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Résumé – Un flot de liens est un ensemble de triplets (t, u, v) représentant des interactions dans le temps. Leur analyse est essentielle pour
de nombreuses applications. Ils sont généralement étudiés par des approches de traitement du signal et de théorie des graphes, qui permettent
d’inspecter leurs propriétés dynamiques et structurelles. Cependant, les techniques actuelles ne permettent pas de lier de manière satisfaisante les
informations de structure et fréquence qu’ils contiennent. Nous répondons à cette limitation en proposant une nouvelle décomposition fréquence-
structure pour les flots de liens. Notre décomposition analyse la dimension temporelle avec une décomposition classique de traitement du signal,
comme Fourier ou les ondelettes, et la dimension structurelle via une nouvelle décomposition pour les graphes que nous avons conçue pour
analyser des séquences de graphes. Nous montrons que notre décomposition permet de concevoir naturellement des filtres pouvant récupérer des
structures spécifiques avec des fréquences spécifiques.

Abstract – A link stream is a set of triplets (t, u, v) modeling interactions over time and their effective analysis is key for numerous applications.
They are traditionally studied via signal processing and graph theory approaches, which allow to study their dynamical and structural properties.
However, current techniques do not allow to accurately reveal the frequency-structure patterns contained in them. To overcome this limitation,
this work introduces a novel decomposition for link streams. Our decomposition analyses the time dimension via traditional signal dictionaries,
like Fourier or wavelets, and the structural dimension via a new decomposition for graphs that we tailored to analyze sequences of graphs. We
show that our decomposition allows to naturally design filters that can recover specific structures with specific frequencies.

1 Introduction

Phone calls, financial transactions, or network traffic are exam-
ples of data possessing a temporal-relational structure naturally
modeled by a link stream [1]: a set of triplets (t, u, v) indicating
that u interacted with v at time t. Link streams carry a wealth of
information and their proper study is key for numerous appli-
cations. Research in link streams has boosted in recent years,
with many works leveraging them to achieve state-of-the-art re-
sults in various domains [2, 3, 4]. Yet, despite successes, tech-
niques for link stream analysis are not fully satisfactory from
the theoretical perspective. In particular, they do not allow to
accurately reveal the fundamental frequency-structure patterns
contained in them, a situation that we aim to address in this
work.

Traditionally, link streams are studied as collections of time
series or sequences of graphs, allowing to use signal processing
and graph theory to extract frequency and structural patterns
from them. These are then combined to find features that reveal
temporal-relational patterns in the data (often a set of vertices
interacting with some frequency signature). While such feature
engineering approach works well in practice, it is not entirely
satisfactory from the theoretical perspective: rather than listing
all the patterns contained in the data, they amount to heuristi-
cally spot if a given one exists. In analogy to signal processing,
this is similar to measuring the maximum difference between
adjacent samples to spot if a signal contains a high frequency.
It is certainly a meaningful feature, albeit in most cases it is
more useful to extract the entire frequency information with

the Fourier transform. Thus, in this work we aim to find the
analogous of the Fourier transform for link streams: a decom-
position that reveals all their fundamental frequency-structure
patterns.

Existing techniques based on Fourier and spectral decompo-
sitions allow extraction of the frequency and structural infor-
mation from link streams. However they make it hard to relate
which structures are associated to which frequencies, limitation
arising due to the bad adaptation of graph spectral decomposi-
tions for a time-varying context. This work addresses the issue
by introducing a new decomposition for graphs that can be eas-
ily combined with signal decompositions, allowing to soundly
analyze link streams in frequency and structure.

2 Definitions and state-of-the-art

Definitions. Let V denote a set of vertices and E = V × V
the edge space of size M = |E|. We assume E to be indexed
and ek ∈ E its k-th element. Without loss of generality, we
assume |V | to be a power of 2. A discrete time link stream is
defined as L ⊆ {(t, u, v) : t ∈ Z, u ∈ V, v ∈ V }. We denote
ei(t) the time series of ei, where ei(t) = 1 if (t, ei) ∈ L and
0 otherwise. We denote Gt(V,Et) the graph at time t, where
Et = {(u, v) : (t, u, v) ∈ L}.

State-of-the-art. Link streams are objects that can be studied
as signals and graphs. In the signal perspective, the goal is to
employ signal processing on the signals ek(t) to leverage their



frequency signature and extract features for events of interest.
This is commonly done with tools like the Fourier or Wavelet
transforms and with a wide range of filters [2, 5, 6, 7]. In the
graph perspective, the goal is to use graph theory on the graphs
Gt to leverage their structural signature and extract features
for events of interest. This is commonly done by extracting
graph statistics or tracking structures, like cliques or communi-
ties [8, 9, 10, 4].

Towards the goal of decomposing link stream L into its fre-
quencies and structures, the best current solution consists in (i)
extracting all the frequency information of L through a Fre-
quency analysis of the signals ei(t); and (ii) extracting all the
structural information of L through spectral decompositions of
the graphsGt. However, these two approaches are hard to com-
bine in order to assess which structures are associated to which
frequencies. We stress that it is important to address this step as
phenomena of interest in link streams, like network attacks or
financial frauds, are hypothesized as interactions with structure
and frequency signatures [1]. The main difficulty in combining
the two approaches above lies in the poor adaptation of spec-
tral decompositions to a time-varying setting. Spectral decom-
positions consider a matrix S encoding a graph, like the adja-
cency, and through matrix diagonalization techniques express it
as S =

∑
k bkQk, where Qk are rank-1 matrices that capture

the whole structural information of S. Even though spectral
decompositions have been used in link streams with success
[10, 4], they have the theoretical drawback that the matrices
Qk change for different graphs (as well as the bk’s) and are
hard to compare. This makes it very difficult to relate the struc-
tures across snapshots and link them to a frequency. Moreover,
this limitation also makes it difficult to understand the effect of
time-domain operations, like aggregating snapshots or filtering
the signals ek(t), in the structural domain (and vice-versa).

3 Proposed decomposition
We now introduce our decomposition for link streams. We first
amend the limitation of spectral decompositions by develop-
ing a new graph decomposition that has a fixed basis for all the
graphs in the sequence. We then show that this graph decompo-
sition can be easily combined with signal decompositions, al-
lowing us to introduce a decomposition for link streams. Lastly,
we show that filters can be easily studied with our framework.

3.1 A new decomposition for graphs
Our goal is to decompose different graphs under one same dic-
tionary. Contrary to common decompositions that rely on ma-
trix factorizations, we interpret all the possible graphs between
a set of vertices V as functions supported on the edge-space
E = V × V . This way, we can propose a decomposition for
all the functions supported on such edge-space. In more pre-
cise terms, we see an unweighted graph G(V,E) as a function
fG : E → R, where fG(e) = 1 if e ∈ E and 0 otherwise. Then,
our goal is to develop a meaningful decomposition for fG. To

do this, we notice that interesting structures in graphs can be of
different scales. For example, it can be a large group of vertices
forming a community, or a small clique confined to the bound-
aries of the graph. Interestingly, in any of these cases, if such
a group is represented by Vs ⊂ V , then the pattern of interest
reflects as a dense function supported on Vs × Vs. This means
that such function can be very well approximated by a constant
function supported on Vs × Vs. Hence, building from this ob-
servation, we propose to develop a multi-resolution analysis by
piece-wise constant functions of fG as our decomposition.

In signal processing, such analysis corresponds to the Haar
wavelet transform and is performed by dilating and shifting
a scaling function. In our case, there is no natural notion of
shifting or dilation, yet we can still achieve it by recursively
partitioning E . To show this, let us set E(− log2(M))

0 = E and
recursively partition this set according to the following rule:
E(−(j+1))
k = E(−j)2k ∪ E(−j)2k+1, with E(−j)2k ∩ E(−j)2k+1 = ∅ and

|E(−j)2k | = |E(−j)2k+1|, until we obtain singletons E(0)k = ek. Then,
based on this partitioning, we can define a multi-resolution
analysis through the scaling functions defined as:

φ
(−j)
k (e) =

{√
2−j e ∈ E(−j)k

0 otherwise
(1)

And the wavelet functions defined as:

θ
(−j)
k (e) =


√
2−j e ∈ E(−j)2k

−
√
2−j e ∈ E(−j)2k+1

0 otherwise

(2)

Scaling and wavelet functions are pair-wise orthonormal by
construction. They allow to represent fG at different levels of
resolution indicated by the superscript (−j), where the coars-
est one is (− log2(M)) and the finest one is (0). This is done
as follows:

fG(e) =
∑
k

s
(−j)
k φ

(−j)
k (e) +

∑
`≤j

∑
k

w
(−`)
k θ

(−`)
k (e), (3)

where s(−j)k = 〈fG, φ(−j)k 〉 denotes a scaling coefficient and
w

(−j)
k = 〈fG, θ(−j)k 〉 a wavelet coefficient. The first term in the

right hand side represents the approximation of fG by piece-
wise constant functions supported on the sets E(−j)k , for all
k. The second term contains all the details necessary to re-
cover fG from its coarse-grain approximation. In particular,
the wavelet coefficients and functions of level (− `) contain
all the information necessary to recover the approximation of
fG at resolution level (−(` − 1)) from the one at level (−`).
This naturally makes the notion of filtering arise: suppressing
the wavelet coefficients and reconstructing back results in the
coarse-grain approximation fG, which, in the graph domain is
equivalent to replacing fG(e) with the average value of fG in
the set E(−`)k that contains e.

The above derivations show that a multi-resolution analy-
sis of graphs is possible, but the crucial step of how to parti-
tion the edge-space is not covered. To address it, we observe



that the multi-resolution analysis is more meaningful when the
function supported on E(−j)k can be perfectly approximated by
a constant function. So, the analysis works best when E(−j)k

contains mostly active or inactive edges. This idea is similar
to looking for rank-1 motifs in the adjacency matrix, which is
what matrix diagonalization methods do. We therefore develop
a methodology to perform such partitioning by leveraging the
second largest singular vector of the adjacency matrix ofG. We
stress that using a matrix factorization in this situation will not
be a problem for link streams, as it will be performed just once
and before the link stream is analyzed. Our partitioning oper-
ates as follows. We first set α(0)

0 = V . Then, for each set α(j)
k ,

we take the submatrix (of the adjacency matrix) of rows that are
indexed by α(j)

k (we take all columns). We compute the second
largest left singular vector of the submatrix and sort it. The
elements of α(j)

k associated to the top half entries form the set
α
(j+1)
2k and the remainder α(j+1)

2k+1 . We perform this until the sets

α
(jmax)
k are singletons. For space reasons, we omit the entire

derivation of how the sets E(−j)k are constructed. Our important
result is that the above process maps each vertex u ∈ α(jmax)

k

to a new unique index k. Then, based on this relabelling of
vertices, we can define a one-to-one mapping between the par-
titioned edge-space and the integers on the interval [1,M ]. This
allows us to map edge (u, v), relabelled as (x, y), to a position
on the integer line according to the following function:

f(x, y) =


k2 + f(x, y − k) x ≤ k and y > k

2k2 + f(x− k, y) x > k and y ≤ k
3k2 + f(x− k, y − k) x > k and y > k,

(4)
where k is the previous integer to max(x, y) that is a power
of 2. The interesting property of this function is that it maps
φ
(−j)
k (e) to the k-th scaling function at resolution (−j) of a

discrete Haar time series analysis on the interval [1,M ]. The
implication is that we can compute our graph decomposition
using a classical filter-bank for Haar multi-resolution analysis
of time-series, which has complexity O(M).

3.2 Link stream decomposition
We now introduce our decomposition for link streams. We fol-
low the standard methodology of extracting frequency using
the signal perspective and structures from the graph perspec-
tive. The important difference is that we now use our decom-
position for graphs. As a first step, we fix a graph dictionary
that will be used to analyze the entire sequence. In the absence
of extra information, the natural way to do this consists in ag-
gregating the link stream into a single graph. This reveals all
the regions of the edge space where the activity occurs and are
relevant to track. Based on the aggregated link stream, we can
then use our procedure to partition the edge space to fix the
basis. As a second step, we represent the link stream in a suit-
able matrix format where the rows are indexed by time and the
columns by edges. Namely, we represent link streamL through

the matrix L so that Lt,j = 1 if (t, ej) ∈ L and 0 otherwise.
Notice that in this format the j-th column of L corresponds to
ej(t) and the t-th row to fGt

(e).
Based on this rewriting, we can then define the matrix Ψ =

[ψ1, ψ2, . . . ] where the columns are the atoms of a signal dic-
tionary, like Fourier or wavelets. This allows us to represent the
frequency analysis L as the simple matrix product L = ΨA,
where A is a matrix that contains all the frequency information
of L and its entry Ai,j encodes the importance of frequency i
in ej(t). Similarly, we define the matrix

Φ> = [φ
(− log2(M))
0 , θ

(− log2(M))
0 , θ

(− log2(M)+1)
0 , . . . ],

where the columns are the scaling and wavelet functions of our
graph decomposition. This allows us to represent the structural
analysis of L as L = BΦ, where B is a matrix that contains all
the structural information of L and its entry Bi,j encodes the
j-th wavelet coefficient of graph Gi.

Our main result is that if we decompose A into the graph
dictionary (to recover the structural information from it), and
B into the signal dictionary (to recover the frequencies from
it), we obtain in both cases the same matrix of coefficients C
that encode for the frequency-structure information of L. This
is, we can express the link stream as:

L = ΨCΦ. (5)

Notice that C contains all the frequency and structural infor-
mation about L, and its entry Ci,j quantifies the importance of
structure j oscillating at frequency i in the link stream. Eq. (5)
constitutes our proposed decomposition for link streams.

3.3 Filters in link streams
Our decomposition in Eq. (5) allow us to track the combined
importance of frequencies and structures. A natural applica-
tion is to then recover interesting frequencies and structures by
filtering out the rest. We notice that this can be trivially done
by simply suppressing the undesired entries of the matrix C.
However, suppressing entries from the matrix arbitrarily is an
operation that may be hard to model as linear systems process-
ing C, or represented easily in the L domain. We now show
that we can combine frequency and graph filters to target the
recovery of specific frequencies and structures from C, while
keeping the benefits of having linear systems processing the
stream with interpretations in the C and L domains.

Starting with frequency filters, we recall that, in the time do-
main, the filtering operation can be modeled as the product of
a circulant matrix H (whose columns are shifted versions of
the impulse response) with the signal. If such a filter is applied
to the signals ek(t), this operation can be simply expressed as
L̃ = HL. By decomposing L and using the fact that circulant
matrices are diagonalized by the Fourier basis, we can express
the impact of the filter in the C domain as L̃ = ΨΛHCΦ,
where ΛH is a diagonal matrix. Similarly, we can model the
impact of structural filters in the L and C domains. Recall that
a structural filter essentially amounts to replace the graph with



Figure 1: Example of an application of frequency and structural filters to recover information from the link stream. In the example,
filters are designed to recover the backbone activity: coarse-grain structures with low frequencies.

its coarse grain approximation (or details). This process can be
represented in the edge domain by a matrix R that multiplies
the row vector fG(e) from the right. If this filter is applied
to the graph sequence, we can model it in the L domain as
L̃ = LR. Now, by decomposing L and using the fact that,
by construction, R is diagonalized by Φ, we obtain its repre-
sentation in the C domain as L̃ = ΨCΛRΦ, where ΛR is a
diagonal matrix. Thus, the frequency filters suppress the rows
of C while the structural filters suppress its columns. Then, we
can combine both approaches as:

L̃ = ΨΛHCΛRΦ

in order to recover specific ranges of frequencies and structures,
like coarse grain structures slowly oscillating as illustrated in
Figure 1.

4 Conclusion
We introduced a new frequency-structure decomposition for
link streams. Our decomposition allows to reveal all the funda-
mental frequency-structure patterns contained in a link stream.
Moreover, it offers the possibility to design filters to extract
information from it. This offers great potential for better char-
acterizing the signature of real-world events or to design more
powerful techniques for feature extraction. The next step con-
sists in leveraging our theoretical insights to address real-world
applications.
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