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Abstract

We propose a new notion of coalitional equilibrium, the strong hybrid solution, which is

a refinement of Zhao’s hybrid solution. It is well suited to study situations where people co-

operate within coalitions but where coalitions compete with one another. In the strong hybrid

solution, as opposed to the hybrid solution, the strategy profile assigned to each coalition is

strongly Pareto optimal. We show that there exists a strong hybrid solution whenever prefer-

ences are partially quasi-transferable.
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1 INTRODUCTION

To study cooperation in strategic non-transferable utility games, one can rely on the concepts of

coalitional equilibria. Those concepts differ in the way outsiders are assumed to react to the forma-

tion of a deviating coalition. The three traditional concepts of coalitional equilibria, all introduced

in Aumann [1959], include the α-core, the β-core (Aumann [1961, 1959]) and the strong Nash

equilibrium (Aumann [1959]). An action profile is in the α-core if no coalition can guarantee a

higher payoff for each of its members by choosing another action, independently of the actions
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taken by the other players. On the other hand, an action profile is in the β-core if no deviat-

ing coalition can guarantee a higher payoff for each of its members, because coalition outsiders

have a dominant blocking strategy. In a strong Nash equilibrium, no coalition can guarantee a

higher payoff for each of its members assuming that coalition outsiders stick to their equilibrium

strategies.

Scarf [1971] gave existence results of α-core in games with nontransferable utilities, which were

later extended for local α and β-cores by Yano [1990]. Kajii [1992] showed the non-emptiness

of the α-core without assuming that agents’ preference relations are transitive or complete. Zhao

[1999a, 1999b] obtained general existence results for α and β-cores in games with transferable

utility. More recently, Uyanik [2015] addressed the existence of α-core in discontinuous games.

In addition, Yang [2017a, 2018] generalized Kajii’s theorem to games with infinitely many players,

Yang [2017b] considered the essential stability of α-core and Yang and Meng [2017] tackled the

Hadamard well-posedness of the α-core.1 Martins-da-Rocha and Yannelis [2011] established the

existence of the α-core in games where agents’ preferences are non-ordered and with infinite

dimensional strategy spaces. Askoura et al. [2013] analyzed the ex-ante α-core in games with

uncertainty while Noguchi [2018] focused on the α-cores in games with asymmetric information.

Yet, the coalitional equilibrium concepts initially defined by Aumann are probably too demand-

ing. They require that each conceivable coalition should not break away from a prealably agreed

strategy profile. As a consequence, the class of games for which the α-core and the β-core exist

is not large. In that connection, it is worthy to note that in many “real-world” situations not all

the coalitions are relevant (for instance, it is doubtful that certain countries can ever cooperate, so

different are their views on the issue at hand, be it for international trade, environmental protection

and so on). To put it another way, some coalition can form more easily than others.

Zhao [1992] is a major attempt to study coalition games with restricted formation of coalitions.

Specifically, he introduces the hybrid solution, a solution concept pertaining to the case where

there is cooperation inside coalitions, but competition between coalitions. The main issue here is

the internal stability of the coalitions belonging to a given coalition structure.

Consider for instance Catalogna in Spain, Corsica in France, or Scotland in Great Britain. In

each of these cases, a region (that is, a subcoalition of a given coalition) contemplates breaking

away from an existing coalition (a Member Sate of the European Union). But to the best of
1Roughly said, a strategy profile in the α-core of a game is essential if whenever we slightly modify the game, the

α-core of the modified game has elements which are close to the strategy profile. A game is Hadamard well-posed if

its α-core has a unique element and if this element changes continuously with the conditions defining the game.
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our knowledge, none of these regions endeavors to join, or merge, with another member of the

European Union (that is, another coalition).

In relation to the remark above, the hybrid solution is a strategy profile that is stable against

deviations by any subcoalition of a coalition belonging to a given partition of the players. More

precisely, any subcoalition of a given coalition S can be blocked by some decisions taken by the

outsiders in the coalition, assuming that all the other players (in the other coalitions) stick to their

strategies. Here, blocking means that a subcoalition cannot choose a strategy such that the payoff

obtained by any of its members is strictly greater than what he obtains with the hybrid solution,

when the outsiders in the coalition minimize his gain.

Zhao (ibid) showed the existence of the hybrid solution and Zhao [1999a, 1999b] extended the

notions of TU α and β cores to the hybrid solution.2 Existence of a version of the hybrid solution

for games with non-ordered preferences, infinite dimensional action spaces (namely Hausdorff

topological vector spaces) and infinitely many players was studied in Yang and Yuan [2019]. In

their approach, however, the definition of blocking is slightly different from Zhao’s. It is actually

similar to the definition used in the α-core.3

This paper introduces a new coalitional equilibrium concept, namely the strong hybrid solution,

that applies for any given coalition structure C. This definition furthers the approach of Yang and

Yuan [2019] in the sense that it introduces yet another definition of blocking. Here, we propose to

say that an alternative strategy chosen by a subcoalition is blocked by the outsiders in the coalition

if it cannot guarantee a payoff at least as great as the reference one for each of its members, and

strictly higher than the reference one for at least one of its members, independently of the actions

taken by all the other players (like in the hybrid solution, we assume that the players outside the

coalition stick to their strategies). To wit, because coalition members are assumed to cooperate,

there is no reason why they would not collectively choose an alternative strategy profile that does

no good nor bad for all of them, and strictly benefits to at least one member. With this definition,

one can show that the set of strong hybrid solution is a subset of the Yang and Yuan’s hybrid

solutions, which are themselves a subset of Zhao’s hybrid solutions. Hence the assertion that the

notion of strong hybrid solution is a refinement of the hybrid solution. Our main contribution is to

provide an existence result for the strong hybrid solution. This existence result is obtained under
2Zhao [1996] also applies the hybrid solution concept to an exchange economy with externalities. Zhao [2018]

reviews different solution concepts for TU games in Industrial Organization.
3This definition implies that there is no subcoalition which can choose a strategy such that the payoff obtained by

any of its members is no lower (as opposed to not strictly greater as in Zhao [1992]) than what he obtains with the

hybrid solution, when the outsiders in the coalition minimize his gain.
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the assumption that preferences are partially quasi-transferable.4

The remainder of the paper is organized as follows. Section 2 sets out formal definitions, es-

tablishes some properties for the strong hybrid solution and compare it with alternative ones.

Section 3 establishes our existence result for the strong hybrid solution. Section 4 studies the

condition of partially quasi-transferable preferences in two economic models. Section 5 provides

some concluding remarks.

2 DEFINITIONS AND PROPERTIES

In this section, we first present our setting. Then, we state some definitions and properties for

different notions of coalitional equilibria (including ours).

2.1 PRELIMINARIES

Consider an n-person game G = 〈I,Xi, ui〉 where I = {1, ..., n} is the set of players, Xi (a

nonempty set in Rl(i), l(i) ≥ 1) is player i’s strategy set and ui : X → R is player i’s payoff

function, where X =
∏
i∈I
Xi.

For each nonempty coalition S of players, and for any subset K of S, define −S = {i ∈ I : i /∈

S} and S −K = {j ∈ S : j /∈ K}. If S is a singleton {i}, we denote by −i all the players but i.

We also denote by XS =
∏
i∈S
Xi the set of strategies of coalition S’s players. A coalition structure

C = {P1, ..., Pm} is a partition of I . That is,
⋃

i=1,...,m
Pi = I and Pi ∩ Pj = ∅, for each i 6= j.

A coalition structure C being given, we can express any strategy profile x = (x1, ..., xn) ∈ X as

x = (xP1 , xP2 , .., xPm), where xPi ∈ XPi .

We say that a game G is compact, convex, and continuous if for all i ∈ I , Xi is compact, convex,

and ui is continuous on X .

For each C in the coalition structure C, we denote by ∆C the |C| − 1 simplex of R|C|, that is

∆C =

λ ∈ R|C|+ :

|C|∑
i=1

λi = 1

 .

Let E be a vector space and Z be a convex set in E. A function f : Z → R is concave on Z if, for

any z1, z2 in Z and for any θ ∈ [0, 1], θf(z1) + (1− θ)f(z2) ≤ f(θz1 + (1− θ)z2). It is convex
4Following Rader [1972], preferences are said to be quasi-transferable if whenever a strategy profile x is at least as

good as another one x′ for a group of players, and strictly better for at leat one agent, then there is a third profile x′′

which strictly better than x′ for all the agents. Our notion of partially quasi-transferable preferences builds on Rader’s

definition.
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on Z if −f is concave on Z. A function f : Z → R is quasiconcave on Z if, for any z1, z2 in Z

and for any θ ∈ [0, 1], min {f(z1), f(z2)} ≤ f(θz1 + (1− θ)z2). It is quasiconvex on Z if −f is

quasiconcave on Z. A function f : Z → R is strictly-quasiconcave on Z if, for any z1, z2 in Z

with z1 6= z2 and for any θ ∈ (0, 1), min {f(z1), f(z2)} < f(θz1 +(1−θ)z2). A correspondence

C : Z � E is said to be closed, or has closed graph, if its graph

Gr(C) = {(x, y) ∈ Z × E : y ∈ C(x)}

is a closed subset in Z × E. (For more details see Aliprantis and Border [2006]).

For any two vectors a, b ∈ Rn, we write a � b if ai ≥ bi for all i = 1, ..., n, a � b if ai > bi for

all i = 1, ..., n and a � b if a � b and a 6= b.

2.2 COALITIONAL EQUILIBRIA

We first recall the definitions of the α and β-cores of an n-person game introduced in Aumann

[1961, 1959]. A strategy profile x is in the α-core if for every coalition K and for each deviation

xK of K, players in −K can choose a strategy profile x−K such that the payoff obtained by any

member of K at (xK , x−K) cannot be higher than its value when all the players stick to x. A

strategy x is in the β-core if for every coalition K, players in−K can choose a strategy x̃−K such

that for each deviation xK of K, the payoff obtained by any member of K at (xK , x̃−K) cannot

be higher than its value when all the players stick to xK .

We next recall the formal definition of the hybrid solution.

DEFINITION 2.1 (Zhao [1992]) Given a coalition structure C, a feasible strategy x ∈ X

is a hybrid-solution if, for every coalition S in C and for any subcoalition K of S there is

no strategy profile xK in XK such that uK(xK , x−S) � uK(x), where uK(xK , x−S) =

{infxS−K ui(xK , xS−K , x−S), i ∈ K}.

A slightly different definition of the hybrid solution appears as follows in Yang and Yuan [2019].

DEFINITION 2.2 (Yang and Yuan [2019]) Given a coalition structure C, a feasible strategy x ∈

X is a hybrid solution if, for every coalition S in C and for any subcoalition K of S there is no

xK in XK such that uK(xK , xS−K , x−S)� uK(x), for all xS−K in XS−K .

The next property states a link between the two definitions above of the hybrid solution.

Property 2.1 Any hybrid solution in the sense of Yang and Yuan [2019] is a hybrid solution in

the sense of Zhao [1992].
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This result stems from the fact that for the hybrid solution in the sense of Yang and Yuan [2019],

there is no xK such that uK(xK , x−S) � uK(x).

We next introduce our notion of strong hybrid solution.

DEFINITION 2.3 Given a coalition structure C, a strategy profile x in X is a strong hybrid

solution of game G if for every coalition S in C and for any subcoalition K of S, there does

not exist xK in XK such that for each xS−K in XS−K uK(xK , xS−K , x−S) � uK(x), with

uK(.) = (ui(.), i ∈ K).

That is, x ∈ X is a strong hybrid solution if, given any coalition S in C and any subcoalition

K of S, for each deviation xK of K, players in S − K have a strategy xS−K such that at

(xK , xS−K , x−S), the payoffs of players in K cannot be higher than what they would obtain

by playing xK , when the players of−K play x−K . This notion of coalitional equilibrium is stable

against the deviations of each subcoalition K of each coalition S in C.

The hybrid solution and the strong hybrid solution rely on different definitions of a blocking coali-

tion. In a strong hybrid solution an alternative strategy of a subcoalition is blocked by the outsiders

in the coalition if it cannot guarantee a payoff at least as great as the reference one for each of its

members, and strictly higher than the reference one for at least one of its members, independently

of the actions taken by outsiders (the players outside the coalition sticking to their strategies).

By contrast, with the hybrid solution an alternative strategy of a subcoalition is blocked by the

outsiders in the coalition if it cannot guarantee a payoff strictly higher than the reference one for

all its members, independently of the actions taken by outsiders (the players outside the coalition

sticking to their strategies).

In our view, the strong hybrid solution is more consistent with the assumption that coalition mem-

bers cooperate whereas coalitions compete with one another. To wit, because coalition members

are assumed to cooperate, there is no reason why they would not collectively choose an alterna-

tive strategy profile that does no good nor bad for all of them, and strictly benefits to at least one

member.

From definition 2.3, it is immediate to obtain the two following properties.

Property 2.2 The strong hybrid solution is individually rational, i.e., for each deviation xi of

every player i in coalition S, there exists a punishment strategy xS−i of players in S − i such that

player i cannot be better off when players in −S play x−S .
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Property 2.3 The strong hybrid solution is such that for every coalition S in C, the strategy profile

xS is a solution to the following multiobjective optimization problem 〈XS , {ui(., x−S), }i∈S〉.5

In particular, this implies that xS is Pareto-efficient in XS .

The next property states that the strong hybrid solution is a refinement of the hybrid solutions of

Zhao [1992] and Yang and Yuan [2019]).

Property 2.4 Any strong hybrid solution is also a hybrid solution (both in the senses of Zhao

[1992] and Yang and Yuan [2019]).

That is because, every strong hybrid solution is a hybrid solution in the sense of Yang and Yuan

[2019], and then from property 2.1, is also a hybrid solution in the sense of Zhao [1992].

The next example illustrates the differences between the notions of coalitional equilibria defined

above.

EXAMPLE 2.1 Consider a three-player game G such that I = {1, 2, 3}, Xi = [0, 1], i = 1, 2, 3

and 
u1(x) = 1− (x1 − x2)2 + x3 +

 3
2x1 if x1 ≥ 1

2 ,

−3
2x1 + 3

2 if x1 ≤ 1
2

u2(x) = x2 + x3, u3(x) = x3.

Let C = {{1, 2}, {3}}. The only strong hybrid solution is given by (x1, x2, x3) = (1, 1, 1). The

set of hybrid solutions (both in the senses of Zhao [1992] and Yang and Yuan [2019]) is{
x = (x1, x2, x3) ∈ X : x1 ∈ [

7− 2
√

6

4
, 1], x2 = x3 = 1

}
.

Observe that the unique strong hybrid solution Pareto-dominates all the hybrid solutions (except,

of course, when the later coincides with the former). Since by assumption players 1 and 2 coop-

erate, it seems relevant that they will grasp any opportunity to increase their payoffs, even if only

one player’s payoff actually increases.

We now relate the strong hybrid solution to other solutions concepts. Recall that a strategy profile

x ∈ X is a Nash equilibrium of the game G if,

ui(yi, x−i) ≤ ui(x), for all i ∈ I and for all yi ∈ Xi.

5Due to its connection with mathematical programming, multiobjective programming is more appealing than alter-

native terms such as vector maximization or multicriteria decision making. More importantly, Borm et al. [1988] first

used the term multiobjective games (MOG). However, several later authors had used different terms such as Multicri-

teria Games, which were unnecessary because it not only caused confusion in the field but also showed a bit disrespect

for the original contributors.
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The next result property is easily obtained.

Property 2.5 If the coalition structure C is such that C = {{1}, {2}, ..., {n}}, then the set of

strong hybrid solutions and Nash equilibria coincide.

We next consider a refinement of the Nash equilibria.

DEFINITION 2.4 (Aumann [1959]) A strategy profile x in X is a strong Nash equilibrium of

game G if, for every coalition S, there is no yS in XS such that uS(yS , x−S) � uS(x).

That is, a strategy profile is a strong equilibrium if no coalition can profitably deviate from this

profile. A straightforward implication is that any strong equilibrium is both Pareto efficient and

stable with regard to the deviation of any coalition. We then have:

Property 2.6 Any strong equilibrium is also a strong hybrid solution.

We consider yet another coalition equilibrium notion, which adopts the concept of absolute op-

timal solution in multiobjective programming (Zhao [1983]) and in games (Nessah and Tazdait

[2013]).

DEFINITION 2.5 (Nessah and Tazdait [2013]) Given a coalition structure C, a feasible strategy

x ∈ X is an absolute optimal solution relatively to C (or C-absolute optimal solution) of game

G if, for every coalition S in C, we have uj(yS , x−S) ≤ uj(x), for each j in S and yS in XS .

Hence, a strategy profile x is an absolute optimal solution relatively to C if no player in any

coalition S in C, can be better off when players in S deviate from their C-absolute optimal strategy

profile xS . This equilibrium is stable against deviations from any player in S.

Property 2.7 Any absolute optimal solution relatively to C is also a strong hybrid solution.

3 EXISTENCE RESULT

This section establishes a general existence result for a strong hybrid solution. This result relies on

the specific assumption that preferences are partially quasi-transferable as well as on the arguments

used in the proof of Theorem 3 in Zhao [1992].

To explain this specific assumption we shall need some notations and definitions. Firstly, without

loss of generality, we assume that minx∈X ui(x) > 0 for each i ∈ I . Secondly, recall that for each

x ∈ X , S ⊆ C, uS(xS , x−C) is defined as follows

uS(xS , x−C) =

{
inf

yC−S∈XC−S

ui(xS , yC−S , x−C), i ∈ S
}
.
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DEFINITION 3.1 (Partially quasi-transferable preferences) Given a coalition structure C, a

game G satisfies the assumption of partially quasi-transferable preferences if, for every x ∈ X ,

C ∈ C, xC ∈ XC , γ ∈ ∆C , every S ⊆ C, t > 0 such that

uS(xS , x−C) � uS(xC , x−C) � tγS ,

there exist a sub-coalition S̃ ⊆ C and a strategy x̃S̃ ∈ XS̃ such that

uS̃(x̃S̃ , x−C)� tγS̃ .

This condition actually states that if the payoff of each member i of coalition S is such that

ui(xS , x−C) ≥ ui(xC , x−C) ≥ tγi (with a strict inequality for at least one i in the first inequa-

tion), it is possible to find a subcoalition S̃ whose members are able to secure a payoff satisfying

the condition: ui(x̃S̃ , x−C) > tγi.

Definition 3.1 is connected with the notion of quasi-transferability of preferences that we recall

next.

DEFINITION 3.2 We say that a game satisfies the quasi-transferable preferences property if for

each coalition S, whenever xS �i yS for all i ∈ S, and there is j in S such that xS �j yS , then

there is x̄S in Xs such that x̄S �i yS for all i in S.

This definition is adapted from a Rader [1972] (who introduced it in a general equilibrium context)

and was also used in, e.g, Diamantaras and Wilkie [1996]. In relation to the above definition,

the assumption of partially quasi-transferable preferences refers to a transformation of the initial

preferences, and only concerns a subset of agents (hence the term partially) of the initial coalition

(notice that the agents in the subcoalition are assumed to do better despite the fact that their former

teammates in S \ S̃ joins people in C \ S do lower their payoffs).

We shall illustrate definition 3.1 in the following example.

EXAMPLE 3.1 Let us consider the following four players contribution game in which each player

can either contribute to a collective action or retract his contribution. Let I = {1, 2, 3, 4} be the

set of players, Xi = [0, 1] be the strategy space of player’s i, and player i’s payoff function be

given by

ui(x) = −ixi +
∑
j 6=i

xj , i = 1, 2, 3, 4.

Let the coalition structure C = {{1, 2}, {3, 4}}. This game satisfies the assumption of partially

quasi-transferable preferences. Indeed, let x ∈ X , C = {i, j} ∈ C, xC ∈ XC , γ ∈ ∆C , t > 0,

S ⊆ C such that

uS(xS , x−C) � uS(xC , x−C) � tγS .
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We distinguish the following cases:

1) If S = {h} with h = i, j. Then obviously we have

uh(xh, x−C) > uh(xC , x−C) � tγh.

2) If S = C, then  ui(xi, xj , x−C) > ui(xi, xj , x−C) � tγi,

uj(xi, xj , x−C) ≥ uj(xi, xj , x−C) � tγj .

This implies that  −ixi + xj > −ixi + xj ,

xi − jxj ≥ xi − jxj .

We can show that both xi < xi and xj < xj . Since −ixi + xj > −ixi + xj , then

xi < xi +
xj−xj

i . Let us choose ε > 0 such that

xi + ε < xi +
xj − xj

i
.

Therefore there exists a strategy x̃S̃ ∈ XS̃ (defined by x̃i = xi + ε and x̃j = xj)

such that

uS(x̃S , x−C)� tγS .

Our existence result is as follows.

THEOREM 3.1 A coalition structure C being given, assume that the game G is continuous, com-

pact and convex and the functions ui are quasiconcave in xC , for each C ∈ C, i ∈ C. Then if

the game satisfies the partially quasi-transferable preferences assumption, it has a strong hybrid

solution.

The proof of this theorem uses the lemmata 3.1 and 3.2 established in Zhao [1992]. Let us intro-

duce some notations used in the statements of these results. Let C ∈ C and S any subcoalition in

C (S ⊆ C). Let tS : ∆C ×X−C → R be the function defined by

tS(α, y) = max
t>0, xS∈XS

t uS(xS , y)− tαS � 0,

ceC−S − tαC−S � 0,

(Problem 1)

where αC = (αS , αC−S) ∈ ∆C , eC = (1, . . . , 1) ∈ R|C| and c ∈ R+ is such that ui(x) < c for

all i ∈ N and x ∈ X . Finally, let t : ∆C ×X−C → R be defined by

tC(α, y) = max
S⊆C

tS(α, y).

The first of the two lemmas drawn from Zhao [1992] is presented next.
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LEMMA 3.1 Zhao [1992] When the game G is convex, continuous, and the function ui are qua-

siconcave in xC , for each C ∈ C, for all i, the following two properties hold.

1) The function fC : ∆C ×X−C → Rn defined by

fC(α, y) = tC(α, y)α

is continuous in (α, y).

2) The correspondence θC : ∆C ×X−C � C defined by

θC(α, y) =
{
S ⊆ C : tS(α, y) = tC(α, y)

}
is nonempty and has a closed graph.

Now for each S ⊆ C in C, let hS : C → ∆C be the function defined by hS(i) = 1
|S| if i ∈ S and

0 otherwise. Define also the function gC : ∆C ×∆C → ∆C by

gC(α, β) =

(
αi + max

{
0, βi − 1

n

}
1 +

∑n
j=1 max

{
0, βj − 1

n

} , i = 1, . . . , |C|

)
and the correspondence σC : ∆C ×X−C � ∆C by

σC(α, y) = co {hS : S ∈ θ(α, y)} .

Furthermore. We say that a collection B = {S1, . . . , S|B|} of subsets of C is balanced if there

exists ySj ∈ R++ for each Sj ∈ B, such that for all xC in XC ,
∑

j,xC∈Sj
ySj = 1.

LEMMA 3.2 (Zhao [1992]) When the game G is convex, continuous, and the function ui are

quasiconcave in xS for each S ∈ C and C ∈ C, for all i, then the correspondence πC : ∆C ×

∆C ×X−C � ∆C ×∆C defined by

πC(α, β, y) = {gC(α, β)} × σC(α, y)

satisfies the two following properties.

1) It has closed bounded nonempty convex values and a closed graph.

2) For each fixed y ∈ X−C , the correspondence π
′
C(α, β) = πC(α, β, y) has a fixed point

(α∗, β∗) and at this fixed point θC(α∗, y) is a balanced set.

In addition to the two above lemmata, our proof of Theorem 3.1 will make use of a third lemma

which we shall prove next. This lemma refers to the notion of strong core solution which we state

beforehand:
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DEFINITION 3.3 Let a coalition C in C be given. A strategy profile xC is said to be a strong

core solution of the subgame G̃(x−C) =
(
S,XS , uS(xS , x−C)

)
if, for any subcoalition S of C,

there does not exist xS in XS such that uS(xS , x−C) � uS(x).

We shall also say that the game G̃(x−C) =
(
S,XS , uS(xS , x−C)

)
is balanced if for all y in

R|C| and any balanced collection of coalitions θ such that for each S in θ, there exists xS ∈ XS

satisfying uS(xS , x−C) ≥ yS , then there exists xC ∈ XC such that uC(xC , x−C) ≥ yC .

LEMMA 3.3 Assume that the game G is continous, compact and convex. Assume also that the

functions ui are quasiconcave in xS , for each S ∈ C and C ∈ C, and such that minX ui(x) > 0

for all i. Suppose further that preferences are partially quasi-transferable. Then the correspon-

dence δC : ∆C ×X−C � XC defined by

δC(α, y) = {xC ∈ XC : uC(xC , y)− tC(α, y)α � 0}

satisfies the next two properties.

1) It has closed bounded nonempty convex values and a closed graph.

2) If θC(α, y) is a balanced family and G̃(y) is a balanced game for each y, then each xC ∈

δC(α, y) is a strong core solution of G̃(y).

PROOF. The first assertion is then a direct consequence of the continuity of the functions ui,

tC(α, y)α and the quasiconcavity of ui in xC .

Let us prove the second assertion. As θC(α, y) is a balanced family and G̃(y) is a balanced game

for each y, we can show as in the proof of lemma 3 in Zhao that tC(α, y) = t̄C(α, y).

Now let xC ∈ δC(α, y). If xC is not a strong core solution of G̃(y), then there is a coalition S ⊆ C

and xS ∈ XS such that

uS(xS , y) � uS(xC , y). (3.1)

Since xC ∈ δC(α, y) and tC(α, y) = tC(α, y), then (3.1) becomes

uS(xS , y) � tC(α, y)αS .

But by the choice of the constant c and since xC ∈ δC(α, y), then

ceC−S � tC(α, y)αC−S .

12



As preference are partially quasi-transferable, there exist S̃ ⊆ C, x̃S̃ ∈ XS̃ and t̃ > tC(α, y) such

that  uS̃(x̃S̃ , y) � t̃αS̃

ceC−S̃ � t̃αC−S̃ .

Hence, t̃ and x̃S̃ is feasible for the Problem 1. Then t̃ ≤ tC(α, y) which contradicts the relation

t̃ > tC(α, y).

Proof of Theorem 3.1.

Let Ω be the set defined by

Ω =

 ∏
i=1,...,r

(∆Ci ×∆Ci)

×X
where r is the cardinal of C.

Let Ψ : Ω→ 2Ω be the correspondence defined by

Ψ
((

(α1, β1), . . . , (αr, βr)
)
, x
)

=

 ∏
i=1,...,r

πCi(αi, βi, x−Ci)

×
 ∏

i=1,...,r

δCi(αi, x−Ci)

 .

By Lemmas 3.1-3.3, the correspondence Ψ is defined on a compact convex set and has nonempty

closed convex values and a closed graph. Then by Kakutani fixed point Theorem, Ψ has a fixed

point (αi, βi), for each i = 1, . . . , r and there is a vector x = (xC1 , . . . , xCr) such that (αi, βi) ∈

πCi(αi, βi, x−Ci) and xCi ∈ δCi(αi, x−Ci). Since ui is continuous on X , quasiconcave in xS

and the game G̃(x−Ci) is balanced (Scarf, 1971), therefore by Lemma 3.3, x is a strong hybrid

solution.

4 Examples

In this section we study the condition of partially quasi-transferable preferences in two examples

of games having a strong hybrid solution. The first example includes three versions of the garbage

game introduced by Shapley and Shubik [1969]. The second example is a coalitional game with

environmental externalities.

4.1 Some versions of the garbage game

• A garbage game with side-payments
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Consider the version of Shapley and Shubik [1969] garbage game studied in Laffont [1982], in

which four neighbors decide on where to dump their garbage. Assume that each neighbor has an

endowment of a transferable good equal to one and a quantity of garbage also equal to one. Let

zji ≥ 0 be the quantity of good transfered by neighbor j to neighbor i, and xji ≥ 0, the quantity

of garbage that neighbor j locates in the garden of neighbor i. For each i, 0 ≤
∑4

j=1 z
ij ≤ 1,

0 ≤
∑4

j=1 x
ij ≤ 1, 0 ≤ zij .

Suppose that all agents i have the same payoff function

ui(x
ji, zji) =

4∑
j=1

zji −
4∑

i=1

xji, (4.1)

and assume that there are only two coalitions. The first coalition includes neighbors 1, 2, 3 while

the second only includes neighbor 4.

Then, one can check that the strategy profile zii = 1 for all i, xi4 = 1, for all i = 1, 2, 3,

x41 = 1/3, x44 = 0 is both a hybrid and a strong hybrid solution. Notice that this game is conti-

nous, compact and convex and the functions ui are quasi-concave. Let us check that indivudals’

preferences are partially quasi-transferable. To do this we shall study the two coalitions in turn.

Case C = {4}.

The property is clearly satisfied for this coalition.

Case C = {1, 2, 3}.

Let us examine all the subcoalitions S included in {1, 2, 3} (as well as the coalition {1, 2, 3} itself).

• S = {1, 2, 3}.

Suppose that the following inequalities hold

4∑
j=1

zji −
4∑

j=1

xji ≥
3∑

j=1

z̄ji + z4i −
3∑

j=1

x̄ji − x4i ≥ γit, i = 1, 2, 3. (4.2)

and that at at least one of the left-hand sides inequalities hold strictly. One can check that it is

always possible to rearrange the transfers among individuals in such a way that all the left-hand

sides inequalities become strict.

• S = {1, 2}.
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Assume that the two inequalities hold (and at least one holds strictly).

4∑
j=1,j 6=3

zj1 −
4∑

j=1,j 6=3

xj1 − 1 ≥
3∑

j=1

z̄j1 + z41 −
3∑

j=1

x̄j1 − x41 ≥ γ1t (4.3)

4∑
j=1,j 6=3

zj2 −
4∑

j=1,j 6=3

xj2 − 1 ≥
3∑

j=1

z̄j2 + z42 −
3∑

j=1

x̄j2 − x42 ≥ γ2t. (4.4)

Again, we can always design some transfers of good ensuring that the left-hand sides inequalities

are both strict.

The argument is similar for the other two-person subcoalitions. Moreover, one can check that

all one-person S coalitions satisfy the partially quasi-transferable preferences property as well.

Therefore preferences are partially quasi-transferable.

• A garbage game with bounded payoff for one player

We now pay focus on a variant of the garbage game considered above. Assume that the payoff

function of all neighbors but neighbor 2 is given by

ui(x
ji, zji) = 3×

 4∑
j=1

zji

− 4∑
j=1

xji, i = 1, 2, 4. (4.5)

Furthermore, assume that the payoff function of neighbor 2 reads

ui(x
ji, zji) = min

1

2
,

4∑
j=1

zj2

 . (4.6)

That is, neighbor 2’s payoff is bounded above and does not depend on the quantity of garbage

located in his garden. Thus, preferences are not partially quasi-transferable (since that property

is not satisfied for the subcoalition {2}). Yet the game is continous, compact and convex and the

functions ui are quasi-concave.

Consider the strategy profile: zii = 1 (for i = 1, 3, 4), z21 = 1/2, xi4 = 1, x4i = 1/3, x44 = 0.

One can check that profile is a strong hybrid solution. Therefore, the assumption that preferences

are partially quasi-transferable is not necessary for the existence of a strong hybrid solution.

Also notice that some hybrid solutions are not strong. To see this, let us pay attention to the strategy

profile: zii = 1, xi4 = 1, x4i = 1/3, x44 = 0 and concentrate on the coalition {1, 2, 3}. Consider

the subcoalition {1, 2}. One can see that it is impossible to increase the payoff of neighbor 2 since

it is equal to its maximum value. The same remark applies for coalition {2, 3}. Now consider

coalition {1, 3}. Both neighbor cannot jointly increase their payoffs since if they deviate, player 2

15



can split his garbage equally between them. Hence the strategy profile is a hybrid solution. Yet,

it is not a strong hybrid solution. For instance, let us concentrate on coalition {1, 2}. Suppose

that neighbor 2 gives a quantity of good 1/2 to neighbor 1. Then his payoff remains equal to 1/2.

Assume that to punish the deviation by neighbors 1 and 2, neighbor 3 transfers all his garbage in

the garbage of neighbor 1. The latter’s payoff is then equal to 25/6, whereas the payoff associated

with the candidate equilibrium strategy profile equals 8/3. Thus in the deviation considered above,

neighbor 2’s payoff is unchanged, but neighbor 1’s increases.

• A garbage game with altruism

There are four players and two coalitions as before. In this version of the garbage games, we

assume that players 1, 3 and 4 have the same preferences, which are given by the payoff function

3 ×
(∑4

j=1 z
ji
)
−
∑4

i=1 x
ji, i = 1, 3, 4. Preferences of player 2 are given by:

∑4
j=1 z

j2 + z21.

Thus, player 2 is altruistic: his payoff increases when he transfers some good to player 1.

Let us check that preferences are partially quasi-transferable. We consider the two coalitions in

turn.

Case C = {4}.

The property is clearly satisfied for this coalition.

Case C = {1, 2, 3}.

Let us consider all the subcoalitions S included in {1, 2, 3} (and the coalition {1, 2, 3} itself).

• S = {1, 2, 3}.

Suppose that the following inequalities hold

3

 4∑
j=1

zj1

− 4∑
j=1

xj1 ≥ 3

 3∑
j=1

z̄j1 + z41

− 3∑
j=1

x̄j1 − x41 ≥ γ1t (4.7)

4∑
j=1

zj2 + z21 ≥
3∑

j=1

z̄j2 + z42 + z̄21 ≥ γ2t (4.8)

3

 4∑
j=1

zj3

− 4∑
j=1

xj3 ≥ 3

 3∑
j=1

z̄j3 + z43

− 3∑
j=1

x̄j3 − x43 ≥ γ3t, (4.9)

and that at least one of the left-hand sides inequalities hold strictly. Let us focus one, say player

i, for whom the inequality is strict. Clearly, is always possible to rearrange the transfers among

individuals in such a way that all the left-hand sides inequalities become strict.

• S = {1, 2}
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Suppose that we have the following inequalities

3

 4∑
j=1,j 6=3

zj1

− 4∑
j=1,j 6=3

xj1 − 1 ≥ 3

 3∑
j=1

z̄j1 + z41

− 3∑
j=1

x̄j1 − x41 ≥ γ1t (4.10)

4∑
j=1,j 6=3

zj2 + z21 ≥
3∑

j=1

z̄j2 + z42 + z̄21 ≥ γ2t. (4.11)

We can reason as before. When one of the left-hand side inequality is strict, one can make a

transfer that striclty benefits the other player of the deviating coalition.

• S = {2, 3}

Suppose that

3

 4∑
j 6=1

zj3

− 4∑
j 6=1

xj3 − 1 ≥ 3

 3∑
j=1

z̄j3 + z43

− 3∑
j=1

x̄j3 − x43 ≥ γ3t (4.12)

4∑
j 6=1

zj2 + z21 ≥
3∑

j=1

z̄j2 + z42 + z̄21 ≥ γ2t. (4.13)

The same reasoning used above applies.

• S = {1, 3}.

Assume that the following two inequalities hold.

3

 4∑
j=1,j 6=2

zj1

− 4∑
j=1,j 6=2

xj1 − 1 ≥ 3

 3∑
j=1

z̄j1 + z41

− 3∑
j=1

x̄j1 − x41 ≥ γ1t (4.14)

3

 4∑
j=1,j 6=2

zj3

− 4∑
j=1,j 6=2

xj3 − 1 ≥ 3

 3∑
j=1

z̄j3 + z43

− 3∑
j=1

x̄j3 − x43 ≥ γ3t, (4.15)

and that at least one of them holds strictly. Again, we can always design some transfers of good

ensuring the the left-hand sides inequalities are strict.

Finally, all the one-person S coalitions satisfy the partially quasi-transferable preferences property.

Therefore preferences are partially quasi-transferable. The game satisfies all our assumptions.

Therefore there exists a strong hybrid solution.

Now consider the following strategy profile: zii = 1 for all i, xi4 = 1 for all i = 1, 2, 3, z4i = 1/3

for all i = 1, 2, 3. This profile is a hybrid solution (it is impossible to (weakly) increase the welfare

of any deviating coalition). Yet, it is not a strong hybrid solution. To see this, consider coalition

{1, 2}. Clearly if player 2 transfers a quantity 1/2 to player 1, his welfare is unchanged while that

of player 1 strictly increases (even when player 3 minimizes the deviants’ payoffs).
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Finally, consider the following strategy profile: zii = 1 for all i 6= 2, z22 = 0, z21 = 1, xi4 = 1

for all i = 1, 2, 3, z4i = 1/3 for all i = 1, 2, 3. This profile is a strong hybrid solution (it is

impossible to increase the welfare of any deviating coalition).

Notice that there is a set of hybrid solutions indexed by the transfer of good by player 2 to player

1. For instance, consider the solutions obtained as above but with z22 = 1 − z21, 0 ≤ z21 ≤ 1.

Then there is a strong hybrid solution strictly included in the set of hybrid solutions (set z21 = 1).

The last two versions of the garbage game illustrate the fact that the condition of partially quasi-

transferable preferences is not necessary for the existence of a strong hybrid solution, nor it is

necessary for a strong hybrid solution to be strictly included in the set of hybrid solutions.

4.2 A coalitional game with environmental externalities

Consider a coalitional game with environmental externalities where there are n agents (e.g., coun-

tries, firms). Assume that these agents produce and consume the same good and that production is

a polluting activity. Let yi denote the production of agent i and let xi be the emission of pollutants

resulting from this production. Also assume that yi = gi(xi) and that ui(x) = gi(xi)− vi
(∑
i∈I
xi
)
,

where gi : R+ → R+ is an increasing function such that gi(0) = 0 and vi : R+ → R+ is increas-

ing on R+. Thus agent i’s payoff increases with the consumption of the produced good (gi(xi))

and decreases with global pollution (
∑
i∈I
xi). Further, assume that Xi = {xi : 0 ≤ xi ≤ x0

i } (x0
i is

agent i’s maximum emission level), and that both gi and vi are continuous.

Now, suppose that there are x ∈ X , xS ∈ XS , C ∈ C, xC ∈ XC , γ ∈ ∆C , S ⊆ C, t > 0 such

that

uS(xS , x−C) � uS(xC , x−C) � tγS .

This implies that there is an agent i in S such that

gi(xi)− vi

∑
j∈S

xj +
∑

j∈C\S

x0
j +

∑
j∈−C

xj

 > tγi. (4.16)

Here, the agents j ∈ C \ S set their emission levels equal to x0
j in order to punish the deviation of

coalition S. Necessarily, xi > 0 (because v(.) takes non-negative values, and tγi is non-negative).

Then by continuity of gi(.) there exists ε > 0 such that xi − ε > 0, and such that

gi(xi − ε)− vi

xi − ε+
∑

j∈S,j 6=i

xj +
∑

j∈C\S

x0
j +

∑
j∈−C

xj

 > tγi. (4.17)
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Now set S̃ = S and x̃k = xk, k 6= i, x̃i = xi − ε. Since vk(.) is decreasing it holds that for every

agent k in S̃:

gk(xk)− vk

∑
j∈S

xj − ε+
∑

j∈C\S

x0
j +

∑
j∈−C

xj

 > tγk. (4.18)

This proves that preferences are partially quasi-transferable.

5 CONCLUSION

We have proposed a notion of strong hybrid solution, which is a refinement of Zhao’s hybrid

solution. Like this solution, the strong hybrid solution is well suited to study situations where

people cooperate within coalitions but where coalitions compete with one another. In the strong

hybrid solution, as opposed to Zhao’s solution, the strategy profile assigned to each coalition is

strongly-Pareto optimal. To put it another way, all possible gains of cooperation at the coalition

level have been exhausted.

We have also given existence results for the strong hybrid solution in games with compact and

convex strategy spaces.

We would like to point out that the concept of hybrid solutions, as well as that of strong hybrid

solution introduced in this paper can be used to study the existence of the consensus equilibria

introduced by Di et al. [2021] for the mining gap games related to the stability of Blockchain

Ecosystems, which plays a key role for the development of Ecosystems. The strong hybrid solution

may also be applied to study coalitional game with altruism (see, e.g., the multiobjective games

analyzed in Lejano and Ingram [2012]).

There are at least two issues that can be studied in further research. The first one is the existence

of the strong hybrid solution in games with discontinuous payoffs. Another interesting issue is

the existence of this solution with general strategy spaces, and with an arbitrarily large number of

players.
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