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Abstract. One of the key factors in achieving an autonomous vehicle is under-
standing and modeling the driving environment. This step requires a considerable
amount of data acquired from a wide range of sensors. To bridge the gap between
the Roadway and Railway fields in terms of datasets and experimentation, we
provide a new dataset called RailSet as the second large dataset after Railsem19,
specialized in Rail segmentation. In this paper we present a multiple semantic
segmentation using two deep networks UNET and FRNN trained on different
data configuration involving RailSet and Railsem19 datasets. We show compara-
ble results and promising performance to be applicable in monitoring autonomous
train’s ego perspective view.

Keywords: Semantic segmentation - Rail segmentation - Frontal train monitor-
ing - Railway.

1 Introduction

For decades, the industry has sought to replace or augment drivers in various modes of
transportation with autonomous, programmed computers that would be more efficient,
cost-effective, and safer than human operators.

The concept of developing self-driving trains is not new; indeed, the "Victoria"
metro line (inaugurated in 1968 in London-UK) is considered to be the first large-scale
automatic rail system [1] [4]. This train is currently classified as GoA2 [3]: the driver is
still present in the cab but only deals with closing doors and starting orders, and the train
moves automatically to the next stop. As of July 2016, 789 km of automated metro in
operation consisting of 53 lines and 822 stations in 36 cities around the world according
to the International Union of Public Transport (UITP) [4]. Half of the automated metro

* IRT Railenium, SNCF, Alstom Crespin, Thales, Bosch, and SpirOps.
For now only 10% of our dataset RailSet are provided in this link, will publish the rest shortly.
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Fig. 1: Examples from RailSet: front views of train taken from different setups, climatic condi-
tions and different acquisition periods.

infrastructure is concentrated in four countries: France, South Korea, Singapore and
the United Arab Emirates [UITP, 2016] [4], but these sophisticated systems are limited
and located in urban areas relatively isolated from certain potential hazards. The most
sophisticated driverless trains, particularly in urban guided transport, are automatic but
not autonomous.

The absence of a driver in the cabin is therefore not enough to classify a train as au-
tonomous. It is its on-board decision-making capacity that makes a train autonomous.
Moreover, autonomous trains are different from automatic trains regarding the fact that
autonomous trains evolve in an open and dynamic environment. Some elements of the
environment have an unpredictable behavior that can lead to unexpected and potentially
hazardous situations. These autonomous rolling stocks will encounter a very heteroge-
neous environment and will operate on tracks equipped with various signaling systems.
Therefore, one of the most important aspects for ensuring a vehicle’s autonomy is to re-
main self-aware of its surroundings, first by perceiving (identifying and classifying) all
external risks, possible anomalies or hazards; then by acting on the information through
the control system to position themselves correctly in their environment in order to bet-
ter adapt to external conditions [5], this implies the use of more advanced applications
and technologies.

Inspection and detection of the structural condition of the railway infrastructure [6]
[71 [8] [9] is crucial to ensure safety and to enable more advanced applications such
as driver automation. At the very heart of this challenge comes the rail and the rail
track, which constitute one of the most important components of the railway environ-
ment, as they are in direct contact with the train’s wheels determining its trajectory.
Any alteration in the structure of these components [9] through wheels interaction [8],
imperfections in either of them due to severe loading conditions heavier axles and ve-
hicles, due to traffic growth, gives rise to severe dynamic effects such as vibrations and
track deformations that can lead to catastrophic vehicle derailment, the consequences
of which can result in fatalities, injuries and economic losses. Alternatively, external
objects such as obstructions and passengers at the vicinity of the rails have the same
bad impact on the normal flow of the train. This makes detecting Rails a central key
in monitoring frontal environment of the train and in decision making in autonomous
trains, similar to detecting road lanes for autonomous vehicles in order to localize its
flow in reference to other users.
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In this paper, we discuss various semantic segmentation experiments based on UNET
[10] and FRNN [11] methods to assess their performance on rail segmentation from var-
ious train frontal scenes taken from two railway datasets including the largest datasets,
Railsem19 scenes and our RailSet dataset with 8500 and 6600 scenes respectively, see
Fig.1. When creating our RailSet dataset, we strived to bring more complex scenes
in terms of rail visibility, weather conditions, and long distance rail detection, not
just noisy images due to vibration and flow movement. This brings more scenes to
Railsem19 [12], more semantic use cases, and helps enrich public rail datasets and test
scenarios like the semantic experiences detailed in this paper, which summarize our
contribution in this work.

2 Related works

2.1 Dataset

Railsem19 [12] is the first public contribution to the segmentation task of multiple ob-
jects in the railway environment. It contains 8500 annotated short sequences, including
various scenes taken from the perspective of the train and streetcar driver. Yin et al. [13]
proposed a railroad segmentation dataset called RSDS, which consists of 3000 images
taken in the environment of low-speed trains in China. Yin et al. [13] employed manual
annotation with the VIA tool [14] to label only the active railroad track on which the
train is moving. The data is not made available to the public.

Then comes our RailSet dataset as a second public dataset consisting of 6600 man-
ual annotations using the open source software CVAT [15]. We process all visible rails
in the scenes, where only rail and track classes are labeled.

However, with road-oriented datasets such as Cityscapes [16], Mapillary vistas [17],
COCO-stuff [18], and KITTI [19], some railway elements can be found in the images.
The rail scenes in these datasets represent a combination of interior views, road views,
and pedestrian views, but perspective scenes of the driver are almost non-existent.

2.2 Segmentation

Our proposed dataset, RailSet, is intended to solve the task of segmenting the rails from
the train’s ego view. This task is important for monitoring the railway environment from
an onboard video surveillance system at the front of the train. The rail segmentation task
has been the subject of some existing research. Among these works, Kaleli and Akgul
[20] propose a driver assistance solution, in which they use dynamic programming to
extract the active track ahead of the train. Ukai and Tomoyuki [21] also focus on front
track extraction, an important step to detect fixed or moving obstacles in front of the
train. To extract the railroad tracks, they divide the scene into a near and far area and
apply a set of image processing techniques and an iterative algorithm for each to extract
the rail parts.

With the emergence of deep learning and convolution neural network reasoning, a
number of works have begun to exploit the semantically segmented neural network for
rail detection in frontal train scenes. Zendel et al. [12] propose a full-resolution resid-
ual network (FRNN) [11] as a benchmark method for fully segmenting Railway scenes
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from an ego-perspective view. This model is first trained on the Cityscape dataset and
then refined on the Railsem19 dataset. This approach achieves a good level of segmen-
tation on the different classes in the rail and streetcar configurations, and in particular
on the rail-specific labels, with 71.5% mloU on elevated railroads, 45% mloU on em-
bedded railroads, 81.9% mloU on railroads, and 40.1% mloU on streetcar tracks. Yin
et al. proposed RailNet, a custom convolutional model designed to segment the active
track region of low-speed trains. Yin et al. [13] proposed RailNet, a custom end-to-end
model that combines feature extraction and segmentation, where they integrate multi-
convolution feature extraction based on pyramid structure to make the features have a
top-bottom propagation. It achieves better performance that fully convolutional FCN
and detection based methods Mask RCNN. Gibert and Patel [22] demonstrate a cus-
tom full convolution network to segment railroad track scenes for visual inspection of
rail components. This approach is tested on the Northeast Corridor dataset by ENSCO
Rail’s Comprehensive Track Inspection Vehicle (CTIV) and shows good accuracy and
low false positive segmentation rates.

3 Rail segmentation

3.1 RailSet

We selected 23 videos from the train driver’s perspective to create the RailSet dataset.
Of these videos, 22 are accessible via the YouTube platformS, one of which is owned by
the SNCF®. These videos cover more than 34 hours of train traffic from different coun-
tries and in various conditions: weather conditions, camera models, editing positions
and lighting conditions. To avoid redundancy and overlapping scenes, we choose an
average of 280 frames per video, with each frame relatively distinct from the previous
one. We also adjust an SSIM metric [23] to measure the difference in structure between
the selected frames and filter out repetitive scenes. We include empty scenes where the
rails are invisible, such as in tunnels with no lighting, and snowy scenes where the rails
are fully or partially covered, in order to evaluate the consistency of existing models
over more variable situations (see Table 1).

Unlike Railsem19, we provide links to the collected videos and the index of each
processed scene. This allows us to provide more similar scenes for testing purposes,
and also serves as pseudo-labels where we can take a sequence of unlabeled images
around the labeled scenes for semi-supervised learning and for temporal processing
like tracking and matching.

We annotate the data based on the basic concept of rail structure, where the rails
are the components in direct contact with the train wheels, while the areas between
each pair of rails define the rail tracks. The rail class is annotated using the CVAT
computer vision annotation tool [15]. Each rail is annotated with a polyline extended
to the widest range of visibility of the rail, then smoothed with spline interpolation to
remove wobbles and sharp edges. The rail track class is automatically inferred from the

5 These videos are licensed permissive or free to use except for commercial purposes or with
explicit consent to allow experimentation and dissemination
® Société Nationale des Chemins de fer Francais
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rail labels by applying rail pairing. Rail pairing consists of grouping two rails belonging
to the same track which we performed manually using the CVAT tool [15]. We represent
the rail track class in two forms, either by a midline or by an enclosing polygon. To
form the polygonal representation, we simply connect each pair of lines and then fill in
the surrounding space. For the midline shape, we fit a line between each pair of rails
by taking the midpoint coordinates of the points that lie on the same horizontal level
(Fig.2). The purpose of using different shapes of the rails class is to detect which of them
will allow the models to achieve better performance in detecting rails and neglecting
other objects semantically similar to rails.

(a) (b) (©) ()

Fig. 2: RailSet different annotations masks. (a) raw-image, (b) rail class, (c¢) rail and rail-track
(enclosing polygon representation) classes and (d) rail and rail-track (mid-line representation)
classes.

Railsem19 [12] labeling policy contains more rail-specific labels than in our work.
For the SBDS data, only the active rail track is annotated, which is different from our
dataset and Railsem19, and since it is private data, we cannot consider it in our compar-
ison. To ensure comparability between the RailSet and Railsem19 datasets in our exper-
iment we take four of these labeled classes and we transform them following the policy
described previously taking the rail-raised (Fig.6 (a)) and the rail-embedded (Fig.6 (b))
labels as rail class , while the rail-track (Fig.6 (a)) and the tram-track (Fig.6 (b)) labels
as rail-track class.

Table 1: RailSet dataset properties

Number of Data Number_of_videos Acquisition time|Number of rails less visibility
Day light=4376, |, ¢ o 15223, .
Sunny=56, . Before bridge or tunnel=393
. Single-tracks=139, .
Rain=395, Inside tunnels=604
6600 23 Total=30585,
Snow=1033, >4 rails per frame=25% Snow=517
Dusk time=299, | 7™ * D e g [Night=320
Night=441 P =1
Annotation shapes Presence in frames Empty_images |Percentage_covered_areas|Mean_frames_per_video
rail=polyline
. Rails=98.74% 83 Rails=0.89% 280 ~ 0.41%
rail-track=polygon Rail-track(polygon, mid-line)=98.28% |~ Rail-tracks=8.26% =0
rail-track=poly-line(mid-line)

3.2 Experiments

We have two semantic segmentation networks deployed to solve the rail track segmenta-
tion task, UNET [10] and FRNN [11] which represent the baselines for our experiments.
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The training, validation, and testing distributions are based on different combinations of
data, including the RailSet and Railsem19 [12] datasets. Both architectures, UNET [10]
and FRNN [11] are configured for an input shape of 512x512x3 and a batch size of 20
images, with the Adam optimizer (learning rate=0.01, decay rate=0.9) [24]. As a model
evaluation metric, we use the Jaccard index, called the IoU metric. This metric provides
the amount of overlap between the predicted labels and the ground truth labels. The
models are implemented in the NVIDIA V100 GPU.

For each segmentation model, we validate its performance and test it on both RailSet
and Railsem19. The test set is composed of 1419 images from both datasets in a pro-
portion of 10% each. For the training set, depending on the experience, it varies at
proportion of 80% of the involved data. All these sets are selected equitably by tak-
ing into account various level of complexity presented on the number of rails, climatic
conditions and visibility.

We apply to the RailSet and Railsem19 datasets an augmentation using two trans-
formations which are mirroring with horizontal shift and zooming by warping the per-
spective of the region that contains all the rails to the full size image, see fig.3. We also
add 1290 crops of objects semantically similar to the rails, such as poles and wires, to
the empty images where the rails are not visible due to lighting, such as in tunnels. The
goal is to test whether this improves the discrimination ability of the models, thereby
reducing false positives.

Our data present a strong intrinsic imbalance, and to avoid having biased segmenta-
tion models, we generate for each batch of images and masks the corresponding weights
to penalize misclassifications.

(a) (b)

Fig. 3: Data augmentation. (a) Mirror via horizontal-shift augmentation, (b) Zooming to rails via
image stretching transformation.

We compare eight different experimental scenarios in which we refer to the results
of Zendel et al. [12] on the Railsem19 dataset. Since the relevant datasets are based
on two classes, while in Railsem19 they have dealt with several rail-specific classes,
we derive the average results of Zendel et al. [12] to obtain an overall segmentation
performance on the rail and track classes. Thus, we introduce the following equation: 1,
in which we use the presence rate in the images "in-frame" and the individual "mIoU"
performance provided in [12].

In-Fy TAMES(Rail raised) < mlo U(Rail-rdiaed) + In-Fy TAMES Rail-embedded) < ml OU(Hml-embeddsd) (l)

mloU(Rails) =
(I”_fn”nes(le—mmsed) + I”'Frames(Razl—ﬁmhﬁddﬁd))
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In all different scenarios, we opted for the dice-coefficient loss function that allows
us to obtain the best performance. The process of how we select the suitable loss func-
tion is based on an experiment with UNET [10] and FRNN [11] on the RailSet dataset,
we compare different loss functions among many such as AsymLoss, Tversky Loss,
Sensitivity-Specifity Loss, SoftDice loss and TopKLoss, see Table 2. Their implemen-
tations are described in [25].

Scenarios on Rail class In the scenario (1) and (2) we used RailSet and Railsem19
respectively with only the rail class, to study the impact of data augmentation on UNET
and FRNN segmentation performance. Therefore, we tested 3 data configurations; with-
out data augmentation, with data augmentation using only zooming and mirroring, then
we add the empty crops and images. We see an overall performance improvement on
both datasets, see Fig.4. Since we proved the importance of data augmentation applied
on RailSet and Railsem19, that allows the models to learn more features and different
situations, we opt for this technique in the remaining scenarios.

Under full data augmentation, UNET and FRNN models perform better overall
more complex scenes in the test set when trained on RailSet than on Railsem19 (see
Table 3), given that only 40% of the test set comes from our RailSet dataset. In the sce-
nario (1), we also tested the models on only tramway scenes, that yielded to comparable
results to Zendel et al. [12]. That shows the consistency of our dataset in more specific
environment setups. Otherwise, in the scenario (2), we observe a drop in performance
when testing the models on RailSet which is a dataset specific to only railways (see
Fig.5). This drop of performance can be explained by the fact that training models on
a more general dataset that contains mix of railways and tramways data would produce
a domain shift’. We therefore set an assumption that neglecting these tramway scenes
and training only with an in-domain data would improve performance. This assumption
is treated in the next scenario (3).

In scenario (3), we addressed the previously mentioned assumption. We trained
UNET and FRNN models on the Railsem19 dataset with only railway scenes, and tested
it against the RailSet dataset. We note that there is no significant improvement in per-
formance (see Fig.5). This is can be due to the high variability of RailSet scenes, which
potentially contain a more complex environment configuration. This explains the impor-
tance of introducing this new dataset to handle more specific environment complexity
in the railway domain.

Scenarios on Rail and Rail track classes Previously, only the rail class is treated.
In the scenario (4) and (5), we include the rail-track class when training the models
on RailSet and Railsem19 respectively. This additional class lead to a better segmen-
tation performance and provides a visual representation of the rail track region. In the
scenario (4), we observe an improvement in rail segmentation, especially the results on
Railsem19 with almost 1,5% gain compared to scenario (1) where we trained with only

" A change in the data distribution between an algorithm’s training dataset, and a dataset it
encounters when deployed.
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Fig. 4: Evaluation of FRNN and UNET on test set (a), rail class of Railsem19 dataset (b) and rail
class of RailSet dataset (c) taken from the scenarios (1) and (2). The effect of the different data-
augmentations O: without augmentation, M+Z: Mirror+Zoom, M+Z+EC:Mirror+Zoom+Empty-
Crops(1290 scenes without rails+83 empty images).

the rail class, see Fig.5. In the scenario (5), we observe an enhancement when testing on
RailSet with almost 1%. Moreover, rail-track class yields more direct local features on
the rails and leads the models to focus on the low region of the images, which reduces
the false positive rate, i.e., the detection of wires as rails. This improves rail detection
in reduced visibility conditions in tunnels, at night and also in stormy conditions, as
shown in the Table 3 of the test set.

In the scenario (6), we study the impact of changing the rail-track representation
in the RailSet dataset. The rail-tracks in their standard representation as enclosing-
polygons produce better performance results than the mid-line form, see Fig.5. This
may be due to the area similarity covered by the mid-lines with the surrounding areas,
resulting in more confusion and false positive segmentation. Such discontinuities or
shifts in the mid-lines position can cause the same on the rails segments.

Scenarios on mix dataset RailSet and Railsem19 In the scenarios (7) and (8) we
highlight the importance of mixing both datasets RailSet and Railsem19 when training
models, in which we obtained the best results on the test set as shown in Fig.5. We also
notice that training with the two classes rail and rail-track in scenario (8) achieves rails
segmentation precision of 67% mloU on test set, 70% mloU on Railsem19 and 69%
mloU on RailSet almost similar performance results compared to training with only the
rail class in scenario (7). In the Table 3, we can see in bold the best performances on
various scene categories of the test set are obtained by training on both datasets, as well
as adding the rail track class which improves the segmentation accuracy on less visible
rails. This experiment confirms the need of obtaining more training data to get more
scene situations and features. See Fig.7 for more visual results.

In perspective, along with the semantic segmentation, these data will serve for
anomaly detection by taking the location of the rails and processing it by auto-encoders.
Alternatively as in [26], we can take this data and explore the semantic labels, whether
they are ground truth labels or pseudo-labels composed of a sequence of ground truth
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e (2) Evaluation on test set (b) Evaluation on Railsem19 (©) Evaluation on Railset

kkkkkkkkkk

Fig.5: Evaluation results of UNET and FRNN on test set (a), Railsem19 (b) and RailSet (c)
across all the eight cases where all the data-augmentations were applied. The three lower
plots deal with performance on rail class and the three upper plots with performance on rail-
track class. RS=RailSet dataset, Rm19=Railsem19 dataset, RS&Rm19=RailSet dataset and
Railsem19 dataset. In legends, * refers to results deduced from the equation (1), while ** refers
to individual results taken from zendal et al. [12] paper.

labels and the underlying unlabeled scenes, as secondary guiding features for the 3D
reconstruction of frontal train scenes to detect geometric deformation of the rails and
holes in the rails and tracks.

4 Conclusion

We present a new dataset for Rail and Rail-track segmentation in railway scenes: RailSet.
Manual annotations are made to generate the Rail class masks, and from these initial
annotations, the Rail-track labeling is generated automatically. We conducted multi-
ple experiments using the UNET and FRNN architectures on different data configura-
tions. These experiments yielded results comparable to those recorded on the Railsem19
dataset. That in turn proved the valuability of the RailSet dataset, along a number of pre-
treatments such as the data augmentation, the inclusion of the Rail-track class in training
and merging the two datasets. Adding temporal indexes of RailSet scenes would yield
more data for testing, and would serve as input for other tasks such as semantic pattern
matching and tracking. For now, only a part of the RailSet dataset is provided for public
and will publish the remaining sooner.
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Table 2: Evaluation of UNET and FRNN models trained on RailSet under various state-of-the-art
segmentation losses on the overall datasets. EC: Empty Crops with objects semantically similar
to rails, M+Z: Mirror+Zooming. The evaluation metric is the mloU. The shortcut SS-loss refers
to Sensitivity-Specifity loss.

Training-parameters Railsem19

Model Data |Loss Class l/\\/{ligzmgrétanon Test-data Valid-data Train-Scenes| Tram-Scenes|Shared Scene RailSet
Dice-coefficient v 0.642 |0.637  |0.627 0.382 0.621 0.716
Assymloss v ol 0.585 10.574  |0.587 0.335 0.587 0.597

UNET [RailSet|Tversky Rails|v' |V 0.639 10.636  |0.607 0.382 0.596 0.721
SS-loss s 0.638 10.635  |0.621 0.398 0.616 0.708
DC_and_topk v oW 0.629 10.625  |0.615 0.373 0.61 0.695
Dice-coefficient v 0.63 0.631 0.625 0.418 0.62 0.673
Assymloss v o 0.603 0.605  |0.564 0.399 0.558 0.692

FRNN RailSet| Tversky Rails|v" |V 0.548 10.555  |0.512 0.35 0.505 0.631
SS-loss v ol 0.609 10.612  |0.581 0.386 0.572 0.682
DC_and_topk v W 0.622 10.623  |0.587 0.395 0.583 0.699

Table 3: Detailed results of UNET and FRNN performance on various scenes in the test set,
taking into account weather conditions and the number of rails per scene that alter rail visibility
and make segmentation more complex. Training is performed on different data configurations
and classes:"Rail" and "Rail Track" (polygon, centerline). <4 rails refers to scenes with less than
four rails and >4 rails for scenes with more than four rails that represents 20% of test set. Values
in bold indicate the best results on rail and track segmentation. For the rail midline configuration,
we only shows the results on the rail class.

Test-data
Model |~ Data Classes Night Snow Tunnels Rain <4 rails >4 rails
Rail 0.58 0.647 0.544 0.66 0.627 0.633
Rail | Rail rack] ) ¢, 0.6 0.514 0.621 0.593 0.594

RailSet (midline)
Rail | Rail track

0.61]0.81 | 0.65 | 0.866 |0.556 | 0.802|0.677 | 0.909{0.631 | 0.871|0.633 | 0.844

(polygon)
UNET Rail 0562 0559 0525 0,616 0617 0657
Railsem[9 Ralgp'(}fyagﬂog)“k 0.5540.831/0.553 | 0.853] 0.524 | 0.83 |0.613 | 0.913]0.615 | 0.905]0.651 | 0.894
Rail 0615 0,659 0,566 0.681 0.677 0.675

RailSet +
Railsem19

Rail | Rail track
(polygon)
Rail 0.561 0.598 0.521 0.681 0.628 0.64

Rail | Rail track
RailSet (midline) 0.497 0.573 0.49 0.614 0.58 0.57

Rail | Rail track

0.635 | 0.844/0.666 | 0.892| 0.592 | 0.86 |0.701 | 0.939|0.675 | 0.923|0.675 | 0.903

0.552 ] 0.763|0.592 | 0.823]0.535 | 0.801{0.682 | 0.897| 0.634 | 0.88 0.639 | 0.869

(polygon)
s |RRe;1j11 _ 0457 03 04356 | 065 | 0597 | 0655
‘ (polygon) |050510763/0.522| 0814/0.494| 0787 0615 | 0909|0613 | 089501645 | 0894
: Rail 0.361 0619 | 0541 0662 | 065 | 0674
RailSet + 1 TRal rack
Railsem!9 0.564 0.7 | 0.61 | 0.839 |0.542 | 0.819]0.667 | 0.924| 0.659 | 0.91 | 0.671 090

(polygon)
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Fig.6: FRNN test example on Railsem19’s scenes. The first row displays the input images: (a)
train scene, (b) tramway scene and (c) shared scene, the second row displays the ground truth of
the input images and the last row displays the FRNN predictions.
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Scenario (4) Scenario (1) Ground truth Input-images

Scenario (6)

Fig. 7: Further examples of the results of UNET trained on different configurations of RailSet
detailed in scenario (1), scenario (4) and scenario (6). Only the rail segmentation masks are
displayed.
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