher Chow groups

Adetp.o(X) : 29X, n)iom = Bxtg (Ci, HE' ™" (Xey, Deyy Zp)),

hom

Z = Adetpay (X)(Z) = L'RS7%, (2)/ PR, (2),
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where L is the filtration given by the Leray spectral sequence of the map of sites ax :: th — Spec(l;:gl)d.
I

We have then the commutative diagram

EXté(Ig5 Heztdilin(leca DE,ZP))

Z4(X,n)9=0 Ext! (ad(my Mg, ) (D)ad(my iy, ()
Adet p.oy (X)

Eth"L ((Cla He2tdilin(X(Cl ) D(Cl ) ZP)) = EXtévl (];7 HSiEdilin(XEv ngu Zp))

where the right column arrow is given by the restriction T /by, - G, — G.
Il

Theorem 5. Let X € PSmVar(k). Let o, : k — C; an embedding and k C l%al C C; the completion of k
with respect to oj.

(i) For Z € Z4X,n)9=° we have

hom~
Adetpo(X)(Z) = (0 — HE 1" (Xe,, Zp) * HEH (X x O"\|Z))e,, Zp) P
% HE (X < T, 2)%) = Cu(n - d) = 0)
with j : X x O"\|Z| — X the open embedding and
H\szet((X x Dn)CHZ;D)[Z] - H|2Zd\,et((X x Dn)czvzp)v
Hig) (X x O"\IZDe,, Zp) ) € HE (X x O\ Z))eys Zy),
are the subobjects given by the pullback by the class of Z (see section 2).
(ii) Let Z € Z4UX,n)9=0. Then AJeypo (X)(Z) = 0 if and only if there exist
a € Hi (X x O"\|Z])e,. Zy)?)
such that da # 0 and o € H2H(((X x D")\|Z|)CL,ZP)GL’Z.
Proof. Similar to the proof of theorem 4. O

Definition 6. Let f : X — S a morphism with S, X € SmVar(k). Let j : S° < S an open subset such
that for all j € Z, j*l‘Iij*Z@XE is a local system. Let d,n € N. Let o, : k — C; an embedding and
k C l;:gl C C; the completion of k with respect to o;. Denoting X° := X xg S°, we consider

AJet,p,GL (XO/SO) : Zd(X7 n);)haoino — F(Soa EBseSE’o)iS* Eth(Gal((Cl/]%O'l (8))7 Hthd*nfl(Xs)]—“ Zp)))7
Z 0 Adotpo(X°)SONZ) 1= vif D o=

((S € SE)O)) = (AJet,;Dycn (Xs)(Zs) € EXtéal(Cl/fc(,l (5))(%7 Hgginil(Xs,Eva))))

where Z4(X, n)?’,?;g C Z4X,n)H9=0 denote the subabelian group consisting of algebraic cycles Z with
Zs:=1i*7Z € Z4Xs,n)hom. Recall that is: {s} — Sy C S is a closed Zariski point of S.
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5 The vanishing of the etale Abel Jacobi map implies the van-
ishing of the complex Abel Jacobi map

The p adic Hodge theory for open varieties implies the following main theorem :

Theorem 6. Let k a field of finite type over Q. Denote k the algebraic closure of k and G = Gal(k/k)
its absolute Galois group. Let X € PSmVar(k). Consider an embedding o : k — C. Let p € N\d(k, X)
be a prime number (any by finitely many). Let op : k <—> C, be an embedding. Denote /Acgp C C, the
completion of k with respect to o,. Let Z € Z4X,n)?~ Conszder the exact sequences

hom

o 0 HE (X, Z) Do HETH((X X DN 2D)5, Z) S HE Y20 (X x O, Zp)" — 0

o 0= HEL (X)) Lo HESH (X < O\ Z]) & HE (X x 070 =0
where j: (X x O")\|Z| — X x O" is the open embedding. Consider the following assertions :
(i) AJup(X)(Z) = 0 € ExtC (F, HE1="(X, Z,)(d — ),
(i)’ there exist a € H2H(X x O"N\|Z)i, Zp)(d)Z) such that a € H2H(((X x O")\|Z)k, Zp)(d)
and 0o # 0,
(i) Adetpo,(X)(Z)=0¢€ Extf% (Cp, HZ ' ""(Xc,, Zy)(d — n)), obviously (i) implies (ii),
(i)’ there exist a € H2~ (X xO™\|Z))c,, Zp)(d)14) such that o € H2A~ (X xO™M\| Z|)c, » Zp)(d)Fer
and da # 0, obviously (i)’ implies (ii)’,
(iii) there exist w € Ham (X x O™NIZDy, ) such that w € FTHAEZ (X % D")\|Z|)fcap),

w € H* L OLxxom (Hp (X x O")\[Z])e,, 2 (xXx 02t tog,0))

and Ow # 0,
(iv) there evist w € Hpm ' (X x O"\|Z|)c)?) such that w € FIHZS (X x O")\|Z])e),

H*ev((X x O"\|Z])(w) € H3 (X x O"\|Z])E", 2inQ),

sing

and Ow # 0,
(i)’ there exist an integer m € N such that m - AJ,(X)(Z) = 0 € J2-1-md(X),

where the inclusion OLx : Q° 0= QXpet of C(Xpet) is the subcomplex of logarithmic forms. Then

Xget log
(i) is equivalent to (i), (ii) is equwalent to (u) (i)’ implies (iii), (iii) implies (i), (iv) is equivalent to
(i)’. Hence (i) implies (iv)’.

Proof. (i) is equivalent to (i)’: see theorem 4(ii),
(ii) is equivalent to (ii)’: see theorem 5(ii),
(ii)’ implies (iii):By proposition 2 and proposition 3(i), we have :
H2d_l_n(X([jp, Zp)(d _ n)égp _ FdHQd—l—n(X ) H2d717n(X(Cp7 Zp)
— HHIOL (B (X, 055 0 0 2)
and
H* 7N (X x O"\|Z))c,, Zp)(d —n)“r = FIH* (X x O"\|Z|)e,) N HZ' (X x O"|Z])c,, Zy)

B _n n .>d
= sz 1OL (H;%Zt 1= ((X x O \|Z|) X><D" |Z\)”et log,O ®Zp))-
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We consider then a basis

(a1, s as) € H* 17" (Xe,, Z,)(d = n) O,
with w(an), -, w(ay) € H* ' "OLx (Hpd ' (Xe,, Q50 o)-

pet Xg:t,log,o
By assumption on «, it extend to a basis
(a1, s, asp1) € HXH((X x O\ Z))e,, Zp) 2 (d) G
with w(ar), -+, w(asyr) € H** 7 TOLx e (H2H(((X x O™\ Z])e,, Q02 ).

pet (XXD”)g;t,log,O

We then take w = w(asy1).
(ii) implies (iii):follows from proposition 1 with w := 7, /c((X x O")\|Z|)*w,
(iil) is equivalent to (iii)’ : see theorem 2(ii). O

It implies the following :

Corollary 3. (i) Letk a field of finite type over Q. Denote k the algebraic closure of k. Let f : X — S
a smooth_projective morphism with S, X € SmVar(k). Consider an embedding o : k — C. Then

we have k C C the canonical algebraic closure of k inside C. Let p € N a prime number. Then for

Z e Z4X, n);’,?ojg, we have

‘/tors(V?)p)(C C ‘/tors(VZ) C S(C

where
— V(vz) C Viers(vz) C Sc is the zero locus, resp. torsion locus, of the complex normal function
vz = AJ,(X/S)(Z) € T(Sg", J2~1 (X /S))

associated to Z (see proposition-definition 1),

— V(W5"P) C Viers(vy?) C S is the zero locus, resp. torsion locus of the etale normal function
vy P € T(S, sesiybor Extlt sy (b Hot "1 (X 55 Zp)) (d — 1))
associated to Z (see definition 4) and
V(g P)e = mye(S) (Vg ™), Viers(vy ")e = miye(S) ™ (Viors (v ™))
where we recall Ty, /c(S) : Sc — S is the projection.

(ii) Let o : k < C a subfield which is of finite type over Q. Denote k C C the algebraic closure of k.
Let f : X — S a smooth projective morphism with S, X € SmVar(k). Then for Z € Z%(X, n)Jf"ha;?,
the zero locus V(vz) C Sc of the complex normal function

vz = AJ,(X/8)(Z) € T(Sg", I3~ 17"4(X/S))
associated to Z is defined over k if V(v ) # 0.

Proof. (i):Follows immediately from theorem 6 since for s € S, k(s) is of finite type over Q and for
s' € m,yc(S) " (s) denoting o’ : k(s) < C the embedding given by ', we have by definition

o vy(s') = AT, (X/S)(Z)(s) == AJy (X,)(Z5) € T (Xy).
o UP(s) =1 Adet p(X/S)(Z)(5) i= Adet p(Xs)(Zs) € Extéal(,;/k(s))(/%, Heztdinil(Xs,EaZp)(d —n)).
(if): Since V(vF) C S contain a k point, V(vz) C Sc contain a k point by (i). Hence by the work of

[17] or [8], V(vz) C Sc is defined over k. O
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6 Algebraicity of the zero locus of etale normal functions and
the locus of Hodge Tate classes

Let k a field of finite type over Q. Let f : X — S a smooth proper morphism with S, X € SmVar(k)

connected. Let p a prime number. Let Z € Z4(X, n)?;g’f. By the definition, we have

et,p et,p
V(v ") C Mien,iprime MNovik—Cy V(vz,) C So

and
t, t,
‘/tors(Vz p) C mleN,lprime ma’l:k<—>(Cl -‘/tors(V;7£) C S(O)

In this section, we investigate the algebraicity of Vig,s (U?’p) C S and of V;Sors(yzt)fl) cS,o0:k—C.

Since Z is defined over k, we expect that the inclusion Vio.s(v5?) C V(l/;fl) is an equality for all primes
leN.

Remark 4. Let k a field of finite type over Q. Let f : X — S a smooth proper morphism with
S,X € SmVar(k) connected. Let p a prime number. Let Z € Z4(X, n)gozif We can show, using
[13], that we have in fact

‘/tors(V?ﬁD) = ﬁleN,lpTime ma’l:k<—>(Cl -‘/tors(ygifl) - S(O)
We don’t need this result so we don’t give the details.

Let k a field of finite type over Q. Let p be a prime number. Let o, : k — C, be an embedding. We
have then l%gp the completion of k with respect to o}, and we denote O;  C IACUP its ring of integers. We
p

then consider the canonical functor of Huber (see section 2)
R : Var(ko,) — HubSp(ko,, O ) — Sch /O, X — R(X) = X°

which associated to a variety over a p adic field its canonical integral model. Let f : X — S a smooth
projective morphism with S, X € SmVar(k). Let Z C X a closed subset and j : U = X\Z — X the
open complementary subset. We have then f := f,;dp (X, Z)f%p — S’f%p the morphism in SmVar? (/%gp)
induced by the scalar extension functor and

fe = R(f;, ) (X, A

kop

its canonical integral model in Sch? / Oy, to which we denote

f=1rf°: (Xgp,NU,O) = (X7 ,(Mz,No)) - (Sﬁp,No)

P

the corresponding morphism in logSch, where for K a p adic field and Y € Sch /Ok, (Y, No) := (Y, My,)
with k = Ok /() the residual field. We have then the morphisms of sites

vx.n (X2 Nuo)™ = (X2, Nuo)*™, uxn : (Xe,, Mz, )™ = (X7 ,Nvo
ap TP TP

)

)Falt

where (XI? , Ny o)Ft denote the Falting site, and for (Y, N) € logSch, (Y, N)kt C logSch /(Y, N) is
op

the small Kummer etale site. If (XI? , Nu,0) is log smooth, we consider an hypercover
op
ae : (X2, Nuo) = (X, Nuo)
Ip op

in Fun(A,logSch) by small log schemes in sense of [1]. The main result of [1] say that
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o if (X;9 , Nu.o) is log smooth, the embedding in C((Xg yFalt)
Up o

P

a(U) : (Bst,X%p , NU)(Q) > a.*DR(XlS,:/O’%Up)(OBSt’X’:o 7NU,(9)

is a filtered quasi-isomorphism compatible with the action of Gal(C,, l%gp), the Frobenius ¢, and
the monodromy N, note that we have a commutative diagram in Cy (X¢) ™" )

a(U) .
IBgsiﬁ,ch Jog — OBSLX@p Jlog Rox QXCp (1Og D(Cp)

Lk

) .
Bar, xc, log OBur,xc, los ®0x %, (log De,)

see section 3,

o if f: (Xli ,Nvo)— (S]?g , No) is log smooth, the morphism in Dfil((Slfi yFralty

P

T(f,1,®)(—)oad(uX n,Rux,n,«)(=)

T(f,Bst) : Rf (Bst)x%p ,Nu.o) Rf*Zp(XCp,MZCP)ket ®z, Bst,S,%Up

ad(j 7Rj*)(Zp,(ch Mz yet)

R(f oj)*Zp,UE; ®z, Bst,S,;gp

is an isomorphism, where the last map is an isomorphim by [12] theorem 7.4.

This gives if (X l? , Nu,0) is log smooth, for each j € Z, a filtered isomorphism of filtered abelian groups

HIT(ax Bst)

. . -1 .
HJRa(U) : Hét(Ucp,Zp) ®z, Bst)f%p Hgt((X, N)Falt)(BSth;;c,p ,NU,(’))

HjRF((Xlip \Nu,0),a(U))

Hpp(Ur, ) @4, Bak,,

compatible with the action of Gal(C,/ I%gp), of the Frobenius ¢, and the monodromy N. More generally,
this gives if l%,,p (s) is unramified for all s € S;  and if f : (Xl? ,Nvo)— (S’l? ,No) is log smooth, an
isomorphism in Shvsi,.q ¢, ~(S; ) ’ ’
op
j i HIT(fBae) "
HI f.a(U) s RO Zy pee @2, Bas,, ooy

HIRf.a(U)
_

Rf.(Bst,x;, ,Nv.o)

OBSt,S)}d
P

HY /j*Hdg(OUfc ) ®os.

f v hop
that is a filtered isomorphism compatible with the action of G = Gal(C,/ l%,,p), of the Frobenius ¢, and
the monodromy N, writing for short again f = f o j.

Definition 7. Let k a field of finite type over Q. Let f : X — S a smooth proper morphism with
S, X € SmVar(k). Let p a prime number. Let Z € Z(X, n)jﬁ’azo Denote U := (X x O")\|Z|. We have

hom *
then the following exact sequence in Vectp i (S) (of filtered vector bundle with integrable connexion)

0— B 7"(X/8) = H?> 1" /

(Ox, By) L B34 (U)5) ) = (H2d_1/j*Hdg(0Uan))[Z]
f f

o
= B 7(X/8)7 = (1 /j I7/(Oxxan, )4 = 0.
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Recall (see section 2) that (X x 0", M|z|) € logVar(k) denote log structure associated to (X xO",|Z]) €
SmVar®(k). There exist a finite set of prime numbers §(S) such that for all prime p € N\§(S), all
embedding op : k — Cp, and all s € S, l;:gp (s) is unramified over Qp, where l;:gp C C, the p adic
completion of k with respect to o,. Let p € N\6(S) a prime number and oy : k — C, be an embedding
and consider l%,,p C C, the p adic completion of k with respect to op.

e Take, using [10] theorem 8.2 (after considering an integral model (X, Z)® € Sch® /R over R C k
of finite type over Z with function field k), for p € N\6°(X/S), where 6°(X/S) is a finite set,
an alteration 7° : (X x O")° — X x 0", that is a generically finite morphism such that ((X x
an)o, wo’_1(|Z|))g is semi-stable pair, that is 7%~ 1(|Z]) C ((X xO")° is a normal crossing divisor
and ((X xO")0, w07_1(|Z|))g )¢ has semi-stable reduction where t € Spec(Oy,_ ) is the closed point.
Then there exists a closed subset A C S such that for all s € S° := S\ A, ((XXD")O,WO’_1(|Z|))EO .\
is a semi-stable pair. ’

e Take using [10] theorem 8.2, (after considering an integral model (Xa, Za)® € Sch? /R over R C k
of finite type over Z with function field k), for p € N\6'(X/S), where 6*(X/S) is a finite set, an
alteration ™ : (Xa x O™t — Xa x O such that ((Xa x O")!, |ZA|)]%O is a semi-stable pair. Then
there exists a closed subset A% C A such that for all s € ST := A\A?, ((Xa x O")1, |Z|A)g ,isa

semi-stable pair.

e (GGo on by induction.

We obtain by the above finite induction, for p € N\d(S, X/S), with 6(S,X/S) := 6(S) U (Uaerd*(X/5S)),
a stratification S = UaeaS®, A being a finite set, by locally closed subset S* C S, and alterations (i.e.
generically finite morphisms) 7 : (Xge x 0")* — Xga x O" such that

fom®: (Xga X Dn)a’O,NUQ,O) - (SEUP,NO)

ko,

is log smooth, that is for all s € S, ((Xga x O™)%, 71'0"71(|Z5a|))f€0 , s a semi-stable pair. We then set

op>

T:= PS((('—'aeA(E%dﬁl(UEUP/SE%) ®0sa  OBst,se )e )

kap

NFYESHU/S) N (ERSH(U/S)P)N\E (X xO")/8)) C S

and
Tr, == ps;, (Uaea(BBR (U, /87 ) @05, OBusy, )*7™)0
FdE%dgl(U;;dp/S;;ap) N E%)dgl(Uf%p/Skvp)[z])\EDR((X xO"), /83, )) € Si,
where

o U =141 Uga) = (Xgo x O\ 7% 1(|Zga]),
B3N (U*/8%) i= H* ' Rf.gag(Ove, Fy) € Vect 1(S%),

@p s the Frobenius operator, N is the monodromy operator,

E%dgl(USa,knp/Sgap) C E%dR—l(Ugw/va )

ko,

T/ (S Bt (U*/S*) E]%dgl(Ug‘ /5% ) is the canonical subset of closed points,
p op op

ps: ER-1(U/S) — S and ps; EDR(UI%U,) /S; ) — Sf%p are the projections.

p
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Lemma 3. Let G be a group. Consider a commutative diagram of G modules

0 W 1% K 0
0 i v 2K 0

whose rows are exact sequence and 7 : V. — V' is injective. Let « € V.. Then o € VE and da # 0 if
and only if ™*a € V' & and 0'n*a # 0.

Proof. Follows from the fact that < a > define a splitting Wd < a >C V of G modules. O

Theorem 7. Let k a field of finite type over Q. Let f : X — S a smooth proper morphism with
S, X € SmVar(k) connected. Let p € N\6(S,X/S) a be prime number, where 6(S,X/S) is the finite set
giwven in definition 7. Let o) : k — C, be an embedding. Consider k,, C C,, the p adic completion of k

with respect to o,. Let Z € Zd(X, n)f):O,f

hom *

(i) We have
Wors(ugt’p) =TnN S(o) c S,

where T C S is given in definition 7.

(i1) For each embedding oy, : k — C,, we have

et,p _
VtOTS(VZ,ap)I%(,p = TUp n S(O),fc(,p C Sfcdpv

where Tgp C 5j,,  is gwen in definition 7, and for V-.C S a subset, Vi, :=m ;. (S)~X(V), where
op op op
Ty i, (8) 185, — S being the projection.

Proof. Let o, : k — C, be an embedding. For each o € A, by the semi-stable comparaison theorem for
o= for®: ((Xgo x D")Z;O,N,?a) — (sg;O,NO)

([1]) which is log smooth, we have the isomorphism in Sthu,G,abp,N(S,‘i‘%)

ijfoz(Ua) CRI *aZp)Ug,et &z, Bst,Sg‘ = Hj/ j*Hdg(OUg‘ ,Fb) ®Osic OBst,Sg , (1)
P op o op Tp i
recall that since p € N\d(.5), l%gp(s) is unramified for all s € S; .
_ op
(i): Let s € S Denote G := Gal(k/k(s)).
e The map 7% : (X; x O")* — X, x 0" is generically finite since 7 : (X x O™ — X x O" is
generically finite and f is flat. Thus by lemma 3 and theorem 4, v (s) := AJ*?(X,)(Zs) = 0 if

and only if there exists
a € HA N (Usa 5, 2,) %)
such that 7%~ (a) € H21(U®,Z,)(d) and o7~ () # 0.

Xl

e On the other hand by (1) and proposition 3(ii), o/ € H2~1(U®,7Z,)(d)C if and only if (see definition
1) w(e )y € FPHEZH(U) and

w(a') € (HE U, )@, (o Ba)™ ™.

s,kap

Moreover w(r*~1(a)) = 7~ (w(a)).
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(ii): Let s € Sy and " € Tk /s, (S)~(s).

e Since 7% : (X x O™)* — X, x 0" is generically finite (see the proof of (i)) we have by lemma 3
and theorem 5, I/;fp (s) == AJgP(X;)(Zs) = 0 if and only if there exists

o€ HY ™ (Ug Zp)1*]

O‘,S,k}dp7

such that 7@ ~1(a) € H2= 1 (U*. | Z,)(d)%» and da # 0.

I. 9
s,kdp

,Zp)(d)é"r' if and only if (see definition 1) w(a/) €

p

e On the other hand by (1), o/ € Hthd_l(Uf;;
FAHE? (Ug ) and

w(a') € (HER (UL ) Ok (s) Byo)nN = (HpR '(US ;) Ok (s) By ).

s,kop, s ko
Moreover w(r®~1(a)) = 7~ (w(a)).
O
Proposition 1 for (i), the main result of [1] together with proposition 3 for (ii), gives the following :

Theorem 8. Let f : X — S be a smooth proper morphism, with S, X € SmVar(k) over a field k C C of
finite type over Q. Denote

ELR(X/S) = Hj/f(OX,Fb) = R f.0% /s € Vectpfa(S).

Let p € N\6(S,X/S) a prime number and o, : k — C, an embedding. Denote l;:gp C C, the p-
adic completion of k with respect to o,. Consider, using definition 7, a stratification S = UaeaS®, A
being a finite set, by locally closed subset S* C S, and alterations (i.e. generically finite morphisms)
7 XY — Xga such that

foi=form™: (X?"O,No) — (SgnvaO)

ko,

is log smooth. Consider for j,d € 7Z,

e the locus of Hodge Tate classes
HT!(X/5) i= (Une(Bha(XE. /S8 )80xs OBux)™)NFELA(X, /S, ) C Eba(X;, /5;,)

where

Eb(Xy,, /51,,) = [ (Ox,, .Fo) = B(X/S) @ b, € Vectosa(S;, ).

gt
e the locus of Hodge classes
HL;(X/S) = HL;ja(Xc/Sc) = F*E}(Xc/Sc) N R f.Qxan C B p(Xc/Sc)

where

E%)R(XC/SC) = H7 /(OXCan) = E%)R(X/S) R C e VeCthil(S(c).
f

Then,
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(i) for each subfield k' C C, we have a canonical embedding
ev(X/S): HTﬁd(X/S)(k’) — HL; 4(Xc/Sc) @g Qp,
ws — (1/2im)ev(X/S) (ws) = ev(Xs)(ws), s € Sy,
note that the image consists of logarithmic classes, hence

s, (HT (X/8))(K") C ps.(HLja(Xc/Sc)),

op
where ps,. : E%p(Xc/Sc) = Sc and Ps;, E%R(Xf%p /S’,;Up) — Sfcgp are the projections,
(ii) we have

(R £.Qp xet ()¢ =< HT} ((X/S) N FUELR(X/S) >q,C Epp(X;, /S, ),

op
where < — >q, denote the Q, subvector bundle generated by (—),
(iii) we have a canonical embedding in Shv(Sc)
e0(X/S) : myc(S) (R £.Qpxer(d)C = HL;a(Xc/Sc) 90 Q.
as = (1/2im)ev(X/S)(w(as)) = ev(Xp(s))((1/2im)w(as)), s' = mjc(s) - k(s) = C, s € S,
where my,/c(S) : Sc — S is the projection.

Proof. (i): Follows from proposition 1 and the equality

. o>d i o>
H (X.c,, Q5o (log DS,% p) 20,0 OBSmXS% log)?? = H;Et(XS,CP,QX—S’CpJOg,O ® Zyp).

okl

(see the proof of proposition 2) after taking an embedding oy, : &' — C,.
(ii):Follows from the isomorphism (H7 f&a(X%)) (c.f. theorem [1]) and proposition 3(ii).
(iii):Follows from (i) and (ii).
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