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Abstract

We prove, using p-adic Hodge theory for open algebraic varieties, that for a smooth projective
variety over a field k C Q C C which is a finite extension of Q, the complex abel jacobi map vanishes
if the etale abel jacobi map vanishes. This implies that for a smooth projective morphism f: X — S
of smooth complex algebraic varieties over a field k C Q C C which is a finite extension of Q, and
Z e 24X, n)f 9=0"an algebraic cycle flat over S whose cohomology class vanishes on fibers, the
zero locus of the etale normal function associated to Z is contained in the zero locus of the complex
normal function associated to Z. From the work of Saito or Charles, we deduce that the zero locus
of the complex normal function associated to Z is defined over Q if the zero locus of the etale normal
function associated to Z is not empty. We also prove an algebraicity result for the zero locus of an
etale normal function associated to an algebraic cycle over a field of finite type over Q. By the way, we
get that the Hodge conjecture implies the Tate conjecture for smooth projective variety over a field
which is a finite extension of Q (in particular we get Tate conjecture for divisors), and a for a smooth
projective morphism f : X — S of smooth complex algebraic varieties over a field k C Q C C, which
is a finite extension of Q, the locus of Hodge Tate classes as the image of a constructible algebraic
subset of the de Rham vector bundle over S;, where kis a p adic completion of k, inside the locus of
Hodge classes of f.

1 Introduction

Let X be a connected smooth projective variety over C. The Abel-Jacobi map associates to a
cycle Z € Z4(X) homologically equivalent to 0 of codimension d, a point AJ(X)(Z) € J4X) in the
intermediate Jacobian of X. In family, if f : X — S is a smooth projective morphism of smooth con-
nected complex varieties and Z € Z9(X) is a relative cycle on S of codimension d homologicaly trivial on
fibers, the Abel-Jacobi map provides a holomorphic and horizontal section of the relative intermediate
Jacobian : vz : S — J4(X/S) called the associated normal function. By a Brosnan-Pearlstein theorem,
the zero-locus V(vz) C S of vz is an algebraic subvariety ([3]). If X/S and Z are defined over a subfield
k C C, we conjecture in the spirit of the Bloch-Beilinson conjectures, that the zero-locus of the normal
function is also defined over k (see [7]).

On the other hand, if k is of finite type over Q, X is a connected smooth projective variety
over k, and p is a prime number, we can define via the continuous étale cohomology with Z,, coefficients
an etale Abel-Jacobi map which associate to a cycle Z € Z4(X,n) homologically equivalent to 0 of codi-
mension d, an element AJP(X)(Z) € HY(G, H**~1="(X},Z,)) of the first degree Galois cohomology of
the absolute galois group G := Gal(k/k) with value in the etale cohomology of X with Z, coefficients.
In family, we get, for f : X — S a smooth projective morphism of smooth connected varieties over k and
Z € Z4X,n) a relative cycle on S of codimension d homologicaly trivial on fibers, a normal function
vy P associated to Z € Z9(X,n) and thus a zero-locus V(15 ") C S and more generally a torsion locus

V(V5P) C Viers(vy?) € S of v which are subsets of closed points of S. For ¢ : k < C an embed-



ding, and V' C S a subset, we denote V¢ := myc(S) (V) C Sc where m ¢ (S) : Sc — S is the projection.

Let k of finite type over Q and f : X — S a smooth projective morphism of smooth connected
varieties over k. Let Z € Z9(X) arelative cycle. F. Charles then proves that for any embedding o : k — C

e assuming that R2¢~1£3"(C) has no global sections then V(v ")c = V(vz) ([7])

e if V(vz)(k) is non-empty then it is defined over k ([8]).

In this work, we show that, for a field & C Q which is a finite extension of Q, X a connected
smooth projective variety over k, Z € Z4(X, ) an (higher) algebraic cycle homologically equivalent to
0 of codimension d, and p a prime number, if AJ*?(X)(Z) = 0 then AJ,(X)(Z) := AJ(Xc)(Zc) =0
for any embedding ¢ : k < C (c.f. theorem 6). This implies by definition that for f : X — S a smooth
projective morphism of smooth connected varieties over a finite extension k C Q of Q, and Z € Z(X, %)
a relative cycle on S of codimension d homologicaly trivial on fibers,

Vd e CV(©vz), Viors@SF)e C Viers(vz)

for any embedding o : k < C without any assumption (c.f. corollary 3(i)). We deduce that if V(v ?) is
not empty, V(vz) is defined over k (c.f. corollary 3(ii)).
The proof of theorem 6 uses p-adic Hodge theory for open varieties to relate de Rham cohomology and
its Hodge filtration to p-adic étale coholomogy with its Galois action. Theorem 6 follows indeed from the
fact that by proposition, 2 and proposition 1, we have for k¥ C Q a finite extension of Q, U € SmVar(k),
and embeddings o : k — C and o, : k — C,, for all but finitely many prime p € N (so that kN Z, = Z),
for each j,l € Z, a canonical injective map

HWGL(U) « HL Uy, Z,) ()€ — F'HI(UE", 2inZ), o HIWS (U)(@) = ev(U)(w(a)),
which is by construction functorial in U € SmVar(k) (see theorem 1). More precisely, if the étale Abel-
Jacobi image of a cycle Z is zero,

e there exist a Galois invariant class « in the étale cohomology of ((X x 00")\Z); with non-zero
boundary, where k is an algebraic closure of k.

e Then, by p adic Hodge theory for (X x O")\Z, a define a logarithmic de Rham class w(«) laying
inside the right degree of the Hodge filtration of ((X x O")\Z); (c.f.proposition 2(ii)).

e Taking the image of this class by the complex period map with respect to the given embedding
o : k= C, we get a Betti cohomology class ev((X x O0")\Z)(w(c)) of (X x O")\Z)E"* with 2inZ
coefficients (c.f. proposition 1).

e This last class (1/2im)ev((X x O")\Z)(w(«)) induce a splitting of the localization exact sequence
of mixed Hodge structures :

0 — H1n(xXgn, 2) 25 (X < TPN2)E, 2)7) & HE(X x O, 2)7) = 27199 (d) — o,

which means that the complex Abel-Jacobi image de Z is zero.

By the way, since for X € PSmVar(k), :&:¢ (X) is compatible with cycle class maps, we get in particular

s “p.ev
that Hodge conjecture implies Tate conjecture. In particular, we get Tate conjecture for divisors over

field of characteristic zero. We also show that for U € SmVar(k),

4 , ‘ 3,G.d 4 4 j ‘
Hiy(U) o HIWG L (U) : HI, Uy, Z,)(d)¢ 4" i (uen, 2inz) ~ 19 (Uem, z) 229 1i vy, z,)



is the canonical embedding for each j € Z, where «(U) is the canonical map given by reduction modulo
p* and from the comparison theorem between etale and Betti cohomology with torsion coefficient (see
theorem 1).

In section 6, we show that, for f: X — S a smooth projective morphism of connected smooth varieties
over a field k of finite type over Q, Z € Z¢(X, *) an (higher) algebraic cycle homologically equivalent to
0 of codimension d, and p a prime number for all expect finitely many prime numbers p € N

Vtors(l/?’p) =TnN S(O) c S,

where T' C S is the image of an constructible algebraic subset of S; by the projection 7, Jk () :
op op

Sp. — S where l%,,p is the completion of k with respect to o, (c.f. definition 6 and theorem 7(i)). We
also give a local version for V}OTS(V;fP) C S (c.f. theorem 7(ii)). The proof use De Yong alterations to

get a stratification S = U,ea S by locally closed subsets and alterations 7% : (Xgo x 0")* — Xgo x O"
such that
fom®:((X x D")ggp,w""_l(|2|)) — Sgap

is a semi-stable morphism. We then use the p adic semi-stable comparison theorem for semi-stable
morphisms f": (X', D) — §', with ', X', D" € SmVar(k,, ), that is satisfying

e f: X’ — S is smooth projective, D’ C X’ is a normal crossing divisor,

e forall s € §', D, C X! is a normal crossing divisor and (X, D) has integral model with semi-stable
reduction,

Oor more enerall fOI' 10 smooth HlOI'phiSHl Of schemes over OA ,NO 5 Wthh ives, fOI' each ] S Z a
g y g k g J
(Tp
canonical ﬁltered isomorphism

HIifla(U"): R f;ZpﬁUéﬁt ®z, OBst.s — R fl114,(0vr, Fy) ®0,, OBy g1

which is for each s € S’ compatible with the action of the Galois group Gal(C,/k(s)), the Frobenius and

the monodromy: for all but finitely many primes p, k., (s) is unramified for all embeddings o, : k — C,
and all s € §’; so that we get a Frobenius action on Rjﬂdng(OU/,Fb)S = H{)R(US’) for all s € 5.

This also give (see theorem 8) together with theorem 1, for f: X — S a smooth projective morphism,
with S, X smooth over a subfield o : K C Q C C which is a finite extension of Q and p any but finitely many
prime numbers, the locus of Hodge-Tate classes HT ;(X/S) := (HRfuq,.. (d))¢ where G = Gal(k/k)

' i

as the image under the projection m; (Epr(X/S)) : Epr(X;_ /S; ) — Epr(X/S) of constructible
op op p
algebraic subset
WU X)S)  HTP ((X/S)e =
(FUEpr(X/$) N (Uaea(my i, (X)Epr(XE /52 ) @0x,  OByx))*)c

P

— F'Epp(Xc/Sc) N R f.Qxan = HL; a(Xc/Sc),
ay = ev(X9)(w(ay)), s € mrye(S) H(s),s € S

inside the locus of Hodge classes HL; 4.,(X/S) := HL; 4(Xc/Sc) C Epr(Xc/Sc), (which is algebraic
by the work of Deligne, Catani and Kaplan) where

* Epr(X/S) == H’ [,(Ox,Fy) = R f.Q%,5 and Epr(Xc/Sc) := H’ [;(Ox., F}) are the filtered
algebraic vector bundles over S and Sc respectively which have the Gauss-Manin integrable con-
nexion,

o 5 =U,eaS? is a stratification by locally closed algebraic subsets, A being a finite set,



o 7 : X% — Xga being alterations and 7, ; (X%): X — Xq are the projections.
op

p

I am grateful for professor F.Mokrane for help and support during this work as well as O.Wittenberg
for mentioning me an article of Jannsen on /-adic cohomology.

2 Preliminaries and Notations

e Denote by Top the category of topological spaces and RTop the category of ringed spaces.
e Denote by Cat the category of small categories and RCat the category of ringed topos.

e For § € Cat and X € S, we denote S/ X € Cat the category whose objects are Y/ X := (Y, f) with
YeSand f:Y — X is a morphism in S, and whose morphisms Hom((Y”, /'), (Y, f)) consists of
g:Y" =Y in S such that fog=f'.

e For S € Cat denote GrS := Fun(Z, S) is the category of graded objects.

e Denote by Ab the category of abelian groups. For R a ring denote by Mod(R) the category of (left)
R modules. We have then the forgetful functor og : Mod(R) — Ab.

e Denote by AbCat the category of small abelian categories.
e For (S,05) € RCat a ringed topos, we denote by

— PSh(S) the category of presheaves of Og modules on S and PSho, (S) the category of presheaves
of Og modules on 8, whose objects are PSho (S)° := {(M,m), M € PSh(S),m : M @ Og — M},
together with the forgetful functor o : PSh(S) — PSho,(S),

— C(S) = C(PSh(S)) and Co4(S) = C(PShp4(S)) the big abelian category of complexes of
presheaves of Og modules on S,

= Cogs2)1i(S) = C(2)7a(PShog(S)) C C(PShog(S), F, W), the big abelian category of (bi)filtered
complexes of presheaves of Os modules on S such that the filtration is biregular and PSho (2) ri(S) =
(PSho,(S), F,W).

e Let (S,05) € RCat a ringed topos with topology 7. For F' € Cog(S), we denote by k : F — E (F)

the canonical flasque resolution in Cog(S) (see [5]). In particular for X € S, H*(X, E.(F)) —
H* (X, F).

e For f: 8 — S a morphism with §,S8" € RCat, endowed with topology 7 and 7’ respectively, we
denote for F' € Cp4(S) and each j € Z,

— f* = HIT(S, koad(f*, f.)(F)) : Hi(S, F) — HI(S', f*F),
— f* = HIT(S, ko ad(f*™od, f,)(F)) : HI (S, F) — HI (S, f*medF),

the canonical maps.

e For X € Cat a (pre)site and p a prime number, we consider the full subcategory
PShz,(X) C PSh(N x X), F = (Fy)nen, p"Fn =0, Fop1/p" = F,
Cz,(X) := C(PShz, (X)) C C(N x X) and

— Ly := Lpx = ((Z/p*Z)x) € PShy, (X) the diagram of constant presheaves on X indexed by

—Ly=1y, € PSh(X) the constant presheaf on X,
—lpx = (p(x)): Zy, = Zp.x the projection map in PSh(N x X)



Recall that filtered colimits do NOT commute with infinite limits in general. In particular, for
f: X" = X amorphism of (pre)site and F' = (F,)nen € PShz, (X)), fm o f*F, is NOT isomorphic
to f*lim _ F, in PSh(X’) in general.

Denote by Sch € RTop the subcategory of schemes (the morphisms are the morphisms of locally
ringed spaces). For X € Sch, we denote by

— Sch’* /X < Sch /X the full subcategory consisting of objects X’/X = (X', f) € Sch /X such
that f : X’ — X is an morphism of finite type

— X¢ < Sch’* /X the full subcategory consisting of objects U/X = (X,h) € Sch /X such that
h:U — X is an etale morphism.

— X®m < Sch’* /X the full subcategory consisting of objects U/X = (X, h) € Sch /X such that
h:U — X is a smooth morphism.

For a field k, we counsider Sch /k := Sch /Speck the category of schemes over Speck. We then
denote by

— Var(k) = Sch’* /k < Sch /k the full subcategory consisting of algebraic varieties over k, i.e.
schemes of finite type over k,

— PVar(k) € QPVar(k) C Var(k) the full subcategories consisting of quasi-projective varieties
and projective varieties respectively,

— PSmVar(k) C SmVar(k) C Var(k) the full subcategories consisting of smooth varieties and
smooth projective varieties respectively.

For a morphism of field ¢ : £k — K, we have the extention of scalar functor

QrK :Sch/k —Sch /K, X = Xg =Xk, =X K, ([ X' 2 X)= (fr=f®1: X — Xg).
which is left ajoint to the restriction of scalar

Resp i :Sch /K — Sch /k, X = (X,ax) = X = (X,00ax), (f: X' = X)— (f: X' = X)

The adjonction maps are

— for X € Sch /k, the projection my/x(X) : Xxg — X in Sch /k, for X = U;X; an affine open
cover with X; = Spec(A;) we have by definition 7,5 (X;) = ny/x (As),
—for X € Sch /K, I x Ak : X <= Xg =X X K®; K in Sch /K, where Ag : K@, K — K is
the diagonal which is given by for z,y € K, A (z,y) =x — y.
The extention of scalar functor restrict to a functor

@K : Var(k) — Var(K), X — Xk = Xgo =X K, (f: X' =5 X) = (fr:=fR1: X;x = Xk).

and for X € Var(k) we have m/x(X) : Xx — X the projection in Sch /k. An algebraic variety
X € Var(K) is said to be defined over k if there exists Xy € Var(k) such that X ~ X, ® K
in Var(K). For X = (X,ax) € Var(k), we have Sch’' /X = Var(k)/X since for f : X' — X a
morphism of schemes of finite type, (X', ax o f) € Var(k) is the unique structure of variety over k
of X’ € Sch such that f becomes a morphism of algebraic varieties over k, in particular we have

— X c Sch'! /X = Var(k)/X,
— X < Sch’' /X = Var(k)/X.

For X € Sch and s € N, we denote by X(,) C X its points of dimension s, in particular X5y C X
are the closed points of X.



For X € Sch and k a field we denote by X (k) := Homg.,(Speck, X) the k points of X. We get
X (k)in C X the image of the k-points of X. For k C k" a subfield, AY (k)i = kN Cc kY C AY and
AN (K )i = mgw (A (K'N) €AY,

For X € Sch, we denote X?¢* C Sch /X the pro etale site (see [2]) which is the full subcategory of
Sch /X whose object consists of weakly etale maps U — X (that is flat maps U — X such that
Ay : U — U xx U is also flat) and whose topology is generated by fpqc covers. We then have the
canonical morphism of site

vy : XP 5 X (U= X) = (U = X)

For F € C(X*),
ad(vy, Rvx.)(F) : F — Rux..vx F

is an isomorphism in D(X¢), in particular, for each n € Z

H"T(X, k) : HIY (X, F) = HY,,

(X, vx F)
are isomorphisms, where

k:=koad(wy,vx«)(Eet(F)) : Eet(F) = vxsEpet (WX F)
is the canonical map in C(X*®) which is a quasi-isomorphism.

Let k a field of characteristic zero and ky C k a subfield. We say that k is of finite type over
ko if k is generated as a field by ko and a finite set {a1,...,a,} C k of elements of k, that is

k=ko(aq,...,qa,). If kis of finite type over kg then it is of finite transcendence degree d € N over
ko and k = ko(a, ..., aq)(agyr) with {aq, ..., a1} C k such that ko(aq, ..., aq) = ko(z1,...,24)
and ag41 is an algebraic element of k overfko(al, ...,aq). Note that if k is of finite type over ko then

it is NOT algebraicly closed. We denote k the algebraic closure of k. Then k is also transcendence
degree d over k.

Let C a field of characteristic zero. Let X € Var(C). Then there exist a subfield ¥ C C of finite
type over Q such that X is defined over k that is X ~ Xy ®; C with Xy € Var(k).

Let X = (X,0x) € RCat a ringed topos, we have in C(X) the subcomplex of presheaves of abelian
group

OLx : Q% 10g = %, s.t. for X? € X andp €N,
O 10g(X°) =< dfay/far N+ Ndfa, ] fay: fa € T(X?,0x)" >C Q% (X?),

where Q% := DR(X)(Ox) € C(X) is the De Rham complex and I'(X°,Ox)* C I'(X°,Ox) is the
subring consisting of inversible elements for the multiplication.

Let X € Var(k). Considering its De Rham complex Q% := DR(X)(Ox), we have for j € Z its De
Rham cohomology HY,p(X) := H/(X,0%). If X € SmVar(k), then H}(X) = HZ,(X, Q%) since
Q°* € C(SmVar(k)) is A! local and admits transfert (see [5]).

Let X € Var(k). Let X = UJ_; X; an open affine cover. For I C [1,...,s], we denote X := Njcr X;.
We get X, € Fun(P([1,...,s]), Var(k)). Since quasi-coherent sheaves on affine noetherian schemes
are acyclic, we have for each j € Z, H},p(X) = I'(X,, Q%.).

Denote by AnSp(C) C RTop the full subcategory of analytic spaces over C, and by AnSm(C) C
AnSp(C) the full subcategory of smooth analytic spaces (i.e. complex analytic manifold). For
X € AnSp(C), we denote by X¢ C AnSp(C)/X the full subcategory consisting of objects U/X =
(X,h) € AnSp(C)/X such that h : U — X is an etale morphism. By the Weirstrass preparation
theorem (or the implicit function theorem if U and X are smooth), a morphism r : U — X with
U, X € AnSp(C) is etale if and only if it is an isomorphism local. Hence for X € AnSp(C), the
morphism of site 7y : X¢ — X is an isomorphism of site.



e Denote by CW C Top the full subcategory of CW complexes. Denote by Diff(R) C RTop the full
subcategory of differentiable (real) manifold.

e Let k C C a subfield. For X € Var(k), we denote by

~ anyet e (X)
any : Xg" 5 xgmet 5 xgt Y X,

the morphism of site given by the analytical functor.

e Let k C C a subfield. For X € Var(k), we denote by
a(X) : Cxgn = Qxan
the canonical embedding in C'(X&"). It induces the embedding in C'(X¢")

. L2ixz/C, X 2" a(X)
B(X) : 2inZxan ———— Cxon — Q%an

For X € SmVar(k), a(X) is a quasi-isomorphism by the holomorphic Poincare lemma.
o Let k C C, a subfield. For X € Var(k), we denote by

xpet OLXE‘

. ~p . P .
Bret(Xc,) : @X(g;f XZ* log ng:f

the canonical embedding in C(ngt).

e For X € Sch noetherian irreducible and d € N, we denote by Z(X) the group of algebraic cycles of
codimension d, which is the free abelian group generated by irreducible closed subsets of codimension
d.

— For X € Sch noetherian irreducible and d € N, we denote by Z¢(X,e) C Z%(X x O°) the
Bloch cycle complex which is the subcomplex which consists of algebraic cycles which intersect
[0* properly.

— For X € Var(k) irreducible and d,n € N, we denote by Z4(X,n)?-% C Z%(X, #)7=0 the the
subabelian group consisting of algebraic cycles which are homologicaly trivial.

— For f: X — S a dominant morphism with S, X € Sch noetherian irreducible and d € N, we
denote by Z4(X, )/ C Z%(X,e) the subcomplex consisting of algebraic cycles which are flat
over S.

— For f: X — S a dominant morphism with S, X € Var(k) irreducible and d,n € N we denote
by Z4(X, n)jz’,?;i) c 24X, n)f"a:O the subabelian group consisting of algebraic cycles which
are flat over S and homological trivial on fibers.

e We denote I" := [0,1]" € Diff(R) (with boundary). For X € Top and R a ring, we consider its
singular cochain complex

* o (X, R) := (ZHomre, (I*, X)¥) ® R

sing
and for | € 7Z its singular cohomology H. (X,R) := H"C% . (X,R). In particular, we get by

sing sing
functoriality the complex

O;(,RsingECR(X)a (UCX)'_) . (UaR)

sing
We will consider the canonical embedding

Cr LZiﬂ'Z/(C(X) : O:ing (Xa 2Z7TZ) = C5

sing

(X,C),a—a®l



whose image consists of cochains o € C?

(X, C) such that a(y) € 2inZ for all v € Z Homrop (I*, X).

sing

We get by functoriality the embedding in C(X)

O*LinZ/C,X : O;(,Ziﬂl,sing — O;(,(C,sing7
(U C X) = (Ctgirzyc(U) : C5pe (U, 2inZ) — Cg (U, C))

sing sing

We recall we have

For X € Top locally contractile, e.,g. X € CW, and R a ring, the inclusion in Cr(X)
cx + Rx = C%, Rsing 18 DY definition an equivalence top local and that we get by the small

chain theorem, for all [ € Z, an isomorphism H'cx : H/(X, Rx) = Hsling(X, R).
For X € Diff(R), the restriction map

rx : ZHompigr) (I", X )" = Cl. (X, R), w— w: (¢ — w(e))

sing

is a quasi-isomorphism by Whitney approximation theorem.

e Let X € AnSm(C). Let X = U!_;D; an open cover with ID; ~ D(0,1)¢. Since a convex open subset
of C¢ is biholomorphic to an open ball we have D; := N;e;D; ~ D(O0, 1)d (where d is the dimension
of a connected component of X). We get Do € Fun(P([1,...,7]), AnSm(C)).

e For k a field, we denote by Vect(k) the category of vector spaces and Vect; (k) the category of
filtered vector spaces. Let &k C K a field extension of field of characteristic zero.

For (V, F) € Vects;(k), we get a filtered K vector space (V @ K, F) € Vect s (K) by FI(V @
K) := (FIV)®; K. In this case, we say that the filtration F on V @ K is defined over k.
For (V',F) € Vectyy(K) and h : V @ K =5 V' and isomorphism of K vector space, we
get (V, Fy) € Vectgy(k) by F/V := h='(FIV') NV (considering the canonical embedding
n:VoaVe,K nv):=v®1l).

For (V,F) € Vectyi(k), we have FI(V @, K)NV = FIV.

For (V',F) € Vectyy(K) and h: V @5 K =5 V' and isomorphism of K vector space, we have
h((F}V)®y K) C FIV'. Of course this inclusion is NOT an equality in general. The filtration
F on V' is NOT defined over k in general.

e We also consider

Top, the category whose objects are couples (X,Y) with X € Top and Y C X a subset and
whose set of morphisms Hom((X',Y”), (X,Y)) consists of f : X’ — X continuous such that
Y' C YY) (ie. f(Y')CY),
RTop, the category whose objects are couples (X,Y) with X = (X,0x) € RTopand Y C X
a subset and whose set of morphisms Hom((X’,Y”"), (X,Y")) consists of f : X’ — X of ringed
spaces such that Y' C f=1(Y),

Top? the category whose objects are couples (X,Z) with X € Top and Z C X a closed
subset and whose set of morphisms Hom((X’, Z'), (X, Z)) consists of f : X’ — X continuous
such that f~1(Z) c Z' (ie. f(X'\Z') C X\Z), in particular we have the canonical functor
Top? — Top,, (X, Z) — (X, X\2),

RTop? the category whose objects are couples (X,Z) with X = (X,0x) € RTop and Z C X
a closed subset and whose set of morphisms Hom((X’, Z’), (X, Z)) consists of f : X’ — X of

ringed spaces such that f~!(Z) C Z', in particular we have the canonical functor RTop? —
RTOPQ) (Xa Z) = (XaX\Z)



A (generalized) cohomology theory is in particular a functor H* : Top, — GrAb, e.g singular
cohomology
H} . :Top® — GrAb, (X,Y) — H% (X,Y,R).

sing sing

where R is a commutative ring. It restrict to a functor H* : Top? — GrAb, (X, Z) — H}(X) =
H*(X, X\2).

e Denote Sch? ¢ RTop? the subcategory whose objects are couples (X, Z) with X = (X,0x) € Sch
and Z C X a closed subset and whose set of morphisms Hom((X', Z"), (X, Z)) consists of f : X' —
X of locally ringed spaces such that f~*(Z) c Z'.

e Let k a field of characteristic zero. Denote SmVar?(k) C Var?(k) C Sch? /k the full subcategories
whose objects are (X, Z) with X € Var(k), resp. X € SmVar(k), and Z C X is a closed subset,
and whose morphisms Hom((X’, Z’) — (X, Z)) consists of f : X’ — X of schemes over k such that
12z cz.

e Let k a field of characteristic zero. Let
H* : SmVar®(k) — Gr AbCat, (X, Z) — H3(X)

a mixed Weil cohomology theory in sense of [9] (e.g. (filtered) De Rham, etale or Betti cohomology,
Hodge or p adic realization). For X € SmVar(k) and Z C X a closed subset, we denote

Hy(X)? :=ker(Hjy(X) — H*(X)).

For X € SmVar(k) and Z € Z4(X,n)?-%, we consider the subobject H24~1(U)I%] ¢ H?*~1(U)

where j : U := (X x O")\|Z] < X x " is the complementary open subset, given by the pullback
by HZ(X x O")@ .= [Z] ¢ HZY(X x O™)°

%)

0 — H2-L(X x ") = H2-=1(X) — > H2%-1(1) HZ(X x 0")° — >0

| i |
00— H2-(X x O") = B2 (X) — = 2112 —2 g24(X x 012 1= [2] — 0

of the first row exact sequence. In particular the second row is also an exact sequence.

e We denote by log Sch the category of log schemes whose objects are couples (X, M) := (X, M, «)
where X = (X,0x) € Sch, M € Shv(X) is a sheaf of monoid and o : M — Ox is a morphism of
sheaves of monoid. In particular we have a canonical functor

Sch? — logSch, (X, Z) = (X, Mz), Mz := (f € Oxs.t.fix\z € Ox\z) C Ox

Let k a field of characteristic zero. We denote by log Var(k) C log Sch /k the full subcategory of log
varieties.

e Let p be a prime number. For K a p adic field (i.e. a finite extension of Q,), we consider the
canonical functor of Huber (see [5])

R : Var(K) — Sch /Ok, X — R(X) := (X,0%) = X©,0% := (f € Ox, s.t.|f(z)|, < 1Vz € X (Ok))
where O C K is the ring of integers of K.

We have the followings facts :



e Let k a field of characteristic zero. Denote G' := Gal(k/k) its absolute Galois group. Then the
functor

I'(k)(=) : PSh(k®") — Mod(k, G), F + T'(k, F)
is an equivalence of category whose inverse is
G(=) : Mod(k, G) = PSh(k®), V s G(V) :=V := ((K'/k) — VAUE/R)),
In particular, for each V € Mod(k,G) and j € Z, we get an isomorphism

HIG(V) : HI(G, V) = Extl,(k, V).

e For X € Sch, we have

— vx 0%t = Q%pe: and hence isomorphisms

HT(X, k) : HE (X, Q%) = HE (X, Q%pet),

pet

where
ko= ko ad(vh, vxs) (=) : Ber( Qo) = s Bper (Woee)

is the canonical map in C(X*) (which is a quasi-isomorphism),

— * Ll _ ° . .
VXQXet,log = Q% et 1oy and hence isomorphisms

H'T(X, k) HE (X, Q%et 10g) — Honet (X, Qicnet 10g)

pet

where
k:=ko ad(y}kﬁ VX*)(_) : Eet(QS(@f,log) - VX*E;DBt(Q;(P”,log)

is the canonical map in C'(X*") (which is a quasi-isomorphism).
e Let k a field of characteristic zero. The complex of presheaves
Doy € C(SmVar(k)), X = Q% 10, (X)
is Al local and admits transfers. Hence for X € SmVar(k)
H'T(X, k) : H (X, Q% 1og) — HZ (X, Q%et 1og)

are isomorphisms.

e Let k C K a field extension.
— Let X € Var(k). We have then the canonical isomorphism in Cays(k/k), rit (X k)
w(k/K): (Q% @, K, Fy) = (Q%,., Fy)

given by the universal property of derivation of a ring.

— Let X € SmVar(k). Let X € PSmVar(k) a smooth compactification of X with D := X\X a
normal crossing divisor. We have then the canonical isomorphism in C (k). it (X5 )

w(k/K) : (2% (log D) @, K, Fy) — (9%, (log D), Fy)

given by the preceeding point. In particular, we get for all j,1 € Z,
x FIHIw(k/K) : F'H) (X) @x K = FUH) (X k),
x Hw(k/K): H)o(X) = H)p(Xk)C.
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Let 0 : k < C a subfield of finite type over Q. Consider k& C k C C the algebraic closure of k. Let
X € Var(k). Let p a prime number. Let o, : k < C, an embedding. We have then for k'/k a field
extension and o’ : k' — C and o}, : k' < C, field embedding such that o, = ¢ and 0,,, = 0}, the

following diagram in C(N x X¢*)

lp. xgn=(/P") anx. B(X) .
al x x Zp,Xa‘:m <—— anxsx ZXE" — allxx ngn

ad(anfxyanx:(z}x{iy
ad( XvVX*)(Zp,XGt) lPYX,;
P, X5* VX)}*Z;),XE&‘ < VX;C*@X;@ Q(anx)
ad(mg /c, (X2ety” TR/ Cp (Xgﬁt)*)(z_pxget) OL et
k O° K O
Xt log Xet
Q7 e, (Xk,))l Qi sc, (X))
OL _ pet
Z 0 e
- s - 5
D pet pet pet
Sexpe Xzet xze

with as above

mre(XEY)

et
¢ an t an T e (Xpr)
any : X¢" o~ X((Cm’e X Xét th, any : X¢" o~ X((Cm’e X Xét k X;;

We also have for X € Var(k), the canonical map

Hiy(X): H. (X&"Z

sing

) LU0, i (Xen,2,) S HI(XER 7,)

sing
an® )t ; T e(X)*) 7! ;
% H?\(Xc,Z,) M H (X}, Z,)

for each j € Z, where H (an%) is an isomorphism by the comparaison theorem between etale cohomology
and Betti cohomology with torsion coefficients (see SGA4).
We have the following easy lemma

Lemma 1. Let | a prime number. Let k C C; a subfield a finite type over Q. Denote G := Gal(k/k) its
absolute Galois group. Consider myc,(Xg) : Xc, = Xj the projection. Let X € Var(k). Let p a prime

number. Let j € Z and o € H?,(X,Z,). Then o € HZ,(X5,Z,) if and only if
Tk/Cy (Xp) o € Hgt(X(Cl ) Z;D)AUt(Cl/k)v
where Aut(C;/k) denote the group of (algebraic) automorphism of C; which fix k.
Proof. Obvious. O

3 Integral complex and p-adic periods of a smooth algebraic
variety over a field k of finite type over Q

3.1 Complex integral periods

Let k a field of finite type over Q.
Let X € SmVar(k) a smooth variety. Let X = U{_; X; an open affine cover. We have for ¢ : k — C
the evaluation period embedding map which is the morphism of bi-complexes

ev(X)s : I'(X,,0%,) — ZHomDiH(T,XEf’.)V ® C,

wy € D(X1, Q, ) = (ev(X);(wh) : ¢ € ZHompia(I', X&Y)¥ ® C = evp(wh)(6)) = /l o7 wy)
I

11



given by integration. By taking all the affine open cover (j; : X; — X) of X, we get for o : k — C, the
evaluation period embedding map

ev(X) = lim ev(X)s: lim I'(X., Q%,) — lim Z Homp;g g (I*, X&) Y © C

It induces in cohomology, for j € Z, the evaluation period map

Hiev(X) = Hiev(X)s : Hhp(X) = HIT(X,,Q%,) — HZ, (X&",C) = H’ (Hompigr) (I, X&%)¥ @ C).

sing

which does NOT depend on the choice of the affine open cover by acyclicity of quasi-coherent sheaves on
affine noetherian schemes for the left hand side and from Mayer-Vietoris quasi-isomorphism for singular
cohomology of topological spaces and Whitney approximation theorem for differential manifolds for the
right hand side.

Remark 1. We also have for o : k — C the composition

v(X)g

€—> ZHoleﬂ(R) (]I., X(E:l ) ® C X)(’L)Oan ,—

SU(X) (XO, QX ) HomFun(A’,Var(k:)) (Dz,eta X.)V ®C

where i = I°Dy ., is the embedding, which is given by integration : for wh € F(XI,QfXI) and ¢4 €

HomFun(A’ ,Var(k)) (]:D)-]]g7et7 XI)7
¢] / ¢l ank,

H* RU(X¢™,Ezqr(Qanx)))

Let X € SmVar(k). Note that

H* RD(XE" a(X))
%

Hev(Xc) : Hpp(Xc) Hpp(Xg") H,g(X2",C)

sing

is the canonical isomorphism induced by the analytical functor and the quasi-isomorphism «(X) :
Cxan = Qxon in C(X{&"). Hence,

Q7 c(X)) H"ev(Xc)
—

H*ev(X) = Hpp(X) Hpp(Xc) —— Hg,e(X2",C)
is injective. The elements of the image H*ev(X)(H}z(X)) C HE,,(X&",C) are the periods of X.

Sin
Let X € SmVar(k) a smooth variety. Let X = U, X; an opeil affine cover with X; := X\ D, with
D; C X smooth divisors with normal crossing. Let o : £ — C an embedding and X" = U;_;D; an
open cover with I; ~ D(0,1)%. Since a convex open subset of C? is biholomorphic to an open ball we
have D := Nie/D; ~ D(0,1)¢ (where d is the dimension of a connected component of X). Denote by

Jo 1 XJ e NDe — X[t is the open embeddings. We then have the period morphism of tri-complexes
ev(XE&")e o : T(XJE N Do, Wxan) — Z Hompig (I°, X¢Ty )Y @ C,
wh ; € DX mD],an} Qk,) —

(eleJ(wIJ) ¢IJ€ZH0H1D1&(HZ XeT FNDy)Y ®C’_>‘3“1J(WIJ /¢1J IJ

given by integration. We have then the factorization

j ] j ] IQ(w
Hieo(X) : H (X)) = HI (X, Q%) = HY, (X, Q%) —mere),
‘ / s Jeou an .
H%)R(X(C) = H](X(C,QX) = (X(C;Qxet) —)H]F( O,Cthvgxgn)

Hjev(X{;m):,o ] an — j i an N
— H}, (X¢" N D,,C) = H’ (Hompigr) (I*, X¢'y NDs)” @ C).

sing

where for the left hand side, the first equality follows from the fact that Q* € C(SmVar(k)) is A! local and
admits transferts, and the equality of the right hand side follows from Mayer-Vietoris quasi-isomorphism
for singular cohomology of topological spaces.

12



Remark 2. Let X € SmVar(k) a smooth variety. Let X = U;_; X; an open affine cover with X; := X\D;
with D; C X smooth divisors with normal crossing. Let o : k — C an embedding and Xg" = U;i_;D;
an open cover with D; ~ D(0,1)?. Since a convex open subset of C? is biholomorphic to an open ball we
have Dy = NierD; ~ D(0,1)¢ (where d is the dimension of a connected component of X ). Denote by
Jo: Xf% NDe — Xf% the open embeddings. Then,

Js oanky, = Q(js oanx,) : I'(Xec, Qo) = DX N D, Q% an)

is a quasi-isomorphism by the Grothendieck comparaison theorem for De Rham cohomology and the
acyclicity of quasi-coherent sheaves on noetherian affine schemes.

Lemma 2. Let X € SmVar(k) a smooth variety. Let X = Ui_, X; an open affine cover with X; := X\D;
with D; C X smooth divisors with normal crossing. Let o : k — C an embedding and X&" = U;_D; an
open cover with D; ~ D(0,1)¢. Let

— l _ l j an .
w= | E wy ] = E [w} ;] € H'T(XJe N D,, ngn)-
I,J,l,cardl+cardJ+Il=j I,J,l,cardl+cardJ+l=j

Then the following assertions are equivalent :

(i) Hiev(X)(w) € H

sing

(X¢", Z(2im)),
(ii) for all I,J,1 such that cardl + cardJ +1=j , there exist a lift
[@},] € H'T(X{E N Dy, Qxan)

of [wlU] with respect to the spectral sequence associated to the filtration on the total complex asso-
ciated to the bi-complex structure such that

H'eo(Xg™)7 5([0],5]) € Hing (X716 N Dy, Z(2i)).
Proof. Follows immediately form the fact that ev(Xg")s , define by definition a morphism of spectral
sequence for the filtration given by the bi-complex structure. O
The main proposition of this section is the following :

Proposition 1. Let X € SmVar(k). Let X = Ui_, X; an open affine cover with X; := X\D; with
D; C X smooth divisors with normal crossing. Let o : k — C an embedding. Let

w € Hhp(X) = H (X, Q%) = H,(X,Q%).

Then if w € H/OLxe (H, (X, Q%et 10g)) then Hiev(X)(w) € Hging(Xg",Z(in)), where we recall (see
section 2) the inclusion in C(X°)
OLxet : Q.Xct)log — Q;(et

is the sub-complex of logarithmic forms.

Proof. Let ‘ ‘ ‘
w e H,p(X) =1 (X,Q%) = H'T(X., Q%).

where X = U;_, X, is an open affine cover with X; := X\ D, with D; C X smooth divisors with normal
crossing. Let X&" = U'_;D; an open cover with I; ~ D(0,1)?. Then by definition H’ev(X)(w) =
Hiev(Xg")(ji o an’, w) with

-k * 7 an .
Je OanX.w S H F( .)CQD.,Q En)
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and we have the following commutative diagram

. *
JeOan’y,

I(Xe, %) —————"> T(X&% N Da, Van) -

jfoan}.
F(_)OLxet)

I'(Xe, Lot 1)

Now, if w = H/OLxe: (wg), since

(F(X'v k)) : hﬂ HjF(X'v Q;{e‘,log> - Hit(Xa Q..Xef,log) = F(X‘v Eet(QS(e‘,log))
r:Xe—X

where the limit is taken over the etale covers of X, and since Q%.. log admits transferts, there exist an
open affine cover (depending on w) X = U;_; X; with X; = X;(w) := X\D; with D; C X smooth divisors
with normal crossing such that

wr, = HT(Xe, k)(wr), wr, € H'T(Xe, %t 10g)-
We then have

- * o ex * _ l _ l
Je CAlly W = ]Jg Calxy W[ = [ E wL,I,J] = E [wL,I,J]
I1,J,l,cardl+cardJ+l=j I1,J,l,cardl+cardJ+l=j

€ H'T (Xt NDa, Qian)-

Let for each (I, J,1) take a lift
[@7,1,.5) € HT(XFE N Dy, Qan)

of [wlL I,J] with respect to the spectral sequence associated to the filtration on the total complex associated
to the bi-complex structure. We have by a standard computation, for each (I, J)

* Hj (X?I(ZZQDJuz) =<1 s VYeardl >

sing
l — w
® WL r = 2 ep( sl scardu =t 182 N AN dzy 4 do € T(XTE N Dy, Q%an).

Then for p € P([1,---,s]) with cardy =1, we get

HleU(X(E:m)I,J([wlL,I,J])(’Vu) = Zn?Jéu’,u € 2iTZ.
k

where v, 1= Yy, -+ Yu,- We conclude by lemma 2. O

Let X € SmVar(k). Let 0 : k — C an embedding. By proposition 1, we have a commutative diagram
of graded algebras

H*ev(X)

Hpp(X) H,g (Xg",C)
H*OLXctT TH*C*L%WZ/C(XEH)
H*ev(X)oH*OL et
HZt (X7 QXe‘,log) Sl = H:ing (X(E:ln, 2Z7TZ)

where
C*L2i7'rZ/(C (X([uin) : G5 (X(gn7 27’7TZ) — s.ing(X(gnv (C)

sing
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is the subcomplex consiting of a € C7__(X&", C) such that a(v) € 2inZ for all y € Cjing(X(‘cm, Z). Recall

sing
that

H*ev(Xc) = H*RD(X&", (X)) o T(X&", ELar(Qanx))) : Hyp(Xc) = H

sing

(Xg",C)

is the canonical isomorphism induced by the analytical functor and a(X) : C xgn = Q}En, which gives
the periods elements H*ev(X)(Hpz(X)) C HY, . (X&",C). On the other side the induced map

sing

H*G’U(X(C) : H*OLXet (Hzt(X([j, QXctJog)) — H*LQiﬂz/(c * (X([ufn, 2Z7TZ)

sing

is NOT surjective in general since the left hand side is invariant by the action of Galois group Gal(C/k)
whereas the right hand side is not.

3.2 p adic integral periods

Let k a field of finite type over Q. Denote k the algebraic closure of k and G = Gal(k/k) the absolute
Galois group of k. Let X € SmVar(k) a smooth variety. Take a compactification X € PSmVar(k) of X
such that D := X\ X C X is a normal crossing divisor, and denote j : X < X the open embedding. Let
p € N a prime number. Consider an embedding o, : k < Cp. Then k C k C C, and k C ]Afgp C C,, where
I%gp is the p-adic field which is the completion of k& with respect the p adic norm given by o,. Denote
égp = Gal((Cp/l;gp) = Gal((@p/kgp) the Galois group of l%gp. We have then the commutative diagram in

o
CBdeiz,an (Xg: )

JxEpet(a(X))

j* Epet (Bdr,ch 5 F)

CT
E;fot (Bdr,Xr log Dc,, F)

Cp>

G Epet (%, » Fo) ®ox, (OBarxe,, F))

]
Epet ((Q}(cp (1Og D(Cp)v Fb) ®0ch (OBdr,ch Jlog D, » F))

TEMQ* (ROOL cpet))si=Eper (wis(w®1));
P

a(X)

Epet (Gt per)si=Eper (11.1); T
Cp

JxEpet (Lxget ):=Jx Epet(l—1.1)
P

j* Epet (Z

_pXCP) j*EPGt(Q

F)

°
XCP ,log?

where for j/ : U’ — X’ an open embedding with X’ € RTop and 7 a topology on RTop we denote for
m: 7.Q — Q" with @ € PShpo(U’), Q" € PShpo(X’) the canonical map in Co(X")

E9m); : . EY(Q) = E2(7.Q) 2 BO(Q),

giving by induction the canonical map E.(m); : j.E(Q) — E-(Q') in Co(X’). The main results of [15]
state that

e the map in Cg,, i (Xgn’pet)

p

O‘(X) : (Bdr,X%p Jlog Df%p ) F) — (Q}{k (log ngdp)v Fb) ®OXIEU (OBdr,X%p Jlog D%p ) F)

ap P

is a filtered quasi-isomorphism, that is, the induced map in Cy, ¢, 4 (Xg:’p )
P fil,Goy

Oé(X) = a(X)Cp : (Bdr,ch,log Dcp ) F) — (Q}(Cp (IOg DCp)’ Fb) ®OXCP (OBdT,XCP ,Jlog DCP ) F)

is thus a filtered quasi-isomorphism,
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e the map in Dpril
T(aX7 ax, ®) (Rj*Zp,Xet) : RF(X(Cpa Zp,Xet) ® (BdT;Cp ) F) - RF(XCpa (Bdr,ch,log Dc,,» F))

is an isomorphism.

Hence, we get the isomorphism in Dy (Bgy, Ggp)

Ra(X) := RI(Xc,,a(X)) o T(ax,ax, ®)(RjsZp xet) :
RP(XC,)uZp,XCt) ® (BdT,Cpu F) = RF(X(Cpa ( ;ZE; (log D(Cp)7 Fb) ®o Xc, (OBdr,ch,log Dc,,» F))

X
= RT'(Xc,, (Q}(E; Fy) @0, Jerag(Oxc,» o) @ox, (OBarxc, F))
which gives for each n € Z a filtered isomorphism of Ggp—modules
H"Ra(X) : Hly(Xc,, Zyxe) ® Bare, = Hpr(X; ) ®, Bare,
so that we can recover the Hodge filtration on H},z(X) by the action of Ggp.

We have the following key proposition :

Proposition 2. Let k a field of finite type over Q. Let X € SmVar(k) a smooth variety. Take a
compactification X € PSmVar(k) of X such that D := X\X C X is a normal crossing divisor, and
denote j : X — X the open embedding. Let p € N a prime number. Let o, : k — C, an embedding.

Consider its completion k C l%,,p C C, with respect to the p adic norm induced by o,. Then G'UP =
Gal(Cp/k,,) C G := Gal(k/k).

(i) Let o € Hgt(X@p,Zp)(l). Consider then

via = HIT(Xc,, k)(a) € H)(Xc,, Zp) = Hj, (Xc,, Zp)

- pet

where k := ko ad(vy,vx«)(Zyp) : Eet(Zy) — vxsEpet(Zy) is the canonical map in C(N, X)) which
is a quasi-isomorphism, and its associated De Rham log class

wr (04) = HjLXé’et (Vj;(a) € H;ﬁet(X(va Q;{PGt log) = Hit(Xva ;{E‘ 7log)
P Cp > P
which gives
w(a) = H'OLxy (wi(a)) = H BXE")(a)

€ W, (Xc,, Qper (log De, ) = HY,(Xc,, Q%1 (log De,)) = H}p(Xe,)

If o € H,(Xc,,Z,)(1)% then
HIRT(Xc,,a(X))(a®1) = (w(a) ®1) € F'H} (X}) ®; Barc,

so that w(a) € FZH%,R(XCP).

(ii) Let o € H? (X}, Z,)(1). Referring to (i), we consider
— wr(a) = wr(mg,c, (Xp) @) € Hit(chaQS(E;,log);
— w(a) = HjOLXE; (wr (@) € H%R(X(cp).

where Ty, ¢, (X3) © Xc, — X, is the projection. If o € H, (X5, 7,) (1) then wr(a) € H,(X, Qe 1og)
and w(a) = HIOLxe (wr (o)) € FLH), 5(X).
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Proof. (i):1t follows immediately from the fact that H7 Ra(X) is a filtered quasi-isomorphism compatible
with the Galois action of G, by [15] and from the commutative diagram

HjF(Xc 7L§§ . HJF(XC J(w—(w®1)
Hl.(Xc,.Z,) z Jet(Xc Qxe, Tog) 2 fﬁnpet(xc QXet)
; o HIT(XEr R j . H]F(X‘“"” (w—(w®1))) . an O
Hpet (X(Cp ) Z;D) Hpet( QxPGf o g) Hpet (X QX‘” )

where the left and right column are isomorphisms by GAGA (note that the middle column is NOT an
isomorphism in general). _

(ii): Assume by absurd that w(«) ¢ Hy,5(X). There exist a finite type extenion k'/k, k' C C, (depending
on w(w)) such that w(a) € HY (X ). By assumption the orbit Gal(k'/k)w(e) C Hpr(Xy ) of w(a)
under Gal(k'/k) is non trivial (i.e. contain more then one element). Then there exist a prime number
! and an embedding o} : k' < C; such that the extension k{f{ /ko, is non trivial (i.e. k{f{ # k,,) where
o= ol’lk. By injectivity of

71'k’/k' (Xp)" : Hpp(Xp) = Hpp(Xy )
71
where ﬂk,/,;, (Xw) : Xj,  — Xy is the projection, the orbit Gal(l%l’jl,//%gl)w(a) C Hpr(Xy ) of w(a) =
i 71

wk,/k/ (Xp)* w(a) under Gal(ki‘{/kgl) is non trivial (i.e. contain more then one element). By the main

result of [15] (see above), we get
HY Ro(Xe,) ™ (w(e) ¢ (H2 (X5, Z0) @ Barc,) .

In particular H7 Ra(Xe,) " (w(a)) ¢ HZ, (X3, 7,)*t. Consider the pairing of G modules
6(_7 _) H

pet

(Xc,» Zp) ®z Hor(Xe,, Zi) — HyH (X, 000, Zp ©2 L)

and

a(Xc,)®a(Xc;)
R

d d
a(Xc,@q0,) 7" Bar, xc, ®0x, oo [ Bar, xe,

w(

*mod()e *mod e
Tp QXCP ®Oxc, e oo M QXCl

Q)
QX%@@Q
is the canonical map in Cp |, /(Xgi%@cl) and
p
® Ty i= TC,/Cp®gCy (X(cp) : XCp@QCz — X(cp
® T = Tr(CL/(Cp®@(CL (X(cl) : X(Cp®@(cz — X(cl

are the base change maps. By the commutative diagram of G'U; X é"z’ modules

1y
H;zjnet(Xk/ L ) ®BdTC — 7#za X(C ®QCHBdT Xep ®OXC »®aC1 Bar chg <~ Hpet(XE’7@)®Bdr,cl :

lH]a(XCPS’QCl)

H Ra(XCl ) HDR(XCP(X)QCZ) ®CP®Q(CZ IBd’r‘,(cp ®Q Bd’r‘,(cl H’ Ra(X‘Cl )
TR, /Cp (Xer)” kL, e, (Xir)*
Wk’/(a:p@ch)(Xk/)
s oy (Xpr )™

H%JR(Xk/)

H}p(Xe,) ®Barg, H},p(Xc,) ® Barg,

Tty (X )"
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where
bppt * Lp = Lp @z L, tiypr 2 Ly = Lp @7, Ly, ip/pi(A) = AR 1, 0y (A) =A®1

are the canonical embeddings, we have for 5, € ngt(X,;,, Zyp) @ Barc, B € ngt(X,;,, Z;) @ Bay

a(Xc,000)(0(Bp, B1)) = a(Xc,) - a(Xc,) € HEp(Xc,040,) @0,000 Bar.c, @0 Bar.c,-

Hence
) . . Y é ’ G ’
Zp/pla = 5(0&, 1) = 5(1, HJRO[(X(CZ) 1(11)(@))) ¢ H;[J)et(X(Cp(@Q(Cz;Zp ®Z @) 0p>< 9.

Contradiction. We thus have w(«) € HJ%R(X). Now :

e By (i) w(a) € F'H}x(Xc,). Hence w(a) € F'H},,(X) = FLH},»(Xc,) N Hpz(X). The equality
F'H}, o (X) = F'H}, z(Xc,) N H,p(X) is given by the filtered isomorphism in Cy(Xc,)

w(k/Cp) : (2% (og D), F,) ®1 C, = (Q;—(CP (log Dc,), Fy)
which say that the Hodge filtration is defined over k: see section 2.
o We have w(a) € H'OLye: (HZ, (X, Q% -t 10g)) by the equality
HIOL xor (HE, (X, et 1)) = HIO Lo (B (X, . Xt 1)) O Hpg(X)

given by the commutative diagram

. OLxet®I .
QXCt,log ®k (Cp — QXct ®k (Cp
w(k/Cp) w(k/Cp)
OLyet
0° ~P O°
Xg;,log XE‘;

O

Theorem 1. Let k C Q a field which is a finite extension of Q. Let X € SmVar(k). For all but finitely
many prime p € N, embeddings o, : k — C, which then satisfy kNZ, = Z and 0 : k — C, and each
j,1 € Z, we get from proposition 2(ii) and proposition 1 a canonical injective map

HIS A (X) « HL, (X3, Z,) (1) — FUHI(XE", 2miZ), a v HOS L (X) () = ev(X)(w(a)).

p,ev

By construction, for f: X' — X a morphism with X, X’ € SmVar(k), we have the commutative diagram

. HI,Gd(x .
H, (X7, 2,) ()¢ — = plgi(xgn, 2miZ)

B |-

i H7.G (X! _
H2, (X2, 2,) ()¢ —— X i (xgam, omiz)

Moreover,

HI.$8 (X)

HIY(X) 0 HIGE(X) « Hly (X Zy) () —225 1Y (XE", 2imZ) = HY (X", 2) 2250

Hgt(XfcaZp)

is the canonical embedding for each j € Z, where v(X) is the canonical map (see section 2) given by
reduction modulo p* and from the comparison theorem between etale and Betti cohomology with torsion
coefficient.
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Proof. Follows from proposition 2(ii) and proposition 1. The last assertion follows from the fact that for
a € H,(Xy, Zp)(d)°,

a= (") e HIT (X}, Z,), w(e) = [wy(a)"'] € HT(X,, Q%)
for an open etale cover r : X4 — X, which gives
Y(X)((1/2im)ev(X) (w(@))) = (X)) ((ev(X)((1/2im)wr(@)))) = (a®).

Note that for w € H7 (X, Q%..) such that ev(X)(w) € Hging (X&",2inZ), wis NOT logarithmic in general

and v(X)(ev(X)(w)) € H?, (X}, Z,) is NOT G = Gal(k/k) equivariant in general. O

Corollary 1. Let k a field which is a finite extension of Q. Let X € PSmVar(k). The the Hodge
conjecture for X implies the Tate conjecture for X. In particular we get Tate conjecture for divisors of
X.

Proof. Follows from theorem 1 : for X € PSmVar(k) and Z € Z4(X,n)%=0, we get H2?~".54 (X)([Z]) =

p,ev
[Z], hence the Hodge conjecture for X implies the Tate conjecture for X since H24=".$4 (X) is injective.
Since we have by the exponential sequence Hodge conjecture for divisors, we get Tate conjecture for
divisors of X. O

4 The complex and etale Abel Jacobi maps and normal function

4.1 The complex Abel Jacobi map for higher Chow group and complex nor-
mal functions

Let k a field of finite type over Q. Consider an embedding o : k < C. Then k C k C C, where k is the
algebraic closure of k. We have then the quasi-isomorphism a(X) : Cxgn < Q%an in C(X&m).

e For X € SmVar(k), we consider
(Hhp(X),F), H (X&", Z), H (X)) € M HMj, g (k) C Vectyiu(k) x; Ab
where F' is the Hodge filtration on H%)R(X) ®r, C and
HIRD(XE™, (X)) : H(X&",C) = H)p(X) @, C

Recall the geometric mixed Hodge structures (see [5]) are mixed Hodge structure by the Hodge
decomposition theorem on smooth proper complex varieties.

e For f: X — S a morphism with S, X € SmVar(k), we consider
(H'Rfvrdg(Ox, Fy), H Rf,Zxan, H Rf. (X)) € MHMp gin(S) C PShp 1,0y (S) X1 Prirx(SE")

where

H'Rf.a(X) : HRf,Cxan = DR(S)(0fiH’Rf.rdqg(Ox, Fy) @ C = H? / Ox ®;, C)
;

Recall the geometric mixed Hodge modules (see [5]) are mixed Hodge modules by a theorem of
Saito for proper morphisms of smooth complex varieties.

Let X € SmVar(k). We have for j,d € N, the generalized Jacobian

JHA(X) == HI(XE",C)/(F'HY (XE",C) & HY (X¢", 7))
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where F is given the Hodge filtration on HY,(X) ® C and
HIRD(XE", (X)) : H(X&",C) = H}5(X) @ C.
If X € PSmVar(k) and 2d > n, J>4(X) is a complex torus since
(H)R(X), F), H (X", Z), H RT(X&", a(X))) € HMj, g (k) C MHMy, gy (k)
is a pure Hodge structure. For X € PSmVar(k), we have a canonical isomorphism of abelian groups
LX) : JENX) S Bxthy g, o (ZH9(d), (D (X), HI(XE", Z), HI RD(XE", a(X))).

Definition 1. Let X € SmVar(k) irreducible. Let X € PSmVar(k) a compactification of X with D :=
X\X C X a normal crossing divisor. The map of complezes of abelian groups (see [4])

Ry : 24X, e) = CP(X&", D&, Z — Rx = (Tz,02, Rz)

where CP (X", D&") is the Deligne homology complex induces the complex Abel Jacobi map for higher
Chow groups

AJ(X): ZYX,n)250 — J2-1-nd(X) 7 AJ,(X)(Z) :== D"YRY),
/Z_ Z—Q'Z—i-Té,;with@Té:TZ, 6Q/Z=QZ

where

D CP (X&) = CP(XE", DY)
is the Poincare dual for Deligne homology.
Theorem 2. Let k C C a subfield. Let X € PSmVar(k).
(i) For Z € Z4X,n)9=° we have

hom?

AT, (X)(Z) = EUX)H0 — (HpR (X)), H2A (X @, 7)), H* 717" RT (X", (X))

sing
(37,37,0)
(Hpg (X > O"NIZD), B (X x OM\[Z])E", 2), H* 1" RE((X x O"\|ZDE", a(X x O0)7]
(8,0,0)
e

(H%dR,m(X x "), H, bmg \z|((X x O")¢g" Z), RU 7 (X x O™M)g", a(X x Dn)))[z] = thdg(” —d)—0)
where j: (X x O")\|Z| — X x O" is the open embedding and

H%Iddg,\Z|(X x 0" c HHdg 1z)(X x O"), HIQJddgl((X x OM)\|z))? ¢ HIQJddgl((X x O")\|Z]).
are the subobjects given by the pullback of the class of Z (see section 2).

(ii) Let Z € Z4X,n)9=0. Then AJ,(X)(Z) = 0 if and only if there exist w € Hay (X x O™)\|Z])[]
such that

— we FUHE(X < O\ 2)),
= ev((X x O"\|Z])(w) € HEL (X x OM)\|Z])g", Z(2ir))
— Jw # 0.

Proof. (i):See [6].
(ii):Follows from (i) O
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Let f: X — S a morphism with S, X € SmVar(k). We have for j,d € N such that H/Rf,Cxan is

a local system and FdeRf*Hdg(OX, Fy) C HI ff (Ox) are locally free sub Og modules, the generalized
relative intermediate Jacobian '

JPUX/8) = (H'Rf,Cxan ® Ogan)/(F*(HIRf.Cxan @ Ogan) & HI Rf.Zxan)

where F is given by the Hodge filtration on H’ ff (Ox) and

H'Rf.a(X): HRf,Cxen — DR(S)(Hj/f(OX)).

A generalized normal function is then a section v € I'(S&", J24(X/S)) which is horizontal (i.e. Vv = 0).
For s € S, we get immediately that i¥™°4J74(X/S) = JJ4(X,). In particular we get for f : X — S a
smooth projective morphism with S, X € SmVar(k) and j,d € N, the relative intermediate Jacobian

JPUX/S) = (H'Rf,Cxan ® Ogan)/(F*(HIRf.Cxan @ Ogan) & H Rf.Zxan)

where F is given by the Hodge filtration on H’ ff(OX) = Hij*QB(/S and H'Rf.a(X). A normal

function is then a section v € I'(Sg", J#4(X/S)) which is horizontal. For f : X — S a smooth projective
morphism with S, X € SmVar(k), we have a canonical isomorphism of abelian groups

I2NX/8)  JINX/S) S Bxthy s (Z§ 0 (d), (H Rfinag(Ox, Fy), H Rf Zxan, H Rf.o(X))).

Definition-Proposition 1. Let f : X — S a morphism with S, X € SmVar(k). Let j : S° < S an
open subset such that for all j,d € Z, j*Hij*(CXEn is a local system and j*FIHIRf.pa,(Ox, Fy) C
§*HI ff(OX) is a locally free sub Og module. Let o : k — C an embedding. Let d,n € N. We have then,
denoting X° := X xg S° and using definition 1, the map

AJ5(X°/8°) : ZHX,n) i — T(SE™, I3 1(X0)5°)) € T(SE™, @yespenisedy (X)),

o'

Z = AJ,(X°/8)(Z) = vz = ((s € S) — (AJ (X)(Zs) € J2 " 14(X,)))

where Z4(X, n);,?;g C Z4X,n)H9=Y denote the sub-abelian group consisting of algebraic cycles Z with
Zy =147 € Z2YX,,n)220 and o’ : k(s) <= C is the embedding given by s extending o : k < C, denoting

hom’

again s := wk/C(S)(s) € S, my)c(S) : Sc — S being the projection.
Proof. Standard : to show that

vz = (s € 5¢) = AJ,(X,)(Zs) € T(SZ", Byesgonised 3" H(Xy))

is holomorphic and horizontal we consider a compactification f:X — Sof fwith X € SmVar(k) and use
trivializations of f : (X", (X\ X)) — Sg*" which gives trivialization of the local system j* R f.Zgan
(see [4] for example). O

Corollary 2. Let f : X — S a smooth projective morphism with S; X € SmVar(k). Let d,n € N. For

Z € Z4X, n)ch’ha;?, we have

Al (X/8)(Z) = I24X/S) (0 = (H** " "Rfinag(Ox, Fy), H** ' ""Rf.Zxan, H** 7" Rf.a(X))
(3%,37,0) _ . _ .
L (HPR(F 0 §)niag (Oxxmmn 21 Fo) HX* P R(f 0 ) Z(x x| z))en

HH7UR(f o f)ea((X x O\ |2])#) 222,
(HQde*HngPf?\ig(OXXDMFb)a (H* Rf.RT| 2/ Z(x xgmyan ), RET | zj0(X x O")A = 25 (n — d) — 0)
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where j : (X x O")\|Z| — X x O" is the open embedding and

Hd Hd. Hd Hd
(szRf*HngF|Z‘gZX XgDn)[Z] - szRf*Hd!]RF|Z\gZX><gD”’

(H*R(f 0 j)enagZ{x %pmp 2" € HR(f 0 )eragix Smmy\ 2|
are the subobjects given by the pullback of the class of Z.

Proof. Follows from theorem 2 by definition of the Abel Jacobi map and by the base change for mixed
hodge modules. O

We have the following main result of [3] :
Theorem 3. Let f : X — S a smooth projective morphism with S, X € SmVar(k). Let d,n € N. Let
o : k< C an embedding. For Z € Z%(X, n)ch",?;?, the zero locus V(vz) C Sc of
nz = Al (X/9)(Z) € T(S¢", Jo =17 ™4(X/5))
is an algebraic subvariety.

Proof. See [3]: if S € PSmVar(k) is a compactification of S with S\S = U;D; C S a normal crossing
divisor, there exist an analytic subset ¥(vz) C Sc¢ such that V(vz) = X(vz)NSc. By GAGA X(vz) C Sc
is algebraic subvariety. Hence V (vz) C Sc¢ is an algebraic subvariety. O

4.2 The etale Abel Jacobi map for higher Chow group and etale normal
functions

Let k a field of finite type over Q. Let k the algebraic closure of k and denote by G = Gal(k/k) its galois
group. Let p € N a prime integer.

Definition 2. Let X € SmVar(k) irreducible. Let X € PSmVar(k) a compactification of X with D :=
X\X C X a normal crossing diwvisor. Denote G = Gal(k/k) the absolute galois group. The cycle class
map

R;.’p : Zd(Xv n)@:O — Hsiag|)7et (Xa Da ZA;D) — Hgg_n(Xv Dv Zp)a

to continuous etale cohomology induces the etale Abel Jacobi map for higher Chow groups

Adur p(X) 1 24X, 0)050 = Extl (k, HX (X, Dy, Zy)),

hom

Z v Aderp(X)(Z) = L'RY(Z) [ L*RET (2),
where L is the filtration given by the Leray spectral sequence of the map of sites ax :: X — Spec(k)¢t.
Theorem 4. Let X € PSmVar(k). Denote G = Gal(k/k) the absolute galois group.
(i) For Z € Z4X,n)9=°% we have

hom?
Adep(X)(Z) = (0~ HE (X, Z) o HETH(X X TN ZD)5, 2)7)
o n 7
= Hig) (X x 05, Z,)P = k(n — d) — 0)
with j: (X x O")\|Z] — X x O" the open embedding, and

H|2Zd\.,et((X x Dn)kvzp)[Z] C H\szet((X X Dn)fcaZZD)v
HZ (X x O\ Z0)5, o)) € HETH (X x O"\IZ D Zy)

are the subobjects given by the pullback by the class of Z (see section 2).
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(ii) Let Z € Z4X,n)9=0. Then AJe ,(X)(Z) = 0 if and only if there exist
a € Hi (X x O\ Z), Zp)'?)
such that o € HZH(((X x O")\|Z))z, Zp)C and da # 0.

Proof. (i):See [14].
(ii): Follows from (i). O

Definition 3. Let f : X — S a morphism with S, X € SmVar(k). Let j : S° < S an open subset such
that for all j € Z, j*HIRf. 7 p,X; 15 a local system. Let d,n € N. We have then, denoting X° := X xg5°
and using definition 2, the map

o o ,0= o . n—
Aderp(X°/S%) : 24X n) o = T(S%, @sesi, se BXC G0 /nes) B Hor " (X0 Zp))),s
Z = Adet p(X°)8°)(Z) i= V5P =
((s € Soy) = (Aderp(Xs)(Zs) € EXté:az(fg/k(s))(/%aHfzed_n_l(Xs,wap))))
where Z4(X, n)?’,?;g C Z4X,n)H9=0 denote the subabelian group consisting of algebraic cycles Z with
Zs =17 € ZHXg,n)hom. Recall that ig: {s} — Sy C S is a closed Zariski point of S.
We now localize, for each prime number [ and each embedding o; : k < C; the definition given above.

Definition 4. Let X € SmVar(k) irreducible. Let X € PSmVar(k) a compactification of X with D :=
X\X C X a normal crossing divisor. Let o : k — C; an embedding. Then k C k C C;, where k is

the algebraic closure of k and k C /%gl C C; where l;gl is the completion of k with respect to o;. Denote
Gy, = Gal(Ciks,). The cycle class map

REE 24X, n)?= —>H§j(lg‘)et(x ,D; ,Zp)%Hfg_"(Xkal,Dkw,Zp),

to continuous etale cohomology induces the etale Abel Jacobi map for higher Chow groups

A‘]etﬁpﬁdl( ) Zd(X n) _>EXt (ClvHthd_l_n(X(szDCwZ;D))v

hom

Z v Aletp.o (X )(Z) = L'RYE (2)/L*REY (Z),

where L is the filtration given by the Leray spectral sequence of the map of sites ax : Xet — Spec( e

We have then the commutative diagram

EXté(iﬁv He2td_1_n(XE7 DTwZP))

Z4(X,n)9=0 Ext! (ad(my 5 g, ) (2)ad(ml e, (=)
Adetp,oy (X)

EXtégl ((Cl, Heztd_l_n(X(Cl ) D(Cl ) ZP)) = EXtégl (Ev Heztd_l_n(XE7 DE) Z;D))

where the right column arrow is given by the restriction T /by, - égl — G.
I

Theorem 5. Let X € PSmVar(k). Let o) : k — C; an embedding and k C l;:gl C C; the completion of k
with respect to o.
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(i) For Z € Z4X,n)9=° we have

hom?

Adetp.ot(X)(Z) = (0 = HE (X, Zp) = HEZH(((X x O™\ Z))c,, Zyp)1?!
% HEg (X x O")¢,, Zy)P = Ci(n — d) — 0)

with j : X x O"\|Z| < X the open embedding and

H\22d|,et((X X Dn)CzaZp)[Z] - HﬁZCI\,et((X x O0")c,, Zyp),
HiZ) (X x O"NZDe, Zp)P € B (X x O"\IZ))e,, Zy),

are the subobjects given by the pullback by the class of Z (see section 2).
(i) Let Z € Z4X,n)9=0. Then AJetp o (X)(Z) = 0 if and only if there exist

a € Hi (X x O"\|Z])e,, Z,)P

such, that o £ 0 and o € HX (X x O"\|Z|)c,, Zy) %
Proof. Similar to the proof of theorem 4. O

Definition 5. Let f: X — S a morphism with S; X € SmVar(k). Let j : S° < S an open subset such
that for all j € Z, j*Hij*ZnXE is a local system. Let d,n € N. Let o, : k — C; an embedding and

k C l%al C C; the completion of k with respect to o;. Denoting X° := X xg S°, we consider
Adetpor(X°[S%) 2 ZHX, n) o = T(S°, By, isw Bxt' (Gal(Ci/ ko, (), Ho "M (X, 5 Zp))),s
Z v Adetp.oy(X°/S)(2Z) = vy k=

((S € SE)O)) = (AJet,p,Uz (XS)(ZS) € EXtéal(@lﬂ;gl (S))(EvHezéi_n_l(Xs,Evzp))))

where Z4(X, n)Jf‘ha;? C Z4X,n)9=0 denote the subabelian group consisting of algebraic cycles Z with
Zs =147 € ZYX4,n)hom- Recall that i : {s} — Sy C S is a closed Zariski point of S.

5 The vanishing of the etale Abel Jacobi map implies the van-
ishing of the complex Abel Jacobi map

The p adic Hodge theory for open varieties implies the following main theorem :

Theorem 6. Let k C Q a field which is a finite extension of Q. Denote k the algebraic closure of k
and G = Gal(k/k) its absolute Galois group. Let X € PSmVar(k). Consider an embedding o : k — C.
For all but finitely many prime number p € N a prime number, we have for all embedding op : k — Cp,
kNZy,=7. Let Z € Z4X,n)?=%. Consider the exvact sequences

hom*

C1on j* _ n d
o 0— HY ™' "(X5,Zy) == HE (X x O\ 25, Zy) = H

et,\z|((X X Dn)EaZP)O —0

o 0 B D HAL (X < O\2) S HE

(X xO")° — o0,
where j : (X x O")\|Z| < X x O" is the open embedding. Consider the following assertions :
(i) ATy (X)(Z) = 0 € Bt (b, HE-17(X,, 2,)(d — ),
(i)’ there exist a € H2H (X x O"N\|Z)i, Zp)(d)Z) such that a € H2H(((X x O")\|Z)i, Zp)(d)
and 0o # 0,
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(ii) there exist w € Hm (X x O")\|Z))?) such that w € FAHES (X x O")\|Z)),
w € H* O Lo (HZH (X x O"N|Z, Qe 10g),
and Ow # 0,
(iii) there exist w € Hayr (X x O"\|Z))? such that w € FTHEZ (X x O™)\|Z]),

HYeo((X x 0"\ |Z])(w) € H2 (X x O\ 2))%", 2inZ),
and Ow # 0,
(iii)” AT,(X)(Z) = 0 € J2-1-nd(X),

where the inclusion OLxet : Q;(Gt,log — Q% of C(X°) is the subcomplex of logarithmic forms and
ex : X — X is the canonical morphism of site (see section 2). Then (i) is equivalent to (i), (i)’
implies (it), (ii) implies (iii), (iii) is equivalent to (iii)’. Hence (i) implies (iii)’.

Proof. (i) is equivalent to (i)’: see theorem 4(ii),

(i)’ implies (ii):follows from proposition 2(ii): we take an embedding o, : kK — C, and w = w(a),
wr, = wr, (@),

(ii) implies (iii):follows from proposition 1,

(i) is equivalent to (iii)’ : see theorem 2(ii). O

It implies the following :
Corollary 3. (i) Let k C Q a field which is a finite extension of Q. Then k = Q is the algebraic

closure of k. Let f : X — S a smooth projective morphism with S, X € SmVar(k). Consider an

embedding o : k — C. Let p € N a prime number. Then for Z € Z4(X, n)}c’ha;g, we have

V(vy?)e CV(vz) C Sc, Viers(vyP)c € Viors(vz) C Sc
where
— V(vz) C Viors(vz) C Sc is the zero locus, resp. torsion locus, of the complex normal function
vz = AJ,(X/S)(Z) € D(Se", J2=1=m4(x /)

associated to Z (see proposition-definition 1),

— V(W5™P) C Viers(vy?) C S is the zero locus, resp. torsion locus of the etale normal function
V" € T(S, Boesiobor ExtGayrnisy (ks Hot " (X 1 Zp))(d = 1))
associated to Z (see definition 3) and
V(g P)e = mye(S)  (V(g™), Viers(vy )e = mrsc(S) ™ (Viors (v ™))
where we recall T, /c(S) : Sc — S is the projection.

(ii) Let o : k < C a subfield which is a finite extension of Q. Then k = Q is the algebraic closure of k.
Let f : X — S a smooth projective morphism with S, X € SmVar(k). Then for Z € Z4(X, n);’}?;g,
the zero locus V(vz) C Sc of the complex normal function

vy = AJ,(X/S)(Z) € T(S&", J24-1-nd(X /)

associated to Z is defined over k if V(v5?) # 0.
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Proof. (i):Follows immediately from theorem 6 since for s € S, k(s) is of finite type over Q and for
s' € m,yc(S) " (s) denoting o’ : k(s) < C the embedding given by ', we have by definition

o vg(s) = A, (X/8)(Z)(s)) := AJop (X.)(Zs) € JHT1 (X ).

o v P (s) =t Adetp(X/S)(Z)(8) = Adetp(Xe)(Zs) € ExtEy oy Ry He "M (X s Zp)(d = ).

(ii): Since V(v5'") C S contain a k point, V(vz) C Sc contain a k point by (i). Hence by the work of
[17] or [8], V(vz) C Sc is defined over k. O

6 Algebraicity of the zero locus of etale normal functions

Let k a field of finite type over Q. Let f : X — S a smooth proper morphism with S, X € SmVar(k)
9=0.f By the definition, we have

hom

connected. Let p a prime number. Let Z € Z4(X,n)

t, t,
V(V; p) C ﬁleN,lprime Mo, :kesCy .V(V%lz) C S(O)

and
‘/tors(yztﬁp) - ﬁlGN,lpI‘ime Mokt 'V;Eors(ygifl) C S(O)
In this section, we investigate the algebraicity of Viy.s(vy ) C S and of Vtom(u?ﬁ) CcS,o1:k—=C.

Remark 3. Let k a field of finite type over Q. Let f : X — S a smooth proper morphism with
S,X € SmVar(k) connected. Let p a prime number. Let Z € Z4(X, n)gozif We can show, using
[13], that we have in fact

‘/tors(V?ﬁD) - ﬁleN,lpTime ma’l:k<—>(Cl -‘/tors(V;fZ) C S(O)
We don’t need this result so we don’t give the details.

Let k a field of finite type over Q. Let p be a prime number. Let o, : £ — C, be an embedding. We
have then k,, the completion of k£ with respect to o, and we denote O;  C ko, its ring of integers. We
op

then consider the canonical functor of Huber (see section 2)
R : Var(k,,) — HubSp(k,,,0; ) — Sch/O; , X r R(X) = X©
op op
which associated to a variety over a p adic field its canonical integral model. Let f : X — S a smooth
projective morphism with S, X € SmVar(k). Let Z C X a closed subset and j : U = X\Z — X the
open complementary subset. We have then f:= f; (X, Z)fcg — S the morphism in SmVar? (ks,)
induced by the scalar extension functor and

fO =R, ) (X.2)7 — S

its canonical integral model in Sch? / Oy, to which we denote
f=12:(X2 ,Nuo):= (X7 ,(Mz,No)) = (S ,No)
op op op

the corresponding morphism in logSch, where for K a p adic field and Y € Sch /Ok, (Y, No) := (Y, My,)
with k = Ok /() the residual field. We have then the morphisms of sites

vx.n (XD Noo)™ = (X2, Nuo)*™, uxn : (Xe,, Mz, )™ = (X7 ,Nvo
p Tp op

)

)Falt

where (XI? , Ny o)Flt denote the Falting site, and for (Y, N) € logSch, (Y, N)kt C logSch /(Y, N) is
op

the small Kummer etale site. If (X ]? ,Nu,0) is log smooth, we consider an hypercover
op
Qe : (X]?",NU,O) — (Xf? ,NU)(Q)
op p

in Fun(A,logSch) by small log schemes in sense of [1]. The main result of [1] say that
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o if (X;9 , Nu.o) is log smooth, the embedding in C((Xg yFalt)
Up o

P

a(U) : (Bux,, . Nvo) = a.*DR(XZ’p' /S, J(OBs.x: Nuo)

is a filtered quasi-isomorphism compatible with the action of Gal(C,, l%,,p), the Frobenius ¢, and
the monodromy N,

o if f: (X§p=NU70) — (SISTP’NO) is log smooth, the morphism in Dfil((Sli yFralty

P

T(f,f,®)(—)oad(uk n,Rux,N,)(—)

T(fa BSt) : Rf* (BSt,X,;Up ) NU,O) Rf*va(ch,MZCp )ket ®ZP BStvSfcgp

ad (5" )Rj*)(Zp,(XCP My yet)
P

R(f 0 j)sZpugt ®z, Bst.s;,

is an isomorphism, where the last map is an isomorphim by [12] theorem 7.4.

This gives if (X l? , Nu,o) is log smooth, for each j € Z, a filtered isomorphism of filtered abelian groups

. ; HiT(ax Bst) * : o
H'Ra(U) : H),(Uc,, Zy) @z, B oo, H'T(axBse)” HI,(X,N)F lt)(Bst,X,;Up Nu.o)

st

HjRI“((ngp Nu,0),a(U))

H{;R(U,;Up ) ®fcap Bst,fcgp

compatible with the action of Gal(C,/ iﬂgp), of the Frobenius ¢, and the monodromy N. More generally,
this gives if l;:gp (s) is unramified for all s € S;  and if f: (X;9 yNvo)— (Sg) ,No) is log smooth, an
p Tp Tp

isomorphism in Shvsi,.q ¢, ~(S; )

9p

. . HjT f Bt -1
H f.a(U) s B[ 2y vz @3, Bats, TR

HIRf.a(U)
_

Rf* (Bst,Xf%p ) NU,O)

OIBSt,S,‘c
9p

p

H’ /fj*Hdg(OU,;gp  Fy) @os,

that is a filtered isomorphism compatible with the action of G = Gal(C,/ l%gp), of the Frobenius ¢, and
the monodromy N, writing for short again f = f o j.

Definition 6. Let k a field of finite type over Q. Let f : X — S a smooth proper morphism with
S, X € SmVar(k). Let p a prime number. Let Z € Z(X, n);,?;? Denote U := (X x O")\|Z|. We have
then the following evact sequence in Vectpri(S) (of filtered vector bundle with integrable connexion)

0 — Epr(X/S):= g 1=n / (Ox, Fy) 2 Epp(U/S) &) = (H2-1 / Juridg(Ov, Fy))1)
f f

%)
2 Bpps(X/S)2) = (H2 / DI (O e, ) 5 0.
f
Recall (see section 2) that (X x 0", M| z|) € logVar(k) denote log structure associated to (X x O",|Z]) €
SmVar®(k). There exist a finite set of prime numbers §(S) such that for all prime p € N\§(S), all
embedding o, : k — C, and all s € Sy, ky,(s) is unramified over Q. Let p € N\6(S) a prime number
and o, : k — C,, be an embedding.

e Take, using [10] theorem 8.2 (after considering an integral model (X, Z)® € Sch® /R over R C k
of finite type over Z with function field k), for p € N\6°(X/S), where 6°(X/S) is a finite set,
an alteration 7° : (X x O™)° — X x O, that is a generically finite morphism such that ((X x
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an)o, 7T0*’1(|Z|))f€o is semi-stable pair, that is 7%~ 1(]1Z]) € (X xO™)° is a normal crossing divisor
op
and (X xO")°, 71'0’71(|Z|))]%0 )t has semi-stable reduction where t € Spec(O;, ) is the closed point.
op op
Then there exists a closed subset A C S such that for all s € S° := S\ A, ((XXD”)O,FO’_1(|Z|))]A€O .\

is a semi-stable pair.

e Take using [10] theorem 8.2, (after considering an integral model (Xa, Za)® € Sch? /R over R C k
of finite type over Z with function field k), for p € N\6'(X/S), where 6*(X/S) is a finite set, an
alteration ™ : (Xa x O")t — Xa x O such that ((Xa x O™)1, |ZA|)]A€O is a semi-stable pair. Then

P

there exists a closed subset A% C A such that for all s € ST := A\A?, ((Xa x O")1, |Z|A)g ,isa

semi-stable pair.

e (o on by induction.

We obtain by the above finite induction, for p € N\d(S, X/S), with 6(S,X/S) := 6(S) U (Uaerd*(X/5S)),
a stratification S = UaenS®, A being a finite set, by locally closed subset S* C S, and alterations (i.e.
generically finite morphisms) 7 : (Xge x 0")* = Xga x O" such that

for®: (Xga x O™, Nya,0) = (S, No)

Ip

is log smooth, that is for all s € S, ((Xga x O™)%, 71'0"71(|Z5a|))]€) , s a semi-stable pair. We then set
(Tp)

= p((Unealmyi, (U Eor(UF, /S, ) G0y, OBy 1))

NEEpr(U/S) N (Epr(U/S)PN)\Epr((X x O")/S)) € S

and

Ty, = pS,;U(((uaEA(EDR(US% /S,Sap) Bos, O]B%st,s,%dp)%’N) N
F'Epr(Us, /S, ) N7 HEpr(Us, /S, ONEpr((X x0"); /S )< 8,
where
o U= (Xgo x ") \1* (| Zsa ),
e Epr(U®/S®) := H**'Rf.pay(Opa, Fy) € Vect 1 (S%),

o ¢, is the Frobenius operator, N is the monodromy operator, note that for K'/k' a field extension,
Y € Var(k') and R C Yi a closed subset, we have R = e i (V)" (e s (Y)(R)),

e ps: Epr(U/S) — S and ps; - EDR(UI%UP /Sfcc,p) — Sfcgp are the projections.

Lemma 3. Let G be a group. Consider a commutative diagram of G modules

0 W 1% K 0
0 W v 2K 0

whose rows are exact sequence and 7 : V. — V' is injective. Let « € V.. Then o € VE and da # 0 if
and only if ™*a € V' & and 0'n*a # 0.

Proof. Follows from the fact that < o > define a splitting Wé < o >C V of G modules. O

28



Theorem 7. Let k a field of finite type over Q. Let f : X — S a smooth proper morphism with
S, X € SmVar(k) connected. Let p € N\d(S, X/S) a be prime number, where §(S,X/S) is the finite set
given in definition 6. Let Z € Z4(X,n)?=%1,

hom
(i) We have
Wors(ugt’p) =TnN S(o) c S,

where T' C S is given in definition 6.

(ii) For each embedding o, : k — C,, we have

V;Eors(ygt,)az;)fggp = TUp N S(O),fcap - Sfcapv
where Tgp C 5, 1s gwen in definition 6, and for V .C S a subset, Vi, :=m ;. (S)"Y(V), where
op op op

Tk, (S): Sf%p — S being the projection.
Proof. Let o, : k — C, be an embedding. For each o € A, by the semi-stable comparaison theorem for

> No)

ko,

o= for®: ((Xga x D”)Z;O,Nga) — (S

([1]) which is log smooth, we have the isomorphism in SthiLG’%,N(Sg%)

Cp op

HIfea(U%) : ijf‘ZpﬁUa,et ®z, Bst,s2 = Hj/ j*Hdg(OUg  Fy) ®os, OBst,sg , (1)

P

recall that since p € N\d(.5), l%gp(s) is unramified for all s € S; .
_ op
(i): Let s € SG). Denote G := Gal(k/k(s)).

e The map 7% : (X; x O")* — X, x O" is generically finite since 7 : (X x O™ — X x O" is
generically finite and f is flat. Thus by lemma 3 and theorem 4, v5*?(s) := AJP(X,)(Zs) = 0 if
and only if there exists

a € HY 7 (Use s, Zy) 2]

such that 7%~ (a) € H¥1(U2,Z,)(d)¢ and o~ (a) # 0.

s

e On the other hand by (1) and lemma 1, o/ € HX (U, 7Z,)(d) if and only if w(a/) € FIHAZH(U2)
and
w(a') € (HFR ' (U ) ®

s,kap

,N
ffap (S) BSt)¢p !

Moreover w(r®~1(a)) = 7~ (w(a)).
(ii): Let s € Sy and s" € mp (S)~1(s).
e Since 7% : (X x O™ — X, x 0" is generically finite (see the proof of (i)) we have by lemma 3
and theorem 5, I/;fp (s) = AJ5IP(X)(Zs) = 0 if and only if there exists

o€ HZ ™ (Ug )]

"‘,s,fcdp ’ ZP

such that 7%~ 1(a) € HX-Y (U, ,Z,)(d)%> and da # 0.

5oy P
e On the other hand by (1), o/ € HZ" (U, \Z,)(d)% if and only if w(a’) € FIHET U
and ’ !
w(a) € (Hpg (U )@, o Bat) ™ = (HER'US )@, (o) Bat) Y.

s
s,kgp s ,kgp

Moreover w(r®~1(a)) = 7~ (w(a)).
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The main result of [1] also give together with theorem 1 the following

Theorem 8. Let f: X — S be a smooth proper morphism, with S, X smooth over k C C which is a
finite extension of Q. Consider for j € Z,

Epr(X/S) := HI /(Ox,Fb) = ij*Q;(/S € Vectp it (S)
f
Consider, using definition 6, a stratification S = UaeaS®, A being a finite set, by locally closed subset
S C S, and alterations (i.e. generically finite morphisms) 7® : X* — Xga such that

fo = fom®: (Xg;O,NO) — (87, No)

is log smooth. Then, for each prime number p € N\§(S, X/S), we get by [1], for each j,d € Z and each
a € A, an isomorphism

HY fa(X®) s HT] (X5 /8%) = FUEpr(Xsa/SU)0(myp, (X (Epr(XY /S) )®05, OBux)*™)
where HTﬁd(Xsa/S’o‘) C ij*Qp,ng E(d) is the locus of Hodge Tate classes. Using theorem 1, we get
the locus of Tate classes HT} ,(X/S) := (ij*@p,ng d)¢ c ij*(@pyxgn (d) as the image of an algebraic
constructible subset of Epr(Xj,_ /S; )

(H7 fE (X)) aen)c,~

Gl (X/S) 1 (HTP ((X/S) = Unen HT? (X0 /S%))c
(F'Epr(X/S)N (Uacamysi,, (X)(Epr(XE /ST ) ®0xa

Ip

OBy,x= )M)))c
— F'Epr(Xc/Sc) N R f.Qxan =t HL; 4(Xc/Sc),
Qg = Lg;d(XS’)(O‘s/) = ev(Xo)(w(ay)), s' € Wk/C(S)il(S)a s€8,

inside the locus of Hodge classes HL; ¢(Xc/Sc) C Epr(Xc/Sc), where Ty /i (X9) Xg‘ — X, and
P op

mr/c(S) + Sc — S are the projections. Note that the image consists of logarithmic classes. Note that
for'Y € Var(k), the image of an algebraic constructible subset of Y; by T/ (Y) is NOT algebraic
op op

constructible since Tk ki, (Y) is NOT a morphism of finite type.

Proof. Follows from the result of [1] and theorem 1. O
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