
HAL Id: hal-03875560
https://hal.science/hal-03875560v1

Preprint submitted on 28 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compressing bipartite graphs with a dual reordering
scheme

Maximilien Danisch, Ioannis Panagiotas, Lionel Tabourier

To cite this version:
Maximilien Danisch, Ioannis Panagiotas, Lionel Tabourier. Compressing bipartite graphs with a dual
reordering scheme. 2022. �hal-03875560�

https://hal.science/hal-03875560v1
https://hal.archives-ouvertes.fr

ar
X

iv
:2

20
9.

12
06

2v
1

 [
cs

.S
I]

 2
4

Se
p

20
22

Compressing bipartite graphs with a dual

reordering scheme

Maximilien Danisch, Ioannis Panagiotas, Lionel Tabourier∗

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Abstract

In order to manage massive graphs in practice, it is often necessary
to resort to graph compression, which aims at reducing the memory used
when storing and processing the graph. Efficient compression methods
have been proposed in the literature, especially for web graphs. In most
cases, they are combined with a vertex reordering pre-processing step
which significantly improves the compression rate. However, these tech-
niques are not as efficient when considering other kinds of graphs. In this
paper, we focus on the class of bipartite graphs and adapt the vertex re-
ordering phase to their specific structure by proposing a dual reordering
scheme. By reordering each group of vertices in the purpose of minimiz-
ing a specific score, we show that we can reach better compression rates.
We also suggest that this approach can be further refined to make the
node orderings more adapted to the compression phase that follows the
ordering phase.

1 Introduction

Many real-world systems are adequately represented by graphs, as they allow
to model interacting entities. Among many examples, graph representations are
used to describe the world wide web as webpages connected by hyperlinks, social
networks where accounts are connected by a friendship or a follower relationship,
human activity on online platforms, words occurring in a same sentence, or even
biochemical reactions between proteins. As data is generated faster and in larger
quantities than ever before, we are led to handle massively increasing graph
sizes. For example, graphs from social networks such as Facebook or Twitter
demand up to terabytes of RAM to be loaded in main memory. It is impossible
to process them with standard computers, making the retrieval and analysis of
relevant information more challenging. In this context, designing methods to

∗Authors contribution: MD proposed the original idea of the paper, IP realized the codes
and experiments, IP and LT contributed equally to the analysis and the writing of the paper.

1

http://arxiv.org/abs/2209.12062v1

produce compact representations of the information contained in a graph has
emerged as an important research question, named graph compression. The
compression can be either lossy or lossless, depending on whether part of the
information is left out of the representation or not. Here, we are interested in
lossless compression.

Very efficient methods for lossless graph compression have been proposed
in the literature [6, 29]. These methods have been designed primarily to be
applied to web graphs, i.e. graphs where nodes are URLs and directed edges
represent hyperlinks. In this case, nodes are naturally ordered according to
the lexicographic order of the URLs. It was observed that this natural vertex
ordering favors good compression rates notably because it satisfies two proper-
ties that compression techniques exploit: locality and similarity [6]. The first
term means that a vertex is mainly connected to vertices with a close index,
while the second means that vertices which share many neighbors have close
indexes. Unfortunately, other types of networks do not necessarily exhibit such
an adequate natural vertex ordering, leading to much less efficient compressed
representations. That is why vertex reordering techniques have emerged as an
essential preprocessing phase to achieve high graph compression rates [10, 5, 13].
These techniques seek to find an ordering that satisfies as much as possible the
properties of locality and similarity, as well as any other properties which could
benefit the subsequent compression phase.

In this work, we focus on the problem of lossless compression of bipartite
graphs and especially on the reordering phase of the process. Bipartite graphs
are appropriate models to represent systems where relations connect two differ-
ent kinds of entities: users consuming contents on an online platform, individ-
uals and groups to which they are affiliated, indexes referencing pages, etc. We
utilize the fact that both groups of nodes play very different roles in the graph
and propose reordering the two groups independently using two distinct objec-
tives, rather than optimizing a single objective as is usual. These objectives are
defined to be consistent with the logic of the compression methods that follows.

The rest of the paper is organized as follows. In Section 2 we provide the
background and summarize related work. Then in Section 3, we present the
dual reordering scheme that we propose to compress bipartite graphs efficiently.
Section 4 is dedicated to the description of the experimental protocol and results
that we have obtained, which show that the scheme is indeed more efficient than
state-of-the-art reordering methods for this purpose. We present in Section 5
some leads to develop this reordering method further before briefly concluding
in Section 6.

2 Background and related work

Preliminaries. We first define the basic vocabulary needed to describe the
problem of graph compression. Let G = (V,E) be an undirected graph where V
is the set of vertices and E the set of edges. We call u, v ∈ V neighbors in G if
the edge (u, v) exists in E. The neighborhood of a vertex u, denoted N (u), is the

2

set of its neighbors and the degree of u, du, is the size of this neighborhood. A
graph is bipartite if V can be partitioned into two disjoint sets V⊤ and V⊥ such
that V = V⊤∪V⊥ and every edge in E contains one vertex from V⊤ and one from
V⊥. V⊤ and V⊥ are called respectively top and bottom nodes. As previously
mentioned, graph compression is tightly linked to the node indexation of the
graph. We define an ordering of V as an injective function π : V → {1, . . . , |V |},
i.e., a renumbering of the vertices of V . Vertex u precedes v if π(u) < π(v) and
follows v when π(u) > π(v).

Note that graphs built from real-world data are known to be sparse. A
straightforward way to store efficiently sparse graphs in memory is to represent
them as adjacency lists i.e., the lists of neighbors of each node in the graph.
This format is the starting point of efficient lossless graph compression methods,
which then use a combination of techniques, that we discuss below, to improve
upon it.

Compression methods for web graphs. In the case of web graphs, Boldi
and Vigna’s WebGraph framework [6] identified several lossless compression
techniques that have allowed to reach high compression rates, which are still
competitive with current state-of-the-art methods. Indeed, the compressed rep-
resentation of such graphs requires as few as 2–3 bits per edge1. The general
idea underlying this framework is to take advantage of two central character-
istics of web graphs. The first one, named locality, supposes that connected
vertices have relatively close indexes. In lexicographically ordered web graphs,
it is usually the case as the source and target of a hyperlink are often part of
a same domain name. The second one, similarity, means that similar vertices
(nodes which share a large subset of their neighbors) appear close to each other
in the ordering. This is also the case in web graphs because two pages of a same
domain tend to have close index according to the lexicographic order and these
two pages commonly have very similar navigational links.

Among the compression techniques developed for WebGraph, Boldi and Vi-
gna defined the zeta encoding, a universal code2 especially designed for graphs
which encodes a sequence of consecutive integers as intervals (i.e., represented
only with two values). They have also incorporated a widely-used compression
technique called delta encoding [10, 29]: when storing a list of sorted integers
u1, . . . , uk, delta encoding consists in representing it as a list of consecutive gaps
i.e., u1, (u2−u1−1), . . . , (uk−uk−1−1). Because these gaps are likely to be much
smaller than the integers of the original list, storing them with variable-length
quantity encoding schemes usually requires less space. This is particularly effi-
cient if the neighbors of a node have close index, which is consistent with the
locality principle. Another crucial technique for graph compression – especially
in the perspective of our work – is referencing. Referencing allows a vertex u to
select one of its predecessors v within a fixed window size as its reference, and

1Note that lossless compression is usually empirically measured in bits per edge, as the
total size of the graph is not necessarily easy to interpret.

2A universal code is a prefix code such that the expected lengths of the words are within
a constant factor of the expected lengths of the words using the optimal code.

3

store their common neighbors implicitly. Practically, one keeps for the node u
a 0− 1 bit array b of size dv where b[i] is 1 if u and v share the ith neighbor of
v and 0 otherwise. The neighbors of u which are not neighbors of its reference
v (called residual neighbors) are stored explicitly after the bit array b. When
u and v have many common neighbors, such a representation is more efficient
than explicitly storing all of u’s neighbors.

A few other approaches can be mentioned regarding web graph compression.
On the one hand, some of them develop on Boldi and Vigna’s framework. For
instance, Grabowski and Bieniecki [17] handle referencing in an alternative way:
a vertex u can only reference its immediate predecessor v, but each copied neigh-
bor of v is allocated more than one bit, so as to portray more information about
the neighborhood of u. Also, Liakos et al. [22] store the denser diagonal part of
the adjacency matrix of the graph separately for efficiency purposes and resort
to using the WebGraph framework for the rest of the graph. Recently, Versari
et al. [29] proposed Zuckerli, a new software for compression that incorporates
several improvements to the WebGraph framework. These improvements no-
tably consist in employing a hybrid encoding scheme for storing integers and
improving the referencing algorithm. They have shown empirical improvements
ranging from 10% to 20% on many instances over WebGraph and other meth-
ods. On the other hand, some works are based on schemes which are radically
different from WebGraph, such as Brisaboa et al. [7] which introduces k2-trees
to compress web graphs. Their idea is to recursively partition the adjacency ma-
trix of a graph into k2 parts and stop when a submatrix consists solely of zeros
or ones. By storing the resulting tree in an adequate structure [12], they man-
aged to achieve efficient compression rates. Another approach is using virtual

nodes to represent frequently appearing structures in the graph. For instance,
Buehrer and Chellapilla [9] replace bicliques with such virtual nodes to encode
them more efficiently, then the remaining edges are encoded using standard web
graph encoding scheme, such as the ones mentioned earlier, whereas Rossi and
Zhou [28] represent cliques compactly. Claude and Navarro [11] take inspiration
from grammar-based compression to adapt the Re-Pair [21] algorithm to graphs:
Re-Pair continuously replaces a pair of symbols (here, vertices) that appear to-
gether frequently in adjacency lists with a new symbol. Aside from the method
discussed above, Grabowski and Bieniecki [17] proposed another compression
scheme, which separates vertices into blocks and “merges” the neighborhoods
of the vertices in each block so as to remove duplicate information.

A more extensive coverage of various approaches to lossless compression on
web graphs can be found in a survey by Besta and Hoefler [3].

Inverted index compression. Among other families of data that have at-
tracted much interest for lossless compression purposes, inverted indexes are
essential data structures for the efficient implementation of many information
retrieval tasks. They are used to index large collections of documents in the
form of an ordered list of IDs, corresponding to the documents where a specific
word appear. While this description stresses the asymmetry between the words

4

(that we call queries for generality) and the documents (data), an inverted in-
dex can be described and stored in the same way as a bipartite graph, where
a node either represents a piece of data or a query. Note that inverted indexes
may be enriched with additional information, but we are not interested in this
aspect here as we focus on what the bipartite structure brings.

According to a recent review [25], the inverted index compression process
can be split into three main parts: i) compressing a single integer, ii) compress-
ing a list of integers and iii) compressing many lists together. These steps can
be mapped to the techniques described in Boldi and Vigna WebGraph frame-
work. i) The combination of delta and zeta encodings aim at compressing single
integers. This combination is particularly efficient because zeta-encoding is well-
suited for small integers, while delta encoding ensures to have small integers if
the graph has high locality. Yet other integer encoding methods are available
such as Elias gamma and delta codes [15] or Rice code [27] and their offsprings.
ii) Compressing a list of integers usually relies on clustering consecutive integers
to use a summarized representation of the cluster. For that purpose, WebGraph
uses notably a variation of binary packing, because their coding method implies
the existence of long sequences of 0 and 1. Here again, other methods are pos-
sible, such as entropy coding techniques, among which Huffman coding [23] or
Arithmetic coding [24] are probably the most famous. iii) The referencing ap-
proach used in WebGraph is one of the usual ways to compress an ensemble
of similar enough lists. Among other possibilities, we point to Pibiri et al. [26]
who proposed a dictionary based approach that yields good results for this part
of the process.

In short, we observe that the principle of the methods developed for web
graphs are similar to those used for inverted index compression. Inverted indexes
can be seen as bipartite graphs, which makes these techniques relevant for our
problem. Moreover, in the case that we consider, we will have the liberty to use
nodes indifferently as queries or data.

Vertex reordering. Other types of networks have specific structural proper-
ties which can be used to achieve efficient compression. For instance, in the case
of social networks, Chierichetti et al. [10] exploit the fact that these networks
often exhibit high reciprocity [4], meaning that if there is a directed edge from
node i to node j, there is a high probability that there is also one from j to i.
So it is possible to improve the compression by simply signaling that a link is
reciprocal and discarding the explicit reciprocal link. Importantly, the authors
of [10] also notice that the methods described for web graphs usually works well
because the data collection ordering respects to some extent similarity and lo-
cality. Unfortunately, the collection ordering with other data – and particularly
social data – depends on the crawling procedure and it is not guaranteed to
be as efficient in terms of locality and similarity. Consequently, they suggest
that before applying the usual compression techniques, one should reorder the
vertices of the graph to restore as much as possible similarity and locality.

An efficient delta encoding supposes that sibling nodes – i.e. nodes which are

5

neighbors of a same node – have close indexes, reciprocally, good referencing de-
mands that nodes with close indexes share many neighbors. The similarity prin-
ciple can ensure these two properties. These observations highlight the fact that
vertex ordering plays an important role in graph compression. Besides, as the
vertex reordering phase is done only once in general, the question of additional
reordering time cost is usually irrelevant since it can be done offline. This con-
trasts with the compression and decompression times which are independent of
the vertex ordering method. In this spirit, Apostolico and Drovandi [2] proposed
GBFS which reorders the vertices using breadth-first search in a preliminary
step to improve compression. Also, Boldi et al. [5] suggested an approach called
LLP inspired by community detection algorithms, which partitions vertices into
communities and puts vertices of a same community in consecutive positions
in π. Several other reordering methods relying on a similar community-based
strategy are discussed in [3].

These techniques aim at optimizing the quality of the vertex ordering in the
perspective of future processings, the first of which being delta encoding. It is
therefore natural to express this issue as an optimization problem on orderings.
Chierichetti et al. [10] introduced the MinLogGapA problem: given a graph
G, MinLogGapA seeks the ordering π that minimizes the objective function:

∑

v∈V

fπ(v,N (v)) =
∑

v∈V

dv−1∑

i=1

log (π(ui+1)− π(ui)).

where vertices u1 to udv
are the neighbors of vertex v sorted by increasing

value of π such that any consecutive difference is positive. By minimizing the
MinLogGapA objective function, we minimize the gaps between neighbors,
and it is expected that the delta encoding described above will be more efficient.

In [10], the authors propose a heuristic called shingle, which computes a
fingerprint of the neighborhood per node and re-orders nodes with similar fin-
gerprints near each other. We describe it with some more details as we use its
principles later in this work. Supposing that σ is a random permutation of a
set, then the smallest element in the set according to σ is defined as its shingle.
It has been shown [8] that the Jaccard coefficient J(A,B) = |A ∩ B|/|A ∪ B|
is the probability that the sets A and B have the same shingle. So a shingle
– or several shingles generated with different permutations, depending on the
desired precision – can be used to fingerprint the set of neighbors of the nodes
in the purpose of evaluating approximate Jaccard index. As the Jaccard index
is a measurement of the similarity of two sets, it is used to evaluate the overlap
between the neighborhoods of pairs of nodes. In other words, a shingle is used
to approximate J(N (u),N (v)) = |N (u) ∩ N (v)|/|N (u) ∪ N (v)|, which in turn
measures the overlap between the neighborhoods of nodes u and v. The shingle
re-ordering technique consists in ordering nodes in such a way that consecutive
nodes have a high Jaccard coefficient, thus leading to relatively high level of
similarity between nodes. Note that in practice, Chierichetti et al. [10] use a
combination of hash functions instead of random permutations to approximate
Jaccard coefficients. It is a fast reordering method and yields an efficient mini-

6

mization of the objective function of the MinLogGapA problem in comparison
to the natural ordering (i.e., the vertices order as produced by the data collec-
tion process). They suggested, but did not prove, that the MinLogGapA

problem is NP-hard. It was later shown by Dhulipala et al. [13] and they also
proposed an efficient recursive bisection heuristic to tackle it practically, that
we develop in more details below as we make use of it in this paper.

The case of recursive bisection reordering. Dhulipala et al. [13] method
targets compression of undirected graphs in general, however it is based on
optimizing an objective for inverted indexes. Indeed, they first transform the
original graph Gu = (V,E) into an inverted index; it is essentially a bipartite
graph G = (Q∪D, E′), where its vertices are either representing queries (q ∈ Q)
or data (u ∈ D). Then, they adapt the MinLogGapA optimization problem
to this context, by formulating the BiMLogGapA problem, which seeks an
ordering of the nodes in D to minimize

∑

q∈Q

fπ(q,N (q)) =
∑

q∈Q

dq−1∑

i=1

log (π(ui)− π(ui+1)). (1)

They propose a recursive bisection heuristic denoted RecBis to tackle this min-
imization problem. Their heuristic adapts the well-known Kernighan-Lin [19]
and Fidduchia-Mattheyses [16] heuristics for graph partitioning to the problem
of vertex reordering. In a few words, Dhulipala et al.’s heuristic starts from an
initial partition of the set D into two equal-sized sets D1 and D2 (so a random
balanced assignment). Assuming D’s vertices are to be ordered between πl and
πr in the final ordering π, vertices of D1 are in positions πl, . . . , πl + |D1| − 1
and vertices of D2 are in positions πl + |D1|, . . . , πr. The heuristic consists in
exchanging vertices between the two partitions as long as they diminish the
cost of the objective function. Note that RecBis does not directly optimize
equation (1), but aims to optimize the expected cost instead. It is equivalent to
considering that the neighbors of q are arranged regularly at equal distance from
each other. This is a simplification for the fact that the exact location of these
vertices inside D1 and D2 are not yet known at that step. Once the partition
of D into D1 and D2 has been determined, the process is repeated recursively
on the two inverted indexes G1 = (Q ∪ D1, E1) and G2 = (Q ∪ D2, E2). The
internal ordering of the vertices of D1 and D2 is therefore fixed in the subsequent
recursion calls.

In [13], the authors also mention using recursive bisection to compress actual
bipartite graphs, but there is no detail about the specifics of the process on such
graphs. The BiMLogGapA problem focuses mostly on ordering properly ver-
tices of the data group D, which is relevant when compressing inverted indexes.
Our approach consists in ordering both the top (V⊤) and bottom (V⊥) sets of
nodes, so that if we represent the bipartite graph with adjacency lists of nodes
in V⊤, ordering V⊤ nodes improves the compression by benefiting from delta
encoding, while ordering nodes in V⊥ improves the compression by benefiting
from referencing.

7

3 Dual reordering scheme

In this section we describe our approach to vertex reordering in bipartite graphs.
As suggested in Section 2, the reordering process in the case of bipartite graphs
aims at reorganizing nodes in a way that would improve the property of simi-
larity3: we want vertices with close indexes to share many common neighbors.

We may choose to represent the graph either by storing adjacency lists of
⊥ nodes or those of ⊤ nodes. Note that our goal is to improve compression
regardless of what the vertices represent, so one may try both V⊥ and V⊤ as the
query set, and then keep the option yielding the best compression rate. Without
loss of generality, we assume from now on that V⊥ is the set of queries and that
V⊤ is the set of data entries. That is, for each node u ∈ V⊥, we store the list of
its neighbors N (u) in V⊤. Under this representation, all edges in the graph are
stored exactly once. We set that π is the permutation ordering V⊤ nodes and φ
the permutation ordering V⊥ nodes.

First, we describe how we design the π ordering on V⊤ nodes, which is
essentially based on RecBis with a few improvements. Then, our efforts focus
on finding φ i.e., the ordering of V⊥, with the purpose of maximizing the impact
of referencing.

3.1 Top nodes ordering to improve delta encoding

⊤ nodes (i.e., data nodes) are reordered with the recursive bisection heuristic
RecBis described in Section 2, as it has been proved to be very efficient for
minimizing gaps between consecutive vertices in the adjacency lists [13]. In
the same paper, the authors briefly mentioned a few ideas to improve RecBis.
Here, we propose some modifications in the direction that they suggest and
incorporate two mechanisms to RecBis to refine V⊤ ordering π.

Partition swapping. The first mechanism is that of partition swapping. Let
us recall that in RecBis heuristic, a subset of nodes to reorder is partitioned
into two sets V1 and V2 at each step. This bisection aims at minimizing the
inner gaps of V1 and V2. In the original paper, the method always assumes that
nodes of V1 precede those of V2 in the final ordering π. It is however possible
that swapping V1 and V2 leads to a better ordering because it can potentially
imply smaller gaps between the partitions. We propose a linear-time heuristic
to decide whether to apply the swap or not. The heuristic relies on the cost
function defined below.

Definition 1 For q ∈ V⊥, costij(q) be the gap-cost of q induced by the ordering

ViVj where i, j ∈ {1, 2}, i 6= j.

Note that the gap-cost is computed by summing over the ⊥ nodes (i.e., the
queries), as we aim to minimize the gaps between ⊤ nodes, which are neighbors

3For bipartite data, locality is not relevant as a vertex is connected to vertices of the other
group only.

8

of a same ⊥ node. At each step of the heuristic, we compute
∑

q∈V⊥
cost12(q)

and
∑

q∈V⊥
cost21(q) and select the ordering between partitions that yields the

lowest gap cost. To calculate the costs, we proceed as follows: given V1 and V2,
we define ζi(d) to be the position of d in the inner ordering of Vi and thus a
number between 1 and |Vi|. Once the inner orderings of vertices inside V1 and
V2 have been computed, we compute for each q ∈ V⊥ and i = 1, 2 the quantities
maxi(q) = max{ζi(d) : (q, d) ∈ E, d ∈ Vi} and mini(q) = min{ζi(d) : (q, d) ∈
E, d ∈ Vi}. These are respectively the largest and smallest ζ values of a neighbor
of q in V1 or V2, i.e., the first and last positions a neighbor of q appears in Vi.
Observe now that any difference between cost12(q) and cost21(q) must be due
to the gap between q’s last appearance in the preceding partition and its first
appearance in the following partition, that is to say the gap between max1(q)
and min2(q) for V1V2 or max2(q) and min1(u) for V2V1. We illustrate this idea
in Figure 1. The formula for costij(q) is formally given by

costij(q) = |Vi|+minj(q) −maxi(q). (2)

V1

min1(q) max1(q)

V2

min2(q)

q

gap

Figure 1: An example of the partition swapping heuristic for a ⊥ vertex q. If
V1 precedes V2, the gap associated with q is the distance between max1(q) and
min2(q) i.e., 3.

Partition flipping. To further improve the performance of theRecBis heuris-
tic, we also incorporate an additional mechanism that we call partition flipping.
A flip in Vi is the act of reversing the order of the vertices in a partition Vi so
that if the vertices are numbered from 1 to k then the vertex in position k′ swaps
position with the vertex in k− k′ for all k′ ∈ J0, k− 1K. Note that since flipping
only reverses the order inside a partition, the gaps within a partition remain
unchanged, but flipping allows to achieve smaller gaps between the partitions.
For instance, considering the example of Figure 1, if we flip partition V1 then
the gap related to node q drops from 3 to 2, as the neighbor of q previously
ordered first in V1 is now ordered last in V1.

Adding both the swapping and flipping heuristics to RecBis implies a linear-
time overhead, as we simply need to iterate over the current neighbors of each
q ∈ V⊥ to calculate the mini(q) and maxi(q) values. In practice, we observe
that the overall time cost of these heuristics is negligible in comparison to the
computation time of RecBis while these heuristics bring an improvement to the
compression rate that is typically of the order of 1%, as we will see in Section 4.2.

9

3.2 Bottom nodes ordering to improve referencing

We describe here our method to reorder ⊥ nodes (i.e., query nodes according
to our convention). Let us recall that the referencing mechanism consists in
allowing a vertex to encode part of its neighborhood implicitly by representing
it as a bit array which contains 1 for neighbors in common with one of its
predecessors, called the reference. Consequently, the extent to which referencing
is beneficial to compression largely depends on the ordering φ of the bottom
nodes.

Efficient reordering approaches for ⊤ nodes focus primarily on orderings that
minimize gaps between adjacent vertices stored in the adjacency lists through
the BiMLogGapA objective function, thus optimizing the delta encoding ap-
plied next. Here, we are rather looking for referencing-friendly orderings for ⊥
nodes i.e., orderings which decrease storage costs through the efficient use of
referencing. Note that orderings guaranteeing small gaps are likely to improve
referencing too, however we argue that a V⊥ reordering method should be ex-
plicitly designed to favor efficient referencing. Ideally, we would like to express
the reordering of V⊥ with an objective function designed in the same way that
BiMLogGapA is to minimize gaps between V⊤. Unfortunately, the cost of
referencing depends not only on the referencing scheme considered, but also on
the scheme used to encode integers, and therefore on the compression software
used following the reordering phase, such as WebGraph or Zuckerli (see [6, 29]).
To explore the capabilities of the dual reordering scheme, we propose in what
follows a software-agnostic optimization function for ⊥ nodes based on neigh-
borhood similarity.

SimRef: Improving referencing through similarity. We define here the
SimRef heuristic, which takes inspiration from the shingle heuristic [10]. Recall
that the shingle is made to maximize the overlap between the neighborhoods
of consecutive vertices. So, it should be efficient to order ⊥ nodes in line with
favoring referencing. However, we observed in practice that it is not as effective
as expected in this context. One reason for this shortcoming is that many
nodes can share the same shingle, thus creating buckets of similar values, and
vertices in a same bucket are ordered arbitrarily. As a result, it can happen that
vertices with nearly identical neighborhoods are placed far apart in the same
bucket, which can severely reduce the benefits of referencing.

The SimRef heuristic orders the vertices within a bucket in a way that aims
at maximizing the reference gain. The process works iteratively, by setting the
position of one node in a bucket at each step. More precisely, assuming that
a bucket contains at step i the ordered vertices b1, . . . , bi−1 while ci, ci+1 . . . , ck
vertices are still unordered, the vertex from ci, . . . , ck selected to be in position
bi is the most similar to bi−1. Similarity is measured with the Jaccard index, we
remind here that J(b, c) = |N (b)∩N (c)|/|N (b)∪N (c)|, which should ensure to
have a good overlap between the neighborhoods of two consecutive ⊥ nodes and
thus favor an effective referencing. We describe the process more formally in
Algorithm 1 for a bucket of size k corresponding to vertices with a same shingle.

10

Algorithm 1 Description of the SimRef heuristic.

1: Input: randomly ordered table c1, . . . , ck of vertices with the same shingle
2: Output: ordered table b1, . . . , bk
3: Initialize b1 = c1
4: for i = 2 to k do

5: Compute jmax = argmaxj∈Ji,kK (J(bi−1, cj))
6: Update bi ← cjmax

, cjmax
← ci

As we will see in Section 4.3, the SimRef heuristic brings improvements to
the compression rate which vary depending on the dataset but can reach up to
6–7%. However, it is more computationally demanding than shingle is, as it
adds a computation step which is quadratic in the size of the bucket4. Let us
recall that the reordering time is not critical in general as this procedure is done
offline and only once.

Nevertheless, it is possible to tune the trade-off between the computational
cost of ordering nodes vs. the quality of the ordering for referencing purposes.
Indeed, the heuristic can be adapted to compute the similarity of a subset of
the candidate set C = {ci, . . . , cj}, we briefly hint at two approaches for doing
this. The first one is to sort the vertices in C by degree, and select nodes which
have the closest degree to the one of bi−1, as their Jaccard similarity is more
likely to be high. The second one is more elaborate, we generate a graph of
nearest neighbors of the nodes in a bucket: we first compute for each vertex
its k most similar neighbors where k is a parameter set by the user, then we
create a graph Gs where the edge (u, v) exists iff u is one of v’s most similar
neighbors. While considering bi−1, its successor is selected among the available
vertices in its neighborhood in Gs. Computing the k-nearest neighbors can be
done with approximate algorithms, which exhibit good performance in nearly
linear time [14].

4 Experiments

As described in Section 3, the dual ordering scheme that we propose consists in
applying first the RecBis procedure with the swapping and flipping improve-
ments to reorder V⊤ nodes by reducing the BiMLogGapA objective. Then we
apply the SimRef heuristic to reorder V⊥ nodes to improve the referencing. We
describe in this Section the experiments carried out to evaluate the efficiency of
this scheme.

4A reader could notice that the general problem may be seen as an instance of the well-
known Traveling Salesman Problem (TSP) known to be NP-hard [18]: given a weighted graph,
the TSP aims at finding a route of minimum cost that starts and ends in the same vertex and
passes through all other vertices exactly once. Here the weight of edge (u, v) would correspond
to J(u, v), and SimRef is a local search heuristic to approach a solution.

11

4.1 Data and protocol

We test our method on several massive bipartite graphs extracted from the
KONECT5 network collection [20]. To evaluate the effect of the compression
scheme in various contexts, we have selected several types of real-world datasets
which can be represented by bipartite graphs. We first consider a social net-

work, containing actors starring in movies extracted from the Internet Movie
Database. Then we consider an inverted index which links together texts to the
words that appear in them. Finally, we select a group of networks which rep-
resent human online activity: editing activity on a Wikipedia or a Wiktionary,
user tagging songs on Delicious, user listening to songs on LastFM. When nec-
essary, a dataset is pre-processed to eliminate multi-edges: for instance if a user
has made several edits to a same Wikipedia page, it will be considered as one
edge in the bipartite graph. The basic features of the datasets are described in
Table 1.

Table 1: Number of nodes and edges of the bipartite graphs considered from [20].

Graph V⊤ nodes V⊥ nodes edges

imdb 303,617 movies 896,302 actors 3,782,463
Reuters 781,265 texts 283,911 words 60,569,726
lastfm-songs 992 users 1,084,620 songs 4,413,834
Delicious (user-tag) 833,081 users 4,512,099 tags 81,989,133
En-wiktionary-edits 66,140 users 5,826,113 pages 27,120,425
Fr-wikipedia-edits 757,621 users 8,870,762 pages 52,950,008
De-wikipedia-edits 1,025,084 users 5,910,432 pages 55,231,903

As a benchmark for comparison, we use the recursive bisection algorithm as
proposed in [13] on bipartite data. Because RecBis is not described in details
for bipartite graphs in this paper, we consider two options: i) in the first one,
it orders V⊤ and V⊥ as if they were one set of nodes i.e., the graph is processed
in the same way as a unipartite graph would be, it is denoted RecBis-u and
it is the closest to the process described in [13]; ii) in the second one, the
recursive bisection method is applied to V⊤ and V⊥ separately, in the same
way as our dual scheme works, it is denoted RecBis-b. As we will see, both
options roughly yield the same compression rates (on average, RecBis-b very
slightly outperforms RecBis-u). In all cases, the resulting orderings serve as
inputs to a standard compression method. The compression itself is achieved
with Zuckerli [29] with its default settings, as it is the current state-of-the-
art solution for graph compression. As is usual in the domain, the compression
quality is measured in average number of bits per edge in the compressed graph.

4.2 RecBis heuristics experiments

In the first set of experiments, we test the impact of the swapping and flipping
heuristics from Section 3.1 on the recursive bisection method. The results with

5http://konect.cc/

12

http://konect.cc/

RecBis-b are summarized in Table 2. We can observe that in all tested instances
there is a gain on the average number of bits per edge required to store the graph,
but these gains remain rather marginal as they are typically of the order of 1%
in the datasets that we have considered. However, as the time cost of these
heuristics is only a small fraction of the overall time required to run RecBis-b,
we can recommend to systematically use the swapping and flipping heuristics
when applying RecBis.

Table 2: Average number of bits per edge in the compressed representation using the
standard RecBis-b algorithm derived from [13] and the version of the algorithm with
the swapping and flipping heuristics (S&F).

Graph RecBis-b RecBis-b+S&F gain (%)

imdb 10.30 10.15 1.46
Reuters 4.69 4.66 0.64
lastfm-songs 5.06 4.99 1.38
Delicious (user-tag) 6.86 6.82 0.58
En-wiktionary-edits 2.02 2.00 1.00
Fr-wikipedia-edits 6.54 6.48 0.92
De-wikipedia-edits 8.48 8.39 1.06

4.3 Dual reordering scheme experiments

We now present experimental results to evaluate the practical efficiency of the
whole dual reordering scheme. The results are exhibited in Table 3. The Nat-
ural ordering denotes the compression obtained using the initial ordering of
the nodes in the V⊥ as produced by the data collection method from [20] and
RecBis on those of V⊤ and denotes a compression approach that does not make
any attempt to optimize referencing. RecBis-u corresponds to the baseline de-
scribed in [13], where the vertices of V⊥ and V⊤ are reordered together as if
the graph were unipartite. The results with these two methods may be seen as
standard approaches in the sense that they do not treat V⊥ and V⊤ as differ-
ent entities whereas the following two approaches do so. RecBis-b denotes the
approach which applies RecBis separately on the sets of V⊥ and V⊤. Finally,
our complete dual reordering scheme applying RecBis on V⊤ and SimRef on
V⊥ is denoted Dual. Note that we want to separate the improvements due
to the S&F heuristics from the improvement due to SimRef, so in all uses of
the RecBis algorithm, we apply the proposed heuristic from Section 3.1, which
implies that the RecBis-b column is identical to the RecBis-b+S&F heuristics
column from Table 2.

Unsurprisingly, the worst compression rates are obtained with the Natural
orderings, as there is no specific effort to optimize referencing. The performance
of this method showcases the importance of reordering vertices to achieve ef-
ficient referencing. The results obtained with RecBis-u and RecBis-b are
nearly identical. This observation stems from the fact that ⊤ nodes (and re-
spectively ⊥ nodes) are more similar to each other than they are to nodes of the

13

Table 3: Compression results using Zuckerli over different node orderings. The gain is
the improvement from the Dual reordering scheme to RecBis-u (with the switching
and flipping heuristics in all cases).

Graph Natural RecBis-u [13] RecBis-b Dual gain (%)

imdb 12.77 10.19 10.15 9.53 6.48
Reuters 4.71 4.67 4.66 4.66 0.21
lastfm-songs 6.00 4.98 4.99 4.66 6.43
Delicious (user-tag) 7.53 6.82 6.82 6.69 1.91
En-wiktionary-edits 4.11 2.00 2.00 1.91 4.50
Fr-wikipedia-edits 8.89 6.46 6.48 6.38 1.24
De-wikipedia-edits 10.24 8.39 8.39 8.28 1.31

other group, consequently RecBis-u tends to not intermix the two groups of
nodes and thus orders nodes as RecBis-b does. Most importantly, we observe
that the compression rates obtained with the dual reordering scheme (Dual

column) outperforms the other methods. The gain depends on the dataset un-
der consideration being lower than 2% for some datasets (Reuters, Delicious,
Fr/De-wikipedia-edits) but reaching up to 6−7% for others (imdb, lastfm),
which is substantial in the domain of lossless graph compression.

A few additional remarks regarding these results guide us to look for further
improvements. First, the two ordering steps of the dual scheme can be iterated
to compress further the graph until the orderings do not significantly change.
However, we observed that the improvements brought by iterating the process
are marginal on the datasets under study (typically less than 1%, not reported
here). Second, it is possible to switch the roles of ⊤ and ⊥ nodes in the networks
that we considered, as we are representing them as bipartite graphs without
regard for what the nodes represent. The results that we have shown here
correspond to the choice yielding the best compression rates for each dataset.
We can see in Table 1 that in all cases (except for Reuters, which always yields
poor gains), |V⊤| < |V⊥|. It seems to indicate that improving referencing yields
better results when there is a larger choice of reference nodes to pick from.

From our perspective, the most important thing to draw from these exper-
iments is that the Dual ordering scheme seems promising as it consistently
outperforms other ordering methods, and that this mainly stems from the im-
provement made on the ordering φ which targets referencing. We can thus think
of further developments to improve the referencing gains in bipartite graphs, as
discussed in the next section.

5 Discussion on further developments

Combining ordering heuristics. We have implemented the dual reorder-
ing scheme on bipartite graphs using a combination of RecBis for ordering ⊤
nodes and SimRef for ordering ⊥ nodes with encouraging results. It is likely
that other heuristic combinations can lead to better compression rates. For

14

instance, SimRef is based on the Jaccard similarity, but other vertex similar-
ity measures can be implemented, such as the Adamic-Adar index [1] or the
Resource Allocation index [30].

The efficiency of the combinations is certainly data-dependent. Understand-
ing precisely why a dataset benefits more or less from a compression scheme
originates from the particularities of the graph. This point deserves deeper ex-
amination, and we think that the tools used in Zuckerli [29] to investigate which
parts of the compressed graph require the most bits is useful to pinpoint steps
in the compression process that could be improved.

Referencing scheme. Another lead is to investigate the referencing scheme
itself and possibly define a similarity metric based on this scheme. We suggest
here two ideas which can be interesting ways to improve the referencing scheme.

First, we can apply a post-processing reordering on the φ ordering for ⊥
nodes. Supposing that we represent the fact that u references v by a directed
arc from u to v, then the references among ⊥ nodes form a forest: each vertex
can only have one reference – its parent – and can be referenced by several nodes
– its children. In addition, when vertex u references another vertex v, the gap
between u and v must be stored. Given such a tree, we can create a new ordering
φ′ where nodes of V⊥ in the same tree of the forest, are given consecutive ids.
This reordering will prohibit vertices in different trees from alternating with
each other in the final ordering and thus decrease the referencing gaps between
them, thereby improving the final compression rate.

Another possibility is to allow forward referencing. With the usual referenc-
ing techniques discussed earlier, a node can only select its reference backwards,
in the sense that we look for a reference in a window of nodes located before
in the φ ordering. By allowing a node to select its reference forward, we al-
low the referencing scheme to be more flexible, which can potentially improve
the compression rates. To illustrate this idea, let us consider a toy example of
two nodes u, v ∈ V⊥, u has the following neighbors: 2, 4, . . . , 10, while v has
1, 2, 3, . . .10, in addition u precedes v in φ. With a standard referencing, we
can only have u→ v which leads to 1, 3, . . . , 9 being residual neighbors that are
encoded separately with delta encoding. As the neighbors of v can be encoded
more efficiently because they are consecutive, this reference would not be picked.
With the forward scheme, the reference v → u is also considered, and it would
be efficient as u could have its neighbors encoded with a simple bit array. Note
however, that this modification comes at a cost: references no longer form a tree
but a directed graph, and we must ensure that the directed graph of references
is a directed acyclic graph, i.e., there is no cycle of references.

Preliminary results – based on real data but only evaluating the expected
referencing gain – indicate that these modifications could improve the compres-
sion rate up to a few percents. To go further in this direction, it is necessary
to select a specific compression method and to dive deep into its code to adjust
the methods to its specificities, which we leave to future investigations.

15

6 Conclusion

In this work, we have examined the problem of lossless compression of bipartite
graphs and proposed a dual reordering scheme of the vertices. The central
idea is to reorder the vertices of each partition with a different perspective in
mind: either to optimize delta encoding or to maximize the effect of referencing,
two techniques which are essential for standard compression methods. We have
shown empirically that this approach outperforms the classic single ordering
methods, however the range of the improvement varies significantly depending
on the dataset under study. These encouraging results guided us to propose
several leads for further improvements with the idea that reordering can be
suited to specific datasets and specific referencing schemes.

Acknowledgements

We thank Fabrice Lécuyer and Matthieu Latapy for their proofreading of the
manuscript. This work is funded by the ANR (French National Agency of
Research) partly by the Limass project (under grant ANR-19-CE23-0010).

References

[1] Adamic, L.A., Adar, E.: Friends and neighbors on the web. Social networks
25(3), 211–230 (2003)

[2] Apostolico, A., Drovandi, G.: Graph compression by bfs. Algorithms 2(3),
1031–1044 (2009)

[3] Besta, M., Hoefler, T.: Survey and taxonomy of lossless graph compression
and space-efficient graph representations. arXiv preprint arXiv:1806.01799
(2018)

[4] Block, P.: Reciprocity, transitivity, and the mysterious three-cycle. Social
Networks 40, 163–173 (2015)

[5] Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: A
multiresolution coordinate-free ordering for compressing social networks.
In: Proceedings of the 20th international conference on World Wide Web.
pp. 587–596 (2011)

[6] Boldi, P., Vigna, S.: The webgraph framework i: compression techniques.
In: Proceedings of the 13th international conference on World Wide Web.
pp. 595–602 (2004)

[7] Brisaboa, N.R., Ladra, S., Navarro, G.: k 2-trees for compact web graph
representation. In: International symposium on string processing and in-
formation retrieval. pp. 18–30. Springer (2009)

16

[8] Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise in-
dependent permutations. Journal of Computer and System Sciences 60(3),
630–659 (2000)

[9] Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to web
graph compression with communities. In: Proceedings of the 2008 interna-
tional conference on web search and data mining. pp. 95–106 (2008)

[10] Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Panconesi,
A., Raghavan, P.: On compressing social networks. In: Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 219–228 (2009)

[11] Claude, F., Navarro, G.: Fast and compact web graph representations.
ACM Transactions on the Web (TWEB) 4(4), 1–31 (2010)

[12] Delpratt, O., Rahman, N., Raman, R.: Engineering the louds succinct tree
representation. In: International Workshop on Experimental and Efficient
Algorithms. pp. 134–145. Springer (2006)

[13] Dhulipala, L., Kabiljo, I., Karrer, B., Ottaviano, G., Pupyrev, S., Shalita,
A.: Compressing graphs and indexes with recursive graph bisection. In:
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. pp. 1535–1544 (2016)

[14] Dong, W., Charikar, M., Li, K.: Efficient k-nearest neighbor graph con-
struction for generic similarity measures. In: Proceedings of the 20th inter-
national conference on World wide web. pp. 577–586 (2011)

[15] Elias, P.: Universal codeword sets and representations of the integers. IEEE
transactions on information theory 21(2), 194–203 (1975)

[16] Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving
network partitions. In: 19th design automation conference. pp. 175–181.
IEEE (1982)

[17] Grabowski, S., Bieniecki, W.: Tight and simple web graph compression for
forward and reverse neighbor queries. Discrete Applied Mathematics 163,
298–306 (2014)

[18] Jünger, M., Reinelt, G., Rinaldi, G.: The traveling salesman problem.
Handbooks in operations research and management science 7, 225–330
(1995)

[19] Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning
graphs. The Bell system technical journal 49(2), 291–307 (1970)

[20] Kunegis, J.: KONECT – The Koblenz Network Collection. In: Proc.
Int. Conf. on World Wide Web Companion. pp. 1343–1350 (2013),
http://dl.acm.org/citation.cfm?id=2488173

17

http://dl.acm.org/citation.cfm?id=2488173

[21] Larsson, N.J., , Moffat, A.: Off-line dictionary-based compression. Pro-
ceedings of the IEEE 88(11), 1722–1732 (2000)

[22] Liakos, P., Papakonstantinopoulou, K., M. Sioutis, M.: Pushing the enve-
lope in graph compression. In: Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge Management.
pp. 1549–1558 (2014)

[23] Moffat, A.: Huffman coding. ACM Computing Surveys (CSUR) 52(4),
1–35 (2019)

[24] Moffat, A., Neal, R.M., Witten, I.H.: Arithmetic coding revisited. ACM
Transactions on Information Systems (TOIS) 16(3), 256–294 (1998)

[25] Pibiri, G.E., Venturini, R.R.: Techniques for inverted index compression.
ACM Computing Surveys (CSUR) 53(6), 1–36 (2020)

[26] Pibiri, G.E., Petri, M., Moffat, A.: Fast dictionary-based compression for
inverted indexes. In: Proceedings of the Twelfth ACM International Con-
ference on Web Search and Data Mining. pp. 6–14 (2019)

[27] Rice, R., Plaunt, J.: Adaptive variable-length coding for efficient compres-
sion of spacecraft television data. IEEE Transactions on Communication
Technology 19(6), 889–897 (1971)

[28] Rossi, R.A., Zhou, R.: Graphzip: a clique-based sparse graph compression
method. Journal of Big Data 5(1), 1–14 (2018)

[29] Versari, L., Comsa, I.M., Conte, A., Grossi, R.: Zuckerli: A new com-
pressed representation for graphs. IEEE Access 8, 219233–219243 (2020)

[30] Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local informa-
tion. The European Physical Journal B 71(4), 623–630 (2009)

18

	1 Introduction
	2 Background and related work
	3 Dual reordering scheme
	3.1 Top nodes ordering to improve delta encoding
	3.2 Bottom nodes ordering to improve referencing

	4 Experiments
	4.1 Data and protocol
	4.2 RecBis heuristics experiments
	4.3 Dual reordering scheme experiments

	5 Discussion on further developments
	6 Conclusion

