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Abstract: Recent works in autonomous driving have widely adopted the bird’s-
eye-view (BEV) semantic map as an intermediate representation of the world.
Online prediction of these BEV maps involves non-trivial operations such as
multi-camera data extraction as well as fusion and projection into a common top-
view grid. This is usually done with error-prone geometric operations (e.g., ho-
mography or back-projection from monocular depth estimation) or expensive di-
rect dense mapping between image pixels and pixels in BEV (e.g., with MLP
or attention). In this work, we present ‘LaRa’, an efficient encoder-decoder,
transformer-based model for vehicle semantic segmentation from multiple cam-
eras. Our approach uses a system of cross-attention to aggregate information
over multiple sensors into a compact, yet rich, collection of latent representa-
tions. These latent representations, after being processed by a series of self-
attention blocks, are then reprojected with a second cross-attention in the BEV
space. We demonstrate that our model outperforms the best previous works us-
ing transformers on nuScenes. The code and trained models are available at
https://github.com/valeoai/LaRa.

Keywords: bird’s eye view semantic segmentation; encoder-decoder transformers

1 Introduction

To plan and drive safely, autonomous cars need accurate 360-degree perception and understanding of
their surroundings from multiple and diverse sensors, e.g., cameras, RADARs, and LiDARs. Most
of the established approaches tardily aggregate independent predictions from each sensor [1, 2, 3].
Such a late fusion strategy has limitations for reasoning globally at the scene level and does not
take advantage of the available prior geometric knowledge that links sensors. Alternatively, the
bird’s-eye-view’s (BEV) representational space, a.k.a. top-view occupancy grid, recently gained
considerable interest within the community. BEV appears as a suitable and natural space to fuse
multiple views [4, 5] or sensor modalities [6, 7] and to capture semantic, geometric, and dynamic
information. Besides, it is a widely adopted choice for downstream driving tasks including motion
forecasting [5, 8, 9, 10] and planning [11, 12, 13, 14]. In this paper, we focus on BEV perception
from multiple cameras. The online estimation of BEV representations is usually done by: (i) impos-
ing strong geometric priors such as a flat world [15] or correspondence between pixel columns and
BEV rays [16], (ii) predicting depth probability distribution over pixels to lift from 2D to 3D and
project back in BEV [4, 5], a system subject to compounding errors, or, (iii) learning a costly dense
mapping between multi-camera features and the BEV grid pixels [17].
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Figure 1: LaRa overview. Semantic features (green) are extracted from the images with a shared
CNN and are concatenated with ray embeddings (multi-colored) that inform about geometric infor-
mation to spatially relate pixels within and across cameras. This representation is then fused into
a compact latent representation through one cross-attention (CA) and L self-attention (SA) layers
(yellow). The final BEV map is obtained by querying the latent representation with a cross-attention
and then refined with BEV CNN (red). ⊕ denotes concatenation. The orange letters indicate tensor
dimensions. K, Q, and V are the Key, Query, and Value of the cross-attentions.

Here, we depart from these dominant strategies and introduce ‘LaRa’, a novel transformer-based
model for vehicle segmentation from multiple cameras. In contrast to prior works, we propose to use
a latent ‘internal representation’ instantiated as a collection of vectors. Fusing multiple views into a
compact latent space comes with several benefits. First, it provides an explicit control on the memory
and computation footprint of the model, instead of the quadratic scaling of the full mapping between
multi-camera features and the BEV grid pixels [17]. By design, the number of latents that we use
is much smaller compared to the spatial resolution of the BEV grid, enabling a highly-efficient
aggregation of information at the latent-level while exploiting spatial cues within and across camera
views. Moreover, we also hypothesize that discarding error-prone modules in the pipeline such as
depth estimation [4, 5] can boost model accuracy and robustness. Finally, we can directly predict
at the full-scale BEV resolution bypassing noisy upsampling operations. This is infeasible, within
a reasonable computational budget, for prior works restricted to coarser BEV grids as they map
densely between all the image and BEV grid pixels [17]. Besides, as an orthogonal contribution, we
augment input features with ray embeddings that encode geometric relationships within and across
images. We show that such spatial embeddings, encoding prior geometric knowledge, help guide
the cross-attention between input features and the latent vectors.

Our approach is extensively validated against prior works on the nuScenes [10] dataset. We sig-
nificantly improve the performance on the vehicle segmentation task, outperforming recent high-
performing models [4, 17]. Moreover, we show interesting properties of our cross-attention, which
naturally stitches multiple cameras together. We also perform several ablation and sensitivity studies
of our architecture with respect to hyper-parameters changes. Overall, LaRa is a novel model that
learns the mapping from camera views to bird’s-eye-view for the task of vehicle semantic segmen-
tation. In summary, our contributions are as follows:

• We encode multiple views into a compact latent space that enables precise control on the model’s
memory and computation footprint, decoupled from the input size and output resolution.

• We augment semantic features with spatial embeddings derived from cameras’ calibration param-
eters and show that it strongly helps the model learn to stitch multiple views together.

• Our architectural contributions are validated on nuScenes where we reach new SOTA results.
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2 Related work

2.1 BEV semantic segmentation

Models for BEV segmentation are typically structured in two parts. They first extract features of
each camera and then project them into a common top-view grid, called the bird’s-eye-view. There
are different strategies for this projection, which can be grouped into the following categories.

IPM-based. Inverse perspective mapping (IPM) defines the correspondence between the camera and
the ground planes as a homography matrix. IPM makes strong assumptions that the world is planar
and the cameras’ horizontal axes are parallel to the ground. Early works [18, 19] apply it directly to
raw camera pixels or features. This approach suffers from blurring and stretching artifacts for distant
objects (as they have fewer pixels in the camera view) and objects with a height (as they violate the
planar world assumption). To alleviate these shortcomings, a generative adversarial network [20] or
training a BEV decoder with synthetic ground-truth [15] has been used to refine the IPM projection.

‘Lift-splat’-based: guiding with depth. Using depth information to lift features from 2D to 3D and
then ‘splatting’ them in BEV space recently gained popularity for its effectiveness and sound geo-
metric definition. Among the formulations of depth estimation for BEV projection [2, 4, 5, 21, 22],
estimating depth probabilities along camera rays appears to perform the best [4, 5]. However, such a
strategy, depth being the most influential factor [23], is subject to compounding errors. Inaccuracies
in depth prediction will propagate into the BEV features, which themselves can be erroneous.

Implicitly learned with dense networks. An alternative to explicit geometric projection is to learn
the mapping from data. For instance, VPN [24] uses an MLP to make a dense correspondence
between pixels in the camera views and BEV. These methods rely on such expensive operations
and do not use readily available spatial information given by the calibrated camera rig capturing the
images. The BEV projection must be entirely learned, and as it is determined by training data, it
can hardly apply to new settings with slightly different camera calibrations. Alternatively, PON [16]
builds on the observation that a column in the camera image contains all the information of the
corresponding ray in BEV: it first encodes each column into a feature vector, which is then decoded
into a ray along the depth dimension. However this relies on two implicit assumptions: (i) the
camera follows a pinhole projective model, and (ii) it is horizontally aligned with the ground plane.

Implicitly learned with transformer architectures. The attention system at the core of transformer
architectures [25, 26, 27, 28] allows learning of long-range dependencies and correspondences ex-
plicitly. These architectures have recently been employed for the BEV semantic segmentation task,
yielding among the best-performing methods [17, 29, 30]. Nonetheless, a direct cross-attention [25]
between camera images and the BEV grid is computationally expensive. BEVFormer [29] allevi-
ates this issue by only cross-attending BEV pixels with cameras in which the BEV pixel is visible
and by replacing the heavier multi-head attention [25] with deformable attention [31]. CVT [17]
keeps the vanilla multi-head cross-attention [25] but applies it between low-resolution camera fea-
ture maps and a small BEV grid which is then upsampled to reach the final resolution. GitNet [30]
restrains the cross-attentions to column-ray pairs making the same original implicit assumptions as
PON [16]. Our proposed model LaRa belongs to this category as it learns the BEV representation
with a transformer architecture. On the other hand, our attention scheme does not impose strong
geometric assumptions while still being efficient enough to attend to a full-resolution BEV grid.

2.2 Incorporating geometric priors in Transformers

Since transformer architectures are permutation-invariant, spatial relationships between image re-
gions are lost if no precautions are taken. A standard practice to retain this spatial knowledge is to
add a positional embedding to the input of attention layers [25]. A popular approach is to encode
the position of pixels with sine and cosine functions of varying frequencies [25, 27, 28] applied over
the horizontal and vertical axes. An alternative solution to induce spatial awareness in the model is
to concatenate x, y positions to feature maps fed to convolutional layers [32].
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Related to our ray embedding proposition, recent works [33, 17] embed the parameters of the cali-
brated cameras in the image features, improving training efficiency and segmentation performance.
Similar to LaRa, IIB [33] also encodes the camera center and ray direction in the input feature
sequence, but it applies it to depth estimation on image pairs in an indoor environment. Further-
more, Yifan et al. [33] embed the origin and direction of rays into Fourier features, which can
become memory intensive depending on the number of frequency bands and also introduces addi-
tional hyper-parameters to tune. CVT [17] adds up a ray direction embedding to the input feature
sequence, but, differently from ours, uses the camera center embedding in the BEV query. This
requires a BEV query and ‘cross-view attention’ operation per camera, increasing the memory and
computational footprint, thus limiting the maximum resolution of the BEV query.

3 LaRa: Our Latents and Rays Model

Given multiple cameras observing the scene, our goal is to estimate a binary occupancy grid [34]
ŷ ∈ {0, 1}hbev×wbev of size hbev × wbev ∈ N2 for vehicles in the surroundings of the ego car. We
propose ‘LaRa’ a transformer-based architecture to efficiently aggregate information gathered from
multiple cameras into a compact latent representation before expanding back into the BEV space.
Besides, as we believe that the geometric relationship between cameras should guide the fusion
across each camera view, we propose to augment each pixel with the geometry of the ray that cap-
tured it. The LaRa architecture is illustrated in Figure 1.

3.1 Input modeling with geometric priors

We consider C cameras described by (Ik,Kk,Rk, tk)
C
k=1, with Ik ∈ RH×W×3 the image pro-

duced by camera k, Kk ∈ R3×3 the intrinsics, Rk ∈ R3×3 and tk ∈ R3 the extrinsic rotation and
translation respectively. From these inputs, two complementary types of information are extracted:
semantic information from raw images and geometric cues from the camera calibration parameters.

Semantic information from raw images. A shared image-encoder E extracts feature maps for
each image Fk = E(Ik) ∈ Rh×w×c. Following [4, 5], we instantiate E with a pretrained Efficient-
Net [35] backbone to produce the multi-camera features. These spatial feature maps in RC×h×w×c

are then rearranged as a sequence of feature vectors, in R(C hw)×c.

Leveraging geometric priors. To enrich camera features with geometric priors, commonly used
sine and cosine spatial embeddings [25, 27, 28] are ambiguous in presence of multiple cameras.
A straightforward solution would be to use camera-dependant learnable embeddings in addition to
the Fourier embeddings to disambiguate between cameras. However, in our setting, we argue that
the geometric relationship between cameras, which is defined by the structure of the camera rig, is
crucial to guide the fusion of the views. This motivates our choice to leverage the cameras’ extrinsics
and intrinsics to encode the position and orientation of each pixel in the vehicle ego-frame.

More precisely, we encode the camera calibration parameters by constructing the viewing ray for
each pixel of the cameras. Given a pixel coordinate x ∈ R2 within a camera image Ik, the direction
dk(x) ∈ R3 of the ray that captured x is computed with:

dk(x) = R−1
k K−1

k x̃, (1)

where x̃ are the homogeneous coordinates of x, and dk(x) is expressed in ego-coordinates. The
origin of the ray dk(x) is the camera center given by tk.

Then, to fully describe the position and the orientation of the ray that captured pixel x, we use the
embedding rayk(x) ∈ Rd computed as follows:

rayk(x) = MLPray(tk ⊕ dk(x)), (2)

where ⊕ is a concatenation operation and MLPray a 2-layer MLP with GELU activations [36]. The
computation is consistent within and across cameras and it exhibits an interesting property: overlap-
ping regions for two cameras with the same optical center have the same ray embedding. Note that
the intrinsics are scaled according to the difference in resolution between Ik and Fk.
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As shown in Figure 1, the final input vector sequence, in R(C hw)×(d+c), is produced by concatenat-
ing each of the C hw feature vectors Fk(x) ∈ Rc with its geometric embedding rayk(x) ∈ Rd.

3.2 Building latent representations and deep fusion

To control the computational and memory footprint of the image-to-BEV block, we leverage find-
ings from general-purpose architectures [28] and propose to use an intermediate fixed-sized latent
space instead of learning the quadratic all-to-all correspondence between multi-camera features and
BEV space [17]. Formally, the visual representations Fk from all cameras, along with their cor-
responding geometric embeddings rayk, are compressed by cross-attention [25] into a collection
of N learnable latent vectors of dimension M ∈ N and processed by a series of L self-attention
blocks [25] (see yellow elements in Figure 1). We stress that N ≪ C hw, which enables to fuse and
process efficiently the visual information coming from all the cameras regardless of the input feature
resolution or the number of cameras. Thanks to latent-based querying, this formulation decouples
the network’s deep multi-view processing from the input and output resolution. Our architecture can
thus take advantage of the full resolution of the BEV grid.

3.3 Generating BEV output from latents

The final step is to decode the binary segmentation prediction ŷ ∈ {0, 1}hbev×wbev from the la-
tent space. In practice, the latent vectors are cross-attended [25] with a BEV ‘query’ grid Q ∈
Rhbev×wbev×dbev at the final prediction resolution, with dbev ∈ N a hyper-parameter (illustrated by the
red blocks in Figure 1). Each element of the query grid is a feature vector encoding the spatial posi-
tion in the bird’s-eye-view which specifies what information the cross-attention would extract from
the latent representations. This last cross-attention yields a feature map in BEV space, in dimension
hbev × wbev × 256, that is further refined with a small convolutional encoder-decoder U-Net (‘BEV
CNN’ in Figure 1) to finally predict the binary bird’s-eye-view semantic map ŷ ∈ {0, 1}hbev×wbev×1.

Specifically, we consider a combination of two types of queries: normalized coordinates in the BEV
space and radial distance. Normalized coordinates encode ego-centered normalized coordinates of
the BEV plane. They are obtained with:

Qcoords[i, j] =

(
2i

hbev − 1
− 1,

2j

wbev − 1
− 1

)
, ∀i, j ∈ {0, . . . , hbev−1}×{0, . . . , wbev−1}. (3)

Normalized radial distances are simply Euclidean distances of pixels w.r.t. the origin:

Qradial[i, j] =
√
Qcoords[i, j]2i +Qcoords[i, j]2j . (4)

While the network could produce a similar embedding from Qcoords using MLPbev, we find that
introducing these radial embeddings along Qcoords empirically improves results. Moreover, this
query decoding choice compares favorably against more classical Fourier embeddings [25, 28, 33]
and learned query embeddings [25, 27], as shown in Table 2.

4 Experiments

Dataset. We conduct experiments on the nuScenes dataset [10], which contains 34k annotated sets
of frames captured by C=6 synchronized cameras covering the 360° field of view around the ego
vehicle. The extrinsics and intrinsics calibration parameters are given for all cameras in every scene.
Raw annotations come in the form of 3D bounding boxes that are simply rendered in the discretized
top-down view of the scenes to form the ground-truth for our binary semantic segmentation task.

Precise settings for training and validation. With no established benchmarks to precisely compare
model’s performances, there are almost as many settings as there are previous works. Differences
are found at three different levels: The resolution of the output grid, the level of visibility used to
select objects as part of the ground-truth, and the task considered. In this paper, we address the
task of binary semantic segmentation of all vehicles (cars, bicycles, trucks, etc.) [4, 17]. This
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Table 1: Intersection-over-Union (IoU) for vehicle segmentation on nuScenes. ‘Setting 1’ refers
to a 100m×50m grid with a 25cm resolution and ‘Setting 2’ to a 100m×100m grid with a 50cm
resolution. For training and validation, vehicles are considered only if their visibility level is above
a predefined threshold (either 0% or 40%). To compare against other works, we refer the reader to
Lift-splat [4] and CVT [17].

visibility > 0% visibility > 40%
Method Conference Setting 2 Setting 1 Setting 2

Lift-splat [4] ECCV’20 32.1 — —
CVT [17] CVPR’22 — 37.5 36.0
LaRa (ours) — 35.4 41.4 38.9

Table 2: Ablation study for the input and output query embedding. Training and evaluation are
done in Setting 2 (100m×100m at 50cm resolution), with a visibility > 0%.

Input geometry embedding

Cam. rays Cam. idx Fourier IoU

✔ ✗ ✗ 35.4
✔ ✔ ✔ 34.4
✗ ✔ ✔ 32.3
✗ ✗ ✔ 30.5

Output query embedding

Radial dist. Norm. coords Fourier Learned IoU

✔ ✔ ✗ ✗ 35.4
✗ ✔ ✗ ✗ 35.1
✗ ✗ ✔ ✗ 30.6
✗ ✗ ✗ ✔ 21.8

choice is made to have fair and consistent comparisons with our baselines [4, 17], however, it should
be noted that our model is not constrained to this setting. To enable and ease future comparison, we
have published our code2. We also present additional settings in the supplementary material. In all
the settings we considered, models are evaluated with the IoU metric.

Training and implementation details. We train our model by optimizing the Binary Cross Entropy
with our predicted soft segmentation maps and the binary ground-truth. Images are processed at
resolution 224× 480. We use the AdamW [37] optimizer with a constant learning rate of 5e−4 and
a weight decay of 1e−7. We train our model on 4 Tesla V100 16GB GPUs with a total batch size of
8 for 30 epochs. Training takes on average 11 hours. We use an EfficientNet-B4 [35] with an output
stride of 8 as our CNN image encoder. For the BEV CNN we follow Philion and Fidler [4]. MLPbev
is a 2-layer MLP producing dbev = 128-dimensional features.

4.1 Comparison with previous works

In Table 1, we compare the IoU performances of LaRa against two baselines Lift-Splat [4] and
CVT [17] on vehicle BEV segmentation in their respective training and evaluation setups. In all
cases, we improve results by a significant margin. More precisely, we improve by 10% compared to
Lift-Splat in their settings, by 10% and 8% compared to CVT respectively in Setting 1 and Setting 2.
This suggests that our model can better extract the geometric and semantic information from all
cameras with a very general architecture that does not necessitate any strong geometric assumptions.
Besides, when compared with CVT, we observe that LaRa obtains better results in the setting with
finer resolution (+10% in Setting 1 vs. +8% in Setting 2).

Since our attention mechanism does not rely on all-to-all attention between camera images and
BEV map as CVT does, LaRa can directly decode to the final BEV resolution which helps for fine
prediction at a high resolution.

4.2 Model ablation and sensitivity to hyper-parameters

Input and Output-level embeddings. To assess the contribution of the geometric embeddings
that we use, we compare the different choices at both the input and output level in Table 2. As

2https://github.com/valeoai/LaRa
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Figure 2: Sensitivity study of LaRa to hyper-parameters. We vary the number of latent vectors
(N ), their dimension (M ), and the number of self-attention layers (L) and report IoU performances.

hypothesized, embedding the geometric relationship between cameras in the input is better suited
for our task than the generic sine and cosine spatial embeddings. The additional camera index,
while performing better than Fourier feature alone, is not enough to link pixels across cameras. For
the output query embedding, the combination of normalized coordinates and radial distance gives
the best results. This simple choice outperforms both the Fourier features [25, 28] and learned
embeddings [25, 27] that also have the disadvantage of increasing the number of parameters.

Sensitivity to hyper-parameters. To delve into the influence of hyper-parameters, we conduct
a sensitivity analysis in Figure 2 where we vary the number N of latent vectors, their dimension
M and the number of self-attention blocks L. We clearly observe that the performance increases
with the number of latent vectors used. This is expected as it is the main parameter controlling the
attentional bottleneck between input and output. Such a parametrization allows for an easy tuning
of the performance/memory trade-off. We observe no clear correlation between the dimension M
of latent vectors, the number L of self-attention layers, and the obtained IoU performance. This
indicates that our architecture is not too sensitive to these hyper-parameters and can work efficiently
with a wide range of values for these parameters. Although we obtain better results with 512 latent
vectors, we use a maximum of 256 to stay in the same computational regime as the baseline we
compare against; training with 512 latent vectors requires 32GB GPUs.

4.3 Study of attention

As quantitatively studied in Section 4.2, embedding camera rays impacts significantly the perfor-
mance of LaRa. By analyzing the input-to-latent attention map, we further investigate the geometric
reasoning of LaRa in Figure 3. In this figure, we show two representations of the attention: a re-
projection of the attention in the camera-space (left) and a top-view projection of the attention in
polar coordinates by collapsing, i.e., averaging the vertical dimension (right). In the latter, the radial
distance is proportional to the attention level and shows the directions the network attends the most.

The study is conducted at three different levels. First, for a couple of one latent vector and one
attention head (n = 10, h = 5 and n = 50, h = 30), among N = 256 possible latents and H = 32
possible attention heads. Second, for one latent vector and the averaged attention from all attention
heads (n = 10, h = avg and n = 50, h = avg). Third, for one attention head and the averaged
attention over all latents (n = avg, h = 5 and n = avg, h = 30). From these three settings, we note
the followings: First, the attention map between one latent vector and one attention head targets
a specific direction (about a 90° field of view). Additionally, it can be clearly observed that the
attention is continuous across cameras, proving the network is able to retrieve the pixel relationships
between views. Second, while one attention head fires in a specific direction, the attention averaged
over all the heads for one latent vector spans over half of the scene. This allows one latent vector
to extract long-range context between views with the capacity to disambiguate them. Third, the
attention for one head aggregated over all the latent vectors covers all directions, suggesting that the
latent vectors contain all of the directional information and that the whole scene is attended across
the latents. To summarize, by integrating early multi-view geometric cues instantiated by camera
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rays embedding (Section 3.1), we show that LaRa learns to reason across views. We also provide
quantitative evidence in the supplementary material.

4.4 Qualitative Results

We show the segmentation results of two complex scenes in Figure 4. For a fair comparison, we
use our model trained with visiblity > 40% against CVT and > 0% against Lift-Splat. Compared
to LaRa, CVT missed two objects, one at a long distance and the other in the dark (red box). We
also estimate the boundaries of the vehicles better than Lift-Splat (green box). Interestingly, models
trained on all vehicles (visibility > 0%) tend to hallucinate cars in occluded or distant regions
(highlighted with black circles in the figure).

5 Conclusion

We presented LaRa, which leverages transformer-based architectures and encoder-decoder models,
with respectively efficient deep cross- and self-attentions as well as an explicit control on the com-
putation and memory footprint thanks to decoupling the bulk of the processing from the input and
output resolution. By incorporating ray embeddings into LaRa, we augment semantic features with
geometric cues of the scene and show that this leads to multi-view stitching.

Limitations. Our model operates on camera inputs only. Thus, in adverse conditions, e.g., with
glares and darkness, its performance remains limited. To better handle these challenging situations,
one avenue of improvement would be the extension of LaRa to handle complementary modalities,
e.g., coming from LiDARs or radars.

Broader impacts. LaRa demonstrates that the geometry and semantics of a complex scene can be
compacted in a small collection of latent vectors. We believe that this formulation would allow for
efficient temporal reasoning. Currently, the temporal modeling is done in the BEV space, which is
high resolution and mostly represents empty space [5, 29].
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Figure 4: Qualitative results on complex scenes. We show the six camera views surrounding the
vehicle along with segmentation map ground-truth for reference. In the ground-truth (GT) map,
vehicles are shown in blue (visibility > 40%) or purple (visisibility < 40%). The ego vehicle is
located in the center and facing downwards. We show results for our two baselines [4, 17]. For a
fair comparison, we always compare using their respective level of visibility. Setting 2 is used.
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LaRa: Latents and Rays for Multi-Camera
Bird’s-Eye-View Semantic Segmentation

— Supplementary Material —
A Implementation details

Following common practice [4, 5, 17] we employ an EfficientNet [35] as our CNN image encoder
E. In particular, we use an EfficientNet-B4 [35] with an output stride of 8. It extracts feature maps
for each image Fk = E(Ik) ∈ Rh×w×c. In practice, h = 224/8 = 28, w = 480/8 = 60 and we
define c = 128.

For the BEV CNN, we follow Philion and Fidler [4] and use an encoder-decoder architecture with
a ResNet-18 [38] as backbone. It produces features at three levels of resolutions (1:1, 1:2 and 1:8),
which are progressively upsampled back to the input resolution with bilinear interpolation (first ×4
for the 1:8th scale then ×2 for the 1:2th). Skip connections are used between encoder and decoder
stages of the same resolution.

Both MLPray and MLPbev are 2-layer MLPs producing 128-dimensional features. Each consists of
two linear transformations with a GELU [36] activation function:

MLP(x) = W2GELU(W1x+ b1) + b2. (5)

The exact specification of other modules will be available in our code upon publication.

A.1 Attention modules

Following the original formulation and notations [25], the attention operation is defined as:

Attn(Q,K, V ) = softmax(
QK⊤
√
dK

)V (6)

with its multi-headed extension:
MultiheadAttn(Q,K, V ) = Concat(head1, . . . , headh)WO

where headi = Attn(QWQ
i ,KWK

i , V WV
i ).

(7)

with dq , dv , dk the dimensions of Q, K and V . In practice, we use dmodel, a hyperparameter, to
define the dimension of the queries, keys and values for the inner attention (Equation 6) as well
as h the number of attention heads. More precisely, we linearly project queries, keys and values h
times with different projections, each with dimension demb = dmodel/h. The learnable projection
matrices of each head are defined as WQ

i ∈ Rdq×demb , WK
i ∈ Rdk×demb , WV

i ∈ Rdv×demb and
WO

i ∈ Rh·demb×dv .

Our architecture integrates three attention modules [25]: (i) a cross-attention between latent vec-
tors and input features; (ii) a sequence of self-attention on the latent vectors; (iii) a cross-attention
between BEV query and latent vectors. More precisely, and with a slight abuse of notation:

Latent-Input cross-attention
latents := MultiheadAttn(LayerNorm(latents),LayerNorm(input),LayerNorm(input)) + latents
latents := MLP(LayerNorm(latents)) + latents

(8)

Latent self-attention
latents := MultiheadAttn(LayerNorm(latents),LayerNorm(latents),LayerNorm(latents)) + latents
latents := MLP(LayerNorm(latents)) + latents

(9)
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BEVquery-Latent cross-attention

output := MultiheadAttn(LayerNorm(BEVquery),LayerNorm(latents),LayerNorm(latents))
output := MLP(LayerNorm(output)) + output

(10)

In particular, the cross-attention between BEV query and latent vectors is not residual. Since the
query is made of coordinates, imposing the network to predict segmentation as residual of coordi-
nates does not make sense.

A.2 Output embedding

In the main paper, we considered Fourier features and learned query as alternative BEV query em-
beddings. Here we detail both of them.

Fourier features. The Fourier encoding has been proven to be well suited for encoding fine posi-
tional features [25, 28, 33]. This is done by applying the following on an arbitrary input z ∈ R:

fourier(z) = (z, sin(f1πz), cos(f1πz), . . . , sin(fBπz), cos(fBπz)) , (11)

where B is the number of Fourier bands, and fb is spaced linearly from 1 to a maximum frequency
fB and typically set to the input’s Nyquist frequency [28]. The maximum frequency fB and number
of bands B are hyper-parameters. This Fourier embedding is applied on the normalized coordinate
grid such that:

Qfourier[i, j] = fourier(Qcoords[i, j]i)⊕ fourier(Qcoords[i, j]j). (12)

Learned. Another alternative, following common transformer practice [25, 27] and most notably
proposed by CVT [17], is to let the network learn its query of dimension dbev-query from data. How-
ever, this is memory intensive as it introduces hbev × wbev × dbev-query additional parameters to be
optimized. In other words, the number of parameters grows quadratically to the resolution of the
BEV map. For experiments using learned output query embedding, we use dbev-query = 32.

B Evaluation details

With no established benchmarks to precisely compare model’s performances, there are almost as
many settings as there are previous works. Differences are found at three different levels:

• The resolution of the output grid where two main settings have been used: a grid of
100m×50m at a 25cm resolution [17, 16, 24, 39] and a grid of 100m×100m at a 50cm
resolution [4, 17]. These settings are respectively referred as ‘Setting 1’ (hbev × wbev =
400× 200) and ‘Setting 2’ (hbev × wbev = 200× 200).

• The considered classes. There are slight differences in the classes used to train and evaluate
the model. For instance, some models are trained with a multi-class objective to simulta-
neously segment objects such as cars, pedestrian or cones [16, 24, 39]. Some others
only train and evaluate in a binary semantic segmentation setting on a meta-class vehicles
which includes cars, bicycles, trucks, etc. [4, 17]. Some works also use instance seg-
mentation information to train their model where the centers of each distinct vehicle is
known at train time [5]. In all of our experiments, we place ourselves in the binary se-
mantic segmentation setting of the meta-class vehicles. This choice is made to have fair
and consistent comparisons with our baselines [4, 17], however, it should be noted that our
model is not constrained to this setting.

• The levels of visibility of objects. Objects selected as ground truth, both for training and
evaluating the model, differ in terms of their levels of visibility. Three options have been
considered: objects that are in line-of-sight with the ego car’s LiDAR [16], or objects with
a nuScenes visibility above a defined threshold, either 0% [4] or 40% [17].
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C Extension to driveable area segmentation task

front left front front right

back left back back right

GT Pred

front left front front right

back left back back right

GT Pred

front left front front right

back left back back right

GT Pred

front left front front right

back left back back right

GT Pred

Figure 5: Qualitative results on complex scenes. We show the six camera views surrounding the
vehicle along with segmentation ground truth for reference. Vehicles are shown in blue and driveable
area in gray. Vehicles and driveable area predictions are from two different models trained indepen-
dently for their respective ground-truth, the predictions are then merged for vizualization purpose.
The ego vehicle is located in the center and facing downwards. Predictions of both driveable area
and vehicle segmentation are thresholded at 0.5 for visualization purpose.

In this section, we also provide results for the driveable area segmentation task, also addressed by
CVT [17]. Contrary to vehicle segmentation, this task requires the network to do “amodal comple-
tion” to a high degree, i.e., to correctly estimate regions of the road despite parts of it being severely
occluded.

We followed the protocol of CVT [17] for this segmentation task; the ground truth is generated using
HD-map’s polygons from the dataset. We kept the same hyperparameters we used for the vehicle
segmentation task, with a minor difference to the learning rate: we divide it by a factor 10 after 15
epochs (compared to a constant learning rate for vehicle segmentation).

Quantitative and qualitative results for this additional task are given respectively in Table 3 and
Figure 5. When compared with CVT, we observe that LaRa achieves better performance (+0.9).
Note that we do not do multi-tasking: following CVT [17], we train a model specifically for the
task of driveable area segmentation. The qualitative examples in Figure 5 are produced by fusing
predictions from two models.
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Table 3: Driveable area segmentation. Results (in IoU) on nuScenes.

Method IoU

CVT 74.3
LaRa (ours) 75.2

D A quantitative study of the influence of ray embedding on attention
consistency across cameras

n:80 h:10
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back left back back right

n:80 h:10

n:10 h:5

front left front front right

back left back back right

n:10 h:5

Figure 6: Input-to-latent attention study. Analysis of attention maps for two networks trained
with different input embeddings. Top row is with ‘Fourier + Cam. idx’ and bottom row is with our
proposed ‘Cam. rays’ embedding. The attention for one attention head and one latent is shown on
the left superimposed with RGB images. The polar plots represent the directional attention intensity
for one attention head with one latent vector. The radial distance is proportional to the attention level
and shows the directions the network attends to the most.

In this section, we propose a quantitative analysis to support our claim that “our network is able to
retrieve the pixel relationships between views thanks to our ray embedding” (Sec. 4.3 in the main
paper).

To this end, we introduce a metric that directly quantifies the consistency and alignment of attention
values across camera by analyzing behavior in “overlapping” regions, i.e., regions seen by two
different cameras. We provide a visual description of this metric and its computation in Figure 7.

In short, knowing the orientation of each camera, we compute the Mean Squared Error (MSE) of the
directional attention intensity between cameras on their overlapping regions. This score is averaged
for all the overlapping regions, latents and attention heads, and examples in the validation set. A
score of zero indicates a perfect match of the attention levels on overlapping regions (i.e., across
cameras). Results with this metric, reported in Table 4, show that our ‘Cam. rays’ embedding is 10
times more “consistent” across cameras than the baseline ‘Fourier + Cam. idx’.

Additionally, we provide qualitative examples of the ‘Fourier + Cam. idx’ embedding to compare
against our ray embedding in Figure 6. Contrary to the attention yield by our ray embedding, the
one derived from the ‘Fourier + Cam. idx’ embedding is much more spread out and less consistent
across cameras.

15



AC1

AC2 AC1 (θi) 

}overlapping region between 
cameras C1 and C2

Normalized attention intensity
AC2(θi)

θ

Figure 7: Measuring the attention consistency across cameras. The proposed metric computes
the Mean-Squared-Error (MSE) of the attention intensity on overlapping regions between cameras
(as illustrated for two cameras and one latent and one attention head), and averages it over all cam-
eras, latents, heads and scenes.

Table 4: Impact of ray embedding on cross-camera attention consistency. Cross-camera atten-
tion consistency (measured with proposed MSE metric, see Fig. 6) on nuScene.

Embedding MSE on overlap

2D Fourier + Cam. idx 0.0896
Cam. rays (ours) 0.0068

E Comparison to PETR encoding

In PETR [40], the embedding of each pixel is computed by sampling its ray given D predefined
depths. The 3D coordinates of the D sampled points along the ray are normalized, concatenated,
processed by an MLP and summed with the visual features. Conceptually, the embedding is a way
to indicate to the network “this pixel can observe these 3D points in the camera frustum space”.

The embedding in PETR differs in that it is limited by the sampling resolution (i.e., the D predefined
depths), as computation and memory footprint increase linearly with respect to D. In contrast, we
showed that our constant-complexity embedding is effective as a 3D positional embedding.

In addition, we include quantitative results to compare PETR embedding against our ray embedding
in Table 5. We trained our model with PETR input embedding in place of ours. The results show
that our ray embedding performs better (+72%).

Table 5: Impact of ray embedding on performance. Vehicle segmentation performance (in IoU)
for vehicle segmentation on nuScenes.

Embedding IoU

PETR [40] 34.8
Cam. rays (ours) 35.4
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F Additional attention qualitative analysis

We also provide additional analysis of attention maps for the multi-camera input shown in Figure 8
with a network using 256 latents and 32 attention heads. As in the main paper, the polar plots
represent the directional attention intensity, showing the directions the network attends the most.
The contribution of each camera is indicated by a color code coherent with Figure 8. Each polar plot
is oriented in an upward direction (i.e., the front of the car points upward).

G Additional qualitative examples

We also provide videos of our segmentation results on complex scenes in various visual conditions
(daylight, rain, night). In these videos, we compare against our two baselines CVT [17] and Lift-
Splat [4]. For a fair comparison, we use our model trained with visibility > 40% against CVT and
> 0% against Lift-Splat.

front left front front right

back left back back right

Figure 8: Six input camera images coming from the 360-degree camera rig of nuScenes. Note small
overlaps between views, e.g., the front of the white truck is both seen in the front-left and front cams.
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Figure 9: Input-to-latent attention study — average over latents. These polar plots represent the
directional attention intensity averaged over all the 256 latent vectors for each attention head. When
averaging over latent vectors, we observe that each attention head generally covers all directions.
This suggests that the latent vectors contain most of the directional information and that the whole
scene is attended across the latent. More rarely, an attention head’s polar plot will be directional but
will maintain a level of generality by being symmetrical.
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Figure 10: Input-to-latent attention study — average over heads. These polar plots represent the
directional attention intensity averaged over all attention heads for the 32 attention heads. When av-
eraging over attention heads, we observe that the average attention spans over half of the scene. This
allows latent vectors to extract long-range context between views with the capacity to disambiguate
them.

19



Figure 11: Input-to-latent attention study — all the attention heads of a latent vector. These
polar plots represent the directional attention intensity of the 32 attention heads for a randomly
chosen latent vector (latent vector #10). As shown in Figure 10, one latent vector approximately
covers half of the scene over its attention heads.
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Figure 12: Input-to-latent attention study — all the latent vectors for an attention head. These
polar plots represent the directional attention intensity of the 256 latent vectors for a randomly
chosen attention head (head #4). As shown in Figure 9, one attention head generally covers the full
scene over the latent vectors.
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