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Abstract
We show two stability results for a closed Riemannian
manifold whose Ricci curvature is small in the Kato
sense and whose first Betti number is equal to the
dimension. The first one is a geometric stability result
stating that such a manifold is Gromov–Hausdorff close
to a flat torus. The second one states that, under a
stronger assumption, such a manifold is diffeomorphic
to a torus: this extends a result by Colding and Cheeger–
Colding obtained in the context of a lower bound on the
Ricci curvature.
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1 INTRODUCTION

The celebrated Bochner theorem states that if a closed Riemannian manifold (𝑀𝑛, g) has non-
negative Ricci curvature, then its first Betti number satisfies

𝑏1(𝑀) ⩽ 𝑛,

with equality if and only if (𝑀𝑛, g) is isometric to a flat torus. This inequality was improved by
Gromov [25] and Gallot [18] who found 𝜀(𝑛) > 0 such that if
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944 CARRON et al.

Ric ⩾ − 𝜀(𝑛)

diam(𝑀, g)2
g ,

then 𝑏1(𝑀) ⩽ 𝑛. Gromov also made a conjecture about the equality case, which was proven true
by Colding [14] and Cheeger–Colding [5]: there exists δ(𝑛) > 0 such that if (𝑀𝑛, g) is a closed
Riemannian manifold of diameter 𝐷 satisfying

𝑏1(𝑀) = 𝑛, Ric ⩾ −δ(𝑛)

𝐷2
g ,

then𝑀 is diffeomorphic to a torus. The proof of this latter result consists in two steps. First, one
shows that for any 𝜀 ∈ (0, 1) there exists δ(𝑛, 𝜀) > 0 such that if (𝑀𝑛, g)with diameter 𝐷 satisfies

𝑏1(𝑀) = 𝑛, Ric ⩾ −δ(𝑛, 𝜀)

𝐷2
g ,

then there exists a flat torus 𝕋𝑛 and an 𝜀𝐷-almost isometry† Φ∶ 𝑀 → 𝕋𝑛. Second, the intrin-
sic Reifenberg theorem of Cheeger–Colding allows to prove a topological stability result: if 𝜀 is
sufficiently small, then 𝑀 is diffeomorphic to 𝕋𝑛 (see [6, Theorem A.1.1. and Theorem A.1.13]).
For more details, we refer to the very instructive texts [9, 20] presenting the work of Cheeger
and Colding.
The Bochner estimate has been generalized in several directions. For a Riemannian manifold

(𝑀𝑛, g), let Ric- ∶ 𝑀 → ℝ+ be the lowest non-negative function such that for any 𝑥 ∈ 𝑀,

Ric𝑥 ⩾ −Ric-(𝑥)g𝑥.

Then Gallot obtained in [19] that for every 𝑝 > 𝑛∕2, there exists 𝜀(𝑛, 𝑝) > 0 such that if (𝑀𝑛, g)
with diameter 𝐷 satisfies

𝐷2
(
⨏𝑀 Ric𝑝- d𝜈g

) 1
𝑝

⩽ 𝜀(𝑛, 𝑝),

then 𝑏1(𝑀) ⩽ 𝑛; here and throughout, 𝜈g is the Riemannian volumemeasure induced by g on𝑀,
and ⨏𝐴 𝑓 d𝜈g ∶= 𝜈g (𝐴)−1 ∫𝐴 𝑓 d𝜈g for any Borel set𝐴 ⊂ 𝑀 and anymeasurable function𝑓 defined
on 𝐴. To our knowledge, no topological rigidity result has been obtained so far from this integral
condition. It seems to us that the segment inequality proven in [10] and the results from [30, 31]
may imply such a rigidity result. Another direction is the one of metric measure spaces satisfying
a suitable synthetic Ricci curvature lower bound. In this context, a rigidity result à la Bochner and
geometric stability results hold, see [24, 28, 29].
In this paper, we obtain geometric and topological results under a Kato bound. More precisely,

let us introduce the following definition.

Definition 1.1. Let (𝑀𝑛, g) be a complete Riemannian manifold with heat kernel 𝐻(𝑡, 𝑥, 𝑦) and
diameter 𝐷. For any 𝑇 > 0, we set

† For any η > 0, a η-almost isometry is a Borel map Φ between two metric spaces (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) such that: (i)|𝑑𝑋(𝑥0, 𝑥1) − 𝑑𝑌(Φ(𝑥0), Φ(𝑥1))| ⩽ η for any 𝑥0, 𝑥1 ∈ 𝑋 and (ii) for any 𝑦 ∈ 𝑌 there exists 𝑥 ∈ 𝑋 such that 𝑑𝑌(𝜙(𝑥), 𝑦) ⩽ η.
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TORUS STABILITY UNDER KATO BOUNDS ON THE RICCI CURVATURE 945

k𝑇(𝑀𝑛, g) ∶= sup
𝑥∈𝑀∬[0,𝑇]×𝑀

𝐻(𝑡, 𝑥, 𝑦)Ric-(𝑦) d𝜈g (𝑦) d𝑡.

We say that the number k𝐷2(𝑀𝑛, g) is the Kato constant of (𝑀𝑛, g).

The first occurrence of k𝑇(𝑀𝑛, g) in the study of Riemannian manifolds seems to be [23]. The
geometric and analytic consequences of a bound on k𝑇(𝑀𝑛, g) have been extensively studied since
then, see, for example, [1, 4, 12, 13, 15, 32, 34, 36]. It is useful to note that if Ric ⩾ −𝜅2g , then
k𝑇(𝑀𝑛, g) ⩽ 𝜅2𝑇; hence, a smallness assumption on k𝑇(𝑀𝑛, g) should be understood as a control
on the part of the manifold where Ric- ≳ 𝑇−1.
The Bochner estimate extends to the case of Riemannian manifolds with small Kato constant,

as proven in [32] and improved in [4]: there exists δ(𝑛) > 0 such that if (𝑀𝑛, g) is a closed Rieman-
nian manifold of diameter 𝐷 such that k𝐷2(𝑀𝑛, g) ⩽ δ(𝑛), then 𝑏1(𝑀) ⩽ 𝑛. Our first main result
provides an answer to a question raised in [4] about the equality case.

Theorem A. For any 𝜀 ∈ (0, 1) there exists δ(𝑛, 𝜀) > 0 such that if (𝑀𝑛, g) is a closed Riemannian
manifold of diameter 𝐷 satisfying

𝑏1(𝑀) = 𝑛 and k𝐷2(𝑀𝑛, g) ⩽ δ(𝑛, 𝜀),

then𝑀 is 𝜀𝐷-almost isometric to a flat torus.

Remark 1.2. From [15, Theorem4.3]we can replace the smallness assumption k𝐷2(𝑀𝑛, g) ⩽ δ(𝑛, 𝜀)
with an integral condition involving the Ricci curvature only, namely,

sup
𝑥∈𝑀 ∫

𝐷

0
𝑟 ⨏𝐵𝑟(𝑥) Ric-(𝑦) d𝜈g (𝑦) d𝑟 ⩽ δ(𝑛, 𝜀).

Our second main result provides a topological stability theorem under a so-called strong Kato
bound. This assumption appeared naturally in our previous work [12, 13] where we obtained,
among other results, Reifenberg regularity.

Theorem B. Let 𝑓∶ [0, 1] → ℝ+ be a non-decreasing function satisfying

∫
1

0

√
𝑓(𝑡)

𝑡
d𝑡 < +∞. (SK)

Then there exists δ(𝑛, 𝑓) > 0 such that if a closed Riemannian manifold (𝑀𝑛, g) of diameter 𝐷
satisfies

𝑏1(𝑀) = 𝑛, k𝐷2(𝑀𝑛, g) ⩽ δ(𝑛, 𝑓),

and

k𝑡𝐷2(𝑀𝑛, g) ⩽ 𝑓(𝑡) for all 𝑡 ∈ (0, 1],

then𝑀 is diffeomorphic to a torus.
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946 CARRON et al.

Remark 1.3. Our proof actually shows a stronger result: for any α ∈ (0, 1) there exists δ(𝑛, 𝑓,α) >
0 such that if (𝑀𝑛, g) is a closed Riemannian manifold of diameter 𝐷 satisfying 𝑏1(𝑀) = 𝑛,
k𝐷2(𝑀𝑛, g) ⩽ δ(𝑛, 𝑓,α), and k𝑡𝐷2(𝑀𝑛, g) ⩽ 𝑓(𝑡) for any 𝑡 ∈ (0, 1], with 𝑓 satisfying (SK), then
there exist a flat torus (𝕋𝑛, 𝖽𝕋𝑛 ) and a diffeomorphism∶ 𝑀 → 𝕋𝑛 such that for any 𝑥, 𝑦 ∈ 𝑀,

α

(
𝖽g (𝑥, 𝑦)

𝐷

) 1
α

⩽
𝖽𝕋𝑛((𝑥),(𝑦))

𝐷
⩽ α−1

(
𝖽g (𝑥, 𝑦)

𝐷

)α

.

Here and throughout, 𝖽g is the Riemannian distance induced by g .

According to [33], an 𝐿𝑝 smallness condition on Ric- yields the strong Kato bound, so that
Theorem B has the following corollary.

Corollary 1.4. For any 𝑝 > 𝑛∕2, there exists 𝜀(𝑛, 𝑝) > 0 such that if (𝑀𝑛, g) is a closed Riemannian
manifold of diameter 𝐷 satisfying

𝑏1(𝑀) = 𝑛 and 𝐷2
(
⨏𝑀 Ric𝑝- d𝜈g

) 1
𝑝

⩽ 𝜀(𝑛, 𝑝),

then𝑀 is diffeomorphic to a torus.

Similarly, using [15, Theorem 4.3], we get the following corollary involving a suitable Morrey
norm.

Corollary 1.5. For anyα ∈ (0, 2], there exists 𝜀(𝑛,α) > 0 such that if (𝑀𝑛, g) is a closedRiemannian
manifold of diameter 𝐷 satisfying

𝑏1(𝑀) = 𝑛 and sup
𝑥∈𝑀
𝑟∈(0,𝐷)

𝐷𝛼𝑟2−𝛼 ⨏𝐵𝑟(𝑥) Ric-(𝑦) d𝜈g (𝑦) ⩽ 𝜀(𝑛, 𝛼),

then𝑀 is diffeomorphic to a torus.

Colding’s original argument relied upon harmonic approximations of Busemann-like func-
tions. Here we follow an alternative approach, closer to the one proposed by Gallot in [20]. We
consider the Albanese map∶ 𝑀 → 𝕋𝑛. We lift to a harmonic map ̂ ∶= (̂1, … , ̂𝑛) defined
on a suitable abelian cover 𝑀̂⟶𝑀 which is equivariant under an action of ℤ𝑛. Estimates from
[4] imply that if k𝐷2(𝑀𝑛, g) ⩽ δ ⩽ 1∕(16𝑛), then ̂ is surjective, (1 + 𝐶(𝑛) 3

√
δ)-Lipschitz and for

any 𝑟 ∈ [𝐷, δ−1∕6𝐷],(
𝑟2 ⨏𝐵𝑟 |∇𝑑̂|2 d𝜈ĝ

) 1
2

+ ⨏𝐵𝑟
|||⟨𝑑̂𝑖 , 𝑑̂𝑗⟩ − δ𝑖,𝑗

||| ⩽ 𝐶(𝑛) 3√δ. (⋆𝑟)

One original point in our proof of TheoremA is the use of an almost rigidity result (Theorem3.1)
which implies that under such an estimate, the restriction of ̂ to a ball of radius 64𝑛2𝐷 realizes an
𝜀𝐷-almost isometry with a Euclidean ball of the same radius. We prove this almost rigidity result
by means of the analysis developed in [12]. Then we can follow the lines of Gallot’s argument to
get Theorem A.
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TORUS STABILITY UNDER KATO BOUNDS ON THE RICCI CURVATURE 947

We prove Theorem B by showing that  is a diffeomorphism, answering a question raised
by Gallot [20, Section 6]. This differs from Colding’s proof which used the intrinsic Reifenberg
theorem to conclude. It is enough to show that the restriction of ̂ to the ball 𝐵𝐷(𝑜) is a diffeo-
morphism onto its image. In the context of almost non-negative Ricci curvature, according to the
recent Reifenberg theorem established in [11, Theorem 7.10], this is the case if (⋆2𝐷) holds and if
the volume ratio

𝜈ĝ (𝐵2𝐷(𝑜))

𝜔𝑛(2𝐷)𝑛

is almost one. In our context, we have at our disposal an analogous Reifenberg type result: see
Proposition 3.4. To apply this result, we must control a heat kernel ratio which plays the role, in
our setting, of the volume ratio for Ricci curvature lower bounds. One main difference is that,
unlike the volume, the heat kernel is a non-local quantity. Our key tools to get the desired control
are a heat kernel comparison theorem á la Cheeger–Yau [17], and an almost Euclidean volume
bound (Theorem A.1, after [7, Theorem 1.2]).

2 THE DYNKIN CONDITION AND CONSEQUENCES

In this section, we point out relevant properties of the so-called Dynkin condition. We say that a
complete Riemannian manifold (𝑀𝑛, g) satisfies such a condition if there exists 𝑇 > 0 such that

k𝑇(𝑀𝑛, g) ⩽ 1
16𝑛

⋅ (Dy)

2.1 Closed manifolds

Let us first mention properties of closed Riemannian manifolds satisfying a Dynkin condition.

2.1.1 Volume doubling

See [4, Proposition 3.8] and [12, Proposition 3.3] for the next result.

Proposition 2.1. Let (𝑀𝑛, g) be a closed Riemannian manifold satisfying (Dy). Then there exists
𝐶(𝑛) > 0 such that for any 𝑥 ∈ 𝑀 and 0 < 𝑠 ⩽ 𝑟 ⩽

√
𝑇,

𝜈g (𝐵𝑟(𝑥))

𝜈g (𝐵𝑠(𝑥))
⩽ 𝐶(𝑛)

(𝑟
𝑠

)𝑒2𝑛
.

2.1.2 Heat kernel bounds

See [13, Proposition 2.6] for the following.

Proposition 2.2. Let (𝑀𝑛, g) be a closed Riemannian manifold satisfying (Dy). Then there exists
𝐶(𝑛) > 0 such that for any 𝑥, 𝑦 ∈ 𝑀 and 𝑡 ∈ (0, 𝑇),
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948 CARRON et al.

(i) 𝐶(𝑛)−1

𝜈g (𝐵√𝑡(𝑥)) 𝑒
−𝐶(𝑛)

𝖽2g (𝑥,𝑦)

𝑡 ⩽ 𝐻(𝑡, 𝑥, 𝑦) ⩽ 𝐶(𝑛)
𝜈g (𝐵√𝑡(𝑥)) 𝑒

−
𝖽2g (𝑥,𝑦)

5𝑡 ,

(ii) |𝑑𝑥𝐻(𝑡, 𝑥, 𝑦)| ⩽ 𝐶(𝑛)√
𝑡𝜈g (𝐵√𝑡(𝑥)) 𝑒

−
𝖽2g (𝑥,𝑦)

5𝑡 .

When 𝑇 ⩾ diam2(𝑀𝑛, g), we can get an estimate depending only on the volume of𝑀.

Proposition 2.3. Let (𝑀𝑛, g) be a closed Riemannian manifold of diameter 𝐷 satisfying (Dy). If
𝑇 ⩾ 𝐷2, then for any 𝑥, 𝑦 ∈ 𝑀 and 𝑡 ∈ (𝐷2, 𝑇),

𝐻(𝑡, 𝑥, 𝑦) ⩽

(
1 + 𝐶(𝑛)

𝐷√
𝑡

)
1

𝜈g (𝑀)
⋅

Proof. Let 𝑡 ∈ (𝐷2, 𝑇) and 𝑥, 𝑦 ∈ 𝑀. By stochastic completeness, we have that
∫𝑀 𝐻(𝑡, 𝑧, 𝑦) d𝜈g (𝑧) = 1; hence, there is some 𝑧0 ∈ 𝑀 such that 𝐻(𝑡, 𝑧0, 𝑦) =

1
𝜈g (𝑀)

. By the

previous proposition, we have that |𝑑𝑧𝐻(𝑡, 𝑧, 𝑦)| ⩽ 𝐶(𝑛)√
𝑡𝜈g (𝑀)

. Then

||𝐻(𝑡, 𝑥, 𝑦) − 𝐻(𝑡, 𝑧0, 𝑦)|| ⩽ 𝖽g (𝑥, 𝑧0) 𝐶(𝑛)√
𝑡𝜈g (𝑀)

⩽
𝐶(𝑛)𝐷√
𝑡𝜈g (𝑀)

⋅ □

2.2 Non-compact manifolds

For complete non-compact manifolds, the results of [12, Subsection 3.1] yield the following.

Proposition 2.4. Let (𝑀𝑛, g , 𝑜) be a pointed complete Riemannian manifold. Assume that there
exists a sequence {(𝑀𝑛

𝛼, g𝛼, 𝑜𝛼)}𝛼 of pointed closed Riemannian manifolds satisfying (Dy) for a
same 𝑇 > 0. Assume that for any 𝑅 > 0 there exists 𝛼𝑅 such that for any 𝛼 ⩾ 𝛼𝑅 there exists a
diffeomorphism onto its image

Φ𝛼 ∶ 𝐵𝑅(𝑜) → 𝑀𝛼

such that the following convergence holds:

lim
𝛼→+∞

‖‖Φ∗𝛼g𝛼 − g‖‖0 = 0.
Then (𝑀𝑛, g) satisfies (Dy), the volume doubling estimate from Proposition 2.1 and the heat kernel
estimates from Proposition 2.2.

We recall that a group Γ with neutral element 1 is residually finite if and only if it admits a
sequence of normal subgroups {Γ𝑗} with finite index such that⋂

𝑗

Γ𝑗 = {1}.

Then Proposition 2.4 has the following useful application.
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TORUS STABILITY UNDER KATO BOUNDS ON THE RICCI CURVATURE 949

Proposition 2.5. Let 𝜋 ∶ 𝑀̂ → 𝑀 be a normal covering of a closed Riemannian manifold (𝑀𝑛, g)
with residually finite deck transformation group. If (𝑀, g) satisfies (Dy), then (𝑀̂, 𝜋∗g) satis-
fies (Dy), the volume doubling estimate from Proposition 2.1, and the heat kernel estimates from
Proposition 2.2.

Proof. We start by noticing that if 𝑉∶ 𝑀 → ℝ is a bounded function, then

𝑒−𝑡Δ𝜋∗g (𝑉◦𝜋) =
(
𝑒−𝑡Δg𝑉

)
◦𝜋.

Indeed, since (𝑀, g) is closed, (𝑀̂, 𝜋∗g) is stochastically complete and then we have uniqueness
in 𝐿∞ of the solution of the heat equation with fixed initial condition{(

𝜕
𝜕𝑡
+ Δ𝜋∗g

)
𝑢 = 0,

𝑢(0, ⋅) = 𝑉◦𝜋(⋅).

But 𝑒−𝑡Δ𝜋∗g (𝑉◦𝜋) and (𝑒−𝑡Δg𝑉)◦𝜋 are both solutions of this Cauchy problem, hence we get the
desired equality. Notice that Ric-(𝜋∗g) = Ric-(g)◦𝜋, hence for any 𝑥 ∈ 𝑀̂ and 𝑡 > 0

∫𝑀̂ 𝐻𝜋∗g (𝑡, 𝑥, 𝑦)Ric-(𝜋
∗g)(𝑦) d𝜈𝜋∗g (𝑦) = ∫𝑀 𝐻g (𝑡, 𝜋(𝑥), 𝑧)Ric-(g)(𝑧) d𝜈g (𝑧),

where we have noted𝐻𝜋∗g (respectively,𝐻g ) the heat kernel of (𝑀̂, 𝜋∗g) (resp. of (𝑀, g)). Hence
we get that for any 𝑇 > 0:

k𝑇(𝑀, g) = k𝑇(𝑀̂, 𝜋∗g). (1)

As Γ is residually finite, there exists a sequence of normal subgroup Γ𝑗 ⊲ Γ of finite index such
that ⋂

𝑗

Γ𝑗 = {1}.

For any 𝑗 ∈ ℕ∗, we set 𝑀̂𝑗 ∶= 𝑀̂∕Γ𝑗 . We get two covering maps

𝑀̂
𝑝𝑗
⟶ 𝑀̂𝑗

𝜋𝑗
⟶𝑀.

Note that 𝑀̂𝑗 is a closed manifold and the above argument implies that for any 𝑇 > 0:

k𝑇(𝑀̂, 𝜋∗g) = k𝑇(𝑀̂𝑗, 𝜋
∗
𝑗 g).

Hence each (𝑀̂𝑗, 𝜋
∗
𝑗
g) satisfies (Dy). Moreover, if we consider 𝑜 ∈ 𝑀̂, then for any 𝑅 > 0 there is

some 𝑗𝑅 such that for any 𝑗 ⩾ 𝑗𝑅, the restriction of the covering map

𝑝𝑗 ∶ 𝐵𝑅(𝑜) → 𝐵𝑅(𝑝𝑗(𝑜))

is an isometry. Then the conclusion follows from Proposition 2.4. □
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950 CARRON et al.

3 ALMOST RIGIDITY RESULTS

In this section, we provide almost rigidity results which are consequences of our previous work
[12, 13]. For any 𝜌 > 0, we let 𝔹𝑛𝜌 be the Euclidean ball in ℝ

𝑛 centered at 0 with radius 𝜌. If 𝐵 is a
ball in an 𝑛-dimensional Riemannian manifold and ℎ = (ℎ1, … , ℎ𝑛) ∶ 𝐵 → ℝ𝑛 is a smooth map,
we denote by

𝑑ℎ 𝑡𝑑ℎ =
[⟨𝑑ℎ𝑖, 𝑑ℎ𝑗⟩]1⩽𝑖,𝑗⩽𝑛

its Gram matrix map. We write Id𝑛 for the identity matrix of size 𝑛 and 𝜔𝑛 for the Lebesgue
measure of the unit Euclidean ball in ℝ𝑛.

3.1 Harmonic almost splitting

Theorem 3.1. For any 𝜀 ∈ (0, 1), there exists δ = δ(𝑛, 𝜀) > 0 such that for any closed Riemannian
manifold (𝑀𝑛, g) satisfying k𝜌2(𝑀𝑛, g) ⩽ δ for some𝜌 > 0, if for some𝑥 ∈ 𝑀, there exists a harmonic
map

ℎ∶ 𝐵δ−1𝜌(𝑥) → ℝ𝑛

such that for any 𝑟 ∈ [𝜌, δ−1𝜌),(
𝑟2 ⨏𝐵𝑟(𝑥) |∇𝑑ℎ|2 d𝜈g

) 1
2

+ ⨏𝐵𝑟(𝑥)
||𝑑ℎ 𝑡𝑑ℎ − Id𝑛|| d𝜈g ⩽ δ,

then ℎ is an 𝜀𝜌-almost isometry between 𝐵𝜌(𝑥) and 𝔹𝑛𝜌 .

Remarks 3.2.

(i) From the proof of Proposition 2.5, we easily see that the result also holds if we assume that
(𝑀𝑛, g) is a normal covering of a closed Riemannian manifold whose deck transformation
group is residually finite.

(ii) A similar statement holds for RCD(𝐾,𝑁) spaces [3, Proposition 3.7].

Proof. By scaling, there is no loss of generality in assuming 𝜌 = 1, what we do from now on. We
argue by contradiction. Assume that there exists 𝜀 ∈ (0, 1) and:

∙ a sequence of positive numbers {δ𝛼} such that δ𝛼 ↓ 0,
∙ a sequence of pointed closed Riemannian manifolds {(𝑀𝑛

𝛼, g𝛼, 𝑥𝛼)} such that k1(𝑀𝛼, g𝛼) ⩽ δ𝛼
for any 𝛼,

∙ a sequence of maps {ℎ𝛼 ∶ 𝐵δ−1𝛼 (𝑥𝛼) → ℝ𝑛} such that for any 𝛼,

ℎ𝛼 is not an 𝜀-almost isometry between 𝐵1(𝑥𝛼) and 𝔹𝑛1 (2)

and for any 𝑟 ∈ [1, δ−1𝛼 ],(
𝑟2 ⨏𝐵𝑟(𝑥𝛼) |∇𝑑ℎ𝛼|2 d𝜈g𝛼

) 1
2

+ ⨏𝐵𝑟(𝑥𝛼)
||𝑑ℎ𝛼 𝑡𝑑ℎ𝛼 − Id𝑛|| d𝜈g𝛼 ⩽ δ𝛼.
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TORUS STABILITY UNDER KATO BOUNDS ON THE RICCI CURVATURE 951

We can assume the following.

(1) Thanks to [12, Corollary 2.5, Remark 4.9], the sequence {(𝑀𝑛
𝛼, g𝛼, 𝑥𝛼)} converges in the pointed

measured Gromov–Hausdorff topology to a space (𝑋, 𝖽, 𝜇, 𝑥) which is infinitesimally Hilber-
tian in the sense of [21]. This limit space is endowed with a carré du champ Γ and a natural
Laplace operator 𝐿, which is the Friedrichs extension of the quadratic form 𝜑 ∈ 𝑊1,2 ↦
∫𝑋 dΓ(𝜑, 𝜑). For the precise definitions of Γ and 𝐿, see [12, Section 1.2] and references therein.

(2) By [12, Proposition E.10], the sequence {ℎ𝛼}𝛼 converges uniformly on compact sets to a
harmonic function ℎ = (ℎ1, … , ℎ𝑛)∶ 𝑋 → ℝ𝑛 and for any 𝑖, 𝑗 ∈ {1, … , 𝑛},

dΓ
d𝜇
(ℎ𝑖, ℎ𝑗) = δ𝑖,𝑗 𝜇-a.e. on 𝑋.

Moreover, we know that (𝑋, 𝖽, 𝜇) admits a locally Lipschitz heat kernel 𝐻 ∶ (0, +∞) × 𝑋 × 𝑋 →
(0,+∞)which satisfies the following Li–Yau inequality [13, Proposition 2.9 and Remark 2.10]: for
any 𝑥 ∈ 𝑋, 𝑡 > 0, and 𝜇-a.e. 𝑦 ∈ 𝑋,

|𝑑𝑦𝐻(𝑡, 𝑥, 𝑦)|2 − 𝐻(𝑡, 𝑥, 𝑦)𝜕𝐻𝜕𝑡 (𝑡, 𝑥, 𝑦) ⩽ 𝑛
2𝑡
𝐻2(𝑡, 𝑥, 𝑦).

Let 𝑈∶ (0, +∞) × 𝑋 × 𝑋 → ℝ be such that for any 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0,

𝐻(𝑡, 𝑥, 𝑦) =
𝑒−

𝑈(𝑡,𝑥,𝑦)
4𝑡

(4𝜋𝑡)
𝑛
2

⋅

It is easy to check (see [12, Formula (83)]) that 𝑈 satisfies, for any (𝑥, 𝑡) ∈ 𝑋 × (0, +∞),

𝐿𝑈(𝑡, 𝑥, ⋅) ⩾ −2𝑛

in a weak sense, that is to say, 𝑣(⋅) = 𝑈(𝑡, 𝑥, ⋅) ∈ 𝑊1,2
𝑙𝑜𝑐

and for any non-negative 𝜑 ∈ 𝑊1,2
𝑐 :

∫𝑋 dΓ(𝜑, 𝑣) ⩾ −2𝑛 ∫𝑋 𝜑 d𝜇.

According to Varadhan formula ([12, Proposition 1.6]), for any 𝑥, 𝑦 ∈ 𝑋,

lim
𝑡→0

𝑈(𝑡, 𝑥, 𝑦) = 𝖽2(𝑥, 𝑦).

For any 𝑥, 𝑦 ∈ 𝑋, set

𝜌(𝑥, 𝑦) = |ℎ(𝑥) − ℎ(𝑦)|2
and note that

𝐿𝜌(𝑥, ⋅) = −2𝑛,

hence for any 𝑡 > 0 the function 𝜌(𝑥, ⋅) − 𝑈(𝑡, 𝑥, ⋅) is sub-harmonic; passing to the limit 𝑡 ↓ 0 we
get that 𝜌(𝑥, ⋅) − 𝖽2(𝑥, ⋅) is sub-harmonic. Moreover, for each 𝜉 = (𝜉1, … , 𝜉𝑛), the function ℎ𝜉 ∶=
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952 CARRON et al.

∑
𝑖 𝜉𝑖ℎ𝑖 satisfies |𝑑ℎ𝜉|2 = |𝜉|2, so that ℎ𝜉 is |𝜉|-Lipschitz. As a consequence, for any 𝑥, 𝑦 ∈ 𝑋,

𝜌(𝑥, 𝑦) = sup
𝜉∈ℝ𝑛|𝜉|=1

|⟨𝜉, ℎ(𝑥) − ℎ(𝑦)⟩|2 = sup
𝜉∈ℝ𝑛|𝜉|=1

|ℎ𝜉(𝑥) − ℎ𝜉(𝑦)|2 ⩽ 𝖽2(𝑥, 𝑦).
Therefore, the function 𝜌(𝑥, ⋅) − 𝖽2(𝑥, ⋅) is sub-harmonic, non-positive and it reaches its max-
imum value, zero, at 𝑦 = 𝑥; hence, it is constantly equal to zero. Thus we have shown that
ℎ∶ 𝑋 → ℝ𝑛 is an isometry onto its image. But ℎ(𝑋) is closed, convex and according to [16, Claim
4.1, p. 130], its convex hull is ℝ𝑛. Then ℎ is an isometry between (𝑋, 𝖽) and the Euclidean space
ℝ𝑛. By uniform convergence, we get that for 𝛼 large enough, ℎ𝛼 ∶ 𝐵1(𝑥𝛼) → ℝ𝑛 is an 𝜀-almost
isometry between 𝐵1(𝑥𝛼) and an Euclidean ball of radius 1; this contradicts (2). □

Remark 3.3. Our proof avoids the use of the RCD theory; however, a better result could be proven
using a recent result by Brué–Naber–Semola [2]: There is some constant 𝑐(𝑛) ∈ (0, 1) so that for
any 𝜀 ∈ (0, 1), there exists δ = δ(𝑛, 𝜀) > 0 such that for any closed Riemannian manifold (𝑀𝑛, g)
satisfying k𝜌2(𝑀𝑛, g) ⩽ δ for some 𝜌 > 0, if for some 𝑝 ∈ 𝑀 there exists a harmonic map

ℎ∶ 𝐵𝑐(𝑛)𝜌(𝑝) → ℝ𝑛

satisfying: (
𝜌2 ⨏𝐵𝜌(𝑝) |∇𝑑ℎ|2 d𝜈g

) 1
2

+ ⨏𝐵𝜌(𝑝)
||𝑑ℎ 𝑡𝑑ℎ − Id𝑛|| d𝜈g ⩽ δ,

then ℎ is an 𝜀𝜌-almost isometry between 𝐵𝑐(𝑛)𝜌(𝑝) and 𝔹𝑛𝑐(𝑛)𝜌.
This improvementwould be the consequence of [13, Theorem 3.8 andRemark 3.10], of [2, Theo-

rem 3.8], and of the following corollary of [12, Theorem 4.11]: for every η ∈ (0, 1) there is some δ1 =
δ1(𝑛, 𝜂) > 0 such that if (𝑀𝑛, g) is a closed Riemannianmanifold (𝑀𝑛, g) satisfying k𝜌2(𝑀𝑛, g) ⩽ δ1
and 𝑝 ∈ 𝑀, then there is a pointed RCD(0, 𝑛) space (𝑋, 𝖽𝑋, 𝜇𝑋, 𝑥) (which depends on 𝑝) such that
when𝑀 is endowed with the geodesic distance and with the measure 𝜇𝑀 = 𝜈g∕𝜈g (𝐵𝜌(𝑝)), then

𝖽𝑚𝐺𝐻
(
𝐵𝜌(𝑝), 𝐵𝜌(𝑥)

)
⩽ η𝜌.

3.2 Reifenberg regularity result

Let (𝑀𝑛, g) be a complete Riemannian manifold. For any (𝑡, 𝑥) ∈ ℝ+ ×𝑀, we set

θ(𝑡, 𝑥) ∶= (4𝜋𝑡)
𝑛
2 𝐻(𝑡, 𝑥, 𝑥).

The quantity θ is an on-diagonal heat kernel ratio, as (4𝜋𝑡)−
𝑛
2 is the on-diagonal Euclidean heat

kernel. In [12, 13], we showed that if (𝑀𝑛, g) is closed and satisfies a strong Kato bound, then the
quantity θ is almost monotone and controls the geometry of 𝑀. In this regard, we have at our
disposal the following Reifenberg regularity result, which is a consequence of [13, Theorem 5.19]
and the proof of Proposition 2.5. The case of almost non-negative Ricci curvature was originally
proven in [11, Theorem 7.10].
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TORUS STABILITY UNDER KATO BOUNDS ON THE RICCI CURVATURE 953

Proposition 3.4. Let𝑓∶ (0, 1] → ℝ+ be a non-decreasing function satisfying (SK). Then there exists
β(𝑛, 𝑓) > 0 such that for any complete Riemannian manifold (𝑀𝑛, g)which is a normal covering of
a closed Riemannianmanifold with residually finite deck transformation, if there exist 𝑥 ∈ 𝑀,𝑅 > 0
and ℎ ∶ 𝐵𝑅(𝑥) → ℝ𝑛 harmonic such that:

(1) k𝑅2(𝑀𝑛, g) ⩽ β(𝑛, 𝑓) and k𝑡𝑅2(𝑀𝑛, g) ⩽ 𝑓(𝑡) for any 𝑡 ∈ (0, 1],
(2) θ(𝑅2, 𝑥) ⩽ 1 + β(𝑛, 𝑓),
(3) ‖𝑑ℎ‖𝐿∞ ⩽ 2, ℎ(𝑥) = 0 and

(
𝑅2 ⨏𝐵𝑅(𝑥) |∇𝑑ℎ|2 d𝜈g

) 1
2

+ ⨏𝐵𝑅(𝑥)
||𝑑ℎ 𝑡𝑑ℎ − Id𝑛|| d𝜈g ⩽ β(𝑛, 𝑓),

then the restriction of ℎ to 𝐵3𝑅∕4(𝑥) is a diffeomorphism onto its image.

4 ALBANESEMAPS

In this section, we recall the construction of the Albanese maps and derive some relevant proper-
ties.

4.1 Construction of the Albanese maps

Let (𝑀𝑛, g) be a closed Riemannian manifold. We write 𝐻1(𝑀,ℤ) for the first integer-valued
homology group of 𝑀, 𝐻1(𝑀,ℝ) for its first real-valued cohomology group, 𝐻1

𝑑𝑅
(𝑀) for its first

De Rham cohomology space, and

1(𝑀𝑛, g) ∶= {𝛼 ∈ ∞(𝑇∗𝑀) ∶ 𝑑𝛼 = 𝑑∗𝛼 = 0}
for the space of harmonic 1-forms of (𝑀𝑛, g). Let 𝑏1 be the first Betti number of𝑀. Then the torsion
free part Γ of𝐻1(𝑀,ℤ) is isomorphic to ℤ𝑏1 (hence it is a residually finite group) and satisfies

Γ = 𝜋1(𝑀)∕Λ,

where

Λ ∶=

{
𝛾 ∈ 𝜋1(𝑀) ∶ ∫𝛾 𝛼 = 0 for all [𝛼] ∈ 𝐻1(𝑀,ℝ)

}
.

Moreover, Γ is the deck transformation group of the normal covering

𝑀̃∕Λ =∶ 𝑀̂
𝜋
⟶𝑀,

where 𝑀̃ is the universal cover of𝑀.
By theHodge–de Rham theorem, there exists a normalized 𝐿2-orthonormal family of harmonic

1-forms 𝛼1, … , 𝛼𝑏1 , that is,
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954 CARRON et al.

⨏𝑀⟨𝛼𝑖, 𝛼𝑗⟩ = 𝛿𝑖,𝑗
for any 𝑖, 𝑗, such that [𝛼1], … , [𝛼𝑏1] form a basis of 𝐻1

𝑑𝑅
(𝑀). We choose 𝑜 ∈ 𝑀 and 𝑜 ∈ 𝑀̂ such

that 𝜋(𝑜) = 𝑜. Then for any 𝑖 ∈ {1, … , 𝑏1} there exists a unique harmonic function ̂𝑖 ∶ 𝑀̂ → ℝ

such that

𝑑̂𝑖 = 𝜋
∗𝛼𝑖 and ̂𝑖(𝑜) = 0.

This yields a harmonic map

̂ ∶= (̂1, … , ̂𝑏1
)∶ 𝑀̂ → ℝ𝑏1. (3)

Let us now consider the linear map

𝜌 ∶ Γ → ℝ𝑏1

𝛾 ↦
(∫𝛾 𝛼1, … , ∫𝛾 𝛼𝑏1) (4)

and set

𝚪 ∶= 𝜌(Γ).

Then 𝜌∶ Γ → 𝚪 is an isomorphism and𝚪 is a lattice ofℝ𝑏1 .We endowℝ𝑏1∕𝚪with the flat quotient
Riemannian metric gℝ𝑏1∕𝚪. Note that ̂ is 𝚪-equivariant, that is, for any 𝛾 ∈ Γ and 𝑥 ∈ 𝑀̂,

̂(𝛾.𝑥) = ̂(𝑥) + 𝜌(𝛾). (5)

Then ̂ induces a harmonic quotient map

 ∶ 𝑀 = 𝑀̂∕Γ → ℝ𝑏1∕𝚪

Γ.𝑥 ↦ ̂(𝑥) + 𝚪. (6)

We say that  is the Albanese map of 𝑀 and ̂ is the lifted Albanese map of 𝑀. Note that by
construction, the following diagram commutes:

4.2 Some estimates for harmonic 1-forms

In the next proposition, we derive some estimates for the elements of1(𝑀𝑛, g)under a smallness
assumption on the Kato constant.
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TORUS STABILITY UNDER KATO BOUNDS ON THE RICCI CURVATURE 955

Proposition 4.1. Let (𝑀𝑛, g) be a closed Riemannian manifold of diameter 𝐷 such that
k𝐷2(𝑀𝑛, g) ⩽ δ for some δ ∈ (0, 1∕(16𝑛)). Then there exists 𝐶(𝑛) > 0 such that for any 𝛼 ∈
1(𝑀𝑛, g),

(i) ‖𝛼‖2𝐿∞ ⩽ (1 + 𝐶(𝑛)
3
√
δ ) ⨏𝑀 |𝛼|2,

(ii) ⨏𝑀 | |𝛼|2 − ⨏𝑀 |𝛼|2 | ⩽ 𝐶(𝑛) 3√δ ⨏𝑀 |𝛼|2,
(iii) 𝐷2 ⨏𝑀 |∇𝛼|2 ⩽ 𝐶(𝑛)δ ⨏𝑀 |𝛼|2.
Proof. Set 𝑁 ∶= ⌊ 1

δ16𝑛
⌋. Proceeding like in [4, Lemma 2.22], for instance, we get that for any

𝓁 ∈ {1, … ,𝑁},

k𝓁𝐷2(𝑀𝑛, g) ⩽ 𝓁 k𝐷2(𝑀𝑛, g) ⩽ 𝓁δ ⩽
1
16𝑛

⋅ (7)

We first prove (i). Let 𝛼 ∈ 1(𝑀𝑛, g). By the Bochner formula,

|∇𝛼|2 + 1
2
Δ|𝛼|2 + Ric(𝛼, 𝛼) = 0.

We fix 𝑥 ∈ 𝑀. We multiply the previous identity evaluated in 𝑦 ∈ 𝑀 by the heat kernel𝐻(𝑡, 𝑥, 𝑦)
and integrate with respect to (𝑡, 𝑦) ∈ [0,𝓁𝐷2] × 𝑀, where 𝓁 ∈ {1, … ,𝑁} is suitably chosen later.
This gives

−∬[0,𝓁𝐷2]×𝑀
Ric(𝛼, 𝛼)(𝑦)Δ𝑦𝐻(𝑡, 𝑥, 𝑦) d𝜈g (𝑦) d𝑡

= ∬[0,𝓁𝐷2]×𝑀
|∇𝛼|2(𝑦)𝐻(𝑡, 𝑥, 𝑦) d𝜈g (𝑦) d𝑡 + 1

2 ∬[0,𝓁𝐷2]×𝑀
|𝛼|2(𝑦)Δ𝑦𝐻(𝑡, 𝑥, 𝑦) d𝜈g (𝑦) d𝑡.

Since Ric ⩾ −Ric-g and Δ𝑦𝐻(𝑡, 𝑥, 𝑦) =
𝜕
𝜕𝑡
𝐻(𝑡, 𝑥, 𝑦), we get

|𝛼|2(𝑥) ⩽ ∫𝑀 𝐻(𝓁𝐷
2, 𝑥, 𝑦)|𝛼|2(𝑦) d𝜈g (𝑦) + 2‖𝛼‖2𝐿∞ ∬[0,𝓁𝐷2]×𝑀

𝐻(𝑡, 𝑥, 𝑦)Ric-(𝑦) d𝜈g (𝑦) d𝑡

⩽

(
1 + 𝐶(𝑛)

1√
𝓁

)
⨏𝑀 |𝛼|2 + 2k𝓁𝐷2(𝑀𝑛, g) ‖𝛼‖2𝐿∞ by Proposition 2.3

⩽

(
1 + 𝐶(𝑛)

1√
𝓁

)
⨏𝑀 |𝛼|2 + 2𝓁δ ‖𝛼‖2𝐿∞ by (7).

Thus

(1 − 2𝓁δ) ‖𝛼‖2𝐿∞ ⩽

(
1 + 𝐶(𝑛)

1√
𝓁

)
⨏𝑀 |𝛼|2.

Choosing 𝓁 of the same order as δ−
2
3 yields the desired estimate.

 14697750, 2023, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12704 by U

niversité D
e N

antes, W
iley O

nline L
ibrary on [24/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



956 CARRON et al.

Let us now prove (ii). Consider 𝛼 ∈ 1(𝑀𝑛, g). Up to rescaling, we may assume that

⨏𝑀 |𝛼|2 = 1.
Then

⨏𝑀
||||𝛼|2 − 1||| = 2

𝜈g (𝑀) ∫{|𝛼|2⩾1}
(|𝛼|2 − 1)

⩽
2𝜈g

(
{|𝛼|2 ⩾ 1})
𝜈g (𝑀)

𝐶(𝑛)
3
√
δ

⩽ 2𝐶(𝑛)
3
√
δ ,

where we have used that (i) and then 𝜈g ({|𝛼|2 ⩾ 1}) ⩽ ∫𝑀 |𝛼|2.
Let us prove (iii). We integrate the Bochner formula over𝑀, divide by 𝜈g (𝑀), and use (i) to get

⨏𝑀 |∇𝛼|2 = −⨏𝑀 Ric(𝛼, 𝛼) ⩽ 𝐶(𝑛)⨏𝑀 Ric- ⨏𝑀 |𝛼|2.
But

𝐷2 ⨏𝑀 Ric- =
1

𝜈g (𝑀) ∫[0,𝐷2]×𝑀×𝑀 𝐻(𝑡, 𝑥, 𝑦)Ric-(𝑦) d𝜈g (𝑦) d𝜈g (𝑥) d𝑡

⩽ k𝐷2(𝑀𝑛, g) ⩽ δ. □

Remark 4.2. By the Grothendieck lemma [35, Theorem 5.1] (see also [27] and [22, Théoréme 4]),
the previous proposition implies that for any closed Riemannian manifold (𝑀𝑛, g) of diameter 𝐷
such that k𝐷2(𝑀𝑛, g) ⩽ δ for some δ ∈ (0, 1∕(16𝑛)),

𝑏1(𝑀) ⩽
(
1 + 𝐶(𝑛)

3
√
δ
)
𝑛,

so that:

δ < δ𝑛 ∶= (𝑛𝐶(𝑛))
−3 ⇒ 𝑏1(𝑀) ⩽ 𝑛.

In particular, this provides another proof of [4, Proposition 3.12].

4.3 Consequences for the Albanese maps

The previous estimate implies the following.

Proposition 4.3. There exists δ(𝑛) > 0 such that if (𝑀𝑛, g) is a closed Riemannian manifold of
diameter𝐷 satisfying 𝑏1(𝑀) = 𝑛 and k𝐷2(𝑀𝑛, g) ⩽ δ for some δ ∈ (0, δ(𝑛)], then the Albanesemaps
 and ̂ satisfy the following properties.
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TORUS STABILITY UNDER KATO BOUNDS ON THE RICCI CURVATURE 957

(i) They are (1 + 𝐶(𝑛) 3
√
δ )-Lipschitz.

(ii) They are surjective.
(iii) For any 𝑟 ∈ [𝐷, δ−1∕6𝐷],

(
𝑟2 ⨏𝐵𝑟(𝑜) |∇𝑑̂|2 d𝜈ĝ

) 1
2

+ ⨏𝐵𝑟(𝑜)
|||𝑑̂ 𝑡𝑑̂ − Id𝑛

||| d𝜈ĝ ⩽ 𝐶(𝑛) 3√δ (8)

and

𝜈ĝ (𝐵𝑟(𝑜)) ⩾
(
1 − 𝐶(𝑛)

3
√
δ
)
𝜔𝑛𝑟

𝑛. (9)

Proof. Let 𝜋 be the projection map from 𝑀̂ to𝑀, and let (𝛼1, … , 𝛼𝑛) be the orthonormal basis of
harmonic 1-forms used to build ̂. We let 𝐶(𝑛) > 0 be a generic constant depending only on 𝑛
whose value may change from line to line.
Let us prove (i). For 𝜉 = (𝜉1, … , 𝜉𝑛) ∈ ℝ𝑛, set 𝛼 ∶=

∑
𝑖 𝜉𝑖𝛼𝑖 ∈ 1(𝑀𝑛, g) and observe that

|𝜉|2 = ⨏𝑀 |𝛼|2.
Then for any 𝑥 ∈ 𝑀̂ and 𝑣 ∈ 𝑇𝑥𝑀̂, since 𝑑̂ = (𝜋∗𝛼1, … , 𝜋

∗𝛼𝑛),

|||⟨𝜉, 𝑑𝑥̂(𝑣)⟩||| = ||𝛼(𝜋(𝑥))(𝑑𝑥𝜋(𝑣))|| ⩽ |𝜉|(1 + 𝐶(𝑛) 3√δ
) 1
2
√

ĝ𝑥(𝑣, 𝑣),

where we have applied (i) in Proposition 4.1. This yields (i).
Let us now prove (ii). Proposition 4.1 implies that Ω ∶= 𝛼1 ∧⋯ ∧ 𝛼𝑛 satisfies

⨏𝑀 ||Ω| − 1| d𝜈g ⩽ 𝐶(𝑛) 3√δ .

Hence if𝑀 is oriented and up to permutation of 𝛼1 and 𝛼2, then

||||∫𝑀 Ω− 𝜈g (𝑀)|||| ⩽ 𝐶(𝑛) 3√δ 𝜈g (𝑀),

but by construction, setting𝛀 ∶= 𝑑𝑥1 ∧⋯ ∧ 𝑑𝑥𝑛, we have Ω = ∗𝛀, hence

|||||deg −
𝜈g (𝑀)

volℝ𝑛∕𝚪

||||| = 1
volℝ𝑛∕𝚪

||||∫𝑀∗𝛀 − 𝜈g (𝑀)
|||| ⩽ 𝐶(𝑛) 3√δ

𝜈g (𝑀)

volℝ𝑛∕𝚪
⋅

Hence if 𝐶(𝑛) 3
√
δ < 1, then deg ≠ 0 and  is surjective. If 𝑀 is not oriented, then using the

twofold oriented cover𝑀𝑜

𝜋𝑜
⟶𝑀, the same argumentation can be applied to 𝜋∗𝑜Ω in order to get

that◦𝜋𝑜 ∶ 𝑀𝑜 → ℝ𝑛∕𝚪 is surjective.
Let us now prove (iii). Observe that (9) is a direct consequence of (8) and [7, Theorem 1.2] (see

also Theorem A.1). Thus we are left with proving (8). To this aim, we use the following result: for
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958 CARRON et al.

any 𝑓 ∈ 𝐿1(𝑀) and 𝑟 ∈ [𝐷,
√
𝑁𝐷],

⨏𝐵𝑟(𝑜) |𝑓◦𝜋| ⩽ 𝐶(𝑛)⨏𝑀 |𝑓|. (10)

Together with (ii) in Proposition 4.1, this implies that for any 𝑟 ∈ [𝐷,
√
𝑁𝐷],

⨏𝐵𝑟(𝑜)
|||𝑑̂ 𝑡𝑑̂ − Id𝑛

||| ⩽ 𝐶(𝑛) 3√δ,

and similarly (iii) in Proposition 4.1 yields that if 𝑟 ∈ [𝐷, δ−
1
6 𝐷], then

𝑟2 ⨏𝐵𝑟(𝑜)
|||∇𝑑̂|||2 ⩽ 𝐶(𝑛)δ( 𝑟𝐷)2 ⩽ 𝐶(𝑛)δ 23 .

Thus we are left with proving (10). Let ⊂ 𝐵𝐷(𝑜) be a fundamental domain for Γ⟶ 𝑀̂
𝜋
⟶𝑀.

Set

𝐺(𝑟) = {𝛾 ∈ Γ ∶ 𝛾 ∩ 𝐵𝑟(𝑜) ≠ ∅}.
Then

𝐵𝑟(𝑜) ⊂
⋃

𝛾∈𝐺(𝑟)

𝛾 ⊂ 𝐵𝑟+𝐷(𝑜),

so that

𝜈ĝ (𝐵𝑟(𝑜)) ⩽ #𝐺(𝑟)𝜈ĝ () = #𝐺(𝑟)𝜈g (𝑀) ⩽ 𝜈ĝ (𝐵𝑟+𝐷(𝑜)).
The group Γ ≃ ℤ𝑛 is residually finite; hence, Proposition 2.5 and Proposition 2.1 imply the volume
doubling estimate: for any 0 < 𝑟 ⩽ 𝑅 ⩽

√
𝑁𝐷,

𝜈ĝ (𝐵𝑅(𝑜)) ⩽ 𝐶(𝑛)
(𝑅
𝑟

)𝑒2𝑛
𝜈ĝ (𝐵𝑟(𝑜)).

If 𝑟 ⩾ 𝐷 and 𝑟 + 𝐷 ⩽
√
𝑁𝐷, this yields

#𝐺(𝑟)𝜈g (𝑀) ⩽ 𝐶(𝑛)
(𝑟 + 𝐷

𝑟

)𝑒2𝑛
𝜈ĝ (𝐵𝑟(𝑜)) ⩽ 𝐶(𝑛)𝜈ĝ (𝐵𝑟(𝑜)),

so that

⨏𝐵𝑟(𝑜) |𝑓◦𝜋| = 1
𝜈ĝ (𝐵𝑟(𝑜))

∑
𝛾∈𝐺(𝑟)

∫∩𝐵𝑟(𝑜) |𝑓◦𝜋| ⩽ #𝐺(𝑟)𝜈g (𝑀)

𝜈ĝ (𝐵𝑟(𝑜)) ⨏𝑀 |𝑓|
⩽ 𝐶(𝑛)⨏𝑀 |𝑓|.
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TORUS STABILITY UNDER KATO BOUNDS ON THE RICCI CURVATURE 959

If 𝑟 + 𝐷 >
√
𝑁𝐷, then the volumedoubling estimate yields (see, for example, [26, Subsection 2.3])

𝜈ĝ (𝐵𝑟+𝐷(𝑜)) ⩽ 𝐶(𝑛)
𝑟+𝐷
𝑟 𝜈ĝ (𝐵𝑟(𝑜)) ⩽ 𝐶(𝑛)𝜈ĝ (𝐵𝑟(𝑜)),

and we can conclude in the same way as above. □

5 PROOF OF THEOREMA

In this section, we prove Theorem A. All the way through we consider 𝜀 ∈ (0, 1) and

η ∶=
𝜀

640𝑛2
and 𝑅 ∶= 64𝑛2𝐷.

Let (𝑀𝑛, g) be a closed Riemannian manifold of diameter 𝐷 such that

𝑏1(𝑀) = 𝑛 and k𝐷2(𝑀𝑛, g) ⩽ δ

for some δ ∈ (0, 1∕(16𝑛)). We consider the covering Γ⟶ 𝑀̂
𝜋
⟶𝑀 built in the previous section,

and associated Albanese maps ̂ and. Then the following holds.
Claim 5.1. There exists δ0(𝜀, 𝑛) > 0 such that if δ ⩽ δ0(𝜀, 𝑛), then ̂ satisfies the following.

(a) ̂ is (1 + η)-Lipschitz.
(b) ̂∶ 𝐵𝑅(𝑜) → 𝔹𝑛𝑅 is an η𝑅-almost isometry.
(c) 𝔹𝑛

(1−η)𝑅
⊂ ̂(𝐵𝑅(𝑜)).

This is a consequence of Proposition 4.3, Theorem 3.1 and (i) in Remark 3.2. The last assertion
may be proven with degree theory, see [9], [20, Proof of 3.2 and 3.3], and [12, Proof of theorem 7.2].
From now on, we assume that

δ ⩽ δ0(𝜀, 𝑛).

Step 1. Proceeding like in [14, 20], we construct a normal subgroup Γ0 of Γwith finite index, such
that ̂ induces a map

0 ∶ 𝑀0 ∶= 𝑀̂∕Γ0 → ℝ𝑛∕𝜌(Γ0).

Let (𝑒1, … , 𝑒𝑛) be the canonical basis of ℝ𝑛. Since 4
√
𝑛𝐷 ⩽ (1 − η)𝑅, it follows from (𝑐) that for

any 𝑖 ∈ {1, … , 𝑛}, there exists 𝑥𝑖 ∈ 𝐵𝑅(𝑜) such that

4
√
𝑛𝐷𝑒𝑖 = ̂(𝑥𝑖).

Moreover, for any 𝑖 ∈ {1, … , 𝑛}, there exists 𝛾𝑖 ∈ Γ such that

𝖽ĝ (𝛾𝑖.𝑜, 𝑥𝑖) ⩽ 𝐷.
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960 CARRON et al.

Then we set

Γ0 ∶= ⟨𝛾1, … , 𝛾𝑛⟩ ⊂ Γ
and

𝚪0 ∶= 𝜌(Γ0) =
𝑛⨁
𝑖=1

𝜌(𝛾𝑖)ℤ.

Let us show that

𝜌(𝛾1), … , 𝜌(𝛾𝑛) form a basis of ℝ𝑛. (11)

We know by (𝑎) that the map ̂ is (1 + η)-Lipschitz. Then for any 𝑖 ∈ {1, … , 𝑛}, since the
equivariance (5) of ̂ yields 𝜌(𝛾𝑖) = ̂(𝛾𝑖.𝑜), we have

|4√𝑛𝐷𝑒𝑖 − 𝜌(𝛾𝑖)| = |||̂(𝑥𝑖) − ̂(𝛾𝑖.𝑜)||| ⩽ (1 + η)𝖽ĝ (𝛾𝑖.𝑜, 𝑥𝑖) ⩽ (1 + η)𝐷. (12)

Then for any 𝜉 =
∑𝑛
𝑖=1 𝜉𝑖𝑒𝑖 ∈ ℝ

𝑛,

|||||4
√
𝑛𝐷𝜉 −

𝑛∑
𝑖=1

𝜉𝑖𝜌(𝛾𝑖)
||||| =

|||||
𝑛∑
𝑖=1

𝜉𝑖(4
√
𝑛𝐷𝑒𝑖 − 𝜌(𝛾𝑖))

|||||
⩽ (1 + η)𝐷

𝑛∑
𝑖=1

|𝜉𝑖| ⩽ 2𝐷√𝑛|𝜉|,
so that

|𝜉| ⩽ 1

2𝐷
√
𝑛

|||||
𝑛∑
𝑖=1

𝜉𝑖𝜌(𝛾𝑖)
|||||. (13)

Hence we get (11). This implies that the quotient ℝ𝑛∕𝚪0 is a torus 𝕋𝑛 which we equip with the
natural flat quotient Riemannian metric gℝ𝑛∕𝚪0 . We also equip𝑀0 with the quotient Riemannian
metric g0 induced by ĝ .
Step 2.We establish the following diameter bound on (𝑀0, g0):

diam(𝑀0) ⩽ 4(𝑛 +
√
𝑛)𝐷. (14)

To this aim, let us prove an intermediary result: if 𝛾 ∈ Γ0 is such that

|𝜌(𝛾)| ⩽ 𝑅

2
√
𝑛 + 1

, (15)

then

|||𝖽ĝ (𝑜, 𝛾.𝑜) − |𝜌(𝛾)| ||| ⩽ η𝑅. (16)
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TORUS STABILITY UNDER KATO BOUNDS ON THE RICCI CURVATURE 961

Write 𝛾 ∈ Γ0 as

𝛾 = 𝛾
𝑘1
1 … 𝛾

𝑘𝑛
𝑛

for some 𝑘1, … , 𝑘𝑛 ∈ ℤ. Consider 𝑖 ∈ {1, … , 𝑛}. From (𝑏), we know that |𝖽ĝ (𝑥𝑖, 𝑜) − |̂(𝑥𝑖) −
̂(𝑜)| | ⩽ η𝑅. Since ̂(𝑜) = 0 and ̂(𝑥𝑖) = 4√𝑛𝐷𝑒𝑖 , this implies

𝖽ĝ (𝑥𝑖, 𝑜) ⩽ η𝑅 + 4
√
𝑛𝐷 ⩽ (1 + 4

√
𝑛)𝐷.

Then

𝖽ĝ (𝑜, 𝛾.𝑜) ⩽
∑
𝑖

|𝑘𝑖| max
𝑖
𝖽ĝ (𝑜, 𝛾𝑖.𝑜) ⩽ (2 + 4

√
𝑛)𝐷

∑
𝑖

|𝑘𝑖|.
Since 𝜌(𝛾) =

∑
𝑖 𝑘𝑖𝜌(𝛾𝑖), it follows from (13) that

∑
𝑖

|𝑘𝑖| ⩽√𝑛(∑
𝑖

𝑘2𝑖

)1∕2
⩽
|𝜌(𝛾)|
2𝐷

⋅

Then we get 𝖽ĝ (𝑜, 𝛾.𝑜) ⩽ (2
√
𝑛 + 1)|𝜌(𝛾)|, so that (15) implies

𝛾.𝑜 ∈ 𝐵𝑅(𝑜) (17)

and the conclusion (16) follows from (𝑏).
We are now in a position to prove the diameter bound (14). Introduce the Dirichlet domain

0 ∶=
{
𝑥 ∈ 𝑀̂ ∶ 𝖽ĝ (𝑥, 𝑜) ⩽ 𝖽ĝ (𝛾.𝑥, 𝑜) for all 𝛾 ∈ Γ0 ⧵ {1}

}
.

We are going to show that

0 ∩
{
𝑥 ∈ 𝑀̂ ∶ 𝖽ĝ (𝑥, 𝑜) = 2(𝑛 +

√
𝑛)𝐷

}
= ∅; (18)

then the connectedness of0 will imply0 ⊂ 𝐵2(𝑛+
√
𝑛)𝐷(𝑜) and (14) will be established.

The set 0 ∶= ∑𝑛
𝑖=1[−

1
2
, 1
2
)𝜌(𝛾𝑖) is a fundamental domain for the action of 𝚪0 on ℝ𝑛; it is

included in the Euclidean ball centered at the origin with radius√
𝑛

2
max
𝑖
|𝜌(𝛾𝑖)|.

By (12), for any 𝑖,

|𝜌(𝛾𝑖)| ⩽ |4√𝑛𝐷𝑒𝑖| + (1 + η)𝐷 ⩽
(
4
√
𝑛 + 2

)
𝐷,

so that √
𝑛

2
max
𝑖
|𝜌(𝛾𝑖)| ⩽ (2𝑛 +√𝑛)𝐷.
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962 CARRON et al.

For any 𝑥 ∈ 𝑀̂ there exists 𝛾0 ∈ Γ0 such that ̂(𝛾0.𝑥) ∈ 0. By the equivariance (5) of ̂ and the
previous inequality, we get that

|||̂(𝑥) + 𝜌(𝛾0)||| = |||̂(𝛾0.𝑥)||| ⩽ (2𝑛 +√𝑛)𝐷. (19)

Now assume that 𝖽ĝ (𝑥, 𝑜) = 2(𝑛 +
√
𝑛)𝐷. We are going to show that 𝑥 ∉ 0. Since 2(𝑛 +√

𝑛)𝐷 ⩽ 𝑅, from (𝑏) we get

|||̂(𝑥)||| = |||̂(𝑥) − ̂(𝑜)||| ⩽ 2(𝑛 +√𝑛)𝐷 + η𝑅.

Consequently,

|𝜌(𝛾0)| ⩽ |||̂(𝑥) + 𝜌(𝛾0)||| + |||̂(𝑥)||| ⩽ (4𝑛 + 3√𝑛)𝐷 + η𝑅.

By our choices of η and 𝑅 we have

(4𝑛 + 3
√
𝑛)𝐷 + η𝑅 ⩽

𝑅

2
√
𝑛 + 1

⋅

Then we are in a position to apply (16). We get

𝖽ĝ (𝛾0.𝑜, 𝑜) ⩽ (4𝑛 + 3
√
𝑛)𝐷 + 2η𝑅

and then

𝖽ĝ (𝛾0.𝑥, 𝑜) ⩽ 𝖽ĝ (𝛾0.𝑥, 𝛾0.𝑜) + 𝖽ĝ (𝛾0.𝑜, 𝑜) ⩽ 2(𝑛 +
√
𝑛)𝐷 + (4𝑛 + 3

√
𝑛)𝐷 + 2η𝑅.

Since

2(𝑛 +
√
𝑛)𝐷 + (4𝑛 + 3

√
𝑛)𝐷 + 2η𝑅 ⩽ 𝑅,

we can use (𝑏) and (19) to deduce that

𝖽ĝ (𝛾0.𝑥, 𝑜) ⩽
|||̂(𝛾0.𝑥)||| + η𝑅 ⩽ (2𝑛 +

√
𝑛)𝐷 + η𝑅 < 2(

√
𝑛 + 2𝑛)𝐷 = 𝖽ĝ (𝑥, 𝑜).

Thus 𝑥 ∉ 0 and (18) is proven.
Step 3.We prove that 0 ∶ 𝑀0 → ℝ𝑛∕𝚪0 is a 3η𝑅-almost isometry. From Proposition 4.3, we

know that ̂ is surjective; hence,0 is surjective too. Thus we are left with proving the distance
estimate. Let us introduce the following intermediate projection maps 𝜋0 and 𝑝0:
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TORUS STABILITY UNDER KATO BOUNDS ON THE RICCI CURVATURE 963

Let 𝑥, 𝑦 ∈ 𝑀0. Since 0 ⊂ 𝐵2(𝑛+
√
𝑛)𝐷(𝑜), we can choose 𝑥 ∈ 𝐵2(𝑛+√𝑛)𝐷(𝑜) such that 𝜋0(𝑥) =

𝑥. Let 𝑐∶ [0, 1] → 𝑀0 be a minimizing geodesic joining 𝑥 and 𝑦. Let 𝑐∶ [0, 1] → 𝑀̂ be such
that 𝜋0◦𝑐 = 𝑐 and 𝑥 = 𝑐(0). By the diameter bound (14), we know that 𝑦 ∶= 𝑐(1) belongs to
𝐵6(𝑛+

√
𝑛)𝐷(𝑜) ⊂ 𝐵𝑅(𝑜). Moreover, 𝜋0(𝑦) = 𝑦. Thus

𝖽gℝ𝑛∕𝚪0
(0(𝑥),0(𝑦)) = 𝖽gℝ𝑛∕𝚪0

(
𝑝0(̂(𝑥)), 𝑝0(̂(𝑦))

)
⩽
|||̂(𝑥) − ̂(𝑦)|||

⩽ 𝖽g0 (𝑥, 𝑦) + η𝑅 (20)

thanks to (𝑏).
It remains to prove that

𝖽g0 (𝑥, 𝑦) − 𝖽gℝ𝑛∕𝚪0
(0(𝑥),0(𝑦)) ⩽ 3η𝑅.

We start by showing that if 0(𝑥) = 0(𝑦), then 𝖽g0 (𝑥, 𝑦) ⩽ η𝑅. Since 0◦𝑐 = 0◦𝜋0◦𝑐 =

𝑝0◦̂◦𝑐, the curve ̂◦𝑐 is a lift of the curve 0◦𝑐 joining 𝑣 ∶= ̂(𝑥) ∈ ℝ𝑛 to 𝑤 ∶= ̂(𝑦). More-
over, the length of 𝑐 is less than 4(𝑛 +

√
𝑛)𝐷; hence, (𝑏) implies that the length of ̂◦𝑐 is less than

4(1 + η)(𝑛 +
√
𝑛)𝐷. Since 𝑝0(𝑣) = 𝑝0(𝑤), there exists 𝛾 ∈ Γ0 such that

̂(𝑦) = 𝑤 = 𝑣 + 𝜌(𝛾) = ̂(𝑥) + 𝜌(𝛾)
and

|𝜌(𝛾)| ⩽ 4(1 + η)(𝑛 +
√
𝑛)𝐷 ⩽ 8(𝑛 +

√
𝑛)𝐷.

As a consequence, notice that 𝛾−1.𝑦 satisfies

𝖽ĝ (𝛾
−1.𝑦, 𝑜) ⩽ 𝖽ĝ (𝑜, 𝛾.𝑜) + 𝖽ĝ (𝑦, 𝑜) ⩽ η𝑅 + |𝜌(𝛾)| + 6(𝑛 +√𝑛)𝐷

⩽ 14(
√
𝑛 + 𝑛)𝐷 + η𝑅,

where we used that ̂ is an η𝑅-almost isometry in the second inequality. Since 14(
√
𝑛 + 𝑛)𝐷 +

η𝑅 ⩽ 𝑅, we get that 𝛾−1𝑦 ∈ 𝐵𝑅(𝑜). Moreover, ̂(𝑦) = ̂(𝑥) + 𝜌(𝛾); thus, by the invariance of ̂
we have ̂(𝛾−1.𝑦) = ̂(𝑥). Then we can apply (𝑏) and obtain

𝖽g0 (𝑥, 𝑦) ⩽ 𝖽ĝ (𝛾
−1.𝑦, 𝑥) ⩽ η𝑅.

Now assume that 𝑣 ∶= 0(𝑥) and 𝑤 ∶= 0(𝑦) are distinct. We can choose 𝑣 and 𝑤 such that
𝑝0(𝑣) = 𝑣, 𝑝0(𝑤) = 𝑤,

𝖽gℝ𝑛∕𝚪0
(𝑣, 𝑤) = |𝑣 − 𝑤| and 𝑣, 𝑤 ∈ 𝔹𝑛

2(
√
𝑛+𝑛)𝐷

.

Since 2(
√
𝑛 + 𝑛)𝐷 < (1 − η)𝑅, from (𝑐)we know that there exist 𝑥′, 𝑦′ ∈ 𝐵𝑅(𝑜) such that ̂(𝑥′) =

𝑣 and ̂(𝑦′) = 𝑤. Then0(𝜋0(𝑥
′)) = 𝑝0(̂(𝑥′)) = 𝑣 = 0(𝑥) and0(𝜋0(𝑦

′)) = 𝑝0(̂(𝑦′)) = 𝑤 =0(𝑦), thus
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964 CARRON et al.

𝖽g0 (𝑥, 𝑦) ⩽ 2η𝑅 + 𝖽g0 (𝜋0(𝑥
′), 𝜋0(𝑦

′)) by the previous paragraph

⩽ 2η𝑅 + 𝖽ĝ (𝑥
′, 𝑦′)

⩽ 3η𝑅 + |𝑣 − 𝑤| by (𝑏)

= 3η𝑅 + 𝖽gℝ𝑛∕𝚪0
(0(𝑥),0(𝑦)).

Thus we have shown that0 ∶ 𝑀0 → ℝ𝑛∕𝚪0 is a 3η𝑅-almost isometry.
Step 4.We conclude. Repeating the arguments of Step 3 with the commutative diagram

we get that∶ 𝑀 → ℝ𝑛∕𝚪 is a 9η𝑅-almost isometry. Since 9η𝑅 = 9𝜀𝐷∕10, this concludes the
proof of Theorem A.

6 PROOF OF THEOREM B

In this section, we prove Theorem B. Let 𝑓∶ [0, 1] → ℝ+ be a non-decreasing function satisfying
(SK). Let (𝑀𝑛, g) be a closed Riemannian manifold of diameter 𝐷 such that

∙ 𝑏1(𝑀) = 𝑛,
∙ k𝐷2(𝑀𝑛, g) ⩽ δ for some δ ∈ (0, 1∕(16𝑛)),
∙ k𝑡𝐷2(𝑀𝑛, g) ⩽ 𝑓(𝑡) for any 𝑡 ∈ (0, 1].

We consider the covering Γ⟶ 𝑀̂
𝜋
⟶𝑀 built in Section 4, and associated Albanesemaps ̂ and

. Set ĝ ∶= 𝜋∗g . From (1), we get that

∙ k(2𝐷)2(𝑀̂𝑛, ĝ) ⩽ 4δ,
∙ k𝑡(2𝐷)2(𝑀̂𝑛, ĝ) ⩽ 4𝑓(𝑡) for any 𝑡 ∈ (0, 1].

Let β(𝑛, 4𝑓) be given by Proposition 3.4. Set

η ∶= β(𝑛, 4𝑓)∕4.

Let 𝐻̂ be the heat kernel of 𝑀̂, and θ̂(𝑡, 𝑥) ∶= (4𝜋𝑡)𝑛∕2𝐻̂(𝑡, 𝑥, 𝑥) for any (𝑡, 𝑥) ∈ ℝ+ × 𝑀̂. Then the
following holds.

Claim 6.1. There exists δ0(𝑛, 𝑓) ∈ (0,η] such that if δ ⩽ δ0(𝑛, 𝑓), then

θ̂((2𝐷)2, 𝑜) ⩽ 1 + η (21)

and (
(2𝐷)2 ⨏𝐵2𝐷(𝑜) |∇𝑑̂|2 d𝜈ĝ

) 1
2

+ ⨏𝐵2𝐷(𝑜)
|||𝑑̂ 𝑡𝑑̂ − Id𝑛

||| d𝜈ĝ ⩽ η. (22)
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TORUS STABILITY UNDER KATO BOUNDS ON THE RICCI CURVATURE 965

This claim puts us in a position to apply Proposition 3.4: we get that the map ̂∶ 𝐵3𝐷∕2(𝑜) →
ℝ𝑛 is a diffeomorphism onto its image. Therefore, the Albanese map  ∶ 𝑀 → ℝ𝑛∕𝚪 is a local
diffeomorphism; hence, it is a finite cover. Since a torus is finitely covered by tori only, we get
that 𝑀 is diffeomorphic to a torus. Then the Albanese map is necessarily a diffeomorphism, by
construction. As a consequence, the conclusion of Theorem B holds.
Let us now prove Claim 6.1. From Proposition 4.3, we know that if we choose δ0(𝑛, 𝑓) ⩽

min(δ(𝑛), 2−6, (𝐶(𝑛)−1η)3), then (22) holds. Let us prove that we can also choose δ0(𝑛, 𝑓) such
that (21) holds. To this aim, we introduce the following almost Euclidean heat kernel on 𝑀̂: for
any 𝜀 ∈ (0, 1), 𝑥, 𝑦 ∈ 𝑀̂ and 𝑡 > 0, we set

ℍ𝜀(𝑡, 𝑥, 𝑦) ∶=
1

(1 + 𝜀)(4𝜋𝑡)𝑛∕2
𝑒−(1+𝜀)

𝖽2
ĝ
(𝑥,𝑦)

4𝑡 . (23)

Step 1. We prove the following Cheeger–Yau-type estimate: for any 𝜀 ∈ (0, 1) and any integer
𝓁 ⩾ 4, there exists δ1(𝑛, 𝑓, 𝜀,𝓁) > 0 such that if

k𝐷2(𝑀𝑛, g) ⩽ δ ⩽ δ1(𝑛, 𝑓, 𝜀,𝓁),

then for any 𝑥, 𝑦 ∈ 𝑀̂ and 𝑡 ∈ (0,𝓁𝐷2],

ℍ𝜀(𝑡, 𝑥, 𝑦) ⩽ 𝐻̂(𝑡, 𝑥, 𝑦). (24)

Let us set Γ(𝜏) ∶= 𝑒8
√
𝑛k𝜏(𝑀𝑛,g) for any 𝜏 > 0. Since 𝑀̂ satisfies the Dynkin condition (Dy), it

satisfies the Li-Yau inequality from [4, Proposition 3.3]. Then we can proceed as in the proof of
[12, Proposition 2.12] to get that for any 𝑠 ∈ (0, 𝑡), any positive solution 𝑢 of the heat equation on
𝑀̂ × [0,𝓁𝐷2] satisfies

log

(
𝑢(𝑠, 𝑥)

𝑢(𝑡, 𝑦)

)
⩽
( 𝑡
𝑠

)𝑛∕2
𝑒
Γ(𝑡)

𝖽2
ĝ
(𝑥,𝑦)

4(𝑡−𝑠) 𝑒
𝑛
2
∫ 𝑡𝑠 Γ(𝜏)−1

𝜏
d𝜏 ⋅

Apply this inequality with 𝑢(⋅, ⋅) = 𝐻̂(⋅, 𝑥, ⋅) to get

(4𝜋𝑠)𝑛∕2𝐻̂(𝑠, 𝑥, 𝑥)

(4𝜋𝑡)𝑛∕2𝐻̂(𝑡, 𝑥, 𝑦)
⩽ 𝑒

Γ(𝑡)
𝖽2
ĝ
(𝑥,𝑦)

4(𝑡−𝑠) 𝑒
𝑛
2
∫ 𝑡𝑠 Γ(𝜏)−1

𝜏
d𝜏

⩽ 𝑒
Γ(𝓁𝐷2)

𝖽2
ĝ
(𝑥,𝑦)

4(𝑡−𝑠) 𝑒𝐶(𝑛) ∫ 𝓁𝐷2

0

√
k𝜏(𝑀𝑛,g) d𝜏

𝜏 ⋅

Letting 𝑠 ↓ 0 yields

𝑒−Γ(𝓁𝐷
2)
𝖽2
ĝ
(𝑥,𝑦)

4𝑡

(4𝜋𝑡)𝑛∕2
𝑒−𝐶(𝑛) ∫ 𝓁𝐷2

0

√
k𝜏(𝑀𝑛,g) d𝜏

𝜏 ⩽ 𝐻̂(𝑡, 𝑥, 𝑦).

Since k𝓁𝐷2(𝑀𝑛, g) ⩽ 𝓁k𝐷2(𝑀𝑛, g) ⩽ 𝓁δ, we know that there exists δ2(𝑛, 𝑓, 𝜀,𝓁) > 0 such that if
δ ⩽ δ2(𝑛, 𝑓, 𝜀,𝓁), then

Γ(𝓁𝐷2) ⩽ 1 + 𝜀.
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966 CARRON et al.

To conclude, let us show that there exists δ1(𝑛, 𝑓, 𝜀,𝓁) ⩽ δ2(𝑛, 𝑓, 𝜀,𝓁) such that if δ ⩽ δ1(𝑛, 𝑓, 𝜀,𝓁),
then

𝑒𝐶(𝑛) ∫ 𝓁𝐷2

0

√
𝑛k𝜏(𝑀𝑛,g) d𝜏

𝜏 ⩽ 1 + 𝜀. (25)

Since k𝜏(𝑀𝑛, g) ⩽ 𝑓(𝜏∕𝐷2) for any 𝜏 ∈ (0, 𝐷2), for any 𝜎 ∈ (0, 1) we have

∫
𝓁𝐷2

0

√
k𝜏(𝑀𝑛, g)d𝜏

𝜏
⩽ ∫

𝜎𝐷2

0

√
k𝜏(𝑀𝑛, g)d𝜏

𝜏
+ log(𝓁∕𝜎)

√
k𝓁𝐷2(𝑀𝑛, g)

⩽ ∫
𝜎

0

√
𝑓(𝜏)

d𝜏
𝜏
+ log(𝓁∕𝜎)

√
𝓁k𝐷2(𝑀𝑛, g).

Therefore, to get (25), first we choose 𝜎(𝑓) ∈ (0, 1) such that

𝑒𝐶(𝑛) ∫
𝜎(𝑓)
0

√
𝑓(𝑠)
𝑠

d𝑠 ⩽
√
1 + 𝜀,

then we choose δ1(𝑛, 𝑓, 𝜀,𝓁) ⩽ δ2(𝑛, 𝑓, 𝜀,𝓁) such that

𝑒𝐶(𝑛) log(𝓁∕𝜎(𝑓))
√
𝓁 δ1(𝑛,𝑓,𝜀,𝓁) ⩽

√
1 + 𝜀.

Step 2.We prove that for any 𝜀 ∈ (0, 1) and 𝑡 > 𝐷2,

∫𝑀̂ ℍ𝜀(𝑡, 𝑜, 𝑦) d𝜈ĝ (𝑦) ⩾
1 − 𝐶(𝑛)

3
√
δ

(1 + 𝜀)
𝑛
2
+1

⎛⎜⎜⎝1 − 𝐶(𝑛)
(
𝐷√
𝑡

)𝑛+2
− 𝐶(𝑛)𝑒

− 𝐷2

5
3√
δ𝑡

⎞⎟⎟⎠. (26)

Set 𝑠 ∶= 𝑡∕(1 + 𝜀). Then

∫𝑀̂ ℍ𝜀(𝑡, 𝑜, 𝑦) d𝜈ĝ (𝑦) =
1

(1 + 𝜀)1+
𝑛
2
∫𝑀̂

1

(4𝜋𝑠)
𝑛
2

𝑒−
𝖽2
ĝ
(𝑜,𝑦)

4𝑠 d𝜈ĝ (𝑦).

By Cavalieri’s principle,

∫𝑀̂
1

(4𝜋𝑠)
𝑛
2

𝑒−
𝖽2
ĝ
(𝑜,𝑦)

4𝑠 d𝜈ĝ (𝑦) = ∫
+∞

0

𝑒−
𝑟2

4𝑠

(4𝜋𝑠)
𝑛
2

𝑟
2𝑠
𝜈ĝ (𝐵𝑟(𝑜)) d𝑟

⩾ ∫
𝐷δ−

1
6

𝐷

𝑒−
𝑟2

4𝑠

(4𝜋𝑠)
𝑛
2

𝑟
2𝑠
𝜈ĝ (𝐵𝑟(𝑜)) d𝑟

⩾
(
1 − 𝐶(𝑛)

3
√
δ
)
∫

𝐷δ−
1
6

𝐷

𝑒−
𝑟2

4𝑠

(4𝜋𝑠)
𝑛
2

𝑟
2𝑠
𝜔𝑛𝑟

𝑛 d𝑟,
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TORUS STABILITY UNDER KATO BOUNDS ON THE RICCI CURVATURE 967

where we use the volume lower bound (9) to get the last line. Set

𝜙𝑛,𝑠(𝑟) ∶=
𝑒−

𝑟2

4𝑠

(4𝜋𝑠)
𝑛
2

𝑟
2𝑠
𝜔𝑛𝑟

𝑛

and note that

∫
+∞

0
𝜙𝑛,𝑠(𝑟) d𝑟 = 1.

Then

∫𝑀̂
1

(4𝜋𝑠)
𝑛
2

𝑒−
𝖽2
ĝ
(𝑜,𝑦)

4𝑠 d𝜈ĝ (𝑦) ⩾
(
1 − 𝐶(𝑛)

3
√
δ
)(
1 − ∫

𝐷

0
𝜙𝑛,𝑠(𝑟) d𝑟 − ∫

+∞

𝐷δ−
1
6

𝜙𝑛,𝑠(𝑟) d𝑟

)
. (27)

A direct computation shows that

∫
𝐷

0
𝜙𝑛,𝑠(𝑟) d𝑟 ⩽ 𝐶(𝑛)

(
𝐷√
𝑠

)𝑛+2
and ∫

+∞

𝐷δ−
1
6

𝜙𝑛,𝑠(𝑟) d𝑟 ⩽ 𝐶(𝑛)𝑒
− 𝐷2

5
3√
δ𝑠 . (28)

Hence we get (26).
Step 3.We conclude. Consider 𝜀 ∈ (0, 1). From the proof of [13, Lemma 5.7], we know that for

any integer 𝓁 ⩾ 4,

θ̂((2𝐷)2, 𝑜) ⩽ θ̂(𝓁𝐷2, 𝑜)𝑒𝐶(𝑛)
√
δ𝓁 .

We are going to show that we can choose δ small enough and 𝓁 large enough to ensure that

θ̂(𝓁𝐷2, 𝑜) ⩽
√
1 + η (29)

and

𝑒𝐶(𝑛)
√
δ𝓁 ⩽

√
1 + η. (30)

For the sake of brevity, let us set 𝜏 ∶= 𝓁𝐷2. Assume that δ ⩽ δ1(𝑛, 𝑓, 𝜀,𝓁) where δ1(𝑛, 𝑓, 𝜀,𝓁) is
given by Step 1. The semi-group law yields

θ̂(𝜏, 𝑜) = (4𝜋𝜏)
𝑛
2 ∫𝑀̂ 𝐻̂

2(𝜏∕2, 𝑜, 𝑦) d𝜈ĝ (𝑦)

= (4𝜋𝜏)
𝑛
2 ∫𝑀̂

(
𝐻̂2(𝜏∕2, 𝑜, 𝑦) − ℍ2𝜀 (𝜏∕2, 𝑜, 𝑦)

)
d𝜈ĝ (𝑦)

+
1

1 + 𝜀 ∫𝑀̂ ℍ𝜀(𝜏∕4, 𝑜, 𝑦) d𝜈ĝ (𝑦)
=∶ 𝐼 + 𝐼𝐼. (31)
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968 CARRON et al.

By Step 1 and stochastic completeness,

𝐼𝐼 ⩽
1

1 + 𝜀
⩽ 1. (32)

By Step 1 we also know that 0 ⩽ 𝐻̂2 − ℍ2𝜀 = (𝐻̂ − ℍ𝜀)(𝐻̂ + ℍ𝜀) ⩽ (𝐻̂ − ℍ𝜀)2𝐻̂. Moreover, the heat
kernel upper bound from Proposition 2.2 and the volume lower bound (9) imply that if

𝓁δ
1
3 ⩽ 2, (33)

then

𝐻̂(𝜏∕2, 𝑜, 𝑦) ⩽
𝐶(𝑛)

𝜏
𝑛
2

,

so that

𝐼 ⩽ (4𝜋𝜏)
𝑛
2∫𝑀̂

(
𝐻̂(𝜏∕2, 𝑜, 𝑦) − ℍ𝜀(𝜏∕2, 𝑜, 𝑦)

)
2𝐻̂(𝜏∕2, 𝑜, 𝑦) d𝜈ĝ (𝑦)

⩽ 𝐶(𝑛)∫𝑀̂
(
𝐻̂(𝜏∕2, 𝑜, 𝑦) − ℍ𝜀(𝜏∕2, 𝑜, 𝑦)

)
d𝜈ĝ (𝑦)

= 𝐶(𝑛)

(
1 − ∫𝑀̂ ℍ𝜀(𝜏∕2, 𝑜, 𝑦) d𝜈ĝ (𝑦)

)
, (34)

by stochastic completeness. By combining (31), (32), (34), and thanks to Step 2, we eventually get

θ̂(𝜏, 𝑜) ⩽ 1 + 𝐶(𝑛)
⎛⎜⎜⎝1 −

1 − 𝐶(𝑛)
3
√
δ

(1 + 𝜀)
𝑛
2
+1

⎛⎜⎜⎝1 − 𝐶(𝑛)
(

1√
𝓁

)𝑛+2
− 𝐶(𝑛)𝑒

− 1

5
3√
δ𝓁

⎞⎟⎟⎠
⎞⎟⎟⎠

⩽ 1 + 𝐶(𝑛)
⎛⎜⎜⎝𝜀 + 3

√
δ +

(
1√
𝓁

)𝑛+2
+ 𝑒

− 1

5
3√
δ𝓁

⎞⎟⎟⎠.
Then we choose successively:

(1) 𝜀 ∈ (0, 1) such that 𝐶(𝑛)𝜀 ⩽ η

12
,

(2) 𝓁 ⩾ 4 such that 𝐶(𝑛)( 1√
𝓁
)𝑛+2 ⩽ η

12
,

(3) δ ⩽ δ1(𝑛, 𝑓, 𝜀,𝓁) such that (30) and (33) hold together with

𝐶(𝑛)
3
√
δ ⩽

η

12
and 𝐶(𝑛)𝑒

− 1

5
3√
δ𝓁 ⩽

η

12
⋅

This implies θ̂(𝓁𝐷2, 𝑜) ⩽ 1 + η∕3 ⩽
√
1 + η and concludes the proof.

 14697750, 2023, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12704 by U

niversité D
e N

antes, W
iley O

nline L
ibrary on [24/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TORUS STABILITY UNDER KATO BOUNDS ON THE RICCI CURVATURE 969

APPENDIX: ALMOST SURJECTIVITY

In this appendix, we point out that almost splitting maps are almost surjective, without any
assumption on the Ricci curvature. We single out this fact from the proof of [7, Theorem 1.2]
(see also [8, Section 2] for variants).
Theorem A.1. Let (𝑀𝑛, g) be a complete Riemannian manifold and 𝑘 ∈ {1, … , 𝑛}. There exist
η(𝑛, 𝑘) ∈ (0, 1) and 𝐶(𝑛, 𝑘) > 0 such that for any 𝑜 ∈ 𝑀 and 𝑟 > 0, if there exists Φ∶ 𝐵𝑟(𝑜) → ℝ𝑘

smooth and 𝜀 ∈ (0,η(𝑛, 𝑘)) such that

(i) Φ(𝑜) = 0,
(ii) ‖𝑑Φ‖𝐿∞(𝐵𝑟(𝑜)) ⩽ 1 + 𝜀,
(iii) ⨏𝐵𝑟(𝑜) |𝑑Φ𝑡𝑑Φ − Id𝑘| d𝜈g ⩽ 𝜀,
(iv) 𝑟 ⨏𝐵𝑟(𝑜) |∇𝑑Φ| d𝜈g ⩽ 𝜀,
then

𝑘(𝔹𝑘𝑟 ⧵ Φ(𝐵𝑟(𝑜))) ⩽ 𝐶(𝑛, 𝑘)𝑟𝑘 𝜀.
Proof. By scaling, there is no loss of generality in assuming 𝑟 = 1, what we do from now on. Set
𝐵 ∶= 𝐵1(𝑜) and

𝑤 ∶=
√
det 𝑑Φ𝑡𝑑Φ = ||𝑑Φ1 ∧⋯ ∧ 𝑑Φ𝑘||,

and recall that the coaera formula gives that for any 𝑓 ∈ 𝐿1(𝐵),

∫𝐵 𝑓 d𝜈g = ∫ℝ𝑘
(
∫Φ−1(𝑧)

𝑓

𝑤
d𝑛−𝑘

)
d𝑧. (A.1)

Acting as in [7], we introduce a function 𝐽 ∶ ℝ𝑘 → ℝ+ which provides a weighted measure of the
fibers Φ−1(𝑧). Let 𝜒∶ ℝ+ → [0, 1] be a smooth function such that 𝜒 = 0 on [0, 1∕4] and 𝜒 = 1 on
[1∕2, +∞). For any 𝑧 ∈ ℝ𝑘, set

𝐽(𝑧) ∶= ∫Φ−1(𝑧) 𝜒◦𝑤
2 d𝑛−𝑘.

Note that if 𝑧 ∉ Φ(𝐵), then 𝐽(𝑧) = 0. Moreover, the presence of 𝜒 in the integrand ensures that
the integral may be taken over

Σ𝑧 ∶= Φ
−1(𝑧) ∩ {𝑤 > 0},

which is a smooth (𝑛 − 𝑘)-dimensional submanifold of 𝐵. By ii), we know that Φ(𝐵) ⊂ 𝔹𝑘1+𝜀.
Therefore, by the Poincaré inequality,

𝑘(𝔹𝑘1+𝜀 ⧵ Φ(𝐵))𝐽 ⩽ ∫𝔹𝑘1+𝜀
||𝐽(𝑧) − 𝐽|| d𝑧 ⩽ 𝐶(𝑛, 𝑘)∫𝔹𝑘1+𝜀 |∇𝐽(𝑧)| d𝑧, (A.2)

where

𝐽 ∶= ⨏𝔹𝑘1+𝜀
𝐽.
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970 CARRON et al.

Let us estimate |∇𝐽(𝑧)|. For any 𝑣 ∈ ℝ𝑘 and 𝑥 ∈ {𝑤 > 0}, we let 𝑋𝑣(𝑥) be the unique element in
𝑇𝑥Σ

⟂
Φ(𝑥)

such that 𝑑𝑥Φ(𝑋𝑣(𝑥)) = 𝑣. Then there exists 𝜉 ∶ 𝐵 → ℝ𝑘 such that
∑𝑘
𝛼=1 𝜉𝛼∇Φ𝛼 = 𝑋𝑣.

We easily get that

|𝑋𝑣| ⩽ 2𝑘−1

𝑤
|𝑣|.

Moreover

∇𝑣𝐽(𝑧) = ∫Σ𝑧 (𝜒
′◦𝑤2)∇𝑋𝑣𝑤

2 d𝑛−𝑘 + ∫Σ𝑧 (𝜒◦𝑤
2)⟨𝐻⃗, 𝑋𝑣⟩ d𝑛−𝑘, (A.3)

where 𝐻⃗ is the mean curvature vector of Σ𝑧. We easily compute that

⟨𝐻⃗, 𝑋𝑣⟩ = − 𝑘∑
𝛼=1

𝑛−𝑘∑
𝑖=1

𝜉𝛼∇𝑑Φ𝛼(𝑒𝑖, 𝑒𝑖),

where (𝑒1, … , 𝑒𝑛−𝑘) is an orthonormal basis of 𝑇𝑥Σ𝑧. Hence

|||⟨𝐻⃗, 𝑋𝑣⟩||| ⩽ 𝐶(𝑛, 𝑘) |∇𝑑Φ|𝑤
|𝑣|.

We also have

|∇𝑋𝑣𝑤2| ⩽ 𝐶(𝑛)|𝑣||∇𝑑Φ|.
Using the fact that integration in (A.3) is done only on the set {𝑤 ⩾ 1∕2}, we get that

|∇𝐽(𝑧)| ⩽ 𝐶(𝑛, 𝑘)∫Φ−1(𝑧) |∇𝑑Φ|𝑤
d𝑛−𝑘.

Then the coarea formula (A.1) applied to |∇𝑑𝜙| together with (iv) yields that
∫ℝ𝑘 |∇𝐽(𝑧)| d𝑧 ⩽ 𝐶(𝑛, 𝑘)𝜀 𝜈g (𝐵). (A.4)

Now we bound 𝐽 from below. The coarea formula gives that

𝐽 =
1
𝜔𝑘 ∫𝐵(𝜒◦𝑤

2)𝑤 d𝜈g ⩾
1√
2𝜔𝑘

𝜈g ({𝑤
2 > 1∕2}).

But there is a constant 𝐶(𝑛) > 0 such that |𝑤2 − 1| ⩽ 𝐶(𝑛)|𝑑Φ𝑡𝑑Φ − Id𝑘|, so that
𝜈g ({𝑤

2 < 1∕2}) ⩽ 𝜈g
({||𝑑Φ𝑡𝑑Φ − Id𝑘|| > 1∕(2𝐶(𝑛))})

⩽ 2𝐶(𝑛)∫𝐵
||𝑑Φ𝑡𝑑Φ − Id𝑘|| d𝜈g ⩽ 2𝐶(𝑛)𝜈g (𝐵)𝜀.
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TORUS STABILITY UNDER KATO BOUNDS ON THE RICCI CURVATURE 971

As a consequence, if 4𝐶(𝑛)𝜀 < 1, then 𝜈g ({𝑤2 ⩾ 1∕2}) ⩾
1
2
𝜈g (𝐵), so that

𝐽 ⩾
1

2
√
2𝜔𝑘

𝜈g (𝐵). (A.5)

Combining (A.2), (A.4), and (A.5), we get

𝑘(𝔹𝑘1+𝜀 ⧵ Φ(𝐵)) ⩽ 𝐶(𝑛, 𝑘) 𝜀.
Finally,

𝑘(𝔹𝑘1 ⧵ Φ(𝐵)) ⩽ 𝑘(𝔹𝑘1+𝜀 ⧵ Φ(𝐵)) +𝑘(𝔹𝑘1+𝜀 ⧵ 𝔹𝑘1)) ⩽ 𝐶(𝑛, 𝑘) 𝜀 + 𝐶(𝑘)𝜀.
□
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