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A B S T R A C T   

Developmental EEG research often involves analyzing signals within various frequency bands, based on the 
assumption that these signals represent oscillatory neural activity. However, growing evidence suggests that 
certain frequency bands are dominated by transient burst events in single trials rather than sustained oscillations. 
This is especially true for the beta band, with adult ‘beta burst’ timing a better predictor of motor behavior than 
slow changes in average beta amplitude. No developmental research thus far has looked at beta bursts, with 
techniques used to investigate frequency-specific activity structure rarely even applied to such data. Therefore, 
we aimed to: i) provide a tutorial for developmental EEG researchers on the application of methods for evalu-
ating the rhythmic versus transient nature of frequency-specific activity; and ii) use these techniques to inves-
tigate the existence of sensorimotor beta bursts in infants. We found that beta activity in 12-month-olds did occur 
in bursts, however differences were also revealed in terms of duration, amplitude, and rate during grasping 
compared to adults. Application of the techniques illustrated here will be critical for clarifying the functional 
roles of frequency-specific activity across early development, including the role of beta activity in motor pro-
cessing and its contribution to differing developmental motor trajectories.   

1. Introduction 

Classical analyses of frequency-specific activity in magneto/elec-
troencephalography (M/EEG) data from developmental and adult pop-
ulations start with the assumption that such activity is oscillatory, with 
amplitude time series in various frequency bands then averaged over 
trials. Recently, however, it has become clear that such trial-averaged 
analyses can mask the temporal structure of frequency-specific activity 
in individual trials, and moreover, that activity in certain frequency 
bands may occur as discrete, transient bursts rather than as oscillations 
(Jones, 2016; Lundqvist et al., 2018; Quinn et al., 2019; Seedat et al., 
2020; Sherman et al., 2016; Tal et al., 2020; van Ede et al., 2018). 

Evidence for the occurrence of bursts versus oscillations in the beta 

frequency band in particular is accumulating rapidly (Feingold et al., 
2015; Jones et al., 2009; Little et al., 2019; Murthy and Fetz, 1996, 1992; 
Sherman et al., 2016; Shin et al., 2017; Spitzer and Haegens, 2017). 
When beta amplitude is averaged over trials, systematic changes are 
observed before, during, and after movement, including a slow decrease 
in beta amplitude prior to movement followed by a post-movement 
rebound (Cassim et al., 2000; Cheyne, 2013; Fetz, 2013; Jurkiewicz 
et al., 2006; Müller et al., 2003; Pfurtscheller, 1981,1996; Pfurtscheller 
and Lopes da Silva, 1999). Recent animal and human research, however, 
suggests that these slow, sustained changes in averaged beta activity do 
not accurately reflect trial-wise dynamics that occur in this band (Little 
et al., 2019; Sherman et al., 2016). Instead, these studies indicate that 
cortical beta activity in sensorimotor regions is characterized by tran-
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sient bursts of activity, and that beta activity only appears to be 
temporally sustained if it is averaged over multiple trials (Jones, 2016; 
Little et al., 2019; Sherman et al., 2016). ‘Beta bursts’ have a stereo-
typed, wavelet-like shape in the time domain (Bonaiuto et al., 2021; 
Little et al., 2019; Sherman et al., 2016), occur much more focally in 
space than temporally averaged beta amplitude (Little et al., 2019), and 
interestingly, their timing in adults is a better predictor of motor 
behavior than slow changes in average beta amplitude (Hannah et al., 
2020; Jana et al., 2020; Little et al., 2019; Shin et al., 2017; Sporn et al., 
2020; Wessel, 2020). Such fine-grained temporal and spatial structure is 
obscured by trial- and temporal-averaging, but due to the strong rela-
tionship between burst timing and behavior, this information may be of 
vital importance for understanding the role of beta activity in motor 
processing. 

In this case, looking at beta bursts in younger populations may also 
be critical for clarifying how early changes in this frequency band could 
underlie typical versus atypical motor development. No developmental 
research thus far has analyzed beta activity in terms of bursts, with 
developmental studies focused on the beta band severely lacking in 
general (Cuevas et al., 2014; Perone and Gartstein, 2019). A few EEG 
studies have looked at sensorimotor beta power during action observa-
tion in infants and young children (Meyer et al., 2011; van Elk et al., 
2008), and EEG and MEG research with older children and adults have 
demonstrated that the peak frequency of beta changes over the lifespan 
(Johnson et al., 2019; Rossiter et al., 2014; Trevarrow et al., 2019). 
However, infant studies have typically used the canonical adult beta 
frequency band or one just above infant alpha (e.g. Niemarkt et al., 
2011; Samson-Dollfus et al., 1983), and much remains unknown about 
the development and early function of this band. 

The ability to apply techniques used to investigate the structure of 
frequency-specific activity may be particularly useful for developmental 
EEG studies, both for clarifying the functional role of sensorimotor beta 
activity but also of other frequency bands in which activity may occur in 
bursts (e.g. gamma; Cheyne and Ferrari, 2013; Lundqvist et al., 2018). 
Therefore, the two main objectives of this paper are as follows: 1) to 
provide a tutorial for developmental researchers on how to apply tech-
niques for evaluating the rhythmicity (i.e. periodicity, a primary char-
acteristic of oscillatory activity) of frequency-specific activity and for 
detecting bursts of activity; and 2) to apply these methods to infant and 
adult EEG datasets collected during the same grasping task in order to 
provide evidence for infant sensorimotor beta bursts, and to compare 
burst properties and their modulation in infants and adults. Specifically, 
we illustrate the use of power spectral densities combined with lagged 
coherence to determine frequency band limits and examine the rhyth-
micity of beta band activity, and a variant of the widely-used ‘p-episode 
method’ (Caplan et al., 2001; Hannah et al., 2020; Little et al., 2019; 
Lundqvist et al., 2016; Sherman et al., 2016; Shin et al., 2017; Tal et al., 
2020; Wessel, 2020) for the identification of beta burst timing, duration, 
and amplitude. All source code used for tutorial and subsequent analyses 
have been made publically available. 

2. Tutorial 

In the following section, we demonstrate how to determine fre-
quency band limits, how to evaluate the rhythmicity of activity within a 
frequency band, and how to identify transient burst events occurring in 

that band. These techniques can be used to analyze burst events within 
any frequency range, but here we focus on activity within the beta band, 
measured from electrodes over the sensorimotor cortex, as this signal is 
dominated by transient bursts of activity (Little et al., 2019). In this 
tutorial section, data are analyzed from an example adult participant, 
averaged within an electrode cluster centered on the C3 electrode (E16, 
E20, E21, E22). All source code for these analyses is available at https: 
//github.com/danclab/dev_burst_analysis. These analyses were run 
using EEGLAB v14.1.1 (Delorme and Makeig, 2004) and FieldTrip 
v20190329 (Oostenveld et al., 2011) on MatLab 2015b. 

2.1. Determining beta peak frequency 

Before identifying transient bursts of activity within a frequency 
band, it is first necessary to identify the frequency limits of that band. 
The power spectral density (PSD) of a signal is the measure of signal 
power over different frequency bands. Frequency band limits can be 
identified by looking for prominent peaks in the PSD. There are several 
methods that can be used to compute power spectra, but Welch’s 
method (Welch, 1967) is one of the most commonly used. This method 
computes the PSD by dividing data into temporally overlapping seg-
ments. Each segment is then windowed using a Hamming window in 
order to give emphasis to the data at the center of the segment. The 
discrete Fourier transform is then applied to the windowed segments 
and the magnitude of the result is squared to yield the power in each 
frequency bin within each segment. Finally, the power spectra for all 
segments are averaged. 

The power spectrum includes both periodic and aperiodic activity, 
which can bias estimates of frequency band limits (Donoghue et al., 
2020). The aperiodic activity typically has a 1/f-like distribution. We 
therefore fit a 1/f function to the spectrum and identify frequency bands 
using the residuals of this fit, representing the periodic component of the 
spectrum (see Discussion). Band peak frequencies are identified as local 
maxima, and the full width half maximum (FWHM) is computed for each 
band. 

The code for computing the PSD and identifying frequency bands for 
the C3 electrode cluster in an example adult participant can be found in 
the Github repository in the script tutorial_1.m (Code segment 1). The 
EEGLAB function spectopo is used to compute the PSD. The MatLab 
function fit_lm with ‘RobustOpts’ on is used to fit the 1/f function to the 
spectrum using robust linear regression to reduce the influence of the 
periodic component peaks. The MatLab function findpeaks is used to find 
peaks in the periodic spectrum component. The resulting alpha and beta 
ranges for the C3 cluster in this example participant are 9–12 Hz and 
19.25–22.75 Hz. 

Code segment 1. : Determining beta frequency band limits. 

Lines 31–86 of tutorial_1.m. The sampling rate of the EEG data is used to 
compute the window size and overlap. The EEGLAB function spectopo returns 
the spectra and vector of frequencies for each cluster. The MatLab function 
fitlm returns the fitted model including coefficient estimates and residuals, 
and findpeaks returns the local maxima of the spectrum residuals and the 
indices of the frequencies vector where they occur. 
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2.2. Evaluating rhythmicity 

Having determined that the data contain prominent beta band ac-
tivity, how can we assess whether this activity is periodic and oscillatory 
versus transient and ‘bursty’? To do this, a measure of signal rhythmicity 
is required. Lagged coherence is one such measure (Fransen et al., 2015), 
where rhythmicity is quantified based on the ability to predict the future 
phase of a signal based on the present one; that is, the consistency of the 
phase between different time intervals (‘lags’). If the underlying rhyth-
micity of a signal is high, lagged coherence will be high across a range of 
lags, with phase highly predictable far into the future. If the signal 
consists of transient, arrhythmic bursts, however, lagged coherence will 
be lower, or only high at very short lags, with future phase highly un-
predictable. Lagged coherence involves splitting the data up into seg-
ments, computing the Fourier coefficients within those segments, 
comparing the phase of the signal between segments, and then sum-
marizing the consistency of phase differences across segment pairs 
(Fransen et al., 2015). 

The script tutorial_2.m computes lagged coherence within the C3 

electrode cluster across a range of frequencies and lags for an example 
adult participant (Code segment 2). It uses FieldTrip functions, there-
fore the EEGLAB-formatted data must first be converted to FieldTrip 
format (see the create_ft_data function). For a range of frequencies and 
cycle lags, the script uses the FieldTrip functions ft_freqanalysis to 
compute the complex Fourier spectra, and ft_connectivity_laggedcoherence 
to compute lagged coherence. 

Code segment 2. : Computation of lagged coherence. 

Lines 33–93 of tutorial_2.m. The EEGLab data is converted to FieldTrip 
format. After setting up the configuration structure for the frequency analysis 
and lagged coherence, the function loops through the list of frequencies (foi), 
and for each frequency, loops through the list of lag cycles (lags). For each 
frequency and lag, the time windows for phase comparison are computed, and 
the FieldTrip functions ft_freqanalysis and ft_connectivity_lagged_coherence 
are used to get the phase of the signal within each window, and compare 
phase between windows. 

Fig. 1. Sensorimotor beta activity is dominated by transient bursts. A) The power spectral density (blue) after removing the 1/f aperiodic component and lagged 
coherence averaged over 2 – 2.5 (dark red) and 3 – 3.5 (light red) cycles in the C3 cluster of the adult participants. Dark lines show the mean across participants and 
the shaded areas indicate the standard error. A prominent peak appears in the alpha range in the power spectrum and lagged coherence at 2 – 2.5 and 3 – 3.5 cycles, 
whereas a beta peak is visible in the power spectrum and only in lagged coherence at 2 – 2.5 but not 3 – 3.5 cycles. B) Mean lagged coherence over all adult 
participants in the C3 cluster over a range of lags. There is high lagged coherence in the alpha band over a large range of lags, but beta lagged coherence rapidly 
decreases after 2 cycles. This same pattern of power and lagged coherence in the alpha and beta bands was also apparent in the adult C4 cluster (C and D), as well as 
the 12 m infant C3 (E and F) and C4 (G and H) clusters, but each band was evident at a lower peak frequency in the infant data. (For interpretation of the references to 
colour in this figure, the reader is referred to the web version of this article.) 
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2.3. Identifying beta bursts 

Having confirmed that beta activity appears non-oscillatory and 
‘bursty’, we now demonstrate one technique to detect and extract these 
bursts. Known as the ‘p-episode method’ (Caplan et al., 2001; Hannah 
et al., 2020; Little et al., 2019; Lundqvist et al., 2016; Sherman et al., 
2016; Shin et al., 2017; Tal et al., 2020; Wessel, 2020), this involves first 
computing the amplitude or power of a signal within a frequency range, 
and then detecting when amplitude or power fluctuations exceed a 
threshold. There are several versions of this method that use power 
rather than amplitude and differ in how the threshold is determined 
(Sherman et al., 2016; Shin et al., 2017), but the version we demonstrate 
below uses the amplitude envelope rather than power in order to keep 
the data as raw as possible, and empirically estimates subject-specific 
thresholds. 

There are several methods that can be used for computing the 
amplitude of a signal within a given frequency band. The filter-Hilbert 
method is one such method useful for narrowband data, such as the 
restricted beta band range considered here. The data is first bandpass 
filtered, then the amplitude envelope is extracted after applying the 
Hilbert transform to the filtered data. Different types of filters can be 

used, but it is important to use a two-pass rather than a single-pass 
causal filter to avoid temporally distorting the amplitude. The result of 
the Hilbert transform is a complex-valued signal including the amplitude 
envelope and phase of the signal, from which we extract the amplitude 
envelope. Code for computing signal amplitude using the filter-Hilbert 
method within the alpha and beta ranges derived above can be found 
in the script tutorial_3.m (Code segment 3). In order to avoid filter- 
related edge artifacts, the data are padded using the DC offset before 
applying the filter and Hilbert transform. This padding is then removed 
from the resulting amplitude envelope. The FieldTrip function ft_pre-
proc_bandpass_filter is used to perform bandpass filtering, and the Hilbert 
transform is applied using MatLab function hilbert. 

Code segment 3. The filter-Hilbert method for computing signal 
amplitude. 

Lines 31–80 of tutorial_3.m. The DC component of the data for each trial 
(data) is computed, and then used to pad the data on either side. The 
FieldTrip function ft_preproc_bandpassfilter is used to bandpass filter the data 
within the frequency range, the amplitude is derived from the Hilbert trans-
form, and the padding is removed.  

Fig. 2. Lagged coherence localizes beta activity 
to central electrode clusters. A) Topography of 
power in the alpha band, averaged over adult 
participants. Alpha power is most prominent in 
central electrodes. B) Alpha lagged coherence 
topography averaged between 2 and 2.5 cycles 
(left) and 3 – 3.5 cycles (right), averaged over 
adult participants. Alpha lagged coherence also 
localizes to central electrodes, and remains high 
over several cycles. C) As in (A), for the beta 
band in adult participants. As with alpha, adult 
beta power is highest in central electrodes. D) 
As in (B), for the beta band in adult partici-
pants. Lagged coherence in the beta band lo-
calizes to central electrodes, but lagged 
coherence drops off more rapidly with 
increasing cycles. E) Topographic distribution 
of power in the alpha band, averaged over in-
fant participants. Infant alpha power localizes 
to the central and occipital electrodes. F) 
Topography of alpha lagged coherence aver-
aged between 2 and 2.5 cycles (left) and 3 – 3.5 
cycles (right), averaged over infant partici-
pants. As in adults, lagged coherence in infant 
alpha localizes centrally and does not greatly 
decrease with increasing cycles. G) As in (E), for 
the beta band in infant participants. Unlike 
adults, infant beta power is highest in frontal 
and temporal electrodes. H) As in (F), for beta 
lagged coherence in infant participants. As in 
adults, beta lagged coherence is strongest in 
central electrodes and decreases with 
increasing cycles.   
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Having computed the amplitude envelope of the beta band in each 
trial, we now need some criteria which can be applied to this signal to 
detect transient beta activity. Here, we use an empirically derived 
relative threshold on beta amplitude. This threshold is computed based 
on multiple standard deviations above the median beta amplitude, with 
the median representing a robust measure of centrality for skewed dis-
tributions. This measure is subject-specific, with the absolute threshold 
set per subject based on their amplitude distribution. More specifically, 
for each subject we compute the nonparametric correlation (Spearman’s 
ρ) between the number of bursts per trial (number of threshold cross-
ings) and the mean amplitude per trial. This is done using a range of 
thresholds computed from the median and standard deviation of beta 
amplitude in all time points across all trials for that subject. We then 
determine the standard deviation multiple that maximizes the mean of 
this correlation (Code segment 4). For the C3 cluster in this example 
participant, this results in a threshold of 1.6 SDs above the median. 

Code segment 4. : Determining the optimal threshold for burst 
detection. 

Lines 76–108 of tutorial_4.m. For each relative threshold (SDs above the 
median), the absolute threshold is computed, and the number of bursts per 
trial is computed as the number of times the amplitude crosses the threshold. 
The relative threshold is chosen as that which maximizes the correlation 
between the number of bursts and mean amplitude per trial. 

2.4. Extracting beta bursts for further analysis 

Given the beta amplitude envelopes and threshold, beta bursts can be 
extracted from the data. The script tutorial_5.m (Code segment 5) ex-
tracts the duration, peak amplitude, and peak time of each burst for 
every trial from an example adult participant. First, times at which beta 
amplitude crosses the absolute, subject-specific threshold are identified. 
Second, for each threshold-crossing, the time at which beta amplitude 
returns below the threshold is found. The difference between these two 
times points gives the duration of the burst, and from within these, burst 
onset and offset times, peak amplitude, and the time at which this peak 
is reached can be identified. The timing of the bursts can then be 
compared to changes in beta amplitude and between epochs to deter-
mine if it is modulated by the task. 

Code segment 5. The p-episode method for burst identification. 

Lines 82–131 of tutorial_5.m. The outer loop iterates over each trial. The 
inner loop finds each time where the amplitude within a trial crosses the 
threshold. For each of these times, the next time where the amplitude returns 
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below the threshold is found and used to compute the burst duration, 
amplitude, and peak time. 

3. Investigation of infant beta bursts 

In this section, we use the techniques described in the tutorial to 
provide evidence for infant sensorimotor beta bursts, and to compare the 
properties of these bursts in a sample of 12-month-old infants and a 
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sample of adults. EEG was recorded as both infants and adults performed 
the same grasping task. 

3.1. Material and methods 

3.1.1. Participants 
Forty-six full-term 12-month-old infants (26 females, age range 

11.2–12.93 months) and 23 adults (10 females, age range 18–22 years) 
were recruited for a study about the neural bases of reaching and 
grasping. Sixteen infants were excluded due to unusable EEG data before 
preprocessing (N = 8), being distressed shortly after applying EEG 
electrodes net (N = 7), and recording failure (N = 1). One adult was also 
excluded due to an error in data recording. Therefore, the final sample 
included 30 infants and 22 adults. All infants were typically developing 
with no known or suspected neurodevelopmental or medical diagnoses. 
Prior to an infant’s participation in the study, informed consent was 
obtained from the infant’s parents. All adults had normal or corrected to 
normal vision and did not have any neurological disorder. They pro-
vided informed consent before participating in the study. The experi-
ment was approved by the University of Maryland Institutional Review 
Board. 

3.1.2. Procedure and task 
Infants and adults performed the same task. Infants sat on their 

caregiver’s lap, and adults sat in a chair approximately 40 cm from the 
front of a black puppet stage (99 cm [W] × 61 cm [L] × 84 cm [H]) 
placed on a table. Black panel curtains covered the areas immediately 
surrounding the stage to hide the experimenter and the equipment from 
the participant’s view. A video camera was placed behind the presenter 
focused on the participant and the presenter to capture events of interest 
during testing. Infant caregivers were instructed to remain passive. 

A trial consisted of an observation and an execution condition. A 
curtain was raised and lowered at the start and end of each observation 
and execution portion of the trial. To begin the observation condition, 
the curtain was raised, revealing a female presenter. The presenter made 
eye contact with the participant then shifted their gaze towards a toy 
that was placed at the centre of the stage, but not within the partici-
pant’s grasp. The presenter then reached for the toy with a hand-oper-
ated claw-like tool, picked up the toy, brought the toy to themselves, and 
gave the toy a brief shake. The curtain was lowered to mark the end of 
this event, which lasted approximately 4–s. To begin the execution 
condition, a toy was placed on the table, and the presenter hiding from 
the participant’s view pushed the tabletop towards the participant 
within reaching distance as the curtain was raised. Participants were 
then given around 60 s to reach for the toy. The tabletop was retracted 
and the curtain lowered to mark the end of this event. Baseline events 
were recorded during a short period of rest preceding each observation 
and execution event. Thus, one complete trial consisted of an 

Fig. 3. Beta burst probability tracks changes in beta amplitude. A) Bursts extracted from the C3 cluster of adult subjects during the baseline and grasp execution 
epochs of all trials. A raster plot of bursts in each trial (top panel; dashed red lines denote the trials from each subject) shows that bursts occurred more frequently 
during the baseline epoch. The burst rate (light green) closely tracked changes in beta amplitude (dark green). Solid lines show the mean across participants and 
shaded regions indicate the standard error. B) Beta amplitude and burst rate also decreased in the C4 cluster of adult subjects during grasp execution. Time zero in the 
grasp execution epoch represents the first contact of the hand with the object. Burst rate in the C3 (C) and C4 (D) clusters of infants also closely tracked changes in 
beta amplitude, but neither were modulated by grasp execution. (For interpretation of the references to colour in this figure, the reader is referred to the web version 
of this article.) 
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observation epoch, an execution epoch, and two baseline epochs. The 
order of the observation and execution conditions was pseudo- 
randomized. 

Ten unique toys were used, with each toy used for two observation 
and two execution events. For adults, there were twenty trials in which 
the observation condition was first, and twenty in which the execution 
condition was first (40 trials per adult). For infants, there were ten trials 
in which the observation condition was first and ten trials in which 
execution condition was first (maximum 20 trials per infant). On 
average, infants each completed 12 trials (SD = 5). 

3.1.3. EEG recording and preprocessing 
EEG was recorded using a 65-channel HydroCel Geodesic Sensor Net 

(Electrical Geodesics, Inc., Eugene, OR). The vertex (Cz) electrode was 
used as online reference. EEG data were sampled at 500 Hz using EGI’s 
Net Station (v4.5.4) software. Impedances were kept below 100 kΩ. 
After recording, EEG data were exported to a MatLab compatible format 
using Net Station software for offline processing. Both infant and adult 
datasets were preprocessed using the MADE pipeline (https://github. 
com/ChildDevLab/MADE-EEG-preprocessing-pipeline; Debnath et al., 
2020) and MatLab 2015b. The data were highpass filtered at 0.3 Hz and 
lowpass filtered at 50 Hz using EEGLAB v14.1.1 (Delorme and Makeig, 
2004) FIR filters. Artifact-laden channels were identified and removed 
using the EEGLAB plug-in FASTER (infants: 0–5 channels, M = 1.81, SD 
= 1.33; adults: 0–3 channels, M = 1.77, SD = 0.81; Nolan et al., 2010). 
For preprocessing of the infant data, six channels (23, 55, 61, 62, 63, 64) 
on the boundary of the electrode net were also excluded from analyses 
since they were heavily susceptible to eye, face and head movements. 
Then, independent component analysis (ICA) was performed on an 
identical copy of the dataset. Before ICA, this copied dataset was high-
pass filtered at 1 Hz and segmented into 1 s epochs. In the copied 
dataset, noisy segments were rejected using a combined voltage 

threshold of ± 1000 μV and spectral threshold (range − 30 dB to +100 
dB) within the 24–40 Hz frequency band to remove EMG-like activity. 
After ICA decomposition, independent components (ICs) were trans-
ferred from the ICA copied dataset to the original dataset, which was 
used from then on. Artifactual ICs were removed from the original 
dataset using the EEGLAB ADJUST plugin (infants: 7–31 components, M 
= 15.68, SD = 6.94; adults: 4–21 components, M = 12.91, SD = 4.61; 
Mognon et al., 2011) and via visual inspection of individual ICs. The 
data were then segmented into 3 s (from − 1.5 s to 1.5 s) epochs 
time-locked to four event markers: execution baseline, execution object 
contact, observation baseline, and observation object contact. In both 
execution and observation conditions, time 0 therefore represents the 
time at which the hand first contacted the toy, and the time window 
from 0 to 1.5 s is when the grasp is completed and the toy is brought to 
the body and shook. After segmenting data into 3-second epochs, a 
voltage threshold of + /− 200 µV was used to remove epochs contam-
inated by artifacts (infants: 1–40 epochs, M = 9.42, SD = 7.62; adults: 
0–7 epochs, M = 1.14, SD = 1.91). After artifact rejection, missing 
channels were interpolated. Finally, a current source density (CSD) 
transformation was applied to the epoched data using the CSD toolbox 
(Kayser and Tenke, 2006). 

3.1.4. Burst analyses 
This analysis included all participants with at least 5 trials following 

preprocessing (infants: 30 participants, trials per participant, M = 13.73, 
SD = 6.87; adults: 22 participants, trials per participant, M = 36.59, SD 
= 6.37). 

All source code for these analyses is available at https://github. 
com/danclab/dev_burst_analysis. These analyses were run using 
EEGLAB v14.1.1 (Delorme and Makeig, 2004) and FieldTrip v20190329 
(Oostenveld et al., 2011) on MatLab 2015b, and lme4 v1.1.26 (Bates 
et al., 2015) on R v3.6.1 (R Core Team, 2020). 

Fig. 4. Infant and adult beta bursts 
differ in duration and amplitude. A) 
Infant beta bursts in C3 and C4 have 
longer duration than adult beta bursts. 
Each dot shows the duration of an in-
dividual beta burst, color-coded by 
subject. B) When expressed in terms of 
cycles rather than absolute duration, 
infant beta bursts in C3 and C4 lasted 
fewer cycles than adult bursts. C) Infant 
beta bursts in C3 and C4 tended to have 
a higher amplitude than adult bursts. D) 
Even when using the lower threshold 
identified for burst detection in adults, 
C3 and C4 infant beta bursts had a 
higher amplitude than in adults.   

H. Rayson et al.                                                                                                                                                                                                                                 

https://github.com/ChildDevLab/MADE-EEG-preprocessing-pipeline
https://github.com/ChildDevLab/MADE-EEG-preprocessing-pipeline
https://github.com/danclab/dev_burst_analysis
https://github.com/danclab/dev_burst_analysis


Developmental Cognitive Neuroscience 54 (2022) 101069

12

Power spectral densities (PSDs) were computed from 0.5 to 40 Hz 
using Welch’s method (Welch, 1967) with a window size of 1 s, 50% 
overlap, and zero-padding to 2 s, resulting in a frequency resolution of 
0.5 Hz. For each subject (infant and adult), this was applied to all data (i. 
e. from both the observation and execution conditions). For each 
channel, the periodic component of the spectra was isolated by fitting a 
1/f function to the PSD using robust linear regression, and taking the 
raw residuals of this fit. The periodic components were than averaged 
within the C3 (E16, E20, E21, E22) and C4 (E41, E49, E50, E51) elec-
trode clusters, located centrally in the left and right hemispheres, and 
then across subjects within each age group. For each cluster, spectral 
peaks in the periodic component from 5 to 40 Hz were identified using 
the MatLab function findpeaks, and for each peak, the frequency band 
limits were determined by computing the full width half maximum 
(FWHM) of the peak power. 

Lagged coherence was computed for all data from each subject (e.g. 
from both the observation and execution conditions) from 5 to 40 Hz in 
1 Hz increments and 2–7 cycles in increments of 0.1 cycles (Fransen 
et al., 2015). We used overlapping epochs with lag- and 
frequency-dependent widths. Fourier coefficients were then obtained for 
each epoch using a Hann-windowed Fourier transform. 

Beta amplitude was computed by bandpass filtering the raw data 
(6th order two-pass Butterworth filter, reducing the order when insta-
bility is detected), and taking the amplitude of the Hilbert trans-
formation of the bandpass filtered data. The data were padded with 1 s 
on either side using the DC offset before applying the filter and Hilbert 
transform. The relative threshold for beta burst detection was computed 
separately for C3 and C4 for the infant and adult participants. This was 
defined as a multiple of the standard deviation of beta amplitude above 
the median amplitude. We determined the standard deviation multiple 
that maximized the mean of the nonparametric correlation between the 
number of beta bursts detected in each trial (number of times beta 
amplitude crossed the threshold) and the average beta amplitude, 
averaged across participants. This yielded a relative threshold of 1.1 and 
1.2 standard deviations for C3 (Spearman’s ρ = 0.85) and C4 (ρ = 0.85) 
of the adult participants (Fig. S1A, B), and 1.5 and 1.2 standard de-
viations for C3 (ρ = 0.73) and C4 (ρ = 0.77) of infants (Fig. S1C, D), 
which we then used to extract bursts. 

Bursts were extracted from the baseline and grasp execution epochs 
of the execution task by detecting times at which the beta amplitude 
envelope, averaged within the C3 or C4 cluster electrodes, crossed the 
threshold. The burst ending times were taken as the time when the 
amplitude envelope next fell below the threshold. Burst duration was 
defined as the difference between these time points, amplitude as the 
maximum amplitude within them, and peak time as the time point at 
which the maximum amplitude was reached. Bursts lasting a single time 
point (2 ms) were discarded. 

To compare burst rate to beta amplitude, we baseline-corrected the 
amplitude and a smoothed measure of burst rate. The amplitude was 
baseline corrected by subtracting the mean amplitude over the whole 
baseline epoch. The burst rate was obtained by binning the burst event 
timings using 10 ms bins, smoothing using a two-pass Gaussian convo-
lution with a width of 25 bins, and then baseline correcting by sub-
tracting the mean burst rate over the whole baseline epoch. 

Burst frequency was compared between the baseline and grasp per-
formance epochs in each cluster, for infants and adults. We used a 
generalized linear mixed model with a Poisson distribution and log link 
function. This included epoch as a fixed effect, and subject-specific 
offsets as a random effect. Burst duration and amplitude were 
compared between infants and adults for each cluster using linear mixed 
models with age as a fixed effect and subject-specific random offsets. 

3.2. Results 

To remove the bias of aperiodic activity from the power spectral 
density (PSD) and isolate the periodic activity, we fit a 1/f function to 

the spectra from each electrode cluster and analyzed the residuals of this 
fit (Donoghue et al., 2020; see Discussion). In the C3 and C4 electrode 
clusters, a prominent alpha peak is evident in the adult (11 Hz, FWHM =
3 Hz; Fig. 1A, C; Fig. S2A, B) and the infant (C3: 7.5 Hz, FWHM = 2 Hz; 
C4: 7.5 Hz, FWHM = 3 Hz; Fig. 1E, G; Fig. S2C, D) periodic spectra. Beta 
was identified as the next highest peak frequency, which was lower in 
infants (C3: 15.5 Hz, FWHM = 4 Hz, range = 13.5 – 17.5 Hz; C4: 16 Hz, 
FWHM = 4 Hz; range = 14 – 18 Hz; Fig. 1E, G; Fig. S2C, D) compared to 
adults (C3: 22.5 Hz, FWHM = 6 Hz, range = 19.5 – 25.5 Hz; C4: 21.5 Hz, 
FWHM = 5.5 Hz, range = 18.75 – 24.25 Hz; Fig. 1A, C; Fig. S2A, B). 
These ranges were used in the following analyses of beta activity. 

We then used lagged coherence, a measure of signal rhythmicity 
(Fransen et al., 2015), to determine which frequencies contained 
“bursty” or arrhythmic activity. The alpha and beta peaks found in the 
adult and infant periodic spectra were also present in the lagged 
coherence at 2 – 2.5 cycles, but only the alpha peak (slightly shifted in 
peak frequency) was still present at 3 – 3.5 cycles (Fig. 1A, C, E, G; 
Fig. S3). In both the adults and infants, lagged coherence in the alpha 
frequency range remained relatively high over a range of lags up to 7 
cycles, but rapidly diminished after 2 cycles in the beta range (Fig. 1B, D, 
F, H). Activity in the alpha band, therefore, appears to be rhythmic and 
oscillatory, whereas lagged coherence confirms that in both adults and 
infants, beta activity occurs predominantly as burst events. 

The choice of the C3 and C4 electrode clusters is further justified by 
the topographic distribution of power and lagged coherence in the alpha 
and beta bands. In adults, alpha power is centered over the central 
electrodes (Fig. 2A), and so is beta (Fig. 2C). Lagged coherence in the 
alpha (Fig. 2B) and beta (Fig. 2D) bands also localizes centrally. Infant 
alpha power is also centered over central electrodes (Fig. 2E), but infant 
beta power is strongest in the peripheral electrodes (Fig. 2G). However, 
both infant alpha (Fig. 2F) and beta (Fig. 2H) lagged coherence localizes 
centrally. In both adults and infants, alpha lagged coherence remained 
roughly unchanged as the lag was increased from 2 to 2.5–3–3.5 cycles, 
whereas beta lagged coherence was high in central electrodes at 2–2.5 
cycles but decreased to nearly 0 at 3–3.5 cycles. 

Having demonstrated that sensorimotor beta activity is largely 
arrhythmic, we then identified bursts of beta activity in the C3 and C4 
electrode clusters during the execution condition. In both adults and 
infants, the beta probability time series closely tracked changes in beta 
amplitude (Fig. 3). There was a clear difference in burst rate and beta 
amplitude between the baseline and grasp execution epochs in the adult 
subjects in both clusters (Fig. 3A,B), with a higher number of bursts 
occurring during baseline compared to grasp execution (C3: baseline 
M = 3.36, SD = 2.17, grasp execution M = 1.96, SD = 1.98, Х2(1) =
148.03, p < 0.001; C4: baseline M = 3.17, SD = 1.99, grasp execution M 
= 1.69, SD = 1.66, Х2(1) = 178.93, p < 0.001). No changes in burst rate 
or beta amplitude were evident in the infant data (Fig. 3C,D). While 
fewer bursts occurred during grasp execution than baseline (C3: baseline 
M = 1.45, SD = 1.17, grasp execution M = 1.32, SD = 1.11; C4: baseline 
M = 2.06, SD = 1.49, grasp execution M = 1.89, SD = 1.41), this dif-
ference was not statistically significant (C3: Х2(1) = 1.09, p = 0.297; 
C4: Х2(1) = 1.39, p = 0.238). 

In addition to differential modulation by grasp execution, infants and 
adult bursts differed in terms of duration and amplitude. Infant bursts 
lasted ~20–30 ms longer than adult bursts (C3: infant M = 188.23, 
SD = 122.32 ms, adult M = 153.13, SD = 127.86 ms, Х2(1) = 16.57, 
p < 0.001; C4: infant M = 184.71, SD = 126.92 ms, adult M = 162.48, 
SD = 118.95 ms, Х2(1) = 7.10, p = 0.007; Fig. 4A). In order to ensure 
that this difference was not a simple consequence of infants having a 
lower beta peak frequency, we compared burst duration in terms of the 
number of cycles per bursts, thus correcting for differences in peak 
frequency. In fact, infant bursts were ~0.5 cycles shorter than adult 
bursts (C3: infant M = 2.92, SD = 1.90 cycles, adults M = 3.45, SD =
2.88 cycles, Х2(1) = 9.47, p = 0.002; C4: infant M = 2.96, SD = 2.03 
cycles, adult M = 3.49, SD = 2.56 cycles, Х2(1) = 9.56, p = 0.002; 
Fig. 4B). Infant bursts also tended to have higher amplitudes than adult 
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bursts (C3: infant M = 29.34, SD = 10.01 μV, adult M = 15.04, SD = 8.18 
μV, Х2(1) = 30.39, p < 0.001; C4: infant M = 26.53, SD = 9.41 μV, adult 
M = 14.00, SD = 6.17 μV, Х2(1) = 32.22, p < 0.001; Fig. 4C), and this 
was true even after using the lower adult threshold to detect infant 
bursts (C3: infant M = 26.86, SD = 9.56 μV, Х2(1) = 21.04, p < 0.001; 
C4: infant M = 26.53, SD = 9.31 μV, Х2(1) = 32.22, p < 0.001; Fig. 4D). 

4. Discussion 

Here, we illustrated how recently developed methods to examine the 
structure of frequency-specific activity and identify transient bursts of 
activity can be applied to developmental EEG data, and provided the 
first evidence that infant sensorimotor beta activity is dominated by 
transient bursts, as in adults. We also demonstrated that infant and adult 
beta bursts differ in terms of peak frequency, duration, amplitude, and 
task-modulation. Of note, while our focus was on the beta band, activity 
in other frequency bands can also occur in bursts (Lundqvist et al., 2016; 
Schaworonkow and Voytek, 2021), and the techniques demonstrated 
here can be readily applied to activity in any frequency band via the use 
of lagged coherence and power spectra to define frequency limits, and 
using these boundaries with the filter-Hilbert method to compute signal 
amplitude. Going forward, utilizing such techniques to investigate beta 
band activity specifically will likely be vital for clarifying the develop-
mental trajectory of this particular band and its potential role in motor 
skill development. 

We found that the sensorimotor beta band in 12 month old infants 
had a lower peak frequency compared to adults. Such an increase in 
peak frequency has been widely observed in the alpha band (Henry and 
Greulich, 1944; Lindsley, 1939, 1938; Marshall et al., 2002; Smith, 
1938). While changes in beta peak frequency have also been observed 
from late childhood through adulthood (Johnson et al., 2019; Rossiter 
et al., 2014; Trevarrow et al., 2019), it is unclear whether a clear beta 
peak in the power spectra can even be observed in the first year of life 
(Cuevas et al., 2014; Xie et al., 2018). Our data are cross-sectional, but 
our results do suggest an age-related increase in beta peak frequency 
from 12 months to adulthood. 

One difficulty in examining infant beta activity is that infant jaw and 
arm movements cause an increase in power at approximately 15 Hz over 
peripheral sites (Georgieva et al., 2020), which overlaps our estimate of 
the infant beta range. The spatial distribution of beta power that we 
found in infants is in line with these findings (Fig. 2G), but the spatial 
topography of beta lagged coherence (Fig. 2H) suggests that these 
movement-related artifacts may obscure motor cortical beta activity 
which occurs around the same frequency range. A combination of lagged 
coherence and power spectra could therefore be a powerful way to 
identify and automatically remove artifactual components in ICA-based 
EEG preprocessing. 

Computational modeling suggests that beta burst peak frequency is 
determined by their waveform shape in the temporal domain (Jones, 
2016; Sherman et al., 2016), itself reflecting a combination of synaptic 
inputs to deep and superficial cortical layers (Bonaiuto et al., 2021; 
Sherman et al., 2016). Differences in the peak frequency of infants 
compared to adults could therefore arise from differences in the tem-
poral dynamics, amplitude, or timing of either or both of these inputs, 
which could also account for infant – adult differences in burst duration 
and amplitude. While the absolute duration of infant and adult beta 
bursts in our data matches that previously reported in adults (Bonaiuto 
et al., 2021; Echeverria-Altuna et al., 2021a; Little et al., 2019, 2012; 
Seedat et al., 2020), the fewer number of cycles in infant bursts might 
suggest that they differ in waveform shape. Future studies could use 
techniques such as empirical mode decomposition (Fabus et al., 2021; 

Quinn et al., 2021), in combination with computational modeling 
(Bonaiuto et al., 2021), to characterize and temporally align beta burst 
waveforms and identify the patterns of inputs that account for differ-
ences between infant and adult bursts. 

Interestingly, sensorimotor beta burst rate decreased bilaterally 
during grasp execution in adults, but did not change compared to 
baseline in infants. The burst rate decrease in adults is characteristic of 
the event-related “desynchronization” commonly observed in motor 
regions prior to action performance (Cassim et al., 2000; Doyle et al., 
2005; Heinrichs-Graham and Wilson, 2016; Kaiser et al., 2001; Neuper 
et al., 2006; Pfurtscheller, 1981; Stancák and Pfurtscheller, 1996), now 
understood to reflect the averaging of burst occurrence over trials 
(Brady et al., 2020; Little et al., 2019; Wessel, 2020). Such a 
pre-movement decrease in sensorimotor beta power has not previously, 
to our knowledge, been reported in infants, and we failed to find a 
change in burst rate. This could be for several reasons: 1) sensorimotor 
beta activity is not functionally related to movement performance at 
such a young age, 2) sensorimotor beta bursts are tightly linked to all 
movements and infants make more movements during the baseline 
period than adults, 3) the SNR of the infant data biases burst detection 
toward larger bursts. It has been suggested that beta bursts in motor 
cortex are related to movement planning (Little et al., 2019), and 
therefore they might emerge as functionally relevant motor signals only 
after later developmental motor milestones have been reached. Alter-
natively, infants may have been making many additional, uncaptured 
movements during the baseline period (Georgieva et al., 2020), 
obscuring any potential modulation by grasp performance. Finally, 
lower amplitude beta bursts may be modulated by grasp performance, 
but could be undetectable in the data we analyzed (Bonaiuto et al., 
2021). This would be consistent with the higher threshold we found for 
infants compared to adults. These possibilities point to the need for a 
longitudinal study across infancy and early childhood, utilizing motion 
tracking to capture all infant movements (Karashchuk et al., 2021; 
Mathis et al., 2018; Nakano et al., 2020; Pereira et al., 2018), and EEG 
alternatives such as newly developed, cryogen-free MEG sensors (Boto 
et al., 2018, 2017, 2016; Iivanainen et al., 2019, 2017; Knappe et al., 
2014) which have to potential to allow acquisition of high SNR data 
from developmental populations. 

The specific version of the burst detection method presented here 
(Bonaiuto et al., 2021; Little et al., 2019) uses the filter-Hilbert tech-
nique to compute the amplitude envelope, and therefore one limitation 
is that information about the peak frequency of each burst is lost which 
may potentially be informative (Zich et al., 2020). However, there are 
also a number of other techniques that can be used to identify transient 
bursts of activity. For example, hidden Markov models (HMMs) have 
been used to identify bursts (Quinn et al., 2019; Seedat et al., 2020), 
which have the advantage they can model bursting dynamics over a 
wide frequency range, but require specification of the number of hidden 
states. Another approach involves analyzing the signal cycle-by-cycle in 
the time domain (Cole and Voytek, 2019). This avoids the assumption of 
the Fourier and Hilbert transforms that the signal is sinusoidal, but also 
introduces a new set of hyperparameters, and it is not clear how to set 
these empirically. Finally, empirical mode decomposition has recently 
been used to identify beta bursts, which has greater temporal resolution 
than Fourier-based methods (Echeverria-Altuna et al., 2021b). An 
interesting avenue for future research is to compare these methods for 
extracting beta bursts from developmental datasets. 

We determined the infant beta band at 12 months via examination of 
the PSD and lagged coherence, but the PSD includes both periodic and 
aperiodic activity. The aperiodic component changes with age (Scha-
woronkow and Voytek, 2021), and thus can bias estimates of frequency 
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band peaks in periodic activity (Donoghue et al., 2020). We plotted the 
residuals after fitting the PSD to a 1/f function, but there are more so-
phisticated ways to decompose and model power spectra (Donoghue 
et al., 2020). An important next step for developmental research will be 
to longitudinally investigate and identify changes in peak beta fre-
quency across early development. 

Additionally, to illustrate the techniques presented here, we focused 
on C3/C4 electrodes only as these are located over motor cortex, the 
primary source of prominent modulations of movement-related beta 
activity (Jurkiewicz et al., 2006; Parkes et al., 2006), particularly beta 
bursts (Echeverria-Altuna et al., 2021b; Little et al., 2019). However, 
beta activity is implicated in a variety of functions across a network of 
cortical regions (Brovelli et al., 2004; Chandrasekaran et al., 2019; 
Chung et al., 2017; Fischer et al., 2016; Lundqvist et al., 2016; Micha-
lareas et al., 2016), with beta bursts also found in somatosensory and 
prefrontal cortices (Hannah et al., 2020; Jana et al., 2020; Lundqvist 
et al., 2016; Sherman et al., 2016; Wessel, 2020). In future empirical 
work, activity over other regions will also need to be examined to 
determine the spatial specificity of beta activity at different ages. 

5. Conclusion 

In this paper, we illustrated how to apply techniques for assessing the 
rhythmic versus transient nature of frequency-specific activity, specif-
ically, lagged coherence, as well as methods for identifying and 
extracting bursts of activity within a frequency band. We then used these 
techniques to show that infant sensorimotor beta activity is dominated 
by short bursts, and that these bursts consist of more cycles and have a 
higher amplitude than adult beta bursts. In future developmental 
research, such methods will enable probing of the functional role of 
highly dynamic cortical activity across frequency bands. In terms of the 
beta band, applying the methods described here to developmental 
datasets coupling neural data with behavioral kinematics will be critical 
for determining the role of cortical beta activity in motor development, 
including how aberrant beta activity may relate to atypical motor 
outcomes. 
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