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ON THE SEMI-CLASSICAL ANALYSIS OF SCHRÖDINGER OPERATORS WITH LINEAR
ELECTRIC POTENTIALS ON A BOUNDED DOMAIN

RAYAN FAHS

ABSTRACT. The aim of this paper is to establish the asymptotic expansion of the eigenvalues of the Stark Hamil-
tonian, with strong uniform electric field and Dirichlet boundary conditions on a smooth bounded domain of RN ,

N ≥ 2. This work aims at generalizing the recent results of Cornean, Krejcirik, Pedersen, Raymond and Stockmeyer
in dimension 2. More precisely, in dimension N , in the strong electric field limit, we derive, under certain local con-
vexity conditions, a full asymptotic expansion of the low-lying eigenvalues. To establish our main result, we perform
the construction of quasi-modes. The ”optimality” of our constructions is then established thanks to a reduction to
model operators and localization estimates. In addition, we apply our techniques to find a full asymptotic expansion
of the low-lying eigenvalues of more general operator −h2∆+V (x) where h is a small parameter and V is a smooth
real potential satisfies some additional conditions.

1. INTRODUCTION

1.1. A Stark Hamiltonian. Consider a system of one-particle moving in a uniform electric field F. In a simpli-
fied model one may consider independently electrons or holes.The total energy Stark Hamiltonian (Schrödinger
operator) for such a system takes the following form:

(1.1)
−ℏ2

2m
∆+ qF · x+ Vconf,

where

− ℏ is Plank constant divided by 2π,
− m > 0 is the effective mass of the particle (electron or hole),
− q is the charge of the particle (electron or hole),
− Vconf is some confining potential.

The Hamiltonian in (1.1) describes an important phenomenon in semiconductor physics which is the quantum
confined Stark effect, where has been considered in many remarkable works [5, 4, 21, 23, 19, 13, 22, 16]. The
recent paper [17] provides more details on the physical orientation of this phenomenon.

In this paper, we work in the simplest case where we model the confinement potential as infinite potential
walls, i.e. we consider the first two terms of the Hamiltonian in (1.1) restricted to the confinement domain
with Dirichlet boundary condition. We are interested in the study of the low-lying eigenvalues of the following
N -dimensional Hamiltonian restricted to an open set Ω of RN , N ≥ 2:

(1.2) Lh := −h2∆+ x1 = −h2(∂2x1 + . . .+ ∂2xN ) + x1,

acting on a dense subspace of the square integral functions L2(Ω) with Dirichlet boundary conditions.
This operator appears in the physics semi-conductors where h is given by

h =
ℏ√

2mqF
.

Notice that we have chosen coordinates such that F is parallel to the x1-axis.
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The low-lying eigenvalues of this operator have been studied, partially numerically, for different geometries
in several papers such as in [18, 20] for squares, in [23] for rectangles, in [19, 15, 13] for disks, and in [9] for
annul. Concerning the analysis in the case of imaginary electric fields, the reader might also want to consider
[1, 2, 8].

For now, we will work with domains satisfying the following conditions.
Assumption: Let Ω is an open bounded and connected domain of RN with a smooth boundary. We assume that
there exists a unique point A0 ∈ ∂Ω such that the first component of A0 is given by:

xmin = inf
(x1,x2,...,xN )∈Ω

x1 = min
x∈Ω

x1 .

We also assume that Ω strictly convex domain near A0. We resume this assumption with this figure.

Ω

qF

xmin x1

A0

(x2, . . . , xN )

To be more precise, the operator Lh is defined via the Lax-Milgram theorem, from the closed and semi-
bounded quadratic form

Qh(φ) = h2
∫
Ω
|∇φ(x)|2 dx+

∫
Ω
x1|φ(x)|2 dx, ∀φ ∈ H1

0 (Ω) .

The domain of Lh is contained in H1
0 (Ω) and Lh acts as in (1.2). This is the Dirichlet realization of the Stark

Hamiltonian. If Qh(·, ·) is the bilinear form associated with the quadratic form Qh(·), then

Dom(Lh) = {φ ∈ H1
0 (Ω) : ψ 7−→ Qh(φ,ψ) is continuous for the L2(Ω)− topology} .

Since Ω is bounded and regular, then the embedding of H1
0 (Ω)↪→L2(Ω) is compact, therefore the self-adjoint

operator Lh has compact resolvent. Its spectrum is purely discrete formed by a non-decreasing sequence of
eigenvalues denoted by

(
λn(h)

)
n≥1

, where each eigenvalue is repeated according to its multiplicity. The pur-
pose of this paper is to understand the behavior as h→ 0 (in the limit of strong electric field) of the eigenvalues
λn(h) .

1.2. Main result. In [5], by constructing suitable test functions, and applying the min-max principle, the authors
found a three-term asymptotic expansion of the low-lying eigenvalues. It is proved that, in R2, for every fixed
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n ∈ N∗,

(1.3) λn(h) = xmin + z1h
2
3 + h(2n− 1)

√
κ0
2

+ O(h
4
3 ) as h→ 0 .

where z1 ≈ 2.338 is the absolute value of the smallest zero of the Airy function and κ0 is the positive curvature
at A0 .

The aim of this paper is to improve the asymptotic expansion in (1.3) and to give a asymptotic completeness of
λn(h). More precisely, we establish a full asymptotic expansion of the low-lying eigenvalues, by involving the
eigenvalues of the Weingarten map of ∂Ω at A0 defined by

(1.4) WA0 = dA0ν : TA0∂Ω → TA0∂Ω

where, for all p ∈ ∂Ω, ν(p) is the outward-pointing normal to Tp∂Ω .

Remark 1.1. From Section 7.2, the assumption on Ω induces that the matrix of WA0 is positive definite. Their
positives eigenvalues (κi)i≥1 are related to the curvature of the boundary.

(1) The κi are called principal curvatures of ∂Ω at A0 .
(2) det WA0 is the Gaussian curvature from ∂Ω at A0 .

(3)
Tr WA0

N − 1
is the mean curvature from ∂Ω at A0.

The main result in this paper is:

Theorem 1.1. For any positive n, there exists a real sequence {ζj,n}j≥0 such that, for any positive M ∈ N, we
have

λn(h) =
h→0

xmin + z1h
2
3 + β1,nh+ h4/3

M∑
j=0

hj/6ζj,n + O
(
h

4
3
+M+1

6
)
,

with β1,n is the n-th eigenvalue of the harmonic oscillator in dimension N − 1

N−1∑
i=1

−∂2ui +
κi
2
u2i ,

where κi are the eigenvalues of the Weingarten map of ∂Ω at A0.

This result is essentially a generalization of that stated in (1.3), but the proof presented here, based on the
construction of quasimodes. The ”optimality” of our constructions is then established thanks to decay estimates
and the reduction to model operators involves a 1-dimensional Airy operator in R+ and a harmonic oscillator in
dimension N − 1.

Remark 1.2. β1,n is the n-th element counted with multiplicity of

Σ =

{
N−1∑
i=1

√
κi
2
(2ni − 1) , n ∈ N∗N−1

}
.

Notice that for N = 2 one is reduced to

Σ =

{
N−1∑
i=1

(2n− 1)

√
κ0
2
, n ∈ N∗

}
,

and all the elements are of multiplicity one.

Remark 1.3. It is possible to prove asymptotic expansions of the low-lying eigenvalues of the Hamiltonian Lh,
if we replace the potential x1 by V (x), where V is a smooth real potential satisfies some additional conditions.
One of this conditions is: V has a unique minimum x0 ∈ ∂Ω, and ∇V (x0) ̸= 0 with a condition of the sign.
Firstly, we can show that, the low energy eigenfunctions will localized around x0. We can quantify this thanks
to classical Agmon estimates and reduce the investigation to an effective Hamiltonian on a tiny domain around



4

x0.

Secondly, we can introduce local boundary coordinates in the neighborhood of x0 ∈ ∂Ω in order to straighten
a portion of the boundary. Let ϕ denote the embedding of ∂Ω in RN and G the induced metrics on ∂Ω. If
dist(x, ∂Ω) ≤ δ, for δ sufficiently small, we introduce the diffeomorphism Φ defined by the formula

x = Φ(s, t) = ϕ(s)− tν(ϕ(s)) ,

where ν(x) is the unit outward pointing normal vector at the point x ∈ ∂Ω, t is the distance to the boundary and
s = (s1, . . . , sN−1) is the tangential variable on ∂Ω . We assume that x0 = Φ(0, 0) .

Thanks to the Agmon estimates in coordinates (s, t), the operator Lh is expressed formally in coordinates (s, t)
as:

Lh = V (x0)− h2∂2t −∇V (x0) · ν(x0)t− h2∆G(0) +
1

2

d2

ds2
V (ϕ)|s=0(s)(s) + O(h

7
6 ),

where ∆G(0) is the Laplace-Beltrami operator on ∂Ω in the neighborhood of x0.
To appears the Airy operator and the harmonic oscillator, it will assume its conditions:

(1) ∇V (x0) · ν(x0) < 0.

(2)
d2

ds2
V (ϕ)|s=0 := H is definite positive matrix, this equivalent to x0 is a non degenerate minimum of V .

Under this conditions, we can write:

λn(h) =
h→0

V (x0) + z1(∇V (x0) · ν(x0))
2
3h

2
3 + β1,nh+ O(h

7
6 ) ,

where β1,n is the n-th eigenvalue of the harmonic oscillator in dimension N − 1

N−1∑
i=1

−∂2ui +
Λi
2
u2i ,

where Λi are the eigenvalues of the matrix G(0)−1H . The full asymptotic expansion can be computed, by
constructing a sequence of trial states as Section 4.

1.3. Organization of the paper. This paper is organized as follows: In Section 2.1, we show that low energy
eigenfunctions and their derivatives are exponentially localized around the potential minimum xmin. This will
allow us to work in a thin tubular neighborhood ofA0.As a consequence, we find an approximated operator Lh,δ,
whose low energy eigenvalues are those of Lh up to an exponentially small error, see Section 2.2. In Section
3, we locally straighten the boundary by introducing a system of local coordinates: ” tubular coordinates”. The
operator Lh,δ is expressed in this coordinates and acts on a tiny domain around the origin with Dirichlet boundary
conditions. In Section 4 and 5, we construct quasimodes, thanks to reduction to model operators and localization
estimates, we provide the full asymptotic expansion of the low-lying eigenvalues stated in Theorem 1.1, see
Section 6. Section 7 is dedicated to the analysis of simplified model which shall be used as local approximations
for operator Lh,δ.

2. PRELIMINARIES

2.1. Concentration of bound states near the potential minimum. The following proposition states that the
eigenfunctions associated with the low-lying eigenvalues are localized in x1 near xmin at the scale h2/3. For
more details on the proofs of the proposition and corollary of this section, see [5].

Proposition 2.1. Let M > 0. There exist ε, C, h0 > 0 such that, for all h ∈ (0, h0), for all eigenevalues λ such
that λ ⩽ xmin +Mh

2
3 , and all corresponding eigenfunctions ψ,

(2.1)
∫
Ω
eε|x1−xmin|

3
2 /h

|ψ|2 dx ⩽ C∥ψ∥2 ,

and

(2.2)
∫
Ω
eε|x1−xmin|

3
2 /h

|h∇ψ|2 dx ⩽ Ch2/3∥ψ∥2 .
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Let η > 0, we denote by ∁B (A0, η) the complement of the open ball B (A0, η).

Corollary 2.1. Let M,η > 0. There exist cη, Cη, h0 > 0 such that, if h ∈ (0, h0), then any eigenfunction ψ
corresponding to an eigenvalue λ ⩽ xmin +Mh

2
3 satisfies the estimates∫

Ω∩∁B(A0,η)
|ψ|2 dx ⩽ Cηe

−cη/h∥ψ∥2 ,

and ∫
Ω∩∁B(A0,η))

|∇ψ|2 dx ⩽ Cηe
−cη/h ∥ψ∥2 .

Proof. Since Ω is bounded then the set Ω̄∩ ∁B (A0, η) is compact. The map Ω̄∩ ∁B (A0, η) ∋ (x1, . . . , xN ) 7→
x1 − xmin is continuous and positive. By compactness it has a positive minimum. The conclusion follows from
Proposition 2.1. □

As a consequence, for small h, the ground states of the operator Lh are concentrated around xmin (cf.
Corollary 3.1). We can now reduce our investigation to a neighborhood of A0 .

2.2. Reduction near the boundary. Let δ > 0 small enough, we introduce the δ-neighborhood of the bound-
ary

Ωδ = {x = (x1, . . . , xN ) ∈ Ω : dist(x, A0) < δ } .

Consider the quadratic form, defined on the variational space

Wδ = {u ∈ H1
0 (Ωδ) : u(x) = 0 , ∀x ∈ Ω such that dist(x, A0) = δ} ,

by the formula

(2.3) Dh,δ(φ) = h2
∫
Ωδ

|∇φ(x)|2 dx+

∫
Ωδ

x1|φ(x)|2 dx .

Let the self-adjoint operator associated with the quadratic form Dh,δ be defined on L2(Ωδ) and with the Dirichlet
condition on the boundary of Ωδ

Lh,δ = −h2∆+ x1 ,

Let (λn(h, δ))n∈N∗ be the sequence of min-max values of the operator Lh,δ . It is standard to deduce from the
min-max principle and using the decay estimates of Proposition 2.1 the following proposition (see [10]). It is an
important result which compares the eigenvalues and gives an approximation of λn(h) .

Proposition 2.2. Let n ≥ 1 and δ > 0 small enough. There exist constants Cδ, kδ > 0, h0 ∈ (0, 1) such that,
for all h ∈ (0, h0) and λn(h) ⩽ xmin +Mh

2
3 ,

λn(h, δ) ≤ λn(h) + Cδ exp(−kδ/h ) .

Moreover, we have, for all n ≥ 1 , h > 0

λn(h) ≤ λn(h, δ) .

3. LOCAL BOUNDARY COORDINATES

In this section, we introduce local coordinates in the neighborhood of x0 ∈ ∂Ω, in order to straighten a portion
of the boundary. Throughout this section, we mainly refer to [7, App. F] and [11, 14], although these coordinates
were also used in [3] in a two-dimensional framework.
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3.1. The coordinates and the metric. We fix ϵ > 0 such that the distance function

t(x) = dist(x, ∂Ω)

is smooth on Ωϵ = {x ∈ Ω : dist(x, ∂Ω) < ϵ } .
Let x0 ∈ ∂Ω be fixed and choose a chart ϕ = (ϕ1, . . . , ϕN ) : Vx0 → ϕ(Vx0) such that x0 ∈ ϕ(Vx0) and Vx0 is
an open set of RN−1 . We set

s0 = ϕ−1(x0) .

Then, in these coordinates, the metric on the surface ϕ(Vx0) induced by the euclidian metric g0 of RN writes

G =
∑

1≤i,j≤N−1

Gijdsi ⊗ dsj ,

where

∀i, j = 1, . . . , N − 1, Gij(s1, . . . , sN−1) = ∂siϕ(s1, . . . , sN−1) · ∂sjϕ(s1, . . . , sN−1) .

Now, we define local coordinates in a neighborhood of x0 in Ω. For ϵ > 0 small enough, we consider

(3.1) Vx0×]0, ϵ[∋ (s1, . . . , sN−1, t) = (s, t) 7→ Φ(s, t) = (Φ1(s, t), . . . ,ΦN (s, t)) = x = ϕ (s)− ν (ϕ (s)) t ,

where ν(x) is the unit outward pointing normal vector at the point x ∈ ∂Ω.
This defines a diffeomorphism of Vx0×]0, ϵ [ onto Vx0 in Ωϵ and its inverse gives local coordinates on Vx0 . We
set

U0 = Φ(Vx0×]0, ϵ[) .

Note that t denotes the normal variable in the sense that for a point x ∈ U0 such that

t(x) = dist (x, ϕ (s1, . . . , sN−1)) = dist(x, ∂Ω) .

In particular, t = 0 is the equation of the surface U0 ∩ ∂Ω .
The matrix of the metric g0 in these new coordinates (s, t) is

dΦTdΦ =


(
Gij(s)− 2Kij(s)t+ t2Lij(s)

)
i,j=1,...,N−1

0RN−1

0TRN−1 1

 ,

whereKij = ∂siϕ ·∂sjν(ϕ) and Lij = ∂siν(ϕ) ·∂sjν(ϕ) are the coefficients of the second and third fundamental
form of ∂Ω.
We conclude that

g0 = dt⊗ dt+
∑

1≤i,j≤N−1

[
Gij(s)− 2tKij(s) + t2Lij(s)

]
dsi ⊗ dsj

= dt⊗ dt+G− 2tK + t2L ,

we denote by K and L the second and the third fundamental forms on ∂Ω . In the coordinates s and with respect
to the canonical basis, their matrices are given by

K =
∑

1≤i,j≤N−1

Kijdsi ⊗ dsj and L =
∑

1≤i,j≤N−1

Lijdsi ⊗ dsj .

We denote by g = (gij)i,j the matrix of the metric g0 in the (s, t) coordinates and the determinant of g is denoted
by |g|. We have

|g|1/2 = |dΦTdΦ| =
[
det (G− 2tK + t2L)

]1/2
= |G|1/2

[
det (I − 2tG−1K + t2G−1L)

]1/2
.

By the differential calculus of the determinant and since t is close to zero, we get

(3.2) |g|1/2 =
(
1− t tr (G−1K) + t2p(s, t)

)
|G|1/2 ,

where p is a bounded function in the neighborhood Vx0×]0, ϵ[ .
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3.2. The operator in boundary coordinates. For φ ∈ H1
0 (Φ

−1(Ωδ)), the quadratic form is written in the new
coordinates (s, t) as follows

Q̃h,δ(φ) = h2
∫
VA0

×]0,δ[
|∂tφ̃|2|g|1/2 dsdt+ h2

∑
1≤i,j≤N−1

∫
VA0

×]0,δ[
gij∂siφ̃ ∂sj φ̃ |g|1/2 dsdt

+

∫
VA0

×]0,δ[
Φ1(s, t)|φ̃|2|g|1/2 dsdt ,

where (gij) are the coefficients of the inverse matrix of (gij) and φ̃ = φ ◦ Φ .
The associated operator is L̃h,δ

L̃h,δ = −h2|g|−1/2∂t(|g|1/2∂t)− h2
∑

1≤i,j≤N−1

|g|−1/2∂si(g
ij |g|1/2∂sj ) + Φ1(s, t) ,

acting on L2(VA0×]0, δ[; |g|1/2 dsdt) .
The operator Lh,δ is unitary equivalent to the Dirichlet realization of L̃h,δ . From Proposition 2.2, we can focus
on the spectral analysis of L̃h,δ .

After a dilation and a translation of the s coordinates of the section 3.1, we may assume that A0 = ϕ(0) and
ν(A0) = (−1, 0, . . . , 0) . By Taylor expansion near (0, 0), for (s, t) ∈ VA0×]0, δ[ , we have

(3.3) Φ1(s, t) = xmin +
1

2
Hess(0)ϕ1(s)(s) + t+ O(|s|3 + t|s|2).

3.3. Agmon Estimates in tubular variables. The following proposition is a slight adaptation in coordinates
(s, t) of Proposition 2.1. They states that the eigenfunctions associated with the low-lying eigenvalues are
localized near A0 at a scale h1/2 in the si direction for i ∈ {1, . . . , N − 1} , and at a scale h2/3 in the t direction.

Proposition 3.1. Let M > 0 . There exist ϵ, C, h0 > 0 such that, for all h ∈ (0, h0) , and for all eigenfunctions
ψ of L̃h,δ corresponding to eigenvalues λ with λ ≤ xmin +Mh2/3 , we have:∫

VA0
×]0,δ[

eϵt
3
2 /h|ψ|2|g|1/2 dsdt ≤ C∥ψ∥2 ,

∫
VA0

×]0,δ[
eϵt

3
2 /h|h∇s,tψ|2|g|1/2 dsdt ≤ Ch2/3∥ψ∥2 .

where ∇s,t is the differential in the tubular coordinates (s, t) .

Therefore, the operator L̃h,δ can be replaced by

L̂h,δ = −h2|g|−1/2∂t(|g|1/2∂t)− h2
∑

1≤i,j≤N−1

|g|−1/2∂si(g
ij |g|1/2∂sj ) + Φ1(s, t) ,

with Dirichlet boundary conditions, acting on L2(VA0×]0, h
2
3
−η[; |g|1/2 dsdt) , for some η ∈ (0, 1/3) .

Let µn(h) be the associated (ordered) eigenvalues of L̂h,δ. The decay estimates of Proposition 3.1 are still
satisfied by the eigenfunctions of L̂h,δ with eigenvalues λ ≤ xmin +Mh

2
3 . By using this exponential decay,

there exist C, h0 > 0 such that, for all h ∈ (0, h0) .

(3.4) µn(h)−
1

C
e−Ch

−3η/2
⩽ λn(h, δ) ⩽ µn(h) .

Thus, modulo an exponentially small error, the asymptotic analysis of λn(h) is reduced to that of µn(h).
By shrinking the spectral window, we can even get a localization with respect to the s variable, as stated in

the next proposition.
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Proposition 3.2. Let M > 0 and η ∈ (0, 1/3). There exist ε, C, h0 > 0 such that, for all h ∈ (0, h0), and for
all eigenfunctions ψ of L̂h,δ corresponding to eigenvalues λ with λ ≤ xmin + h2/3z1 +Mh , we have:∫

VA0
×]0,h

2
3−η [

eε|s|
2/h |ψ|2|G|1/2 dsdt ≤ C∥ψ∥2 ,

and ∫
VA0

×]0,h
2
3−η [

eε|s|
2/h|h∇sψ|2 |G|1/2 ds dt ≤ Ch∥ψ∥2 .

Proof. We let φ(s) = ε|s|2/2 and write the Agmon formula:

(3.5)
〈
L̂h,δψ, e

2φ/hψ
〉
=

〈
L̂h,δe

φ/hψ, eφ/hψ
〉
− ∥eφ/h∇s,tφψ∥2 .

Since ψ is the eigenfunction of L̂h,δ corresponding to an eigenvalue λ, we get∫
VA0

×]0,h
2
3−η [

[
|h∇s,te

φ/hψ|2 +Φ1(s, t)|eφ/hψ|2 − (λ+ |∇s,tφ|2)|eφ/hψ|2
]
|g|1/2 dsdt = 0 ,

with ∇g is the differential in the tubular coordinates (s, t).
First, we drop the tangential derivative:∫

VA0
×]0,h

2
3−η [

[
|h∂teφ/hψ|2 +Φ1(s, t)|eφ/hψ|2 − (λ+ |∇s,tφ|2)|eφ/hψ|2

]
|g|1/2 dsdt ≤ 0 .

We observe from (3.3), as s = 0 is a non degenerate minimum, then Hess(0)ϕ1 is a positive definite matrix, then
there exist C∗ > 0, such that

Hess(0)ϕ1 (s) (s) ≥ C∗|s|2,
from (3.3), we obtain

Φ1(s, t) ≥ xmin + t+ C∗|s|2 .
Introducing the last inequality in the above integral, we get:∫

VA0
×]0,h

2
3−η [

[
|h∂teφ/hψ|2 + t|eφ/hψ|2

]
|g|1/2 dsdt

+

∫
VA0

×]0,h
2
3−η [

[
(−λ+ xmin + C∗|s|2 − |∇s,tφ|2)|eφ/hψ|2

]
|g|1/2 dsdt ≤ 0 .

From (3.2), on VA0×]0, h
2
3
−η[ , for sufficiently small h, there exists C > 0 such that

|g|1/2 ≥ (1− Ch
2
3
−η) |G|1/2 .

By using this in the above integrals, we have that

(1− Ch
2
3
−η)

∫
VA0

×]0,h
2
3−η [

[
|h∂teφ/hψ|2 + t|eφ/hψ|2 − h

2
3 z1|eφ/hψ|2

]
|G|1/2 dsdt

+

∫
VA0

×]0,h
2
3−η [

(−λ+ xmin + C∗|s|2 + h
2
3 z1 − |∇s,tφ|2 − Ch

4
3
−η)|eφ/hψ|2|g|1/2 dsdt ≤ 0 .

By using the min-max principle, we notice that∫
VA0

×]0,h
2
3−η [

[
|h∂teφ/hψ|2 + t|eφ/hψ|2

]
|G|1/2 dsdt ≥ h

2
3 z1

∫
VA0

×]0,h
2
3−η [

|eφ/hψ|2|G|1/2 dsdt .

Therefore,∫
VA0

×]0,h
2
3−η [

(−λ+ xmin + C∗|s|2 + h
2
3 z1 − |∇s,tφ|2 − Ch

4
3
−η)|eφ/hψ|2|g|1/2 dsdt ≤ 0 .
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So that, using the assumption of the location of λ and for h small enough, then:∫
VA0

×]0,h
2
3−η [

(−2Mh+ C∗|s|2 − |∇s,tφ|2)|eφ/hψ|2|G|1/2 dsdt ≤ 0 .

We have
|∇s,tφ|2 = |∂tφ|2 +

∑
1≤i,j≤N−1

gij∂siφ∂sjφ = ε2
∑

1≤i,j≤N−1

gijsisj ,

where (gij) is the inverse matrix of (gij). We can choose ε > 0 such that

ε2
∑

1≤i,j≤N−1

gijsisj ≤ ε2|s|2 .

It follows: ∫
VA0

×]0,h
2
3−η [

(
− 2Mh+ (C∗ − ε2)|s|2

)
|eφ/hψ|2|G|1/2 dsdt ≤ 0 .

For ε small enough, the conclusion follows as in the proof of Proposition 2.1 in [5]. □

4. CONSTRUCTION OF QUASIMODES

This section aims to explain how the following proposition follows. For the proof, we will follow the same
strategy as in [12].

Proposition 4.1. For any positive n, there exists a sequence {ζj,n}j≥0 such that, for any positive M ∈ N, as
h→ 0, we have

∥L̂h,δΦn,M − h2/3λn,MΦn,M∥ ≤ Ch
4
3
+M+1

6 ∥Φn,M∥ ,

where

h2/3λn,M = xmin + h2/3z1 + hβ1,n + h4/3
M∑
j=0

hj/6ζj,n ,

with z1, β1,n are defined in Theorem 1.1 and Φn,M a family of quasimodes introduced in (4.23).

4.1. Rescaled operator. We recall that

L̂h,δ = −h2|g|−1/2∂t(|g|1/2∂t)− h2
∑

1≤i,j≤N−1

|g|−1/2∂si(g
ij |g|1/2∂sj ) + Φ1(s, t) ,

with Dirichlet boundary conditions, acting on L2(VA0×]0, h
2
3
−η[; |g|1/2 dsdt) , also we recall that

Φ1(s, t) = xmin +
1

2
Hess(0)ϕ1 (s) (s) + t+ O(|s|3 + t|s|2) .

We know that, the eigenfunctions are localized near the boundary at the scale h
1
2 in the si direction and h2/3 in

the t direction (cf. Proposition 3.1 and 3.2 ). This suggests to use the rescaling:

(s, t) = (h
1
2σ, h

2
3 τ) .

Then, we have

Φ1(h
1
2σ, h

2
3 τ) = xmin +

h

2
Hess(0)ϕ1 (σ) (σ) + h2/3τ + O(h3/2|σ|3 + h5/3τ |σ|2) .

This change of variables transforms the above expression of L̂h,δ into

Ĥh,δ = −h2/3
[
|g|−1/2∂τ (|g|1/2∂τ )− τ

]
+ h

[
−

∑
1≤i,j≤N−1

|g|−1/2∂σi(g
ij |g|1/2∂σj ) +

1

2
Hess(0)ϕ1 (σ) (σ)

]
+ xmin + h4/3h1/6q1,h(σ, τ) ,
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where the function q1,h satisfies
|q1,h(σ, τ)| ≤ C(|σ|3 + h1/6τ |σ|2) .

4.2. Formal expansion. We have the formal expansion of the operator Ĥh,δ (for the details see Lemma 4.1)

(4.1) h−2/3Ĥh,δ = xminh
−2/3 + L0 + h1/3L1 + h2/3Qh .

where

(4.2)

L0 = −∂2τ + τ,

L1 = −∆G0 +
1

2
Hess(0)ϕ1 (σ) (σ) , G0 = G(0),

Qh = h1/6q1,h(σ, τ) + q2,h(σ, τ)∂τ + h1/6
∑

1≤j≤N−1

q3,h(σ, τ)∂σj ,

where the Laplace-Beltrami operator on ∂Ω in the neighborhood of A0 is

(4.3) ∆G0 =
∑

1≤i,j≤N−1

|G0|−1/2∂σi(G
ij
0 |G0|1/2∂σj ) .

where the functions qj,h, for j ∈ {2, 3} satisfy

|q2,h(σ, τ)| ≤ C(τ + |σ|) and |q3,h(σ, τ)| ≤ Ch1/6τ .

Lemma 4.1. For 0 < h < 1
2 , 0 ≤ τ ≤ h−η and σi = O

(
h−1/2

)
, we have the following identities:

(4.4) |g|−1/2∂τ (|g|1/2∂τ ) = ∂2τ + (∂τ |g|1/2)|g|−1/2∂τ = ∂2τ + h2/3q2,h(σ, τ)∂τ ,

and

(4.5) |g|−1/2∂σi(g
ij |g|1/2∂σj ) = |G0|−1/2∂σi(G

ij
0 |G0|1/2∂σj ) + h1/2q3,h(σ, τ)∂σj ,

where the functions qj,h, for j ∈ {2, 3} satisfy

|q2,h(σ, τ)| ≤ C(τ + |σ|) and |q3,h(σ, τ)| ≤ Ch1/6τ .

Proof. We have the following asymptotic expansions:

M(σ, τ) := |g|1/2(σ, τ)

=

(
1− h

2
3 τ tr(G−1K)(h

1
2σ) + h

4
3 τ2p(h

1
2σ, h

2
3 τ)

)
|G|1/2(h

1
2σ)

=M(0, 0) + τ
∂M

∂τ
(0, 0) +

N−1∑
i=1

σi
∂M

∂σi
(0, 0) + hF1(σ, τ) ,

where

• M(0, 0) = |G|1/2(0),

• ∂M

∂τ
(0, 0) = −h2/3tr(G−1K)(0)|G|1/2(0),

• ∂M

∂σi
(0, 0) = h1/2

∂|G|1/2

∂σi
(0).

Then, we have

|g|1/2(σ, τ) = |G|1/2(0)− h2/3τ tr(G−1K)(0)|G|1/2(0) + h1/2
∑

1≤i≤N−1

σi
∂|G|1/2

∂σi
(0) + hF1(σ, τ) .

From the previous inequality, we have

(4.6) |g|−1/2(σ, τ) = |G|−1/2(0) + h1/2F2(σ, τ) .
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This gives us the following identities:

(4.7) (∂τ |g|1/2)|g|−1/2(σ, τ) = −h2/3F3(σ, τ) .

From Section 3, we have

(4.8) gij(σ, τ) = Gij(h
1
2σ)− 2h2/3τKij(h

1
2σ) + h4/3τ2Lij(h

1
2σ) = Gij(0) + h1/2F4(σ, τ) ,

and thus,

(4.9) gij(σ, τ) = Gij(0) + h1/2F5(σ, τ) ,

where, for 0 < h < 1
2 , 0 ≤ τ ≤ h−η and σi = O

(
h−1/2

)
, the functions Fj , j = 1, · · · , 5, satisfy

F1(σ, τ) ≤ C(h1/3τ2 + |σ|2) , F3(σ, τ) ≤ C(τ + |σ|) and

Fj(σ, τ) ≤ C(h1/6τ + |σ|), ∀j = 2, 4, 5 .

This gives us the following identities:

(4.10) |g|−1/2∂τ (|g|1/2∂τ ) = ∂2τ + (∂τ |g|1/2)|g|−1/2∂τ = ∂2τ + h2/3q2,h(σ, τ)∂τ .

and

(4.11) |g|−1/2∂σi(g
ij |g|1/2∂σj ) = |G|−1/2(0)∂σi(G

ij(0)|G|1/2(0)∂σj ) + h1/2∂σiq3,h(σ, τ)∂σj .

where the functions qi,h, for i ∈ {2, 3} satisfy for 0 < h < 1
2 , 0 ≤ τ ≤ h−η and |σ| = O

(
h−1/2

)
|q2,h(σ, τ)| ≤ C(τ + |σ|) and |q3,h(σ, τ)| ≤ Ch1/6τ .

□

4.3. Construction of trial states. In this section, we construct trial states that will give with the lower bounds,
an accurate expansion of the eigenvalues of the operator L̂h,δ valid to any order. The key to the construction is
to expand the operator Qh in powers of h1/6.

The functions q1,h, q2,h and q3,h in (4.2) admit Taylor expansions that can be rearranged in the form:

(4.12)

h1/6q1,h(σ, τ) =
∞∑
k=0

q1,k(σ, τ)h
k/6 ,

q2,h(σ, τ) =
∞∑
k=0

q2,k(σ, τ)h
k/6 ,

h1/6q3,h(σ, τ) =
∞∑
k=0

q3,k(σ, τ)h
k/6 ,

with the functions q1,k(σ, τ) , q2,k(σ, τ) and q3,k(σ, τ) being polynomial functions of (σ, τ) . The operator Qh in
(4.2) admits the formal expansion

(4.13) Qh =

∞∑
k=0

Qkh
k/6 ,

where

(4.14) Qk = q1,k(σ, τ) + q2,k(σ, τ)∂τ +
∑

1≤j≤N−1

q3,k(σ, τ)∂σj .

Furthermore, for every k ≥ 0 and f ∈ S
(
RN−1 × R+

)
, Qkf ∈ S

(
RN−1 × R+

)
.

For all M ≥ 0, we introduce two operators

(4.15) Ĥh,M = xminh
−2/3 + L0 + h1/3L1 + h2/3FM and FM =

M∑
k=0

Qkh
k/6 .
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Thanks to (4.1) and (4.2), for every f ∈ S(RN−1 × R+), there exists a constant C > 0 such that, for all
h ∈ (0, 1) ,

(4.16) ∥h−2/3Ĥh,δf − Ĥh,Mf∥L2(RN−1×R+) ≤ Ch
2
3
+M+1

6 .

Let n ∈ N . We will construct a sequence of real numbers (ζn,j)
∞
j=0 and two sequences of real-valued Schwartz

functions (vn,j)
∞
j=1 ⊂ S(RN−1), (gn,j)

∞
j=0 ⊂ S

(
RN−1 × R+

)
such that

∀j, gn,j |τ=0 = 0 ,

and for all M ∈ N , the function

Ψn,M (σ, τ) = u0(τ)fn(σ) +
M+1∑
j=1

h
j+1
6 u0(τ)vn,j(σ) + h2/3

M∑
j=0

hj/6gn,j(σ, τ) ,

in the Schwartz space S
(
RN−1 × R+

)
and satisfies (for all h ∈ (0, hn,M ))

(4.17) ∥Ĥh,MΨn,M − λn,MΨn,M∥L2(RN−1×R+) ≤ Cn,Mh
2
3
+M+1

6 ,

where

(4.18) λn,M = xminh
−2/3 + β0,n + h1/3β1,n + h2/3

M∑
j=0

hj/6ζj,n ,

Cn,M > 0 and hn,M are two constants determined by the values of n and M solely, and β0,n, β1,n, u0 and fn to
be determined.
For M = 0: We want to find a real numbers ζ0,n, β0,n, β1,n and two functions vn,1(σ), gn,0(σ, τ), u0(τ), fn(σ)
such that

Ψn,0(σ, τ) = u0(τ)fn(σ) + h1/3u0(τ)vn,1(σ) + h2/3gn,0(σ, τ)

and
λn,0 = xminh

−2/3 + β0,n + h1/3β1,n + h2/3ζ0,n .

In order that (4.17) is satisfied for M = 0, it is sufficient to select ζ0,n, gn,0(σ, τ), u0(τ), fn(σ) and vn,1(σ) as
follows: 

(L0 − β0,n)u0(τ)fn(σ) = 0 ,

(L0 − β0,n)u0(τ)vn,1(σ) + (L1 − β1,n)u0(τ)fn(σ) = 0 ,

(L0 − β0,n)gn,0(σ, τ) + (L1 − β1,n)u0(τ)vn,1(σ) + (F0 − ζ0,n)u0(τ)fn(σ) = 0 .

• For the first equation, the natural choice is then to choose u0 the eigenfunction of L0, with β0,n is the corre-
sponding eigenvalue, therefore

(4.19) u0(τ) = Ai(τ − z1) and β0,n = z1 ,

where Ai is the L2(R+)-normalized Airy function and −z1 is its first negative zero.
• The second equation is equivalent to

(L1 − β1,n)u0(τ)fn(σ) = 0 ,

then, we choose β1,n is the n-th eigenvalue onL2(RN−1, |G0|1/2dσ) of L1 determined in Section 7.1 associated
with eigenfunction fn, .
• For the third equation, we can select ζ0,n such that

(F0 − ζ0,n)u0(τ)fn(σ) ⊥ u0(τ)fn(σ) in L2
(
RN−1 × R+

)
This is given by the formula

(4.20) ζ0,n = ⟨F0 (u0 ⊗ fn) , u0 ⊗ fn⟩L2(RN−1×R+) .
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Consequently,

h1(σ) := −
∫ ∞

0
u0(τ) (F0 − ζ0,n)u0(τ)fn(σ)dτ ⊥ fn(σ) in L2(RN−1) .

Since L1 − β1,n can be inverted on the orthogonal complement of the n-th eigenfunction fn(σ), we may select
vn,1(σ) to be

vn,1(σ) = (L1 − β1,n)
−1 h1(σ) .

As a consequence of the choice of ζ0,n and vn,1(σ), we get that, for all σ,

w1(σ, ·) := −u0(·) (L1 − β1,n) vn,1(σ)− (F0 − ζ0,n)u0(·)fn(σ)

= −u0(·)h1(σ)− (F0 − ζ0,n)u0(·)fn(σ) ⊥ u0(.) in L2 (R+) .

The operator L0−β0,n can be inverted on the orthogonal complement of {u0(τ)}, and the inverse is an operator
in L2 (R+) which sends S

(
R+

)
into itself. The proof of this is standard and follows the same argument as in

[6, Lemma A.5]. In that way, we may select g0,n(σ, τ) to be

gn,0 (σ, ·) = (L0 − β0,n)
−1 (w1(σ, ·)) .

The iteration process. Here we suppose that we have selected (ζ0,n, . . . , ζM,n; Ψn,0, . . . ,Ψn,M ) such that the
following induction hypothesis is satisfied

(4.21)
(
Ĥh,M − λn,M

)
Ψn,M = h

2
3
+M+1

6

NM∑
j=0

hj/6rM,j(σ, τ) ,

where rM,j are Schwartz functions. We have to selected ζM+1,n and two functions vn,M+1(σ), gn,M+1(σ, τ)

such that
Ψn,M+1 = Ψn,M + h

M+3
6 u0(τ)vn,M+2(σ) + h

2
3
+M+1

6 gn,M+1(σ, τ) and

λn,M+1 = λn,M + h
2
3
+M+1

6 ζM+1,n

satisfy (4.17) and (4.21) for M replaced by M + 1 (and some collection of Schwartz functions rM+1,j(σ,τ)) .

Notice that we have
Ĥh,M+1 = Ĥh,M + h

2
3
+M+1

6 QM+1

and
(4.22)(

Ĥh,M+1 − λn,M+1

)
Ψn,M+1

=
(
Ĥh,M − λn,M

)
Ψn,M

+h
2
3
+M+1

6

[
(L0 − β0,n)gn,M+1(σ, τ) + (L1 − β1,n)u0(τ)vn,M+2(σ) + (QM+1 − ζM+1,n)u0(τ)fn(σ)

]
+h

2
3
+M+1

6

[
(QM+1 − ζM+1,n)

(
Ψn,M − u0(τ)fn(σ)

)]
+h

2
3
+M+1

6

[(
h1/3L1 + h2/3FM+1 − (λn,M − β0,n)

)
gn,M+1

]
+h

2
3
+M+1

6

[
h1/3FM+1 − (λn,M+1 − β0,n − β1,nh

1/3)u0(τ)vn,M+2(σ)
]
.

It is sufficient to select (ζM+1,n, vn,M+2, gn,M+1) such that

(L0 − β0,n)gn,M+1(σ, τ) + (L1 − β1,n)u0(τ)vn,M+2(σ)

+ (QM+1 − ζM+1,n)u0(τ)fn(σ) + rM,0(σ, τ) = 0 .

We select ζM+1,n such that

(QM+1 − ζM+1,n)u0(τ)fn(σ) + rM,0(σ, τ) ⊥ u0(τ)fn(σ) in L2
(
RN−1 × R+

)
,

i.e.
ζM+1,n = ⟨QM+1(u0 ⊗ fn), u0 ⊗ fn⟩L2(RN−1×R+) + ⟨rM,0, u0 ⊗ fn⟩L2(RN−1×R+) .
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Consequently,

hM+2(σ) := −
∫ ∞

0
u0(τ)

(
(QM+1 − ζM+1,n)u0(τ)fn(σ) + rM,0(σ, τ)

)
dτ ⊥ fn(σ)

in L2(RN−1) . We can select vn,M+2 as follows:

vn,M+2(σ) = (L1 − β1,n)
−1 hM+2(σ) .

As a consequence of the choice of ζM+1,n and vn,M+2(σ), we get that, for all σ,

wM+2(σ, ·) :=− u0(·) (L1 − β1,n) vn,M+2(σ)

− (QM+1 − ζM+1,n)u0(τ)fn(σ)− rM,0(σ, τ) ⊥ u0(·) in L2 (R+) .

Finally, we may select gn,M+1(σ, τ) as follows:

gn,M+1 (σ, ·) = (L0 − β0,n)
−1 (wM+2(σ, ·)) .

4.4. End of the proof. Consider a smooth function χh with compact support equal to 1 near (s, t) = (0, 0) on
a scale of order h1/2−θ in the s direction, and on a scale of order h2/3−θ in the t direction, for some θ ∈ (0, η) .

Let us introduce the following family of test functions

(4.23) Φn,M (s, t) = h
−1
3

−(N−1)
4 χ

(
t

h2/3−θ

)
χ

(
s

h1/2−θ

)
︸ ︷︷ ︸

χh(s,t)

Ψn,M (h−1/2s, h−2/3t) ,

We notice that the support of χ − 1 and the supports of the derivative of χ are located in a region where
h−1/2|s| ≥ Ch−θ and h−2/3t ≥ Ch−θ , thus all integrals with contain such derivatives will be of order h∞ due
to the exponential localization of Ψn,M .

Thanks to (4.16) and (4.17), we may write

∥L̂h,δΦn,M − h2/3λn,MΦn,M∥ ≤ Ch
4
3
+M+1

6 ∥Φn,M∥ .

5. LOWER BOUND

The following proposition provides a lower bound of the eigenvalue µn(h), as h→ 0.

Proposition 5.1. For any positive n, the eigenvalue µn(h) has, as h→ 0, the lower bound

µn(h) ≥ xmin + z1h
2/3 + β1,n h+ O(h4/3)

where the β1,n is defined in Theorem 1.1.

Let k ≥ 1 , and consider a family of eigenfunctions (ψn,h)n=1,...,k of L̂h,δ associated with the eigenvalues
(µn(h))n=1,...,k. Let Ek(h) the vector subspace of Dom(L̂h,δ) spanned by the family (ψn,h)n=1,...,k . For all
ψ ∈ Ek(h) , ψ satisfies the same decay estimates as in Propositions 3.1 and 3.2 .
Let ψ ∈ Ek(h) , since |g|1/2 ≤ (1 + C∗t)|G|1/2, using the decay estimates of Propositions 3.1, we have the
important inequality ( δ = h

2
3
−η )

(5.1)
∫
VA0

×]0,δ[
|ψ|2|g|1/2 dsdt ≤

∫
VA0

×]0,δ[
|ψ|2|G|1/2 dsdt+ Ch2/3

∫
VA0

×]0,δ[
|ψ|2|g|1/2 dsdt ,

with C∗, C are constants independent of s and t (the value of C might change from one formula to another).
We also have

⟨L̂h,δψ,ψ⟩ =
∫
VA0

×]0,δ[
h2|∂tψ|2|g|1/2 dsdt+ h2

∑
1≤i,j≤N−1

∫
VA0

×]0,δ[
gij∂siψ ∂sjψ |g|1/2 dsdt

+

∫
VA0

×]0,δ[
Φ1(s, t)|ψ|2|g|1/2 dsdt .
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We recall that |g|1/2 =
(
1− t tr(G−1K) + t2p(s, t)

)
|G|1/2 so that, using the decay estimates of Propositions

3.1, there exists a C > 0 such that

⟨L̂h,δψ,ψ⟩ ≥
∫
VA0

×]0,δ[
|h∂tψ|2|G|1/2 dsdt+ h2

∑
1≤i,j≤N−1

∫
VA0

×]0,δ[
gij∂siψ ∂sjψ |G|1/2 dsdt

+

∫
VA0

×]0,δ[
Φ1(s, t)|ψ|2|g|1/2 dsdt− Ch4/3∥ψ∥2 .

From (3.3), we have

Φ1(s, t) ≥ xmin +
1

2
Hess(0)ϕ1 (s) (s) + t− C̃(|s|3 + t|s|2) .

We can deduce that

⟨L̂h,δψ,ψ⟩ ≥
∫
VA0

×]0,δ[
|h∂tψ|2|G|1/2 dsdt + h2

∑
1≤i,j≤N−1

∫
VA0

×]0,δ[
gij∂siψ ∂sjψ |G|1/2 dsdt

+

∫
VA0

×]0,δ[

(
xmin +

1

2
Hess(0)ϕ1 (s) (s) + t

)
|ψ|2|g|1/2 dsdt

− Ch4/3∥ψ∥2 − C̃

∫
VA0

×]0,δ[
(|s|3 + t|s|2)|ψ|2|g|1/2 dsdt .

The last integral is of order h4/3 (by using the exponential decay in the s and t variables; Proposition 3.1 and
3.2). Then there exists C > 0 such that

(5.2)

⟨L̂h,δψ,ψ⟩ ≥
∫
VA0

×]0,δ[

[
|h∂tψ|2 + t|ψ|2

]
|G|1/2 dsdt+ h2

∑
i,j

∫
VA0

×]0,δ[
gij∂siψ ∂sjψ|G|1/2 dsdt

+

∫
VA0

×]0,δ[

1

2
Hess(0)ϕ1 (s) (s) |ψ|2 |G|1/2 dsdt+ xmin∥ψ∥2 − Ch4/3∥ψ∥2 .

Thus, by the min max principle, we have∫
VA0

×]0,δ[

[
|h∂tψ|2 + t|ψ|2

]
|G|1/2 dsdt ≥ z1h

2/3

∫
VA0

×]0,δ[
|ψ|2|G|1/2 dsdt ,

using the inequalities in (5.1), we have

(5.3)
∫
VA0

×]0,δ[

[
|h∂tψ|2 + t|ψ|2

]
|G|1/2 dsdt ≥ z1h

2/3∥ψ∥2 − Ch4/3∥ψ∥2 .

By Taylor expansion near s = 0, we get

(5.4)
∣∣∣∣|G(s)|1/2 − |G0|1/2

∣∣∣∣ ≤ C |s|, G0 = G(0) .

From (5.4), there exists constants C > 0 such that∣∣∣∣ ∫
VA0

×]0,δ[
Hess(0)ϕ1 (s) (s) |ψ|2 |G|1/2 dsdt−

∫
VA0

×]0,δ[
Hess(0)ϕ1 (s) (s) |ψ|2 |G(0)|1/2 dsdt

∣∣∣∣
≤

∣∣∣∣ ∫
VA0

×]0,δ[
Hess(0)ϕ1 (s) (s) |ψ|2

[
|G(s)|1/2 − |G(0)|1/2

]
dsdt

∣∣∣∣
≤ C

∫
VA0

×]0,δ[
Hess(0)ϕ1 (s) (s) |s||ψ|2 dsdt

≤ C

∫
VA0

×]0,δ[
|s|3|ψ|2 dsdt ≤ C

∫
VA0

×]0,δ[
|s|3|ψ|2|G|1/2 dsdt.
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From Proposition 3.2, we get

(5.5)

∫
VA0

×]0,δ[
Hess(0)ϕ1 (s) (s) |ψ|2 |G|1/2 dsdt

≥
∫
VA0

×]0,δ[
Hess(0)ϕ1 (s) (s) |ψ|2 |G(0)|1/2 dsdt− Ch3/2∥ψ∥2 .

The same idea, proves that

(5.6)

∑
1≤i,j≤N−1

∫
VA0

×]0,δ[
gijh∂siψ h∂sjψ|G|1/2 dsdt

≥
∑

1≤i,j≤N−1

∫
VA0

×]0,δ[
gijh∂siψ h∂sjψ|G(0)|1/2 dsdt− Ch3/2∥ψ∥2 .

Observing that,

(5.7)
∣∣∣∣gij(s, t)−Gij0

∣∣∣∣ ≤ C
(
|s|+ t

)
, gij(0, 0) = Gij0 .

From Proposition 3.1 and 3.2, we get

(5.8)

∑
1≤i,j≤N−1

∫
VA0

×]0,δ[
gijh∂siψ h∂sjψ|G(0)|1/2 dsdt

≥
∑

1≤i,j≤N−1

∫
VA0

×]0,δ[
Gij0 h∂siψ h∂sjψ|G(0)|1/2 dsdt− Ch4/3∥ψ∥2 .

From (5.5), (5.6) and (5.8), we can easily see that

(5.9)

∫
VA0

×]0,δ[

[ ∑
1≤i,j≤N−1

h2gij∂siψ ∂sjψ +
1

2
Hess(0)ϕ1 (s) (s) |ψ|2

]
|G|1/2 dsdt

≥
∫
VA0

×]0,δ[

[ ∑
1≤i,j≤N−1

h2Gij0 ∂siψ ∂sjψ +
1

2
Hess(0)ϕ1 (s) (s) |ψ|2

]
|G0|1/2 dsdt− Ch4/3∥ψ∥2.

Now, using the inequalities in (5.2), (5.3) and (5.9), and using the min-max principle, we have

(5.10)

µk(h)∥ψ∥2 ≥ ⟨L̂h,δψ,ψ⟩

≥
∫
VA0

×]0,δ[

[ ∑
1≤i,j≤N−1

h2Gij0 ∂siψ ∂sjψ +
1

2
Hess(0)ϕ1 (s) (s) |ψ|2

]
|G0|1/2 dsdt

+ xmin∥ψ∥2 + z1h
2/3∥ψ∥2 − Ch4/3∥ψ∥2 .

Therefore, we have

(5.11)

∫
VA0

×]0,δ[

[ ∑
1≤i,j≤N−1

h2Gij0 ∂siψ ∂sjψ +
1

2
Hess(0)ϕ1 (s) (s) |ψ|2

]
|G0|1/2 dsdt

≤ (µk(h)− xmin − z1h
2/3 + Ch4/3)∥ψ∥2 .

On the left hand side of the above identity, we recognize the quadratic form associated to the operator

1⊗ Hh,

where Hh = −h2∆G0 +
1

2
Hess(0)ϕ1 (s) (s) on L2(RN−1, |G0|1/2ds) .

From Section 7.1 and 7.2, we show that, for h small enough, Hh is unitarily equivalent to

Mh =

N−1∑
i=1

−h2∂2ui +
1

2
λiu

2
i
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on L2(RN−1,du) , where λi are the eigenvalues of the Weingarten map of ∂Ω at A0. Their spectrum is given by

sp(Hh) = sp(Mh) = {hβ1,n, n ≥ 1} ,

where β1,n is the n-th eigenvalue of Nh =
∑N−1

i=1 −∂2vi +
1

2
λiv

2
i on L2(RN−1,dv) .

The decay estimates, given that dim(Ek(h))=k on L2(RN−1, |G0|1/2ds). Notice that the set Ek(h) is contained
in the form domain of Hh . Thus, by the min-max principle, we have

(5.12)

hβ1,k ≤ sup
ψ∈Ek(h)

⟨(1⊗ Hh)ψ,ψ⟩L2(VA0
×]0,δ[,|G0|1/2dsdt)

∥ψ∥2
L2(VA0

×]0,δ[,|G0|1/2dsdt)

≤ (µk(h)− xmin − z1h
2/3 + Ch4/3)

∥ψ∥2

∥ψ∥2
L2(|G0|1/2dsdt)

From (5.1), (5.4) and Proposition 3.2, we obtain

(5.13)

∫
VA0

×]0,δ[
|ψ|2|G0|1/2 dsdt ≥

∫
VA0

×]0,δ[
|ψ|2|G|1/2 dsdt− C

∫
VA0

×]0,δ[
|s||ψ|2 dsdt

≥ (1− Ch1/2)∥ψ∥2.

Using the last inequality in (5.12), we get

µk(h)− xmin − z1h
2/3 + Ch4/3 ≥ hβ1,k

∥ψ∥2
L2(|G0|1/2dsdt)

∥ψ∥2
≥ hβ1,k − Ch3/2 .

This implies the desired lower bound and concludes the proof of Proposition 5.1.

6. FULL ASYMPTOTIC EXPANSION OF THE EIGENVALUES

PROOF OF THEOREM 1.1: From Proposition 5.1, we have the following lower bound of µn(h) :

µn(h) ≥ xmin + z1h
2/3 + β1,1 h+ O(h4/3) .

Thanks to Proposition 4.1, we know that, from spectral theorem, there exists an eigenvalue µ̃1(h) of the operator
L̂h,δ satisfying, as h→ 0+,

µ̃1(h) = xmin + h2/3z1 + β1,1 h+ h4/3
M∑
j=0

hj/6ζj,1 + O
(
h

4
3
+M+1

6
)
.

Since β1,1 is a simple eigenvalue of the harmonic oscillator ( β1,1 < β1,2, see Section 7.1), we deduce that

µ1(h) = xmin + h2/3z1 + β1,1 h+ h4/3
M∑
j=0

hj/6ζj,1 + O
(
h

4
3
+M+1

6
)
.

Let n ≥ 2 and N ∈ N. Thanks to Proposition 4.1, we know that, from spectral theorem, there exists a sequence
of quasi eigenvalues (µ̃n(h))n≥2 of the operator L̂h,δ satisfying, as h→ 0+,

µ̃n(h) = xmin + h2/3z1 + β1,n h+ h4/3
N∑
j=0

hj/6ζj,n + O
(
h

4
3
+M+1

6
)
.

Now, we will arrange the sequence of quasi eigenvalues µ̃n(h) in increasing order modulo O
(
h

4
3
+M+1

6

)
and we

note them µn(h) . We have

µn(h) = xmin + h2/3z1 + β1,n h+ h4/3
M∑
j=0

hj/6αj,n + O
(
h

4
3
+M+1

6
)
,

where αj,n are a sequence determined from ζj,n.
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Imagine that, there exist C > 0, k ∈ N, such that

(6.1)
{
µi+1(h) = µi(h) + o(h) , ∀i = 2, ..., k − 1

µk+1(h)− µk(h) ≥ Ch

That is {
β1,2 = ... = β1,k
β1,k+1 > β1,k .

There are actually two possibilities:
1. µ2(h), ..., µk(h) coincide modulo O

(
h

4
3
+M+1

6

)
. From spectral theorem, the rank of the spectral projector

near these values is at least k − 1. Then, there exists an eigenvalues very close, modulo O
(
h

4
3
+M+1

6

)
to µi(h)

for all i ∈ {2, ..., k} : it can only be µ2(h), ..., µk(h), since the other eigenvalues are elsewhere (see (6.1) and
Proposition (5.1)).

µ1(h) µ2(h), ..., µk(h) µk+1(h)

×××

ChO
(
h

4
3
+M+1

6

)

µ1(h)
µ2(h), ..., µk(h)

µk+1(h)

2. They differ modulo hα with α < 4
3 + M+1

6 . There are actually three possibilities:

- There exist C > 0, k ∈ N, αi < 4
3 + M+1

6 , ∀i = 2, ..., k − 1 , such that

(6.2)

{
µi+1(h)− µi(h) ≥ Chαi ,∀i = 2, ..., k − 1

µk+1(h)− µk(h) ≥ Ch

The construction of quasimode implies that there exists an eigenvalue very close, modulo O
(
h

4
3
+M+1

6

)
,

to µi(h) for all i ∈ {2, ..., k} (it cannot be the same). Since the eigenvalues are increasing, then it can’t
be more than µ2(h), ..., µk−1(h) and µk(h) respectively, because the other eigenvalues are somewhere
else(see (6.2) and Proposition 5.1).

µ1(h) µ2(h) µ3(h) µ4(h)
. . .

µk(h)

×× × × ×
µk+1(h)

××

Ch

o(h)

Chα2 Chα3 Chαk−1

µ1(h) µ2(h) µ3(h) µ4(h) µk(h)

µk+1(h)
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- There exist C > 0, k ∈ N, such that

(6.3)


µ3(h)− µ2(h) ≥ Chα

µi+1(h) = µi(h) + O
(
h

4
3
+M+1

6

)
, ∀i = 3, ..., k − 1

µk+1(h)− µk(h) ≥ Ch

The rank of the spectral projector near {µi(h)}i=3,...,k is at least k − 2. Than, there exists an eigenvalue
very close, modulo O

(
h

4
3
+M+1

6

)
, to µi(h) for all i ∈ {3, ..., k}. The construction of quasimode implies

that there exists an eigenvalue very close, modulo O
(
h

4
3
+M+1

6

)
to µ2(h) (and it cannot be the same).

It can’t be more than µ2(h) near µ2(h) and µ3(h), ..., µk(h) near {µi(h)}i=3,...,k, because the other
eigenvalues are somewhere else(see (6.3) and Proposition 5.1).

µ1(h) µ2(h)

µ3(h), ..., µk(h)

× × ×××
µk+1(h)

××

Ch

o(h)

Chα

µ1(h) µ2(h)

µ3(h), ..., µk(h)

µk+1(h)

- There exist C > 0, k0, k ∈ N and k0 ≤ k such that

(6.4)


µi+1(h) = µi(h) + O

(
h

4
3
+M+1

6

)
,∀i = 2, ..., k0 − 1

µk0+1(h)− µk0(h) ≥ Chα

µi+1(h) = µi(h) + O
(
h

4
3
+M+1

6

)
,∀i = k0 + 1, ..., k − 1

µk+1(h)− µk(h) ≥ Ch

The rank of the spectral projector near {µi(h)}i=2,...,k0 is at least k0 − 1 and near {µi(h)}i=k0+1,...,k

is at least k − k0. Then, there exists an eigenvalues very close, modulo O
(
h

4
3
+M+1

6

)
, to µi(h) for

all i ∈ {2, ..., k0}, but also another very close, modulo O
(
h

4
3
+M+1

6

)
to µi(h) for all i ∈ {k0 +

1, ..., k}(and it cannot be the same). It can’t be more than µ2(h), ..., µk0(h) near {µi(h)}i=2,...,k0 and
µk0+1(h), ..., µk(h) near {µi(h)}i=k0+1,...,k , because the other eigenvalues are somewhere else(see (6.3)
and Proposition 5.1).

Now, if (6.1) is not satisfied:

µ3(h)− µ2(h) ≥ Ch .

As a consequence of the spectral theorem, there exists an eigenvalue very close modulo O
(
h

4
3
+M+1

6

)
to µ2(h),

but also another very close to µ3(h) (and it cannot be the same). Since the eigenvalues are indeed separated, it
can’t be more than µ2(h) and µ3(h) respectively.
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µ1(h) µ2(h) µ3(h)

×××

ChO
(
h

4
3
+M+1

6

)

µ1(h) µ2(h) µ3(h)

Thus, by (3.4) and Proposition 2.2, we have shown Theorem 1.1.

7. ANALYSIS OF THE EFFECTIVE OPERATOR

7.1. The model operator. In this section, we want to study the spectrum of the operator defined by

L = −∆G0 +
1

2
H (σ) (σ) , H = Hess(0)ϕ1 , G0 = G(0).

where ϕ1 is defined in Section 3.1 . The associate quadratic form on H1(RN−1; |G0|1/2 dσ) is

q1(ψ) = ⟨Lψ,ψ⟩L2(|G0|1/2 dσ) = ⟨−∆G0ψ,ψ⟩L2(|G0|1/2 dσ) +
1

2

∫
⟨Hσ, σ⟩|ψ|2|G0|1/2 dσ .

By replacing ∆G0 by its expression given by (4.3), we obtain

⟨−∆G0ψ,ψ⟩L2(|G0|1/2 dσ) = −
∑

1≤i,j≤N−1

∫
∂σi(G

ij
0 |G0|1/2∂σj )ψ ψ dσ , Gij0 = Gij(0) .

By integration by part and as ψ satisfies the Dirichlet conditions on the boundary, we have

⟨−∆G0ψ,ψ⟩L2(|G0|1/2 dσ) =
∑

1≤i,j≤N−1

∫
Gij0 ∂σjψ ∂σiψ|G0|1/2 dσ =

∫
⟨G−1

0 ∇σψ,∇σψ⟩|G0|1/2dσ .

Consequently, we have

(7.1) q1(ψ) =

∫
⟨G−1

0 ∇σψ,∇σψ⟩|G0|1/2dσ +
1

2

∫
⟨Hσ, σ⟩|ψ|2|G0|1/2dσ .

We introduce the change of variable
σ = G

−1/2
0 z .

Thus,
∇σ = G

1/2
0 ∇z and dσ = |G0|−1/2 dz .

By replacing the previous equality in (7.1), and we use that G0 is self-adjoint, we get

q1(ψ) =

∫
⟨G−1

0 G
1/2
0 ∇zψ̄, G

1/2
0 ∇zψ̄⟩ dz +

1

2

∫
⟨HG−1/2

0 z,G
−1/2
0 z⟩|ψ̄|2 dz

=

∫
⟨∇zψ̄,∇zψ̄⟩ dz +

1

2

∫
⟨G−1/2

0 HG
−1/2
0 z, z⟩|ψ̄|2 dz ,

with ψ̄(z) = ψ(σ) .

We define a quadratic form on H1(RN−1) by

q2(ψ) =

∫
⟨∇zψ,∇zψ⟩ dz +

1

2

∫
⟨G−1/2

0 HG
−1/2
0 z, z⟩|ψ|2 dz .
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The associated operator is unitarily equivalent to L , and defined by

L2 = −∆z +
1

2
⟨G−1/2

0 HG
−1/2
0 z, z⟩ .

We set S = G
−1/2
0 HG

−1/2
0 . As H is a positive definite matrix, then S is also a positive definite matrix. Conse-

quently, there exists an orthogonal matrix Q such that

Q−1SQ = B ,

where B is a diagonal matrix formed by the positive eigenvalues of S . Notice that

B =


λ1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 λN−1

 ,

where λi are the eigenvalues of S .
Considering z = Qu, we get

q2(ψ) =

∫
|∇uψ|2 du+

1

2

∫
⟨Q−1SQu, u⟩|ψ|2 du

=

∫
|∇uψ|2 du+

1

2

∫
⟨Bu, u⟩|ψ|2 du := q3(ψ) .

The operator associated with the quadratic form q3 is unitarily equivalent to L and defined by

L3 = −∆u +
1

2
⟨Bu, u⟩ = −

N−1∑
i=1

∂2ui +
1

2

N−1∑
i=1

λiu
2
i =

N−1∑
i=1

(
− ∂2ui +

1

2
λiu

2
i

)
=

N−1∑
i=1

Hi ,

where, Hi is the harmonic oscillator

Hi = −∂2ui +
1

2
λiu

2
i .

The n-th eigenvalues of Hi are given by

(2n− 1)

√
λi
2
.

Consequently, the n-th eigenvalues of L3 is the same of L1, it is the n-th element of the following set, by
grouping the elements in increasing order

(7.2)

{
β1,n =

N−1∑
i=1

√
λi
2
(2ni − 1) , n ∈ N∗N−1

}
.

Since the matrices S and G−1
0 H are similar, then they have the same spectrum and therefore λi are the eigenval-

ues of G−1
0 H .

7.2. Relation to the Weingarten map. We recall from the Section 3.1, the coefficients of the first and second
fundamental form, in the base (∂1ϕ, . . . , ∂N−1ϕ), are given respectively by the formulas

∀i, j = 1, . . . , N − 1, Gij(s) = ∂iϕ(s) · ∂jϕ(s) and Kij = ∂iϕ · ∂jν(ϕ) ,

where ϕ is a parameterization of ∂Ω defined in Section 3.1, such that ϕ(0) = A0 and ν(A0) = (−1, 0, . . . , 0) .

We get

Kij(s) = ∂iϕ(s) · ∂jν(ϕ)(s) = ∂iϕ(s) · dsν(ϕ)(ej) = ∂iϕ(s) · dϕ(s)ν[∂jϕ(s)]
= ∂iϕ(s) ·Wϕ(s)(∂jϕ(s)) .
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Let L(s) := (lij(ϕ(s)))1≤i,j≤N−1 the matrix of Wϕ(s) in the base (∂1ϕ(s), ..., ∂N−1ϕ(s)) . Then

Wϕ(s)(∂jϕ(s)) =

N−1∑
i=1

lij(ϕ(s))∂iϕ(s) .

Therefore, we can show that

Kij(s) = ∂iϕ(s) ·Wϕ(s)(∂jϕ(s))] = ∂iϕ(s) ·
N−1∑
k=1

lkj(ϕ(s))∂kϕ(s) =
N−1∑
k=1

lkj(ϕ(s)Gik(s) .

We deduce that

(7.3) K(s) = G(s)L(s) .

On the other hand
Kij(s) = ∂iϕ(s) · ∂jν(ϕ)(s) = −∂i∂jϕ(s) · ν(ϕ)(s) .

In s = 0, we get
Kij(0) = −∂i∂jϕ(s)|s=0 · ν(A0) = ∂i∂jϕ1(s)|s=0 = hij ,

where H = Hess(0)ϕ1 = (hij)1≤i,j≤N−1 .

Thanks to (7.3), we obtain
H = G(0)L(0) = G0L(0) .

Consequently,
L(0) = G−1

0 H .

From the previous section, λi are the eigenvalues of G−1
0 H and by the last equality, we deduce that λi are the

eigenvalues of the Weingarten map WA0 of ∂Ω at A0 .
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Ann. Sci. École Norm. Sup. (4), 37(1):105–170, 2004. 5

[12] Bernard Helffer and Ayman Kachmar. Eigenvalues for the robin laplacian in domains with variable curvature. Transactions of the
American Mathematical Society, 369(5):3253–3287, 2017. 9

[13] J. Lee and H.N. Spector. Stark effect in the optical absorption in quantum wires. Journal of Applied Physics, 97(4):043511, 2005.
1, 2

[14] X. B. Pan. Surface superconductivity in 3 dimensions. Trans. Amer. Math. Soc., 356(10):3899–3937, 2004. 5
[15] T. G. Pedersen. Stark effect in finite-barrier quantum wells, wires, and dots. New Journal of Physics, 19(4):043011, apr 2017. 2
[16] T. G. Pedersen. Stark effect in spherical quantum dots. Phys. Rev. A, 99:063410, Jun 2019. 1
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