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Abstract. The seasonally-dependent Antarctic sea ice concentration (SIC) budget is well-observed and synthesizes many 

important air-sea-ice interaction processes. However, it is rarely well simulated in Earth System Models and means to tune 

the former are not well understood. In this study, we investigate the sensitivity of 18 key NEMO4.0-SI3 (Nucleus for 15 

European Modelling of the Ocean coupled with the Sea Ice modelling Integrated Initiative) model parameters on modelled 

SIC and sea ice volume (SIV) budgets in the Southern Ocean based on a total of 449 model runs and two global sensitivity 

analysis methods. We found the simulated SIC/SIV budgets are sensitivity to ice strength, the thermal conductivity of snow, 

the number of ice categories, two parameters related to lateral melting, ice-ocean drag coefficient and air-ice drag coefficient. 

A better quality of ice-ocean drag coefficient and air-ice drag coefficient can reduce the root-mean-square error between 20 

simulated and observed SIC budget by about 10%. We recommend ten combinations of NEMO4.0-SI3 model parameters 

that could yield better sea ice extent, SIV seasonal cycles and SIC budgets than using the standard values.  

1 Introduction 

The Southern Ocean sea ice, a crucial component of the climate system, has experienced a slight but statistically significant 

expansion from 1979 to 2015 and remarkable fluctuations in the last few years (Comiso et al., 2017; Parkinson, 2019; 25 

Raphael and Handcock, 2022; Wang et al., 2022). Internal variability (Zunz et al., 2013; Mahlstein et al., 2013; Singh et al., 

2019) and association with tropical oceans (Meehl et al., 2016; Li et al., 2021) have been used to understand the changes in 

sea ice, and there is consensus that atmospheric circulation, particularly wind, are primary drivers (Holland and Kwok, 2012; 

Matear et al., 2015; Hobbs et al., 2016). However, in contrast to observations, state-of-the-art climate models typically 

simulate a decline in Antarctic sea ice during this period (Zunz et al., 2013; Turner et al., 2013; Shu et al., 2015; Shu et al., 30 

2020), the causes of which are subject to further diagnosis and identification. 
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Holland and Kwok (2012) proposed an analysis of sea ice concentration (SIC) budgets, i.e., decomposing the dynamic and 

the other processes leading to changes in SIC to compare with the same processes in observations, as an extension of the 

commonly used diagnostics for individual variables (e.g., SIC, ice thickness and ice drift). Diagnostics using SIC budgets for 

fully coupled climate models as well as ocean-sea ice models driven by atmospheric reanalysis showed that the relatively 35 

realistic sea ice extent in the models was the result of excessive sea ice velocity bias (Uotila et al., 2014; Lecomte et al., 

2016). Whereas correcting the sea ice velocity field in the model with satellite observations was able to simulate the trend of 

expanding sea ice extent in the Southern Ocean during 1992–2015 (Sun et al., 2021). Furthermore, correctly modelling the 

sea ice budget is so important as the ocean can only be driven correctly if the sea ice budget is realistic (Holmes et al., 2019), 

which is related to the importance of sea ice in transporting fresh water (Abernathey et al., 2016; Haumann et al., 2016) and 40 

the role of sea ice as a mediator of polar air-ocean matter and energy exchange (Thomas and Dieckmann, 2010). 

Sensitivity experiments with three different atmospheric reanalyses indicated that, at least in winter (April to October), 

SIC budgets are sensitive to atmospheric forcing, as sea ice models driven by these atmospheric reanalysis products show 

large errors compared to observations (Barthélemy et al., 2018). This was further validated by the fact that even when using 

the same atmospheric reanalysis, the SIC budget in the ice-ocean reanalysis products can vary considerably (Nie et al., 2022). 45 

On the other hand, some studies have shown that simulations of the Southern Ocean sea ice area are not sensitive to model 

parameters (e.g., Massonnet et al., 2011; Uotila et al., 2012; Rae et al., 2014), but this is likely due to the dynamic and 

thermodynamic biases in SIC budget cancelling out (Uotila et al., 2014), i.e. wrong processes lead to a right-looking result. 

Therefore, a hypothesis was proposed that model physics could be more important than previously recognised for improving 

sea ice modelling skills in the Southern Ocean (Barthélemy et al., 2018). Indeed, the conclusions of Uotila et al. (2014) 50 

showed that the SIC budget is sensitive to model configuration and they surmised that it may be possible to adjust the model 

parameters to make the SIC budget components more realistic. An example is that by changing the ice-ocean stress turning 

angle from 0° to 16°, the advection contribution to sea ice area change would be halved, although the divergence 

contribution would become unrealistic (Uotila et al., 2014). However, the sensitivity of the sea ice budgets to the model 

parameters has not been systematically assessed to date. 55 

The most common approach for sensitivity experiments is to adjust a single variable of interest at time, while keeping all 

other parameters fixed (e.g., Fichefet and Morales Maqueda, 1997; Rae et al., 2014), but due to the complexity and strong 

non-linearity of the model, there are often interactions between variables that cannot be identified with this approach. 

Another approach is to adjust several variables simultaneously. Kim et al. (2006) tested the sensitivity of 22 parameters of 

the Los Alamos sea-ice model (CICE) based on the automatic differentiation method and adjusted the parameters to make 60 

the simulation as close as possible to the observations. Uotila et al. (2012) conducted experiments on 100 combinations of 10 

parameters in a coupled ocean-ice model and recommended several optimal sets of parameters that would produce a realistic 

global sea ice distribution. To address the problem that the above sensitivity experiments cannot fully explore the entire 

high-dimensional parameter space, a more attractive way is to do a global sensitivity analysis (GSA; Saltelli et al., 2008). 

However, a completely performed GSA requires a very large number of runs of the model, for example, O(104) runs for 65 
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O(10) parameters (Saltelli et al., 2010). One option is to build an emulator to quickly and with modest computational 

requirements predict the possible model outputs for a given input and as a substitute for the full dynamic model (Sacks et al., 

1989; Kennedy and O’Hagan, 2000; Oakley and O’Hagan, 2004). In brief, an emulator is a machine learning method that 

statistically constructs relationships between inputs and outputs from existing model results. 

There has been some success in quantifying the parameter uncertainty using emulators in ocean/sea ice models. For 70 

example, Urrego-Blanco et al. (2016) applied a Gaussian process (GP) emulator to perform the GSA on 39 parameters in 

CICE. Williamson et al. (2017) built an emulator for the NEMO ocean model and quantified the effect of uncertainty on the 

model for 24 parameters. In this paper, our research objective is to quantify the sensitivity of the Southern Ocean SIC and 

sea ice volume (SIV) budgets to key parameters in a coupled ocean-sea ice model, and furthermore, to verify whether the 

model parameters can be adjusted to obtain near-realistic SIC budget components. It is worth noting that NEMO4.0-SI3 75 

parameters' default values are generally optimised based on Arctic observations (e.g., Warren, 1999; Perovich et al., 2002; 

Lüpkes et al., 2012) and here we are investigating their optimal values in the Southern Ocean, which has not been done so 

far. 

2 Materials and data 

2.1 Model configuration and parameter space elicitation 80 

Sea ice simulations in this study were performed using the version 4.0.7 revision 15731 of the Nucleus for European 

Modelling of the Ocean (NEMO; NEMO System Team, 2022) coupled with the Sea Ice modeling Integrated Initiative (SI3; 

NEMO Sea Ice Working Group, 2019), hereafter called NEMO4.0-SI3. The model represents global ocean via a commonly 

used nominal 2° tri-polar grid (ORCA2), which is about 85 km resolution between 55°S and 75°S. The ORCA2 was chosen 

because it is already capable of identifying features of the Southern Ocean SIC budget at this resolution (Nie et al., 2022) 85 

and, considering that hundreds of experiments will be performed, using ORCA2 is computationally comparably cheap. The 

ORCA2 grid configuration has 31 unevenly spaced vertical layers from 10 m (near surface) to 500 m (at 5500 m depth). The 

vertical physics of the ocean is solved by the combination of the Turbulent Kinetic Energy (TKE) turbulent closure scheme 

(Marsaleix et al., 2008), an enhanced vertical diffusion scheme applied on tracer (Madec et al., 1998) and a double diffusive 

mixing (Merryfield et al., 1999).  90 

The sea ice momentum equation is calculated by using the adaptive elastic-viscous-plastic method (Kimmritz et al., 2016, 

2017), which is formulated on a C-grid and improved the numerical efficiency of the modified EVP scheme. The default 

setting for the sea ice thickness category is 5, with 2 and 1 layers of ice and snow respectively. The thermodynamic 

component of NEMO4.0-SI3 includes the 1D energy-conserving model (Bitz and Lipscomb, 1999) and a time-dependent 

vertical salinity profile (Vancoppenolle et al., 2009). The sea ice model uses the same 1.5-hour time step as the ocean model. 95 

In this study, the NEMO4.0-SI3 model is forced with the DRAKKAR Forcing Set version 5.2 (DFS5.2, Dussin et al., 

2016), based primarily on the ERA-Interim with some corrections (Dee et al., 2011) and covering the time period 1979–2017. 
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The DFS5.2 provides the atmospheric field required for the NCAR bulk formula (Large and Yeager, 2004) in NEMO4.0-SI3, 

which includes 2 m air temperature, 2 m specific humidity, 10 m zonal and meridional wind speeds, mean sea level pressure, 

downward long-wave and short-wave radiation, and the total and solid precipitation rates. In these atmospheric fields, the 100 

frequency of radiation and precipitation is 1 day and the other frequencies are 3 hours. The spatial resolution of DFS5.2 is 

approximately 80 km, close to that of ORCA2 in the Southern Ocean. The continental discharge rates followed the 

climatological dataset of Dai and Trenberth (2002). The simulations are initialized at rest via the temperature and salinity 

fields from the World Ocean Atlas 2018 monthly climatology (WOA18; Garcia et al., 2019), run from January 1979 to 

December 2017, with only the last decade of model output (2008-2017) being used for analysis. 105 

Our selection principles for parameters and their values were first to target the three compartments at a stake (air, ocean 

and ice) and their interactions, and second, to act on uncertain and important processes. Ultimately, we selected 18 

parameters (Table 1) to investigate the sensitivity of the sea ice budget to their uncertainties. The lower and upper bounds of 

the parameters were elicited according to the listed references and the uncertainty intervals were suitably extended to avoid 

under-sampling in the marginal regions. The standard values of the parameters used for the control experiment (CTRL) are 110 

the default values for NEMO4.0-SI3. 

 

Table 1. The 18 parameters investigated, including their realistic ranges taken from the listed references. 

 
 115 

Category Symbol Description and unit Low Standard High Reference

rn_pstar Ice strength parameter [N/m2] 5.00E+03 2.00E+04 3.50E+04 Massonnet et al. (2014)

rhos Snow density [kg/m3] 130 330 530 Massom et al. (2001) and Warren et al. (1999)

rhoi Ice density [kg/m3] 880 917 940 Timco and Frederking (1996)

rn_cnd_s Thermal conductivity of the snow [W/m/K] 0.1 0.31 0.5 Maykut and Untersteiner (1971) and Lecomte et al. (2013)

rn_beta Coefficient beta for lateral melting parameter 0.2 1 1.8 Lupkes et al. (2012)

rn_dmin Minimum floe diameter for lateral melting parameter [m] 2 8 14 Lupkes et al. (2012)

rn_alb_sdry Dry snow albdo 0.85 0.85 0.87 Perovich et al. (2002) and Brandt et al. (2005)

rn_alb_smlt Melting snow albdo 0.72 0.75 0.82 Perovich et al. (2002) and Brandt et al. (2005)

rn_alb_idry Dry ice albdo 0.54 0.6 0.65 Perovich et al. (2002) and Brandt et al. (2005)

rn_alb_imlt Melting ice albdo 0.49 0.5 0.58 Perovich et al. (2002) and Brandt et al. (2005)

rn_sal_gd Restoring ice salinity, gravity drainage [g/kg] 4 5 7.5 Nakawo and Sinha (1981)

jpl Number of ice categories 1 5 30 Massonnet et al. (2019)

rn_avm0 Eddy viscosity [m2/s] 1.00E-05 1.20E-04 1.50E-04 Williamson et al. (2017)

rn_avt0 Eddy diffusivity [m2/s] 1.00E-06 1.20E-05 1.50E-05 Williamson et al. (2017)

rn_deds Magnitude of the damping on salinity [mm/day] -20 -166.67 -180 NEMO System Team (2022)

rn_ce Magnitude of the mixed layer eddy 0.04 0.06 0.1 NEMO System Team (2022)

rn_cio Ice-ocean drag coefficient 2.00E-03 5.00E-03 8.00E-03 Massonnet et al. (2014)

Cd_ice Air-ice drag coefficient 8.00E-04 1.40E-03 2.00E-03 Massonnet et al. (2014)
Coupling

Ice/snow

Ocean
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2.2 Experimental design 

The experimental flow chart for achieving the sensitivity analysis is shown in Fig. 1. We start with the definition of the 

parameter space (see Table 1); the next steps are to sample from this parameter space and run the NEMO4.0-SI3 model 

separately with the sampled set of parameters (the sampling method is described in the next paragraph). The model output 

based on adequate sampling is then diagnosed by focusing mainly on three sets of metrics, including the area integral of 120 

simulated SIC/SIV budget components and the root-mean-square error (RMSE) between simulated and observed SIC 

budgets (RMSESICB). It is necessary to train a GP emulator (to be described in Section 2.3) for each metric to be evaluated 

based on NEMO4.0-SI3 simulations, as both GSA methods, i.e., PAWN method (Pianosi and Wagener, 2015) and Sobol 

method (Sobol, 2001; described in Appendix A), would require a large number of model runs to comprehensively explore 

the parameter space with a huge computational demand. Finally, once the key parameters have been identified, we will 125 

recommend some of the parameter sets that provide results close to the observations. 

 

 
Figure 1. Experimental flow chart describing the sensitivity analysis. 

Parameter space

Sampling

Run NEMO4-SI 3 model

Enough successful model results?

Diagnosis of 
model outputs

Building GP emulator

Recommend parameters

N

Y

Global sensitivity analysis

SIC budget

SIV budget

RMSE between simulated 
and observed SIC budget
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 130 

We use the Latin Hypercube Sampling (LHS) method with a maxi-min property to generate low-discrepancy sequences 

from the 18-dimensional parameter space. The LHS is a stratified sampling method that divide each dimension evenly to 

ensure that samples are available in all intervals, and therefore allows for a more evenly drawn sample than the usual random 

sampling methods (Morris and Mitchell, 1995; McKay et al., 2000). Additionally, the maxi-min property is a space-filling 

criteria that aims to maximize the minimum Euclidean distance between two sampling points and thus to improve the 135 

effectiveness of GP emulation (Joseph and Hung, 2008). The recommendation for the number of samples to build the 

emulator is N=10p (Loeppky et al., 2009), where p is the dimension of parameter space and equals to 18 in this study. In 

practice, however, we decided to use about 20p samples in order to build the GP emulator as accurate as possible 

(Williamson et al., 2017). Based on this principle, and taking into account possible model run failures, we first perform a 

sampling of 800 points in parameter space to run the NEMO4.0-SI3, and if the number of successful experiments ends up 140 

being too little (less than 360), we will continue the sampling. 

2.3 Gaussian process emulator and model selection 

In general, the PAWN method converges to a sufficiently accurate value with relatively fewer parameter adjustments than 

the Sobol method (Pianosi and Wagener, 2015), however, the amount of computation required for comprehensive model 

evaluation remains too large, which requires the use of a GP emulator to make predictions about the output of the NEMO4.0-145 

SI3 after adjusting the parameters. 

Let 𝑋𝑋𝑡𝑡 = (�⃗�𝑥1, �⃗�𝑥2,⋯ , �⃗�𝑥𝑁𝑁)𝑇𝑇 and 𝑌𝑌�⃗𝑡𝑡 = (𝑦𝑦1,𝑦𝑦2,⋯ ,𝑦𝑦𝑁𝑁)𝑇𝑇 denote the total number of N simulations, each �⃗�𝑥𝑖𝑖 is a p-dimensional 

column vector representing a sample of parameters, and each 𝑦𝑦𝑖𝑖  is a real number representing the corresponding model 

output, which is assumed to be noiseless here. A GP emulator 𝑓𝑓(⋅) of a model output variable 𝑌𝑌𝑡𝑡 = 𝑓𝑓(𝑋𝑋𝑡𝑡) can generally be 

represented as 150 

𝑓𝑓(⋅) ∼ 𝐺𝐺𝐺𝐺�μ(⋅),𝐾𝐾(⋅,⋅)�,                                                                                                                                                              (1) 

where μ(⋅) and 𝐾𝐾(⋅,⋅) are prior mean function and covariance function respectively. Then the posterior distribution for test 

parameter sets 𝑋𝑋∗ can be obtained as 

𝑓𝑓(𝐗𝐗∗)|𝑓𝑓(𝐗𝐗𝑡𝑡)～𝑁𝑁(𝜇𝜇∗,𝐾𝐾∗)                                                                                                                                                            (2) 

where 155 

μ∗ = μ + 𝐾𝐾(𝑋𝑋∗,𝑋𝑋𝑡𝑡)𝐾𝐾(𝑋𝑋𝑡𝑡,𝑋𝑋𝑡𝑡)−1(𝑓𝑓(𝑋𝑋𝑡𝑡) − μ),                                                                                                                             (3) 

𝐾𝐾∗ = 𝐾𝐾(𝑋𝑋∗,𝑋𝑋∗) − 𝐾𝐾(𝑋𝑋∗,𝑋𝑋𝑡𝑡)𝐾𝐾(𝑋𝑋𝑡𝑡,𝑋𝑋𝑡𝑡)−1𝐾𝐾(𝑋𝑋𝑡𝑡 ,𝑋𝑋∗).                                                                                                                  (4) 

We used the GPy implemented in Python (GPy, 2012) to build the GP emulator for each metric of interest. Once the user 

has selected the mean and covariance functions, the toolkit will automatically maximize the marginal likelihood by the L-

BFGS method to find the optimal values of all hyperparameters in the mean and covariance functions. In general, the prior of 160 

the mean function is assumed to be zero. Thus, the only key matter remaining is how to choose the covariance function.  
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To achieve this, we used a 10-fold cross-validation method for model selection (Geisser, 1975). The idea is to divide the 

dataset {𝑋𝑋𝑡𝑡, 𝑌𝑌} evenly into 10 parts, each time using 9 parts as the "training data" to train the emulator and 1 part as the "true 

data" for model validation, and so on for 10 cycles and taking the average as a proxy for model performance. Using this 

approach, we traversed the linear, squared exponential, exponential, Matern 3/2, Matern 5/2 covariance functions and their 165 

sums and products (Rasmussen and Williams, 2006), for a total of 177 different combinations, and then selected the 

covariance function with both the minimum RMSE and the highest correlation coefficient between the simulated and 

emulated values. 

2.4 Sea ice concentration and volume budgets 

Following the ice conservation law, the change of a sea ice state field Θ,such as SIC and SIV, can be contributed to dynamic 170 

and other processes (Leppäranta 2011, Chapter 3.4): 
𝜕𝜕Θ
𝜕𝜕𝑡𝑡

= −𝒖𝒖 ⋅ 𝛻𝛻Θ− Θ𝛻𝛻 ⋅ 𝒖𝒖 + (𝑓𝑓 − 𝑟𝑟)                                                                                                                                             (5) 

where 𝒖𝒖 is the sea ice velocity, 𝑓𝑓  represents the change from freezing/melting, 𝑟𝑟  stands for any other progresses (e.g., 

ridging and rafting). Integrating the Eq.(5) in time, then the net changes in Θ over a period of time (𝑡𝑡2 − 𝑡𝑡1) can be obtained 

as: 175 

∫ 𝜕𝜕Θ
𝜕𝜕𝑡𝑡
𝑑𝑑𝑡𝑡 = −𝑡𝑡2

𝑡𝑡1
∫ 𝒖𝒖 ⋅ 𝛻𝛻Θ𝑑𝑑𝑡𝑡 −𝑡𝑡2
𝑡𝑡1

∫ Θ𝛻𝛻 ⋅ 𝒖𝒖𝑑𝑑𝑡𝑡 +𝑡𝑡2
𝑡𝑡1

∫ (𝑓𝑓 − 𝑟𝑟)𝑑𝑑𝑡𝑡𝑡𝑡2
𝑡𝑡1

,                                                                                                     (6) 

where the left-hand-side term is the change or 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡, the first term on the right-hand-side represents the contribution of 

advection (𝑑𝑑𝑑𝑑𝑎𝑎), the second term divergence (𝑑𝑑𝑑𝑑𝑎𝑎) and the last term residual (𝑟𝑟𝑟𝑟𝑟𝑟). A positive value for each term is defined 

as an increase of Θ and a negative value for a decrease. 

The budgets for SIC and SIV were calculated in our study, including seasonal climatologies for each SIC or SIV budget 180 

term, following the same approach as Holland and Kimura (2016). First, the daily 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 was obtained by central differencing 

of the ice fields on the day before and after; the advection and divergence were first calculated on each day, and then 

averaged over the corresponding 3-day periods to be consistent with the daily 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡. Second, 𝑑𝑑𝑑𝑑𝑎𝑎 and 𝑑𝑑𝑑𝑑𝑎𝑎 were subtracted 

from the 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 to obtain the daily 𝑟𝑟𝑟𝑟𝑟𝑟; and finally, all daily terms were summed over each season and averaged over the 

years 2008-2017. 185 

2.5 Observation data 

Daily sea ice velocity observations from Kimura et al. (2013) and SIC from the NOAA/NSIDC Climate Data Record of 

Passive Microwave Sea Ice Concentration, Version 4 (Meier et al., 2021) (hereafter referred to as CDR) were used to 

calculate the observed SIC budget. The ice velocity dataset KIMURA was generated from the brightness temperature of the 

36-GHz channel of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) using the maximum 190 

cross correlation technique (Kimura et al., 2013), and ultimately deriving a 60 km resolution product. Therefore, the 

KIMURA data shares the same period as AMSR-E and its successor AMSR2, covering from 2002 to the present. Following 
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Holland and Kwok (2012), a 3 × 3 grid filter was used in the calculations to smooth out the grid-scale noise present in the 

satellite-derived ice drift. Regarding the SIC satellite observations, the CDR SIC is a rule-based combination of the NASA 

Team (Cavalieri et al., 1984) and NASA Bootstrap (Comiso, 1986) ice concentration datasets in the same 25 𝑘𝑘𝑘𝑘 × 25 𝑘𝑘𝑘𝑘 195 

grid, covering the years from 1978 to 2021, with daily, grid-based uncertainty estimates. 

The observed SIC budget (Fig. B1) shows that the Southern Ocean sea ice is generally transported to the ice edge at lower 

latitudes by advection and melts there, with divergence yields open water and thus promotes freezing of ice (Holland and 

Kwok, 2012; Uotila et al., 2014). It is important to note that the calculated SIC budget observations were considered as "true 

values" in our study, despite the uncertainties and biases in the ice drift observations, such as the overall overestimation of 5% 200 

compared to the buoy measured velocities (Kimura et al., 2013). The simulated SIC budgets and the root-mean-square errors 

from the observed one were only calculated at grid points with SIC larger than 15% and at dates where ice drift observations 

existed, to minimize the uncertainty of results caused by missing observations and observational errors. 

3 Results 

3.1 Sea ice concentration and thickness in the model ensemble 205 

Out of 800 experiments, 44% were terminated due to model instability caused by parameter combinations, resulting in an 

ensemble of models of size 449, which included the CTRL experiment. The seasonal cycles of sea ice extent (SIE; integral 

of grid cells areas where SIC > 15%) and area (SIA; integral of grid cells areas multiplied by the SIC in each grid cell) for 

the model ensemble are shown in Fig. 2. The SIE and SIA intervals for the ensemble cover the observed values fairly well, 

except for September when SIA is systematically slightly overestimated. Inter-model disagreement due to parameter 210 

uncertainty is greatest in summer (ranging from 0.42 to 8.26 × 106 𝑘𝑘𝑘𝑘2), when SIE and SIA are at a minimum (observed at 

4.26 × 106 𝑘𝑘𝑘𝑘2), while there is little disagreement between models during the autumn months. Among the members of the 

model ensemble, the CTRL run essentially overlaps with the ensemble mean and matches well with the observation. 

In February, comparing the ensemble mean SIC (Fig. B2a-b) with the CDR observation shows that there are still 

challenges in the modelling of the local patterns, especially as the NEMO4.0-SI3 significantly underestimates the SIC near 215 

the East Antarctic coast. In addition, the ensemble standard deviation for February stands at a high level (around 20%) in 

most regions. Whereas in September (Fig. B2d-f) the ensemble mean SIC is more consistent with the observations than in 

February, although differences between the ensemble members remain relatively high (around 10%) in marginal ice areas 

where the SIC is low. Overall, the discrepancies between ensemble members due to parameter uncertainty are smaller at high 

SIC areas (SIC > 90%) than in low SIC areas. 220 
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Figure 2.  Simulated monthly climatologies of (a) sea ice extent (SIE), (b) area (SIA) and (c) volume (SIV) from 2008 to 

2017, ensemble model means and results from four sets of experiments of interest are also highlighted. The SIE and SIA 

calculated from the NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4 (CDR) are 225 

used as references. 
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Similar to the seasonal cycles of SIE and SIA, the CTRL run's SIV remains close to the ensemble mean. However, the 

differences between SIVs simulated based on different parameter sets are much greater than for SIEs (Fig. 2c), for instance 

in winter, the maximum values of SIVs in the ensemble members are more than twice as large as the minimum values. 230 

Additionally, there are some model runs whose SIV cycles are detached from other members, which is most evident in 

winter. For the ensemble mean sea ice thickness, thicker sea ice of up to two meters is maintained year-round in the western 

Weddell Sea (Fig. B3a,c), which appears to be higher than the previous observation-based dataset of 1.2 to 1.5 meters 

(Haumann et al., 2016, in their Extended Data Figure 2). However, the lack of observations from the same period as this 

study precludes a direct comparison. The spatial pattern of ice thickness standard deviation between model ensembles (Fig. 235 

B3) is similar to that of sea ice thickness, which means thicker sea ice is usually accompanied by a larger standard deviation. 

Diagnostics of the SIC and sea ice thickness of the model ensemble show that the NEMO4.0-SI3 model driven by DFS5.2 

provides reasonable results. The mean states of the model ensemble being close to the CTRL experiment, for SIC in 

particular, match the observations very well, which provides a good basis for the following analysis of the budgets. 

3.2 Budgets on ice concentration and volume 240 

By applying the same approach as for the calculation of the observed SIC budget (cf. Fig. B1), in this section we calculate 

the SIC budget and SIV budget for the ensemble of 449 model runs. As can be seen in Fig. 3, the spatial pattern 

characteristics of the ensemble mean of 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 and 𝑑𝑑𝑑𝑑𝑎𝑎  for each season are generally consistent with observations. The 

magnitudes of the model ensembles of 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 and 𝑑𝑑𝑑𝑑𝑎𝑎 are significantly larger due to the fact that the observed ice drift has 

some missing values and the 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 term is only integrated over the grids with ice drift observations. However, the simulated 245 

divergence appears to be systematically biased when compared to the observation, the simulated 𝑑𝑑𝑑𝑑𝑎𝑎 in the inner ice pack is 

smaller than the observed even considering there are missing data in the observation, and some sporadic convergence 

(positive value of divergence) scattered in the marginal ice zone is not captured by the model. The lack of divergence in the 

inner ice pack also leads to a lack of open water and thus insufficient freezing of sea ice, which can be seen from the winter 

and spring 𝑟𝑟𝑟𝑟𝑟𝑟 in Fig. 3, and in summer in the south Weddell Sea. In summer, the overall contribution of model simulated 250 

advection and divergence to sea ice change is minimal, with thermodynamic sea ice melt dominating, which is consistent 

with the observation. 

The standard deviation of each budget terms for the model ensemble was also calculated (Fig. B4), the deviations between 

simulated sea ice changes are mainly concentrated in autumn and summer, and are mainly located in the Weddell and Ross 

Seas, with insignificant deviations in winter and autumn. For the advection term, the inter-model deviation is large at the ice 255 

edge, where sea ice is transported by the advection, and the coastal area, where winds and currents are strong. The deviations 

of the divergence term in the model ensemble are mostly concentrated in the coastal region, while the model ensemble is 

more consistent in the inner ice pack, although the greatest differences between simulations and observations are found there. 

Since the 𝑟𝑟𝑟𝑟𝑟𝑟 term was calculated by subtracting 𝑑𝑑𝑑𝑑𝑎𝑎 and 𝑑𝑑𝑑𝑑𝑎𝑎 from 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡, the deviations in these three terms are generally 
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combined in the 𝑟𝑟𝑟𝑟𝑟𝑟 term, with the possible exception of some cancelling out of deviations in these terms, for example, in 260 

the Weddell Sea in autumn 𝑟𝑟𝑟𝑟𝑟𝑟 deviates less than 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡. 

 

 
Figure 3. Mean seasonal SIC budget components for the ensemble of 449 model runs from 2008 to 2017. The SIC budget 

for each member was first calculated separately and then averaged together. 265 

 

The SIV increases extensively in the Southern Ocean in autumn and winter and decreases in summer (𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 column in Fig. 

4), and is generally decreasing in spring, except for a slight increase in the Amundsen-Bellingshausen Seas as well as along 

the South Weddell Sea. Differing from the SIC budget (Fig. 3) in which advection contributes little to sea ice changes in the 
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inner ice pack, the ensemble model mean shows that advection will lead to a reduction in SIV (𝑑𝑑𝑑𝑑𝑎𝑎 column in Fig. 4), 270 

although SIC maintains high in this region. The spatial pattern of the divergence of SIV is very little different from that of 

SIC, and since the contribution of simulated SIC divergence to sea ice change is underestimated compared to the observation 

as mentioned earlier, it is safe to assume here that divergence should similarly underestimate the change in SIV, given the 

strong interdependence of SIC and SIV. The inner ice pack maintains an increase in SIV from autumn to spring as the sea ice 

freezes, and from spring onwards the sea ice starts to melt from the marginal ice zone and reaches a full melting of the entire 275 

Southern Ocean sea ice in summer (𝑟𝑟𝑟𝑟𝑟𝑟 column in Fig. 4). 

 

 
Figure 4. As Fig. 3, but for SIV budget. 
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 280 

For simulations of overall changes in SIV, the standard deviation between ensemble members is only slightly greater in 

summer than in other seasons (Fig. B5). The disagreement between members originates mainly from the contribution of 

advection to SIV change, which is most pronounced along the West Weddell Sea and Antarctic Peninsula coasts, in marginal 

ice zone and the East Antarctic coast. In addition, the contribution of advection and divergence to SIV that simulated based 

on different parameter sets, varies considerably in the Antarctica coastal region, similar to the SIC budget. The residual term 285 

still has the largest standard deviation as it retains the deviations of the other terms. 

The area integrals of each budget term for the simulated SIC and SIV are presented in Table 2. Although this 

quantification of the contribution of each term to sea ice change does not consider local differences and cancels out positive 

and negative sea ice change to some extent, it is a simple and easy to implement a method for quantifying the sensitivity of 

sea ice budget to parameters. As can be seen from the ensemble mean of SIC and SIV budget terms, the area integrals of the 290 

advection and divergence contributions to sea ice change largely cancel each other out, which is potentially because these 

two processes do not change the total amount of sea ice. This also means that when studying the effect of model parameter 

uncertainty on sea ice budget in the following sections, it is only necessary to use the area integrals of 𝑟𝑟𝑟𝑟𝑟𝑟 (or 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡) and 𝑑𝑑𝑑𝑑𝑎𝑎 

(or 𝑑𝑑𝑑𝑑𝑎𝑎). 

 295 

Table 2. Area integrals of sea ice concentration (SIC) and sea ice volume (SIV) budget components for the ensemble of 449 

model runs. Data are listed in the form of mean ± one standard deviation. The units are 106 𝑘𝑘𝑘𝑘2 and 103 𝑘𝑘𝑘𝑘3 for SIC and 

SIV budget respectively. 

 
 300 

The RMSESICB is calculated as a complement to the area integrals of each SIC budget term. In matching the simulated 

results to the observation, we first linearly interpolated the modelled data onto the grid cells containing observed data, and 

then calculated daily budgets for only those dates for which observations were available and for grids with SIC greater than 

15%, and finally calculated the seasonal SIC budget climatology. Fig. 5 counts the RMSESICB for all model ensemble 

members. The model ensemble has the smallest RMSESICB with observations in term of sea ice change (~15%), followed by 305 

Season Name dadt adv div res
SIC 8.57 ± 0.47 2.30 ± 0.22 -2.35 ± 0.22 8.62 ± 0.47
SIV 9.51 ± 1.06 2.23 ± 0.42 -2.17 ± 0.41 9.45 ± 1.05

SIC 6.74 ± 0.17 3.17 ± 0.37 -3.28 ± 0.38 6.85 ± 0.18
SIV 18.73 ± 2.13 4.94 ± 0.87 -4.75 ± 0.86 18.55 ± 2.11

SIC -5.84 ± 0.73 2.91 ± 0.35 -3.02 ± 0.35 -5.73 ± 0.72
SIV -5.86 ± 2.01 6.27 ± 1.05 -6.02 ± 1.04 -6.10 ± 2.04

SIC -9.57 ± 0.40 0.55 ± 0.11 -0.55 ± 0.11 -9.57 ± 0.40
SIV -22.65 ± 3.01 1.02 ± 0.29 -1.00 ± 0.29 -22.67 ± 3.01

Spring (SON)

Summer (DJF)

Autumn (MAM)

Winter (JJA)
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advection (~25%), and a larger RMSESICB for the divergence term, which is consistent with the results showed in Fig. 3 and 

Fig. B1. In the model ensemble, the RMSESICB of the CTRL experiment is essentially at or below the median level, and the 

distributions of the RMSESICB in the model ensemble are not symmetric, i.e., there are more flier points outside of third 

quartile plus 1.5 times the inter-quartile range. 

Based on the results of this section, the area integrals of 𝑑𝑑𝑑𝑑𝑎𝑎 and 𝑟𝑟𝑟𝑟𝑟𝑟 in the SIC (and SIV) budget and the RMSESICB are 310 

used as the metrics to assess the sensitivity of the model's sea ice budget to 18 parameters in the next sections. 

 

 
Figure 5. Boxplots of RMSE for each component of the simulated and observed SIC budget. Boxes extend from the first 

quartile (top border) to the third quartile (bottom border), the red line represents the median of all 449 model results and the 315 

blue squares represent the CTRL experiment. The whiskers extend outwards from the box to 1.5 times the inter-quartile 

range, with a few flier points beyond the whiskers. The 25% horizontal dashed lines are marked as references. 
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3.3 Sensitivity of ice concentration and volume budgets to parameters 

Before conducting the GSA, Fig. B6 shows the cross-validation results for the best GP emulator for each of the 𝑑𝑑𝑑𝑑𝑎𝑎 and 𝑟𝑟𝑟𝑟𝑟𝑟 

term area integral metrics of the SIC and SIV budgets. Overall, the emulated and simulated values have a very high 320 

correlation coefficients (typically greater than 0.98), thus the built emulator is considered successful and will be used as a 

proxy for NEMO4.0-SI3 in the subsequent sensitivity analysis. 

The sensitivity of each metric to the 18 parameters, quantified by the Sobol and PAWN methods, is illustrated in Fig. 6. It 

should be noted that the sensitivity scores for the two methods are independent and not comparable in absolute terms. 

Following Urrego-Blanco et al. (2016), the Sobol sensitivity index below 0.02 is considered insignificant, and for the 325 

Kolmogorov-Smirnov (KS) mean index in PAWN, the critical value at confidence level of 0.05 is about 6.65 × 10−2. Both 

GSA methods show that the advection is very sensitive to ice strength (rn_pstar) outside of summer in the SIC budget. Ice-

ocean drag coefficient (rn_cio) and air-ice drag coefficient (Cd_ice) have an influence on the modelled advection 

contribution to sea ice change from summer to autumn and spring, respectively. In summer, the snow thermal conductivity 

(rn_cnd_s) and two lateral melting parameters (rn_beta and rn_dmin) also has some effect on the advection of SIC budget. 330 

The total and first-order Sobol indices are not very different, which is usually the case for both indices of the PWAN method, 

however, with the exception of the jpl (ice category number), where KS max is shown to be much larger than KS mean (e.g., 

in autumn and summer). For other metrics, this also happens for sensitivity assessment of some other parameters, which will 

be discussed further in the next section. The residual term of the SIC budget shows considerable sensitivity to rn_cio, which 

persists from autumn to spring. Meanwhile the effect of Cd_ice on 𝑟𝑟𝑟𝑟𝑟𝑟 increases continuously from autumn to summer. Ice 335 

strength still has a weak effect, much less than its effect on 𝑑𝑑𝑑𝑑𝑎𝑎. In addition, rn_cnd_s and jpl have a non-negligible effect 

on the modelling of 𝑟𝑟𝑟𝑟𝑟𝑟 in winter and summer, respectively. 

Among the sensitivity indices of the SIV budget, the most noticeable parameter is rn_cnd_s, to which both 𝑑𝑑𝑑𝑑𝑎𝑎 and 𝑟𝑟𝑟𝑟𝑟𝑟 

are very sensitive at all times of the year, except in the spring when it has less impact on 𝑟𝑟𝑟𝑟𝑟𝑟 (Fig. 6). Another physical 

parameter related to the snow on sea ice (rhos, i.e., snow density) is important for 𝑟𝑟𝑟𝑟𝑟𝑟 simulations in the SIV budget, 340 

especially from autumn to winter, the period when sea ice freezes fast (Fig. 2c). Similar to the SIC budget, the rn_cio and 

Cd_ice remain crucial for the SIV budget in spring and summer, while the ice strength is only important for advection in 

winter and spring. 
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 345 
Figure 6. The total (ST) and first-order (S1) Sobol sensitivity indices, and the maximum (KS max) and mean (KS mean) 

PAWN sensitivity indices for each sea ice budget component to 18 parameters. The blue and grey dashed lines are the 

thresholds for S1 and KS mean indices, respectively. Larger Sobol/PAWN index value indicates that the metric is more 

sensitive to this parameter. The blue connecting line indicates that the Sobol second-order index for the combination of these 

two parameters is greater than 0.02. 350 
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3.4 Sensitivity of SIC budget errors to parameters 

The results for four RMSESICB metrics based on the best performing GP emulators are shown in Fig. B7. The GP emulator 

performs perfectly for the RMSESICB of 𝑑𝑑𝑑𝑑𝑎𝑎 , 𝑑𝑑𝑑𝑑𝑎𝑎  and 𝑟𝑟𝑟𝑟𝑟𝑟 , with a correlation coefficient greater than 0.998, except in 

summer. As can be seen in Fig. 5 in the summer months, the difference in RMSESICB for these three terms is very small 

compared to other seasons, and this small difference is likely to be random and therefore difficult to capture well by the GP 355 

emulator. The GP emulator also does not perform well in terms of 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 RMSESICB (Fig. B7, first column) and there is also 

likely to be a large randomness in the difference in 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 between the model ensemble and the observation. Given the poor 

performance of the GP emulator in terms of 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 RMSESICB as well as RMSESICB over the summer, the GSA results 

obtained by using it instead of the NEMO4.0-SI3 dynamical ocean model are subject to uncertainty and should be kept in 

mind in the following analysis. 360 

Fig. 7 demonstrates quite clearly that for 𝑑𝑑𝑑𝑑𝑎𝑎, 𝑑𝑑𝑑𝑑𝑎𝑎 and 𝑟𝑟𝑟𝑟𝑟𝑟 RMSESICB in autumn, winter and spring (which are also the 

terms and seasons with the largest RMSESICB values, Fig. 5), only air-ice and ice-ocean drag coefficients are the most critical 

parameters, while ice strength also has, but only weakly, an effect. Besides these two important drag coefficients, Fig. 7 also 

shows that the 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 RMSESICB between model and observation might be sensitive to the snow thermal conductivity and ice 

category number to some extent. The analysis is more complicated in summer, as is the sensitivity of SIC budget and SIV 365 

budget to the parameters. In addition to all the previously mentioned parameters that have an impact, Fig. 7 shows that in 

summer the RMSESICB may also be sensitive to the minimum floe diameter for lateral melting parameter (rn_dmin) and the 

magnitude of the damping on salinity (rn_deds), which is a parameter belonging to the ocean module. Further comparing Fig. 

6 and Fig. 7, it can be found that overall, both the simulation of the SIC budget by the NEMO4.0-SI3 model and its 

RMSESICB are most sensitive to the air-ice and ice-ocean drag coefficients, both of which belong to the coupling category in 370 

Table 1. Next important are ice strength as well as the thermal conductivity of snow, identified by the six metrics related to 

SIC budget. In summer, some thermodynamic melting related parameters, such as rn_beta and rn_dmin, are important. In 

contrast, the SIC budget simulated by the model is sensitive to jpl, unlike the RMSESICB metrics. 

As it has been identified that the RMSESICB metrics are sensitive to the two most critical parameters (rn_cio and Cd_ice) 

and one relatively important parameter (rn_pstar), Fig. 8 illustrates the RMSESICB for all SIC budget terms and all seasons, 375 

averaged over 449 model runs, in relation to the values of these three parameters with the top 10 combinations listed in Table 

3. It can be seen in Fig. 8b that the RMSESICB broadly decreases with increasing rn_cio and decreasing Cd_ice, such that the 

10 sets of model runs with the smallest RMSESICB are concentrated in the top left corner of the figure, where Cd_ice is 

approximately from 8 × 10−4  to 1 × 10−3 , and rn_cio is approximately from 5.5 × 10−3  to 7.5 × 10−3  (Table 3). In 

contrast, the best 10 ice strength values are more dispersed, and greater than 15 × 103 (Fig. 8a,c), and the RMSESICB does 380 

not depend linearly on it as with Cd_ice and rn_cio. 
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Figure 7. As Fig. 6, but for the sensitivity of the RMSE between SIC budgets of the model and the observation to 18 

parameters. The red connecting lines are the same as the blue ones but for the Sobol second-order index larger than 0.1. 385 
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Figure 8. Average RMSESICB for all four SIC budget components for different combinations of key parameters. The 

numbers 1 to 10 indicate the results of the 10 best parameter sets in ascending order of the average RMSESICB, and the points 

with red edges indicate the standard values used for the CTRL experiment. 390 

 

Table 3. The 10 best performed experiments in terms of mean RMSESICB (i.e., RMSE between simulated and observed SIC 

budget) and the values of the 3 key parameters they used. Note that these values are highly correspond to the DRAKKAR 

Forcing Set version 5.2 (Dussin et al., 2016) atmospheric forcing used in this study. 

 395 

Rank RMSE (%) Cd_ice (10-4) rn_cio (10-3) rn_pstar (104)
1 25.127 9.563 6.094 3.298
2 25.163 8.478 7.379 1.954
3 25.182 8.125 6.402 2.929
4 25.270 9.100 5.572 3.047
5 25.299 9.407 6.384 2.555
6 25.356 9.643 7.491 2.119
7 25.364 8.172 5.783 2.839
8 25.378 9.455 7.262 3.154
9 25.389 8.807 6.293 2.437

10 25.391 8.373 5.957 1.723
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4 Discussion 

4.1 Key parameters and their physical effects 

Several parameters have been identified in Sections 3.3 and 3.4 as having a significant impact on the simulated SIC and SIV 

budgets in the Southern Ocean. In this section we present how these parameters specifically act on the SIC and SIV budget 

by looking at the impact of parameter changes on the cumulative distribution function (CDF) in the PAWN method. 400 

Considering the performance of the GP emulator (Fig. B6) as well as the number of sensitive parameters (Fig. 6), the area 

integral of 𝑟𝑟𝑟𝑟𝑟𝑟 component in the SIC budget in spring and the area integral of 𝑑𝑑𝑑𝑑𝑎𝑎 component in the SIV budget in winter 

have been selected here as examples to be discussed. Figs. 9 and 10 show how the CDF of the model output changes as one 

parameter is fixed to vary across a range of values, and other parameters varied freely. 

 405 

 
Figure 9. Cumulative distribution function (CDF) of the area integral of the 𝑟𝑟𝑟𝑟𝑟𝑟 component in the spring SIC budget (cf. Fig. 

3). Red lines are the unconditional CDF for the ensemble of 449 model runs, and the grey lines stand for conditional CDF at 

different fixed values of parameters calculated by the GP emulator. The units of the x-axis are 106 𝑘𝑘𝑘𝑘2. 
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Since the low thermal conductivity of the snow reduces the heat transfer from the bottom of the ice to the atmosphere, it 410 

reduces the ice growth rate (Fichefet et al., 2000; Lecomte et al., 2013), and therefore leads to less freezing inside the ice 

pack, and 𝑟𝑟𝑟𝑟𝑟𝑟 moves more towards negative values (Fig. 9d). The reduction in freezing due to the reduction in snow thermal 

conductivity is more pronounced in winter (Fig. 6) and the SIV budget simulation is more sensitive to this parameter than the 

SIC budget, as it is primarily affecting the vertical ice growth. 

The rn_beta and rn_dmin are the two parameters that determine the minimum floe diameter of sea ice, and their decrease 415 

implies a decrease in sea ice floe sizes, which promotes the lateral melting (Lüpkes et al., 2012). Consequently, in contrast to 

the reduction of rn_cn_s which inhibits ice freezing, rn_beta and rn_dmin lead to more negative values of 𝑟𝑟𝑟𝑟𝑟𝑟 (Fig. 9e-f) by 

promoting sea ice melting at low-latitude regions (Fig. 3). Furthermore, this effect is greater in summer than in spring and 

plays a weak role in winter (Fig. 6), which fits well with the magnitude of the SIC reduction in the 𝑟𝑟𝑟𝑟𝑟𝑟 column in Fig. 3, 

although it is not the only process affecting SIC. 420 

 

 
Figure 10. As Fig. 9, but for the area integral of 𝑑𝑑𝑑𝑑𝑎𝑎 component of winter SIV budget. The units of the x-axis are 103 𝑘𝑘𝑘𝑘3. 
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Compared to rather continuous looking variations in CDFs of other parameters, the variation in CDFs due to changes in 

jpl is more dispersed (Fig. 9l), with several lines being clearly outliers, which were checked to match jpl=1. This is because 425 

the multi-category sea ice thickness takes into account the subgrid-scale variations in sea ice properties (Thorndike et al., 

1975; Massonnet et al., 2019; Moreno-Chamarro et al., 2020) and is therefore significantly different from the single 

thickness category (jpl=1). For instance, the presence of thin sea-ice categories in multi-category sea-ice schemes allows for 

greater melt rates compared to a single-category scheme (Uotila et al., 2017). 

The ice-ocean drag coefficient and the air-ice drag coefficient should be discussed jointly, as the sea-ice drift velocity is 430 

related to the Nansen number 𝑁𝑁𝑑𝑑 = �ρ𝑎𝑎𝐶𝐶𝑎𝑎/ρ𝑤𝑤𝐶𝐶𝑤𝑤 , where ρ𝑎𝑎/𝑤𝑤 and 𝐶𝐶𝑎𝑎/𝑤𝑤 are air/water density and air-ice/ice-ocean drag 

coefficient. The Fig. 9q and 9r illustrate that a decrease in 𝐶𝐶𝑎𝑎/𝐶𝐶𝑤𝑤 leads to a larger 𝑟𝑟𝑟𝑟𝑟𝑟, which has two possibilities, either sea 

ice melt is inhibited or freezing is intensified, by assuming that sea ice deformation is comparably small (Holland and Kwok, 

2012). Since the solution of free sea ice drift (Leppäranta, 2011, Chapter 6.1.1) indicates that the decrease in 𝐶𝐶𝑎𝑎/𝐶𝐶𝑤𝑤 leads to 

a decrease in sea ice velocity, we argue that this causes a more limited transport of sea ice to low-latitude region, leading to 435 

the inhibited melting (see spring 𝑑𝑑𝑑𝑑𝑎𝑎 and 𝑟𝑟𝑟𝑟𝑟𝑟 in Fig. 3). 

With the exception of rn_cnd_s, rn_cio and Cd_ice, whose physical effects have been elucidated, the 𝑑𝑑𝑑𝑑𝑎𝑎 term in the 

winter SIV budget is also sensitive to rn_pstar (Fig. 10a). This can be explained by the fact that the weaker ice is more easily 

to deform and increase ice thickness, leading to a smaller drift speed and therefore results in a smaller absolute value of the 

area integral of 𝑑𝑑𝑑𝑑𝑎𝑎 or 𝑑𝑑𝑑𝑑𝑎𝑎. This is also true in spring (Fig. 6), as ice drift speeds are greater in winter and spring compared 440 

to other seasons during the period of this study (not shown but similar to, e.g., Holland et al., 2016) and making the ridging 

of weak ice more pronounced. 

For the NEMO4.0-SI3, the snow thickness on sea ice is determined by the snow density as the solid precipitation 

equivalent which is determined by atmospheric reanalyses, and other factors affecting the snow depth (e.g., wind packing, 

windblown snow lost to leads, etc.; Petty et al., 2018) that are not included (NEMO Sea Ice Working Group, 2019). When 445 

the snow density decreases in the model, the snow thickness increases, thereby reducing the heat exchange between the ice 

and the atmosphere, which in turn limits the vertical increase in sea ice thickness. Thus, for the SI3 model, the effect of 

reducing snow thickness and reducing snow thermal conductivity on the simulation of sea ice thickness is equivalent. This is 

the reason why the 𝑟𝑟𝑟𝑟𝑟𝑟 term in the SIV budget always shows a similar high sensitivity to rn_cnd_s and rhos (Fig. 6). These 

two parameters have the greatest influence on the total SIV and thus also on the area integral of the 𝑑𝑑𝑑𝑑𝑎𝑎 during autumn and 450 

winter, the seasons when sea ice vertical growth is most pronounced. When sea ice thickening is limited, the value of SIV 

itself becomes smaller, resulting in a smaller area integral for 𝑑𝑑𝑑𝑑𝑎𝑎 (Fig. 10b). 

However, of the seven parameters discussed above that have an impact on the SIC budget, only two drag coefficients play 

a critical role to the RMSE of simulated and observed SIC budget, followed by the weak effect of sea ice strength (Fig. 7). 

This means that while adjusting rn_cnd_s has an impact on the simulation of SIE (Urrego-Blanco et al., 2016) and may 455 

improve the SIE seasonal cycle to be closer to observation (Lecomte et al., 2013), it does not make the model's simulation of 
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the SIC budget any more realistic. In addition, although the remaining parameters display sensitivity during the summer 

months (bottom row in the Fig. 7), the robustness of this result is not guaranteed given the already low level of RMSE in the 

summer and the mediocre performance of the GP emulator (bottom row in the Fig. B7). 

4.2 Interactions between the parameters 460 

Using the second order sensitivity indices provided by the Sobol method, the interaction between the parameters can be 

further explored. We have added some vertical connector lines in Figs. 6 and 7 to indicate that a simultaneous change in two 

parameters question has a significant impact. Not surprisingly, the interconnection of the ice-ocean and the air-ice drag 

coefficients causes their simultaneous changes to have the greatest impact on the advection metric in both SIC and SIV 

budgets, especially in winter and spring, the two seasons with the largest sea ice speeds. Furthermore, for the SIV budget, the 465 

contribution of its advection term to SIV change is also sensitive to the simultaneous changes in rn_cnd_s and rn_cio in 

autumn. This makes sense, considering that sea ice starts to grow vertically in autumn and that the advection is significantly 

affected by the ice-ocean drag coefficient (Fig. 6). However, rn_cnd_s does not interact with any drag coefficient in winter, 

when ice vertical grow is also rapid (Fig. 2c), thus the interaction in autumn remains somewhat uncertain due to the GP 

emulator does not perform very well for 𝑑𝑑𝑑𝑑𝑎𝑎 in the autumn SIV budget (r=0.961). 470 

The ratio between the ice-ocean and the air-ice drag coefficients continues to dominate the sensitivity of the four RMSE 

metrics as the sea ice velocity is controlled by 𝐶𝐶𝑎𝑎/𝐶𝐶𝑤𝑤 (Fig. 7). Although the GSA results also show some sensitivity to ice 

strength, there is little interaction between this parameter and the two drag coefficients in the SIV budget, except for the 𝑑𝑑𝑑𝑑𝑎𝑎 

term in summer. Despite this, considering that the 𝑑𝑑𝑑𝑑𝑎𝑎 RMSESICB itself fluctuates very little in summer and the GP emulator 

is not a perfect performer, there is uncertainty in this result. Fig. 7 also shows that the 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 RMSESICB is sensitive to 475 

simultaneous changes in rn_beta and rn_cio in the autumn, which we argue may be an error introduced by the poorer 

performing GP emulator (r=0.915) as the lateral ice growth process is independent with the ice floe size in NEMO4.0-SI3 

(NEMO Sea Ice Working Group, 2019). 

4.3 Recommended set of parameters 

Fig. 2 highlights the SIE, SIA and SIV seasonal cycles of the three experiments that performed best in the mean RMSESICB 480 

(as listed in Table 3). An interesting thing is that although these three experiments used rn_cio/Cd_ice values that were 

clearly above/below the standard values, they all exhibit SIE and SIA seasonal cycles that are very close to the model 

ensemble mean and the CTRL. The EXP397, which is the best performing one, has a SIV seasonal cycle that almost 

overlaps with the ensemble mean, while the second and third best are both close to the CTRL. This evidence again suggests 

that even if the realistic SIE is modelled, there is no guarantee of a reasonable SIC budget (Uotila et al., 2014; Nie et al., 485 

2022), e.g., the mean RMSE between the CTRL and observed SIC budgets is similar compared to the other experiments, 

whereas the SIE seasonal cycle of the CTRL is very realistic. 
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On the other hand, even the optimal set of parameters recommended in this study (EXP397) would only reduce the 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡, 

𝑑𝑑𝑑𝑑𝑎𝑎, 𝑑𝑑𝑑𝑑𝑎𝑎 and 𝑟𝑟𝑟𝑟𝑟𝑟 RMSESICB by about 2%, 5%, 8% and 10% respectively, which is a rather modest impact. This indicates 

that the accurate modelling of the SIC budget does not appear to be possible by simply changing the atmospheric forcing 490 

product or tuning ocean model’s parameters, as the atmospheric forcing itself is systematically biased (Barthélemy et al., 

2018). As shown in Fig. B8, all model ensembles have similarly shaped ice-speed seasonal cycles that all differ significantly 

from observations, meaning that adjusting the parameter values alone will not correct errors caused by biases in the 

atmospheric forcing. Nevertheless, the parameter sets in Table 3 can be confidently recommended to NEMO4.0-SI3 

modelers to optimize the Southern hemispheric sea ice in the ORCA2 grid, provided that DFS5.2 is used as the atmospheric 495 

forcing. 

5 Conclusions 

To investigate the impacts of model parameter uncertainty on sea ice budgets in the Southern Ocean, we drove the 

NEMO4.0-SI3 ice-ocean coupled model with DFS5.2 atmospheric forcing and simultaneously adjusted 18 potentially critical 

model parameters and generated the model ensemble with a size of 449. Preliminary diagnostics of the model output for the 500 

SIE and SIA seasonal cycles revealed that the model results are generally reasonable, as the ensemble model mean being 

very close to observations. The ensemble model mean SIC budget shows the basic characteristics of the observed SIC budget, 

although differing a lot in details, and the adjustment of the parameters indeed leads to a certain degree of perturbation of the 

SIC and SIV budgets, which sets the stage for the sensitivity experiments that followed. 

Benefiting from the overall excellent performance of the GP emulator, GSA was carried out with adequate computational 505 

resources. The results show that the contribution of the modelled advection to the changes in SIC is very sensitive to ice 

strength, ice-ocean and air-ice drag coefficients from autumn to spring, and to snow thermal conductivity in summer, 

followed by two other parameters related to lateral melting as well as the ice-ocean drag coefficient. Additionally, the 𝑟𝑟𝑟𝑟𝑟𝑟 

term in summer is very sensitive to the number of ice categories, which is attributed to the significant difference in sea ice 

melt rates between single and multi-category sea ice categories. In addition to several parameters that have an impact on the 510 

simulation of the SIC budget, the SIV budget also shows a high sensitivity to snow density. However, considering the simple 

approach to snow in the current NEMO4.0-SI3 model (e.g., one layer and the effect of windblown is not taken into account, 

etc.), the effects of snow density and snow thermal conductivity on sea ice thickness are largely equivalent. 

The sensitivity of the RMSESICB to 18 parameters was assessed. Overall, the ice-ocean and air-ice drag coefficients are the 

most important ones, followed by ice strength. Moreover, there are other parameters that significantly affect RMSESICB 515 

during the summer months, but since RMSESICB values are inherently small during the summer months, we consider the 

effects of these parameters on the RMSESICB to be negligible. Based on these results, we recommend 10 combinations of ice-

ocean drag coefficient, air-ice drag coefficient and ice strength that can be safely used for the DFS5.2 driven NEMO4.0-SI3 

model with the ORCA2 grid. The recommended combinations of these parameters allow the simulations of near-observed 
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SIE and SIA seasonal cycles, as well as similar SIV seasonal cycles with the CTRL experiment and, more importantly, 520 

resulting in a more realistic SIC budget compared to the standard parameters. 

Apart from the success of the GP emulator, another reason why the GSA results are considered reliable is that the two 

GSA methods used in this paper show a high degree of consistency in the identification of key parameters. Nevertheless, we 

recommend that it is necessary to use two or more GSA methods together to target same problem, as variance-based Sobol 

method and density-based PAWN method each have their own characteristics and can be cross-referenced and complement 525 

each other, which has also been revealed in other studies (e.g., Pianosi and Wagener, 2015; Zadeh et al., 2017; Mora et al., 

2019). 

There are at least two limitations in this study, the first is that we selected the area integral of 𝑑𝑑𝑑𝑑𝑎𝑎 and 𝑟𝑟𝑟𝑟𝑟𝑟 as metrics, and 

although they can be used as proxies for the total contribution of dynamical and other processes to sea ice change 

respectively, the local biases may counteract and affect the integrals. We therefore complemented this with another set of 530 

metrics using the RMSESICB. The second limitation stems from the fact that uncertainties in observations cannot be 

accurately assessed and the observed budgets were simply referred to as the "true", which could be re-evaluated after more 

accurate observations become available, or when the uncertainties in observed ice motion can be more accurately estimated. 

In summary, the key to reproducing a realistic SIC budget for an ice-ocean coupled model driven by atmospheric 

reanalysis is to simulate realistic sea ice velocities, which undoubtedly remains a challenge. It would be very useful to 535 

correct the biases in the atmospheric reanalysis, and the model could then be further optimised by adjusting several key 

parameters identified in this study. 

Code and data availability. The model code for NEMO4.0-SI3 is available from the NEMO website (https://www.nemo-

ocean.eu/, last access: 1 March 2022). The parameter sets, configuration files and scripts for running NEMO4.0-SI3 are 

archived on https://doi.org/10.5281/zenodo.6780342 (Nie, 2022). The atmospheric forcing was provided by the DRAKKAR 540 

consortium through the following link: https://ige-meom-opendap.univ-grenoble-

alpes.fr/thredds/catalog/meomopendap/extract/FORCING_ATMOSPHERIQUE/DFS5.2/ALL/catalog.html (last access: 22 

February 2022). The NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4 (Meier et 

al., 2021) data can be downloaded from National Snow & Data Center (https://nsidc.org/) by registering for an EarthData 

account. The KIMURA ice drift data are available from the authors on request. The GPy code is available here: 545 

https://github.com/SheffieldML/GPy (last access: 1 March 2022). The SAFE Toolbox used for implement the PAWN 

method is available here: http://bristol.ac.uk/cabot/resources/safe-toolbox/ (last access: 11 April 2022). 

Author contributions. PU, YFN and XQL designed the study. YFN and PU run the NEMO4.0-SI3 model. CKL and YFN 

built the GP emulator. Data analysis was performed by YFN, PU, BC and FBD. The first draft of the manuscript was written 

https://doi.org/10.5194/gmd-2022-170
Preprint. Discussion started: 5 July 2022
c© Author(s) 2022. CC BY 4.0 License.



26 
 

by YFN, PU, MV and all authors commented on previous versions of the manuscript. All authors read and approved the final 550 

manuscript. 

Competing interests. The authors declare that they have no known competing financial interests or personal relationships that 

could have appeared to influence the work reported in this paper. 

Acknowledgements. The authors acknowledge CSC – IT Center for Science, Finland, for HPC computational resources. 

Financial support. PU was supported by the Academy of Finland (Project 322432), and the European Union’s Horizon 2020 555 

research and innovation framework programme under Grant agreement no. 101003590 (PolarRES project). XQL was 

supported by the National Natural Science Foundation of China (Grant No. 42076011 and Grant No. U1806214) and YFN 

was supported by Scholarship from China Scholarship Council (CSC. 202006330054). 

Appendix A: Global sensitivity analysis 

Two different kinds of GSA methods were performed here, as only one may not adequately bring out all the characteristics 560 

(Baki et al., 2022; Pianosi et al., 2015). The first one is the variance-based sensitivity analysis, which is also referred to as 

Sobol indices (Sobol, 2001). Suppose the relationship between model output 𝑌𝑌 and parameter sets 𝑋𝑋 is 𝑌𝑌 = 𝑓𝑓(𝑋𝑋), where 

𝑋𝑋𝑖𝑖 ∈ [0,1], 𝑑𝑑 = 1,2, … ,𝑝𝑝, and it can be decomposed as (Sobol, 1990): 

𝑌𝑌 = 𝑓𝑓0 + ∑ 𝑓𝑓𝑖𝑖(𝑋𝑋𝑖𝑖)
𝑝𝑝
𝑖𝑖=1 + ∑ 𝑓𝑓𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑖𝑖�

𝑝𝑝
𝑖𝑖<𝑖𝑖 + ⋯+ 𝑓𝑓1,2,…,𝑝𝑝�𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝�,                                                                                  (A1) 

where 𝑓𝑓0 is a constant, 𝑓𝑓𝑖𝑖  and 𝑓𝑓𝑖𝑖𝑖𝑖  are functions of 𝑋𝑋𝑖𝑖  and 𝑋𝑋𝑖𝑖𝑖𝑖  respectively, and so on. Then the 𝑑𝑑𝑡𝑡ℎ  parameter’s first-order 565 

indices (𝑆𝑆𝑖𝑖) and total-effect index (𝑆𝑆𝑇𝑇𝑖𝑖) are estimated as (Sobol, 2001; Saltelli et al., 2010): 

𝑆𝑆𝑖𝑖 ≈
1
𝑁𝑁∑ 𝑓𝑓(𝑩𝑩)𝑗𝑗�𝑓𝑓�𝑿𝑿𝐵𝐵
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𝑝𝑝
𝑖𝑖=1 +∑ 𝑉𝑉𝑖𝑖𝑗𝑗

𝑝𝑝
𝑖𝑖<𝑗𝑗 +⋯+𝑉𝑉12…𝑝𝑝

,                                                                                                                                                  (A2) 

𝑆𝑆𝑇𝑇𝑖𝑖 ≈
1
2𝑁𝑁∑ �𝑓𝑓�𝑿𝑿𝐵𝐵
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𝑗𝑗
−𝑓𝑓(𝑿𝑿)𝑗𝑗�

2
𝑁𝑁
𝑗𝑗=1

∑ 𝑉𝑉𝑖𝑖
𝑝𝑝
𝑖𝑖=1 +∑ 𝑉𝑉𝑖𝑖𝑗𝑗

𝑝𝑝
𝑖𝑖<𝑗𝑗 +⋯+𝑉𝑉12…𝑝𝑝

,                                                                                                                                                   (A3) 

where 𝑉𝑉𝑖𝑖 = 𝑉𝑉𝑑𝑑𝑟𝑟𝑋𝑋𝑖𝑖 �𝐸𝐸𝑿𝑿∼𝑖𝑖(𝑌𝑌|𝑋𝑋𝑖𝑖)�,  𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑑𝑑𝑟𝑟𝑋𝑋𝑖𝑖𝑗𝑗 �𝐸𝐸𝑿𝑿∼𝑖𝑖𝑗𝑗�𝑌𝑌|𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑖𝑖�� − 𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑖𝑖 ,  and so on, the 𝑿𝑿∼𝑖𝑖  indicates the set of all 

parameters except 𝑋𝑋𝑖𝑖. The matrix 𝑩𝑩 is a 𝑁𝑁 × 𝑝𝑝 matrix generated by sampling the parameter space with the LHS method and 570 

used as a "perturbation matrix". 𝑁𝑁 denotes the number of model simulations. The matrices 𝑿𝑿𝐵𝐵𝑖𝑖 , 𝑑𝑑 = 1,2, … ,𝑝𝑝 are obtained by 

replacing the 𝑑𝑑𝑡𝑡ℎ column of 𝑿𝑿 with the same column of 𝑩𝑩. 

The other GSA method named PAWN (Pianosi and Wagener, 2015) is a density-based method, in which sensitivity is 

assessed by quantifying the effect of parameter changes on the cumulative distribution function (CDF) of the model output 𝑌𝑌. 
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In brief, the distance between the CDF of 𝑌𝑌 obtained from the control simulation (i.e., unconditional CDF) and the CDF of 575 

the output perturbed by changing the parameters (i.e., conditional CDF) is calculated by the Kolmogorov-Smirnov statistic 

(KS): 

𝐾𝐾𝑆𝑆(𝑋𝑋𝑖𝑖) = 𝑘𝑘𝑑𝑑𝑥𝑥
𝑌𝑌
�𝐹𝐹𝑌𝑌(𝑌𝑌) − 𝐹𝐹𝑌𝑌|𝑋𝑋𝑖𝑖(𝑌𝑌)�,                                                                                                                                         (A4) 

where 𝐹𝐹𝑌𝑌(𝑌𝑌) is the unconditional CDF and 𝐹𝐹𝑌𝑌|𝑋𝑋𝑖𝑖(𝑌𝑌) is the conditional CDF with the fixed 𝑋𝑋𝑖𝑖. Since the KS statistic may vary 

due to 𝑋𝑋𝑖𝑖  taking different values, the PAWN index 𝑇𝑇𝑖𝑖 , which indicates the sensitivity of 𝑌𝑌  to 𝑋𝑋𝑖𝑖 , is then obtained by 580 

considering a statistic (e.g., maximum or median) over all possible 𝑋𝑋𝑖𝑖: 

𝑇𝑇𝑖𝑖 = 𝑟𝑟𝑡𝑡𝑑𝑑𝑡𝑡
𝑋𝑋𝑖𝑖

[𝐾𝐾𝑆𝑆(𝑋𝑋𝑖𝑖)].                                                                                                                                                                   (A5) 
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Appendix B: Supplementary Figures 

 
Fig. B1. Seasonal mean of sea ice concentration (SIC) budget components for 2008-2017, calculated based on satellite-

derived sea ice velocity (Kimura et al., 2013) and SIC (Meier et al., 2021) observations. The positive value stands for the 585 

SIC increase and the negative value for the decrease. 
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Fig. B2. (a-b) Observed (NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4; 

CDR) and model ensemble mean February SIC climatologies (only SIC > 15% are shown), (c) standard deviation of all 

model runs. (d-f) The same as (a-c) but for September. 590 
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Fig. B3. (a) Ensemble model mean February sea ice thickness climatologies (only SIC > 15% are shown) and (b) the 

standard deviation. (c-d) The same as (a-b) but for September. 
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Fig. B4. Standard deviation of seasonal SIC budget components for the ensemble of 449 model runs. 
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Fig. B5. As Fig. B4, but for sea ice volume (SIV) budget. 

https://doi.org/10.5194/gmd-2022-170
Preprint. Discussion started: 5 July 2022
c© Author(s) 2022. CC BY 4.0 License.



33 
 

 
Fig. B6. Validation results of the best Gaussian process (GP) emulators for each of the four metrics (area integrals of 𝑑𝑑𝑑𝑑𝑎𝑎 

and 𝑟𝑟𝑟𝑟𝑟𝑟 components in SIC and SIV budgets) selected by the 10-fold cross-validation. Each subplot consists of 449 error 

bars and a 1:1 line, and Pearson correlation coefficients are also listed. Each metric has been normalized (scaled to [0, 1] 

using the difference between the maximum and minimum values of the simulation) for better presentation. 
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Fig. B7. As Fig. B6, but for the root-mean-square error between SIC budget components of the simulation and the 

observation (RMSESICB). 
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Fig. B8. Sea ice speed seasonal cycles for the observation (Kimura et al., 2013) and simulations, over 2008-2017. The 

simulated sea ice velocities are first interpolated onto the KIMURA data grid, then the spatial average of the ice speed is 

calculated in the areas where observations are available. 
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