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1 Summary statement

Tissue morphogenesis is driven by multiple mechanisms. This study proposes a method-

ology to identify regions in the developing tissue, where each of the regions has distinctive

cellular dynamics and deformation.

Abstract

Within developing tissues, cell proliferation, cell motility, and other cell behav-

iors vary spatially, and this variability gives a complexity to the morphogenesis.

Recently, novel formalisms have been developed to quantify tissue deformation and

underlying cellular processes. A major challenge for the study of morphogenesis

now is to objectively define tissue sub-regions exhibiting different dynamics. Here

we propose a method to automatically divide a tissue into regions where the lo-

cal deformation rate is homogeneous. This was achieved by several steps including

image segmentation, clustering, and region boundary smoothing. We illustrate the

use of the pipeline using a large dataset obtained during the metamorphosis of the

Drosophila pupal notum. We also adapt it to determine regions where the time

evolution of the local deformation rate is homogeneous. Finally, we generalize its

use to find homogeneous regions for the cellular processes such as cell division,

cell rearrangement, or cell size and shape changes. We also illustrate it on wing

blade morphogenesis. This pipeline will contribute substantially to the analysis of

complex tissue shaping and the biochemical and bio-mechanical regulations driving

tissue morphogenesis.

2 Introduction1

During tissue development, morphogenesis is accompanied by cellular processes such2

as cell division, cell rearrangement, cell size and shape changes, apical constriction,3

and apoptosis. The cellular processes are coordinated together, yielding collective cell4

migration and local deformation of each tissue region, resulting in convergent extension5

or epithelial folding. Furthermore, the local deformations of different tissue regions are6

coordinated too, resulting in large scale tissue morphogenesis. Coordinations between7
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invaginated mesoderm and covering ectoderm (Rauzi et al., 2015; Perez-Mockus et al.,8

2017), between invaginated midgut and elongated germ-band (Collinet et al., 2015; Lye9

et al., 2015; Dicko et al., 2017) of Drosophila embryo, between contracting wing hinge10

and expanding wing blade in Drosophila pupa (Etournay et al., 2015; Ray et al., 2015), or11

between invaginated neural plate and covering epidermal ectoderm of Xenopus embryo12

(Brodland et al., 2010), provide examples of how mechanical force generated in one13

region can drive large scale deformation in adjacent regions. In these cases, the regions14

which behave differently are easily distinguished by specific gene expressions.15

However, many tissues were found to be heterogeneous but without obvious bound-16

ary between such regions, leaving analysis limited to arbitrary regions drawn as a grid17

parallel to tissue axes, or regions expressing already known differentiation maker genes.18

Measured tissue deformation rate showed a large heterogeneity (accompanied by a het-19

erogeneity in cellular processes such as cell proliferation rate, cell division, cell rear-20

rangement, change of cell shape), and smooth spatial variations across the tissue, in21

Drosophila notum in a developing pupa (Bosveld et al., 2012; Guirao et al., 2015) (Fig.22

1A, B), Drosophila wing blade (Etournay et al., 2015), blastopore lip of Xenopus gastrula23

(Feroze et al., 2015), chick gastrula (Rozbicki et al., 2015; Firmino et al., 2016), mouse24

palatal epithelia (Economou et al., 2013), and mouse limb bud ectoderm (Lau et al.,25

2015). Recent formalisms have enabled us to measure and link quantitatively cellular26

processes with tissue deformation (Blanchard et al., 2009; Guirao et al., 2015; Etournay27

et al., 2015; Merkel et al., 2017). Those studies showed that cellular quantities also vary28

smoothly across the tissue. In addition, the causal relationship between cellular pro-29

cesses and tissue deformation is not always trivial, making it difficult to identify regions30

those actively drive morphogenesis and that passively deformed by adjacent regions.31

To study the spatial regulation of morphogenesis at tissue scale, we developed a new32

multi-technique pipeline to divide a tissue into sub-regions based on quantitative mea-33

surements of static or dynamic properties of cells or tissues. Our tissue segmentation34

pipeline consists of two steps and an optional third step: a first fast tissue segmentation35

attempted several times with random seeding, then merging these multiple tissue seg-36
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Fig. 1: Morphogenesis of Drosophila pupa notum and overview of tissue segmentation

pipeline. (A, B) Heterogeneity of tissue morphogenesis. Here a Drosophila notum at

12 hr after pupa formation (APF), with arbitrary regions drawn from a grid (A), and

at 32 hr APF, showing the heterogeneous deformation of previous regions using cell

tracking (B). Cell patches are shown with blue and white check pattern. (C) Pipeline of

the tissue segmentation. (1) Iteration of fast tissue segmentation with random seeding,

using region growing algorithm. (2) Merging multiple tissue segmentations of step 1 into

a single objective tissue segmentation, using label propagation algorithm on a consensus

matrix. (3) Smoothing regions boundaries resulting of step 2, using cellular Potts model.

4

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 9, 2021. ; https://doi.org/10.1101/696252doi: bioRxiv preprint 

https://doi.org/10.1101/696252
http://creativecommons.org/licenses/by-nc-nd/4.0/


mentations into a single one, then if necessary smoothing the resulting regions boundaries37

(Fig. 1C). In contrast to other image segmenting methods like the watershed algorithm,38

this method is designed to accept any kind of quantity of biological interest, not only39

a scalar but also a vector, a tensor, and combination of them. We apply it to the40

morphogenesis of Drosophila pupa dorsal thorax and wing blade. They were divided41

based on the tissue deformation rate or how the cellular processes contribute to the tis-42

sue deformation. Obtained sub-regions showed distinctive patterns of deformation and43

cellular processes with higher homogeneity than those along tissue axes. Interestingly,44

the tissue segmentations based on the local tissue deformation rate and on the cellular45

processes included some similar regions, suggesting that the cellular processes were regu-46

lated similarly inside the regions, therefore resulting in homogeneous tissue deformations47

inside those regions.48

3 Results I : Development of automatic tissue segmenta-49

tion algorithm50

3.1 Image segmentation by region growing algorithm51

Finding distinctive and homogeneous regions inside the heterogeneous tissue amounts to52

segmenting the geometrical space while keeping the points inside each region as similar53

as possible to each other in the property space. Here, we call property space any mor-54

phogenesis quantification measured in the tissue, whereas geometrical space refers to the55

two-dimensional space of cell patch positions inside the tissue.56

Given a set of objects, collecting similar objects to divide them into groups is gener-57

ally a task of cluster analysis. However, the cell patches distribute both in the property58

space and geometrical space. On the assumption that expression patterns of genes re-59

sponsible for morphogenesis make connected regions, and to study physical interactions60

between the regions, we aimed at getting connected regions. The initial tissue segmen-61

tation first defines a metric of similarity between cells, and then a tissue is divided62

into regions containing similar cells. The image segmentation tool, called region grow-63
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ing (Adams and Bischof, 1994; Ma et al., 2010) (Fig. 2A), was inspired by a study64

segmenting mouse heart based on cell polarity (Le Garrec et al., 2013).65

To validate the algorithm, we first tested segmentation on a simple example, namely66

the change in cell patch areas from 12 to 32 hr APF (Fig. 2B). The overall change in cell67

patch areas defines the total tissue growth, while spatially heterogeneous changes in cell68

patch areas result in local deformation, changes in tissue region proportions, and overall69

tissue shape change. Technically speaking, the change in cell patch areas is a scalar70

field, defined as the trace of the tissue deformation rate tensor. The region growing71

succeeded in finding expanding regions in posterior, lateral posterior, and lateral parts72

and a shrinking region in anterior part.73

However, the results varied dependent on the initial seeds. In contrast to a seg-74

mentation of immuno-stained image, where a true segmentation is well defined, the75

morphogenetic properties vary continuously with space, making it difficult to determine76

and validate the resultant segmentations. The silhouette, a measurement of region ho-77

mogeneity (the silhouette of an object would be 1 if it was similar to all objects in the78

same cluster, and −1 if it was more similar to objects in other clusters), differed from79

one segmentation to the other (Fig. 2C). To assess the significance of the homogeneity,80

we compared it with the average silhouette of randomly made control segmentations.81

Some of the region growing results had a low silhouette, even lower than that of half of82

the control segmentations (Fig. 2C), which means they were lacking any signification.83

Among the various results because of the random initial seeding, we don’t know84

which one should be compared with gene expression patterns or fed forward to a study85

of mechanical interactions between the regions. For practical applications, we need a86

single segmentation result for a given morphogenetic property.87

3.2 Defining a single tissue segmentation using label propagation on a88

consensus matrix89

To obtain a single tissue segmentation, we turned to consensus clusterings. In fact, since90

resultant segmentations of the region growing were dependent on randomly given initial91
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Fig. 2: Tissue segmentation by region growing algorithm. Cell patches expan-

sion/contraction rates are represented by size of white/gray circles. (A) Process of

region growing algorithm. Points of given number (6 in the shown example) are chosen

randomly as initial seeds of regions, and the regions are expanded by collecting points

similar to the seeds from their neighbors. Once the field is segmented, the seeds are

updated to region centroids in the geometrical space and means in the property space,

and the expansion of the regions are performed again from the new seeds. The seeds are

shown with colored square, where the color represents an expansion rate of the regions.

The regions are colored lighter for visibility. This update of the seeds and the regions are

iterated until it reaches a convergence. (B) Four example results of region growing. (C)

Histogram of silhouette value: blue for control segmentations, orange for region growing.

Dotted vertical orange lines show silhouette values of the four examples shown in B. For

clarity, in this figure and others, frequency axis units are not included.
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values, we ran multiple trials and merged multiple segmentation results into a single92

one. Given multiple partitions, the consensus clustering returns the partition which is93

the most similar to all of the initial partitions. We tried several consensus clustering94

algorithms, and found the label propagation on a consensus matrix (Lancichinetti and95

Fortunato, 2012; Raghavan et al., 2007) returning regions similar to the results of region96

growing.97

The label propagation on a consensus matrix converted multiple tissue segmentations98

into a weighted graph where weight of an edge represented a frequency of segmentations99

in which incident vertices (points) belonged to the same region (Fig. 3A). Then labels on100

the vertices were propagated according to the weight so that the same label was assigned101

to points which were frequently included in the same region among the given multiple102

region growing segmentations.103

The label propagation returned results similar to the region growing segmentations104

(Fig. 2B, 3B). Also, the label propagation results were more similar to each other than105

results of region growing, assessed with adjusted Rand indices (ARI), a measurement106

of similarity between two partitions (ARI of identical partitions would be 1). ARI were107

0.50± 0.21 among the results of the region growing and 0.97± 0.02 among the results of108

the label propagation. They showed similar average silhouette values, similar to median109

of those of region growing results, but smaller than the highest value of those of region110

growing (Fig. 3C). The average silhouette of the label propagation result was higher111

than those of 99.95% of the randomly made control segmentations.112

However, a consensus clustering algorithm ignores original properties of objects in113

principle and divides the objects only based on how they were divided among given114

partitions, and thus it might return disconnected regions and zigzag boundary between115

them. Some segmentations in Figure 3B also included disconnected regions as marked116

by gray color.117
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Fig. 3: Tissue segmentation by label propagation on a consensus matrix. (A) Process of

label propagation algorithm. Multiple clusterings (upper) are converted to a consensus

matrix, which gives weights to a complete graph on the objects being clustered (lower

left). Edges with weights less than a given threshold are removed. All objects are

initially assigned labels different to each other. And then, one by one in random order,

each label is updated to the most frequent one weighted by edges incident to the object

until it reaches a convergence. (B) Four example results of label propagation on the same

consensus matrix. (C) Histogram of silhouette value: blue for control segmentations,

orange for region growing, red for label propagation.

3.3 Smoothing of tissue segmentation results by cellular Potts model118

For the case of complex boundary and disconnected points, we prepared an optional119

step to smooth the boundary and remove disconnected points when needed. To smooth120
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the consensus regions boundaries, we employed cellular Potts model, which simulates121

dynamics of a cellular tissue by calculating energies of cells from their geometry, trying122

to decrease the total energy. In our application to the boundary smoothing, the en-123

ergy was lower when the region boundary was shorter and the homogeneity was higher124

(Fig. 4A). The boundary length and homogeneity were balanced so that all regions had125

enough smooth boundary, evaluated by a circularity (Bosveld et al., 2016), and was as126

homogeneous as possible. The result was not affected largely by extending a duration127

of the simulation, and thus we stopped the simulation when it was enough smoothed.128

It smoothed boundaries and removed disconnected cell patches (Fig. 4B, C) while129

keeping the average silhouette value higher than those of 99.5% of the randomly made130

control segmentations (Fig. 4D). Since the cellular Potts model implementation includes131

the Metropolis update, i.e., choosing a pixel randomly and updating the pixel by prob-132

ability according to a change of the energy, resultant smoothed segmentations varied133

among different trials even with the same parameters and initial segmentation. There-134

fore we iterated the cellular Potts model smoothing 50 times and integrated its results135

by the label propagation algorithm again.136

Now we have a pipeline of the region growing, the label propagation, and the optional137

cellular Potts model to divide a field of property (scalar, tensor, or any kind of value138

with metric) into regions. The resultant regions are homogeneous, where points in each139

region are more similar to each other than to points in other regions.140

4 Verification of the method against simulated data141

We tested our method whether it can segment a simulated tissue using a normal cellular142

Potts model.143

We prepared a 2D tissue model in which two types of cells with different surface144

tensions were assembled (Fig. 5A). The tissue was geometrically compressed in the145

horizontal direction and extended in the vertical direction, so that the cells retained their146

area but they are vertically elongated (Fig. 5B). Because of the surface tension, the cells147
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Fig. 4: Boundary smoothing by cellular Potts model. (A) Process of cellular Potts

model. A pixel is randomly chosen and changes its belonging region if it decreases

boundary length and/or increases homogeneity (marked by red). (B) Result of label

propagation with a disconnected region shown by gray color. (C) Result of boundary

smoothing by cellular Potts model. (D) Histogram of silhouette value: blue for control

segmentations, orange for region growing, red vertical line for label propagation, and

black vertical line for regions smoothed by cellular Potts model. Dotted blue line shows

threshold for the highest 0.5% of the control segmentations.
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tried to minimize their perimeter, and thus they were rearranged and rounded (Fig. 5C,148

Movie 1). The tissue was split in a 4×7 grid, and the deformation and cellular processes149

after the compression were measured in each cell patch. The measured deformation150

and cellular processes were averaged among 12 simulations. The cells were rearranged151

similarly between the two types of cells (Fig. 5D, Movie 1). However, when we tried the152

segmentation based on the cell rearrangement, the cells were successfully distinguished153

(Fig. 5E). When the tissue was segmented into three regions, it included a small and154

disconnected region after the first label propagation and smoothing (Fig. 5F, G). The155

cell rearrangement rate was slightly higher among the cells with lower surface tension156

(Fig. 5H). In general, lower surface tension would allow larger fluctuation, and the larger157

fluctuation might have facilitated the faster cell rearrangement. The obtained two regions158

showed a significantly high homogeneity (Fig. 5I). With these results, we confirmed that159

our method could properly identify groups of cells with different mechanical properties160

based on their behavior.161

5 Results II : Tissue segmentation based on tissue mor-162

phogenesis163

We now turn to property spaces better representing tissue morphogenesis. In Guirao164

et al. (2015), tissue deformation rate (G) and underlying cellular processes, cell divi-165

sion (D), cell rearrangement (R), cell shape change (S), and cell delamination (A) were166

quantified into tensors. The tensors were obtained from change of the texture aver-167

aged over 20 hr from 12 hr APF to 32 hr APF or over 2 hr at each time point. By168

comparing the tensors, for example, one can check whether cell divisions and cell rear-169

rangements elongated tissue in the same direction or attenuated each other. In the same170

way, by comparing the tensors of deformation rates with a unit tensor which has the171

same direction of elongation as tissue deformation rate, one can estimate an amplitude172

of the tissue deformation rate and how much the cellular processes contribute to the173

tissue deformation in both terms of contraction/expansion (isotropic deformation) and174
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narrowing/elongation (anisotropic deformation) (Guirao et al., 2015). They are scalar175

value and denoted by G// for the tissue deformation rate, D// for cell division, R// for176

cell rearrangement, S// for cell shape change, and A// for cell delamination. For the sake177

of clarity, we call the tissue deformation rate and the cellular processes averaged over178

the whole 20 hr from 12 to 32 hr APF time-average tissue deformation rate and cellular179

processes.180

The effective contributions averaged over the whole tissue showed dynamic time181

evolution (Fig. S1), with a large peak of cell division and cell shape change around 16182

hr APF, second small wave of cell division around 22 hr APF, and gradual increase of183

Fig. 5 (following page): Segmentation of simulated tissue. (bf A) Initial configuration

of the model tissue. The cells with lower surface tension were colored gray, and the cells

with higher surface tension were colored yellow. Cell perimeters were colored green. (B,

C) Tissue after the compression (B) and after the simulation (C). (D) Cell rearrange-

ment in each cell patch after the compression. Pale blue line shows the cell patches.

Magenta bars represent direction and rate of assumptive tissue deformation caused by

the cell rearrangements. Scale bar and circle indicate deformation rate 0.2 h−1. (E)

Segmentation into two regions based on the cell rearrangements. It is a result of the

first label propagation, but it did not need smoothing. (F, G) Segmentation into three

regions based on the cell rearrangements, after the first label propagation (F) and the

boundary smoothing (G). The regions were colored for visibility. (H) Plot of the assump-

tive deformation rate caused by the cell rearrangements. Eigenvalue of the tensor for

the cell rearrangements represents a rate of tissue elongation by the cell rearrangement,

and it is plotted against time after the compression. Gray line and yellow line show the

average rate among the cells with lower surface tension and higher tension respectively.

Error bars show their standard deviation. (I) Histogram of average silhouette value of

control segmentations divided into two regions. Red vertical line shows silhouette value

of label propagation result (E). Dotted blue line shows threshold for the highest 5% of

the control segmentations.

13

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 9, 2021. ; https://doi.org/10.1101/696252doi: bioRxiv preprint 

https://doi.org/10.1101/696252
http://creativecommons.org/licenses/by-nc-nd/4.0/


-0.225 -0.075 0.075 0.225

p < 0.05

Fr
eq

ue
nc

y

Silhouette value

-0.4
0

0.4
0.8
1.2
1.6

0 4 8 12 16De
fo

rm
at

io
n 

ra
te

 b
y


ce
ll 

re
ar

ra
ng

em
en

t

Time

A

B C

D

I

FE

H

G

14

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 9, 2021. ; https://doi.org/10.1101/696252doi: bioRxiv preprint 

https://doi.org/10.1101/696252
http://creativecommons.org/licenses/by-nc-nd/4.0/


cell shape change and cell rearrangement. The effective contributions also showed large184

variance across the tissue at each time point. Therefore we included the time evolution185

in the property space. Assume that there are two regions in a tissue where the tissue186

expands, the first region expands during 14-17 hr APF, and the second region expands187

during 25-28 hr APF, resulting in similar size changes, then the two regions cannot be188

distinguished by the time-average expansion rate. To distinguish them, we compared a189

property at each time point and summed up its difference through the whole time. When190

two cell patches always behaved similarly, then the difference at each time point is small191

and so the total difference is small too, whereas cell patches with deformations occurring192

in different timing are separated at each time point and thus the total difference gets193

large. In contrast with time-average, we call the sum of difference at each time point194

time-evolution.195

5.1 Tissue segmentations based on tissue deformation rate and cellular196

processes effective contributions197

We first divided the tissue based on time-average and time-evolution of tissue defor-198

mation rate. The similarity was given by Euclidean distance of tensors. The notum199

was divided into anterior-middle-posterior and medial-lateral regions by both the time-200

average and time-evolution, while the middle regions were smaller and the middle lateral201

region extended medially in the segmentation based on time-evolution (Fig. 6A-D).202

Next, we divided the tissue based on time-average and time-evolution of cellular203

processes. The amplitude of tissue deformation rate and cellular processes effective204

contributions were combined in a vector, and their similarity was given by Euclidean205

distance of vector. In contrast to the segmentations based on the time-average and206

time-evolution of tissue deformation rate, the segmentations based on time-average and207

time-evolution of the cellular processes were dissimilar to each other (Fig. 6E-H). The208

segmentation based on time-evolution of cellular processes included a posterior region, a209

large anterior region, a neck-notum boundary region, lateral posterior region, a scutum-210

scutellum boundary region, and a lateral region (Fig. 6H).211
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While a change in the minimum circularity for the boundary smoothing did not af-212

fect the segmentation based on the time-average tissue deformation rate (Fig. S2A),213

shape of the boundary changed dependent on the minimum circularity for the segmen-214

tations based on the other three property spaces (Fig. S2B-D). The cellular Potts model215

returns regions with circularity higher than the given minimum value if it is the most216

homogeneous segmentation.217

We also tried dividing the tissue into various numbers of regions (Fig. S3). In218

many cases, an increase of the number of the regions resulted in subdividing the regions219

already obtained. In addition, when the number was too large, some results of the first220

label propagation included small regions similar to one observed in the segmentation of221

simulated data (Fig. 5F). Those small regions were absorbed into surrounding regions222

during the smoothing by cellular Potts model. Then the final label propagation tried223

to integrate regions smaller than the final segmentation, returning small and sometimes224

disconnected regions (Fig. S3 third column below third row and fourth column below225

sixth row), again like one of simulated data (Fig. 5G). Thus the existence of small226

regions suggest that it is over-segmented.227

5.2 Correspondence between segmentations based on cellular processes228

and tissue deformation rate229

Both of the segmentations based on time-evolution of tissue deformation rate and cellular230

processes effective contributions included the large anterior region, the middle boundary231

region, the lateral posterior region, and the posterior region, although the anterior and232

posterior regions were divided into medial and lateral subregions in the segmentation233

based on the tissue deformation rate. Figure 7A-D show overlap between segmentation234

based on time-evolution of cellular processes (Fig. 6H) and the others (Fig. 6B, D, F) or235

a conventional large grid parallel to tissue axes. The middle lateral and posterior lateral236

regions in the segmentation based on time-evolution of tissue deformation rate and the237

middle scutum-scutellum boundary region and lateral posterior regions in the segmen-238

tation based on time-evolution of cellular processes overlapped each other (Fig. 7C).239
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A B

C D

E F

G H

Fig. 6: Segmentations based on tissue deformation and underlying cellular processes.

For each cell patch, direction of elongation is represented by a bar, and the effective

contributions of cellular processes are indicated by relative directions of deformation rate

between the tissue and each cellular process. For quantification and representation of

tissue deformation rate and cellular processes, see Methods and Guirao et al. (2015). (A-

H) Segmentations based on time-average tissue deformation rate (A, B), time-evolution

of deformation rate (C, D), time-average cellular processes effective contributions (E,

F), and time-evolution of cellular processes (G, H). First column shows results of the

first label propagation (A, C, E, G) and second column shows results of boundary

smoothing (B, D, F, H).
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We also evaluated the overlap between the segmentations by ARI (Fig. 7E). Despite the240

difference between the anterior subregions, the segmentations based on time-evolution241

of tissue deformation rate and cellular processes overlapped each other more than the242

others.243
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Fig. 7: Correspondence between segmentations based on cellular processes and deforma-

tion rate. (A-D) Overlays of segmentations, where segmentation based on time-evolution

of deformation rate is shown by cyan line, while segmentations based on time-average

deformation rate (A), time-average cellular processes (B), time-evolution of cellular pro-

cesses (C), and large grid (D) are shown by magenta line. (E) Adjusted Rand indices

of A-D.

5.3 Homogeneity of the obtained regions244

Next, we evaluated the homogeneity of the obtained regions. The time-evolution of245

tissue deformation rate was similar among cells inside regions of the segmentations based246

on time-average and time-evolution of tissue deformation rate except the middle-lateral247

region of the former (Fig. 8A, B). On the other hand, the large grid segmentation showed248

large heterogeneity in the posterior regions (Fig: 8C). The average silhouette value of249

the segmentation based on the time-evolution of deformation rate was higher than those250
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of 99.5% of the control segmentations (average silhouette for label propagation: 0.0568,251

for smoothed regions: 0.0600, the maximum of the smallest 99.5% of controls average252

silhouettes: 0.0425) (Fig. 8D). The average silhouette of the segmentation based on time-253

averaged tissue deformation rate was also higher than 95% of the control segmentations254

(average silhouette for label propagation: 0.0336, for smoothed regions: 0.0260, the255

maximum of the smallest 95% of controls average silhouettes: -0.0098). On the other256

hand, that of the conventional grid segmentation was close to median of the control257

segmentations (average silhouette: -0.0694).258

Also, the time-evolution of cellular processes was homogeneous inside the regions of259

the segmentation based on time-evolution of cellular processes, but not in segmentation260

based on time-average of cellular processes nor in the grid (Fig. 8E-G). The average261

silhouette value of segmentation based on time-evolution was higher than 99.995% of262

control segmentations (average silhouette for label propagation: 0.147, for smoothed263

regions: 0.1448, the maximum of the smallest 99.995% of controls average silhouettes:264

0.124), while that of segmentation based on time-average was smaller than 5% of control265

segmentations (average silhouette for label propagation: 0.0125, for smoothed regions:266

-0.0385, the maximum of the smallest 95% of controls average silhouettes: 0.0241) (Fig.267

8H).268

Our tissue segmentation is designed to divide a tissue into regions homogeneous in a269

given property space, and the homogeneity of either tissue deformation rate or cellular270

processes in the segmentations based on each property demonstrated that the pipeline271

worked fine (Fig. 8B, F). However, it does not ensure the homogeneity of the regions in272

property spaces other than one based on which our segmentation was performed. Figure273

S4 shows heat maps of silhouette values measured in different property spaces. Even274

though the homogeneity in the regions differed among the different property spaces, the275

segmentations based on time-evolution of tissue deformation rate and cellular processes276

showed higher homogeneity than the others also in the property spaces of deformation277

rates due to cell divisions, cell rearrangements, and cell shape changes.278
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Fig. 8: Homogeneity in the obtained regions. (A-C) Heat map of silhouette value mea-

sured with time-evolution of tissue deformation rate in segmentations based on time-

average deformation rate (A), time-evolution of deformation rate (B), and large grid

(C). (D) Histogram of silhouette value: blue for control segmentations, orange for re-

gion growing. Red vertical lines show silhouette value of label propagation results. Black

vertical lines show silhouette value of regions smoothed by cellular Potts model. Dot-

ted blue lines show threshold for the highest 0.5% of the control segmentations. Gray

and cyan vertical line shows silhouette value of segmentation based on time-averaged

deformation rate and large grid. (E-G) Heat map of silhouette value measured with

time-evolution of cellular processes effective contributions in segmentations based on

time-average cellular processes (E), time-evolution of cellular processes (F), and large

grid (G). (H) Histogram of silhouette value: blue for control segmentations, orange

for region growing. Red vertical lines show silhouette value of label propagation re-

sults. Black vertical lines show silhouette value of regions smoothed by cellular Potts

model. Dotted blue lines show threshold for the highest 0.05% of the control segmen-

tations. Gray and cyan vertical line shows silhouette value of segmentation based on

time-averaged cellular processes and large grid.
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A B

Fig. 9: Projection of the segmentation onto the notum cells. The segmentations based

on time evolution of cellular processes were projected. (A, B) The segmentation was

projected onto the notum cells at 12 hr (A) and 32 hr APF (B), where regions were

indicated by colors. The regions corresponded to scutum (pale blue and green), scutellum

(red), scutum-scutellum boundary (dark blue and purple), and invaginated notum-neck

boundary (yellow). The anatomical regions were identified according to positions of

macrochaetae (orange circles in B). Scale bars indicate 50 µm.

5.4 Cellular processes effective contributions inside the regions279

We projected the regions divided based on the time-evolution of cellular processes onto280

the actual cell map, and found that the anterior and posterior regions corresponded281

to scutum and scutellum, and the middle boundary and lateral posterior regions cor-282

responded to the scutum-scutellum boundary (Fig. 9). This result demonstrates that283

the obtained regions corresponded to the anatomical features, and cells were behav-284

ing differently between the anatomical regions. Note that the segmentations based on285

time-averaged tissue deformation rate or cellular processes did not match the anatom-286

ical features, indicating that the cells in the anatomical regions are actually regulated287

temporally.288
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Figure 10 shows plots of cellular processes effective contributions average in each re-289

gion of the segmentation based on time-evolution of cellular processes. The second peak290

of cell division was observed only in the posterior regions and the scutum-scutellum291

boundary region, consistent with the preceding studies with maps of number of cell divi-292

sions (Bosveld et al., 2012; Guirao et al., 2015), while we also found the first peak of cell293

division small in the lateral posterior region. Plots of average cellular processes differed294

from each other also among regions in the segmentation based on tissue deformation rate295

but less distinctive in the large grid segmentation (Fig. S5). Distances between the plots296

in Figure 10 were 0.65±0.16 and those for the segmentation based on tissue deformation297

rate were 0.63 ± 0.20, larger than those for large grid segmentation (0.44 ± 0.14). This298

result demonstrates that cellular processes in the obtained segmentations were more299

distinctive than those in the conventional grid.300

5.5 Application to the morphogenesis of wing blade301

To demonstrate the generality of our method to divide a tissue, we performed the same302

segmentation and analysis in the Drosophila pupa wing blade. During 15-32 hr APF,303

the wing blade is elongated in proximal-distal direction by a contracting wing hinge304

connected with the wing blade proximal side while its distal side is anchored to a cuticle305

via Dumpy (Etournay et al., 2015; Ray et al., 2015). The wing hinge contraction also306

narrows it in the anterior-posterior direction and induces shear strain in wing blade prox-307

imal anterior and posterior regions (Fig. 11A, B). We performed the tissue segmentation308

for the wing blade based on time-evolution of tissue deformation rate (Fig. 11C) and309

cellular processes (Fig. 11D) dividing into four regions. In both cases, the wing blade310

was divided into anterior, middle, posterior, and distal regions. All regions showed pos-311

itive silhouette values (Fig. 11E, F), and their averages were significantly higher than312

the average silhouette values of control segmentations (Fig. 11G, H). Like the notum,313

dividing the wing blade into larger number of regions also subdivided already obtained314

regions (Fig. S3). Plots of the cellular processes effective contributions also showed dis-315

tinctive patterns between the regions, where the cell division showed small contribution316
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Fig. 10: Cellular processes effective contributions inside the regions. (A) Tissue segmen-

tation based on time-evolution of deformation rate, where two anterior subregions were

merged. (B) Plots of cellular processes effective contributions averaged in each region

of 1-5 in A.
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in the anterior region, the cell rearrangements dominated the tissue deformation around317

26 hr APF in the anterior and posterior regions, and the cell shape changes showed two318

peaks around 17 and 22 hr APF in the distal region (Fig. 11I). Projection of the four319

regions onto the cells showed a difference between the regions and interveins, whereas320

the posterior region roughly corresponded to the proximal posterior intervein and the321

boundary between the anterior and distal regions corresponded L3 vein (Fig. S6).322

6 Discussion323

This study demonstrates that the pipeline of the region growing, the label propagation on324

the consensus matrix, and the boundary smoothing by cellular Potts model could divide325

a deforming heterogeneous tissue into homogeneous regions based on any prescribed326

quantity. Using this segmentation method, we divided the developing dorsal thorax327

and wing of Drosophila pupa based on their morphogenesis, and found regions with328

distinctive tissue deformation rate and underlying cellular processes.329

The tissue segmentation based on morphogenesis differs from conventional image330

Fig. 11 (following page): Segmentation of Drosophila wing blade into four regions. (A,

B) Deformation of a wing blade from 15 hr (A) to 32 hr APF (B). Same representation

ass Fig. 1 A, B. Cell patches are shown with blue and white check pattern. (C, D)

Segmentation based on time-evolution of tissue deformation rate (C) and its heat map

of silhouette value (D). (E, F) Segmentation based on time-evolution of cellular processes

(E) and its heat map of silhouette value (F). (G, H) Histogram of average silhouette

value of control segmentations for the property spaces of tissue deformation rate (G)

and cellular processes (H). Red vertical lines show average silhouette values of label

propagation results. Black vertical lines show average silhouette values of smoothed

regions. Dotted blue lines show threshold for the highest 0.05% (G) and 0.005% (H) of

the control segmentations. (I) Plots of cellular processes effective contributions averaged

in each region of 1-4 in D.

24

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 9, 2021. ; https://doi.org/10.1101/696252doi: bioRxiv preprint 

https://doi.org/10.1101/696252
http://creativecommons.org/licenses/by-nc-nd/4.0/


-0.16 -0.08 0 0.08 0.16

p < 0.0005

-0.16 -0.08 0 0.08 0.16

p < 0.00005

Fr
eq

ue
nc

y

Silhouette value

Fr
eq

ue
nc

y

Silhouette value
—ctrl, —lp, —smoothed

-0.04

0

0.04

0.08

0.12

Time (hr APF)

16h 5m 22h 35m 29h 5m

-0.04

0

0.04

0.08

0.12

Time (hr APF)

16h 5m 22h 35m 29h 5m
-0.04

0

0.04

0.08

0.12

Time (hr APF)

16h 5m 22h 35m 29h 5m

-0.04

0

0.04

0.08

0.12

Time (hr APF)

16h 5m 22h 35m 29h 5m

1

1

2

4

3

2

43
H

G

FD

EC

B

A

I

— G// — D// — R// — S// — A//

-1 1silhouette value

C
om

po
ne

nt
s 

(h
-1

)

C
om

po
ne

nt
s 

(h
-1

)

C
om

po
ne

nt
s 

(h
-1

)

C
om

po
ne

nt
s 

(h
-1

)

25

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 9, 2021. ; https://doi.org/10.1101/696252doi: bioRxiv preprint 

https://doi.org/10.1101/696252
http://creativecommons.org/licenses/by-nc-nd/4.0/


segmentation and cell segmentation algorithms in terms of quantity and supervision.331

Marking a human in a picture, an organ in histological image, or dividing cells in a332

microscopic image had been done manually, and thus results of the watershed algorithm333

or the artificial neural network could be supervised and corrected with the manual seg-334

mentations. On the other hand, the segmentation based on morphogenesis is hardly335

done manually for several reasons. First, the morphogenesis was quantified as multiple336

tensor fields with time evolution, and thus it is hard to visualize them in a 2D image for337

manual segmentation. Second, it is not easy to evaluate whether a given region actually338

corresponds to genetical/mechanical regulation of morphogenesis. Therefore we looked339

for a method which divides a tissue based on any prescribed quantity and returns regions340

with smooth boundaries. Region growing is a conventional and simple method of image341

segmentation, and requires a property space only to be metric. The varying results of342

the region growing were given to the label propagation and cellular Potts model to pro-343

duce a single tissue segmentation, and the result was evaluated by region homogeneity344

boundary smoothness.345

The notum segmentations based on time-evolution of tissue deformation rate and346

cellular processes effective contributions returned similar regions corresponding to the347

scutum, scutellum, and the boundary between them. By the tissue deformation rate, the348

scutum and scutellum regions were divided into medial and lateral subregions. Since the349

vector of effective contributions ignores the direction of deformation, the two subregions350

could be interpreted as regions of similar underlying cellular processes but deforming351

in different directions. On the other hand, the middle boundary region and the lateral352

region given by the cellular processes, both overlapped with the middle boundary region353

given by tissue deformation rate, could be interpreted as regions with different cellular354

processes but of similar tissue deformations. The wing blade was divided into anterior,355

middle, posterior, and distal regions based on both the tissue deformation rate and356

cellular processes, but the regions did not matched the wing veins pattern.357

Silhouette analysis showed that the segmentations based on time-evolution of de-358

formation rate and cellular processes included regions homogeneous in various property359
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spaces, whereas the conventional grid segmentation included heterogeneous regions.360

This method has some limitations. It cannot segment a small region; but such region361

might disappear during the boundary smoothing, resulting in disconnected regions in362

a final segmentation. Also, it is hard to determine the number of regions. We only363

know that a tissue might be over-segmented when it includes the small region. In a364

practical application, the tissue shall be segmented into various number of region with365

various minimum circularities, and one of them can be chosen by comparing it to gene366

expression patterns, analyzing cell behaviors inside each region, or other characteristics367

of interest.368

In conclusion, we built a method to divide a tissue based on any prescribed property369

space. This allows an application to a study of spatial regulation of various processes,370

where the property space should be chosen for the process of interest. For example,371

to study a spatial regulation of cell division orientation, the property space may be372

prepared from, instead of the local deformation rate and cellular processes, the tensor373

field of cell division and known regulating factors such as cell shape, localization of planar374

cell polarity proteins, and tension on cell-cell interface, and then resultant regions can375

be compared with genes expression patterns. Also, this method is not dependent on376

how the morphogenesis was quantified, and one can include rotational movement by377

anti-symmetric strain rate tensors, or 3D deformation by using voxels instead of pixels.378

7 Methods379

7.1 Quantification tools380

This section describes in details the following quantification tools. Morphogenesis data381

result from the quantification of local tissue deformation rate and underlying cellular382

processes as described in (Guirao et al., 2015). The similarity between two tensors is383

quantified by the standard Euclidean metric. The homogeneity of a quantity within a384

given region, i.e. the similarity between measurements of this quantity within a region,385

is measured by silhouette, a standard tool of cluster analysis. For a measurement of386
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similarity between tissue segmentations, we use the Rand index, which indicates how387

well two data clusterings agree.388

7.1.1 Quantification of tissue deformation and cellular processes389

Quantification of local tissue deformation and underlying cellular processes was per-390

formed in (Guirao et al., 2015). Briefly, Drosophila nota expressing GFP-tagged E-391

cadherin were imaged. The notum movies were split in a grid (with patches about 20392

µm width) at the first frame (Fig. 1C), 12 hr after pupa formation (APF). The local393

deformation rate and the cellular processes were measured in each cell patch through394

the development, as follows.395

Epithelial cell contours were detected automatically using watershed algorithm, cells396

were tracked, adjacencies between cells were listed, and relative positions of adjacent cell397

centers were recorded. The tissue deformation rate, denoted by the symmetric tensor398

G, was obtained from changes of relative positions between neighbor cells over 20 hr399

from 12 hr APF to 32 hr APF, or over 2 hr at each time point when recording the time400

evolution. The tissue deformation rate G was then decomposed into cell shape change401

S and deformation accompanied by change of cell adjacency, which was further divided402

into cell division D, cell rearrangement R, and cell delamination A, which are symmetric403

tensors too.404

In a collection of cells where the total deformation is driven completely by the four405

fundamental cellular processes, the tensors are in a balance equation,406

G = D + R + S + A. (1)

The scalar product of two tensors Q and Q′ in dimension d is defined as:407

Q.Q′ =
1

d
Tr(QQ′T ), (2)

and the unitary tensor uG that is aligned with G is given by408

uG =
G

(G.G)1/2
. (3)
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Since the scalar product (Eqn. 2) is a bilinear operation, multiplying uG by a tensor,

the operation .uG : Q → Q//, retains the balance between the tissue deformation rate

and the cellular processes in Equation 1 while converting them to scalar magnitudes:

G// =G.uG

=(D + R + S + A).uG

=D.uG + R.uG + S.uG + A.uG

=D//+ R//+ S//+ A//. (4)

The scalar G// represents the local magnitude of tissue morphogenesis, and D//, R//,409

S//, and A// represent the effective contributions of the cellular processes to the tissue410

morphogenesis. When a cellular process produces an anisotropic deformation in the same411

direction as that of tissue, e.g. cells divided in the same direction as tissue elongation,412

the scalar product between them returns a positive value, while it returns a negative413

value when a cellular process counteracts tissue deformation.414

7.1.2 Metric415

Similarity of morphogenesis between different cell patches was defined as follows.416

For expansion/contraction of area (isotropic deformation), similarity was given by417

difference in expansion/contraction rates.418

Similarity of anisotropic deformation was given by a distance between two tensors Q419

and Q’,420

d(Q,Q’) =

{(
Qxx −Qyy

2
−

Q’xx −Q’yy
2

)2

+ (Qxy −Q’xy)2

}1/2

. (5)

For tensors with time-evolution Q(t) and Q’(t), distance was given by a sum of the421

distance at each time point,422

|Q−Q’| =
∫
d(Q(t),Q’(t))dt, (6)

as an analogy to distance between functions.423
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For the composition of cellular processes, the tensors of cellular processes were con-424

verted to effective contributions and combined into a vector (G//,D//, R//, S//, A//). A425

distance between two vectors was given by Euclidean distance, the square root of the426

sum of the square of the differences between corresponding elements, and a distance427

between vectors with time-evolution v(t) and v′(t) was given by a sum of the distance428

at each time point,429

|v − v′| =
∫
||v(t)− v′(t)||dt. (7)

7.1.3 Silhouette and bootstrap430

Silhouette quantifies clustering results, indicating how well an object resembles other431

objects inside its own cluster (Rousseeuw, 1987). Assume that n objects {p1, p2, . . . , pn}432

are partitioned into k clusters {C1, C2, . . . , Ck}. For an object pi ∈ CI , we can compute433

the average distance a(pi) from pi to all other objects in CI . For J 6= I, we can also434

compute the average distance d(pi, CJ) from pi to all objects in CJ , and select the435

smallest of those, denoted by b(pi) = minJ 6=Id(pi, CJ). The silhouette value s(pi) is436

obtained by combining a(pi) and b(pi) as follow:437

s(pi) =
b(pi)− a(pi)

max{a(pi), b(pi)}
. (8)

By this definition, −1 ≤ s(p) ≤ 1, where s(p) large and close to 1 indicates that p is438

similar to other objects in the same cluster, while negative s(p) indicates that there is439

another cluster whose objects are more similar to p than objects in the cluster containing440

p.441

We took the average silhouette value over all points (cell patches) as a measurement442

of homogeneity of a given segmentation. For significance test, tissue was segmented443

randomly (see below) 20,000 times into a given number, and we got thresholds above444

which the highest 5%, 0.5%, or 0.005% of the average silhouettes were found. The445

average silhouette of given regions were compared to those of the control segmentations446

with the same number of regions.447
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7.1.4 Adjusted Rand index448

For a measurement of similarity between tissue segmentations, we use the Rand index,449

which indicates how well two data clusterings agree ; its value is 0 if the clusterings450

entirely disagree and 1 if they entirely agree. Its corrected-for-chance version is a more451

meaningful quantity, called the adjusted Rand index (ARI): it is the Rand index com-452

pared with its value expected for the random case, and its value can be negative.453

We compute the adjusted Rand index with the permutation model (Hubert and454

Arabie, 1985). Given two clusterings A = {A1, . . . , Ak} and B = {B1, . . . , Bm} of N455

elements, the contingency table τ = (nij)k×m is made where nij = |Ai ∩Bj |. The Rand456

index between A and B, RI(A,B) is457

RI(A,B) =

2
∑

ij

nij
2

−∑i

ai
2

−∑j

bj
2

+

N
2


N

2

 , (9)

where ai =
∑

j nij and bj =
∑

i nij , and for the random case the expected Rand index458

E[RI(A,B)] is459

E[RI(A,B)] =

∑
i

ai
2


N

2


∑

j

bj
2


N

2

 +


1−

∑
i

ai
2


N

2






1−

∑
j

bj
2


N

2




. (10)

Finally, the adjusted Rand index ARI(A,B) is460

ARI(A,B) =
RI(A,B)− E[RI(A,B)]

1− E[RI(A,B)]
. (11)

7.2 Tissue segmentation pipeline461

The pipeline was implemented by custom Matlab scripts, in three steps (Fig. 1C). The462

Matlab scripts are available at GitHub (https://doi.org/10.5281/zenodo.4270726). Also,463

we provides pseudo codes of them in the supplementary materials.464
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7.2.1 Region growing tissue segmentation465

The initial tissue segmentation first defines a metric of similarity between cells, and then466

a tissue is divided into regions containing similar cells. This approach was inspired by467

a study segmenting mouse heart based on cell polarity (Le Garrec et al., 2013). On468

the assumption that expression patterns of genes responsible for morphogenesis make469

connected regions, and to study physical interactions between the regions, we aimed at470

getting connected regions.471

The algorithm Region growing (Adams and Bischof, 1994; Ma et al., 2010) is an472

image segmentation method using a process similar to k-means clustering, starting from473

randomly given seeds (corresponding to “means” in k-means clustering), segmenting an474

image with the seeds followed by update of the seeds within the regions, and iterating this475

process until convergence (Fig. 2A). The tissue segmentation is done by growing regions476

from the seeds collecting pixels adjacent to the growing regions, and so the resultant477

regions are connected.478

Initial seeds were randomly chosen from data, and regions were expanded by adding479

a pixel (cell patch) adjacent to a region and the most similar to the seed of the region480

in the property space one by one until all pixels were assigned to one of the regions.481

The seeds were updated to pixels the closest to centroids of the regions, averages of the482

regions in the property space were given as property of the seeds, and then regions were483

expanded again from the seeds. These region expansions and seed updates were iterated484

until convergence was reached.485

7.2.2 Preparation of control segmentations486

The control segmentations were made using an algorithm similar to the region growing487

but ignoring the similarity between points. From randomly given seeds, regions were488

expanded by adding a pixel adjacent to a region, where the added pixel was chosen489

randomly from all adjacent pixels, until all pixels were assigned to one of the regions.490

Therefore any obtained region is connected.491
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7.2.3 Label propagation on a consensus matrix492

To merge multiple segmentation results into a single one independent on the metric, we493

use label propagation algorithm on a consensus matrix, which takes multiple partitions494

and returns a consensus partition which is the most similar to all partitions (Lancichinetti495

and Fortunato, 2012; Raghavan et al., 2007).496

For a division of n points, independent 50 trials of region growing were converted497

to a consensus matrix, whose entry at i-th row and j-th column indicates a frequency498

of partitions in which i-th point and j-th point were in the same cluster. The entries499

lower than a given threshold were set to 0. The label propagation started by assigning to500

each point a different label. Then the label of randomly chosen i-th point was updated501

to one that was the most weighted by the consensus matrix, where ij element gave the502

weight to a label of j-th point. The label update was iterated until convergence. The503

threshold for the consensus matrix was scanned between 20-80% so that a resultant504

partition contained the same number of regions as the initial partitions.505

7.2.4 Cellular Potts model for boundary smoothing506

To smooth the consensus region boundaries while preserving region area and homogene-507

ity, we use the cellular Potts model, in which a cellular structure is numerically simulated508

in a square lattice, where each cell is a set of pixels. The system energy depends on cell509

shapes, and the pattern is updated in an iteration to decrease the energy, with some510

fluctuation allowance (Graner and Glazier, 1992). In the simplest and common two-511

dimensional form, the energy H arises from total perimeter length P (with line energy512

J) and constraint on each region area A (with compressibility λ); decreasing it results513

in smoother regions with preserved area A0, removing small protrusions and discon-514

nected regions. In this study, we also included the silhouette s to account for the region515

homogeneity, with a weight coefficient h:516

H =
∑

regions

[
JP + λ(A−A0)2 − hs

]
. (12)

The coefficients J , λ, and h were screened as described below.517
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When updating the label for a randomly selected pixel a, a target label was randomly518

selected from neighbors of a, and then Hamiltonian change was calculated. Label of a519

was updated to the target label with probability min(1, e−∆H/T ), where ∆H denotes520

change of H by the change of label of a, and T is the fluctuation allowance. In the521

present application, the updates of labels were iterated 50 times. For resultant regions,522

a circularity C was calculated, where it was defined as C = 4π×area/perimeter2 (Bosveld523

et al., 2016). The parameters J , λ, h, and T were screened for resultant regions with the524

highest homogeneity and circularity larger than a given threshold value. The screening525

was performed in a pairwise testing manner on a grid, and grid was converged to the526

highest homogeneity. With the screened parameters, the boundary smoothing was527

iterated for 50 times, and the results were integrated again by the label propagation on528

a consensus matrix algorithm.529

7.2.5 Cellular Potts model for tissue compression simulation530

For the simulation of cells in a compressed tissue, the cellular Potts model was imple-531

mented by custom Matlab scripts which are available at GitHub (http://doi.org/10.5281/zenodo.5016684).532

It is simulated on a torus surface so the cells made a periodic pattern. The initial533

configuration was prepared by the Voronoi tessellation from randomly scattered 600534

points. The points were randomly selected from 864 × 150 pt2 plane in a sequential535

manner so that all points were away from the others at least 10 pt. Cells on the left side536

were assigned the low line energy Jsoft = 1 and cells n the right side were assigned the537

high line energy Jstiff = 4. All cells were assigned same compressibility λ = 1. For the538

compression, the initial configuration was transformed into a 480 × 270 image. Then a539

dynamics of the cells was simulated for 975,000 updates.540

To be processed by the tools developed in (Guirao et al., 2015), images of the cells541

were projected on a plane and converted to cell segmentation. Since all pixels belonged542

to one of the cells in the cellular Potts model and the cells were not separated by543

boundary (watershed) pixels, we first labeled the pixels with perimeter or inner, where544

the perimeter pixels were adjacent to different cells and the inner pixels were enclosed545
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by the perimeter pixels. Then the perimeter pixels were re-labeled one-by-one to inner546

so that all inner pixels were connected in each cell, all perimeter pixels were adjacent to547

inner pixels of the same cell, and no inner pixel was adjacent to inner pixel in different548

cells. The labels were updated as much as possible, and remained perimeter pixels were549

taken as the boundary.550
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Fig. S1: Variance of effective contribution of cellular processes at each time point. Plots
show time evolution of effective contribution of cellular processes in the Drosophila no-
tum and standard deviation of them.
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Fig. S2: Boundary smoothing with various minimum circularities. The Drosophila no-
tum was divided based on time-average tissue deformation rate (A), time-evolution of
tissue deformation rate (B), time-average cellular processes effective contributions (C),
and time-evolution of cellular processes effective contributions. They were smoothed
with the minimum circularity C ranging from 0.35 to 0.55. Some of them were colored
for visibility.
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Fig. S3: Segmentations in different number of regions. Dorsal thorax (first to fourth
columns) and wing blade (fifth and sixth columns) were divided into 3-9 regions. First
column: segmentations based on time-average tissue deformation rate. Second column:
segmentations based on time-evolution of tissue deformation rate. Third column: seg-
mentations based on time-average cellular processes effective contributions. Fourth col-
umn: segmentations based on time-evolution of cellular processes effective contributions.
Fifth column: segmentations based on time-evolution of tissue deformation rate. Sixth
column: segmentations based on time-evolution of cellular processes effective contribu-
tions. The tissues were divided into 3 to 9 regions (from top to bottom rows). The
regions were colored for visibility. When the number was too large and a result of the
initial label propagation included a too small region, the small region tended to disap-
pear in the cellular Potts model smoothing, and thus the final label propagation tried to
integrate regions fewer than the final segmentation, sometimes resulted in undesired dis-
connected regions (third column bottom row and fourth column sixth row). For dividing
the dorsal thorax into three regions based on time-evolution of tissue deformation rate
and wing blade into seven regions based on time-evolution of cellular processes effective
contributions, it failed to screen the parameters (the screening algorithm pursued to a
too low temperature which would freeze any change in the cellular Potts model, second
column first row and sixth column fifth row).
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Fig. S4: Heat maps of silhouette value. First row: segmentation based on time-average
tissue deformation rate. Second row: segmentation based on time-evolution of tissue
deformation rate. Third row: segmentation based on time-average cellular processes
effective contributions. Fourth row: segmentation based on time-evolution of cellular
processes. Fifth row: conventional segmentation of large grid parallel to tissue axes.
First column: silhouette values measured in the property space of time-evolution of de-
formation rate. Second column: silhouette values measured by time-evolution of cellular
processes. Third column: silhouette values measured by time-evolution of cell divisions.
Fourth column: silhouette values measured by time-evolution of cell rearrangements.
Fifth column: silhouette values measured by time-evolution of cell shape changes.
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Fig. S5: Plots of cellular processes in the segmentations based on time evolution of tissue
deformation rate and the conventional large grid. (A, B) The tissue segmentation based
on time-evolution of tissue deformation rate (A) and plots of cellular processes effective
contributions averaged in each region (B). The numbers indicate the regions. (C, D)
The large grid (C) and plots of cellular processes in each region (D). Scale bars in A
and C indicate deformation rate 0.02 h−1 with colors for tissue and cellular processes.
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A B

BA

Fig. S6: Projection of the segmentation onto the wing blade cells. The segmentations
based on time evolution of cellular processes were projected. (A, B) The segmentation
was projected onto the wing blade cells at 15 hr (A) and 32 hr APF (B), where the
regions were indicated by colors. Scale bars indicate 50 µm.
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Movie 1: Cell rearrangements and cell shape changes after tissue compression. The cells
with low and high surface tension were colored gray and yellow respectively. The cellular
Potts model was run on an image of 480× 270 lattice and included 600 cells. The movie
is 7 fps and there were 5000 updates between the frames.
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1 Pseudo codes for tissue segmentation algorithms

In below pseudo codes show algorithms of the automatic tissue segmentation. Matlab
custom functions and framework developed for this study are available at GitHub
(http://doi.org/10.5281/zenodo.3626111 and http://doi.org/10.5281/zenodo.5016684).
For details of the functions and framework, see its README file and comments in
the codes.

1.1 Region growing algorithm

Algorithm 1 shows a pseudo code of the region growing image segmentation in
Matlab-like syntax. It divides a bitmap image stored in a data object dataMap. In
the algorithm, a number of regions, a limit to update the seeds, and a metric are
given as parameters. With the parameters, supporting objects seedList, meanList,
regionsList, meter, and seeder are allocated and initialized. The seedList, meanList,
and regionsList are instances of data object with a property var representing seeds and
means of regions and regions, shared among the supporting objects. The meter is an
object measuring distance between the mean of region and a point adjacent to the region.
A method measure returns the distance measured by the given metric. The seeder is an
object choosing seeds of regions. Methods initalSeeds and initialMeans return indices of
randomly chosen points and their values. Once the dataMap was divided into regions,
methods newSeeds and newMeans return indices of points at center of the regions and
mean values of the regions. A method initalQueue returns an array where its element
represents a point adjacent to one of the seeds and holds the region and distance to the
region’s mean value. Inside a loop, a point in the queue with the smallest distance to the
region’s mean value is added to the region, and points adjacent to the point, returned
by a method neighborsOfPoint of dataMap, are added to the queue.

In our tissue segmentation, a Matlab custom function run region growing() iterates
this algorithm for given time, returning a stack of resultant partitions.

1.2 Label propagation on a consensus matrix

Algorithm 2 shows a pseudo code of the label propagation. It divides N objects into
clusters based on an N × N consensus matrix M whose rows and columns correspond
to the objects, and an element mij represents the frequency at which the i-th and j-th
objects were included in a cluster among given clustering results. A parameter tM
indicates a threshold value, where elements in M smaller than tM are ignored in the
label propagation.

In the tissue segmentation, 50 results of region growing were converted to the
consensus matrix and given to a Matlab custom function run label propagation()
implementing the label propagation. The number of resultant regions is influenced by tM ,
and thus a Matlab custom function run cm thresholding lp() screens tM values so that
run label propagation() returns the same number of regions with the given partitions.
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Algorithm 1: Region growing algorithm

input : dataMap to be segmented and parameters.
% seedList, meanList, regionsList, allocatedList, meter, and seeder are
supporting objects and variable initialized with the parameters.

seedList.var = seeder.initalSeeds;
meanList.var = seeder.initalMeans;
while loop counter is smaller than limit do

% Initialize partition, allocated list, queue.
regionsList.var(:) = false;
allocatedList(:) = false;
queue = seeder.initalQueue;

while queue is not empty do
point = queue(1);
if allocatedList.var(point.index) == false then

% Grow region to the point.
regionsList.var(point.index, point.region) = true;
allocatedList(point.index) = true;
% Enqueue neighbors of the point.
array = dataMap.neighborsOfPoint(point.index);
for neighbor in array do

neighbor.region = point.region;
neighbor.distance = meter.measure(neighbor);
queue = cat(1, queue, neighbor);

% Remove the allocated point from queue.
queue(1) = [];
% Sort queue.
[values, indices] = sort([queue.distance]);
queue = queue(indices);

else
queue(1) = [];

% Check convergnence.
lastMeanList = meanList.var;
seedList.var = seeder.newSeeds;
meanList.var = seeder.newMeans;
if isequal(lastMeanList, meanList.var) then

break;

return regionsList.var
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Algorithm 2: Label propagation

input : Matrix M and threshold tM .

% Cut elements in M smaller than the tM .
M(M < tM ) = 0;
% Make labelArray representing labels on N vertices.
labelArray = (1:N)’;

flag = true;
while flag do

flag = false;
% Enumerate vertices in random order and update their label.
for i = randperm(N) do

% Make labelMatrix representing labels on vertices.
labelMatrix = labelArray == 1:N;
% Choose label most weighted by edges incident to the i-th vertex.
,indices= max(sum(M(:,i) .∗ labelMatrix),1));
if labels(i) = indices(1) then

% Update label of the i-th vertex.
labelArray(i) = indices(1);
flag = true;

% Convert labelArray to a matrix.
labelMatrix = labelArray == 1:N;
indices = any(labelMatrix,1);
partition = labelMatrix(:,indices);

return partition
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1.3 Cellular Potts model

Algorithm 3 shows a pseudo code of the cellular Potts model. It simulates a deformation
of regions (partition of dataMap) by giving small fluctuations. In the algorithm, an
array of function handles, coefficients to combine the functions results, the system
temperature, and the number of label updates are given as parameters. With the regions
and parameters, supporting objects analyser and dict are allocated and initialized.
The functions in the array calculate system energy with analyser and dict. For each
fluctuation, one of points at regions rim returned by analyser rim points is selected
randomly, and a label of neighboring points is also selected randomly and copied.
Connectedness of a region is checked locally, with a coordinate of neighboring points
returned by dataMap coordinates.

In the tissue segmentation, a Matlab custom function run CPM smoothing()
implement this algorithm with energy functions combining area constraint, surface
tension, and total silhouette value. The coefficients and temperature influence resultant
regions, and thus a Matlab custom function run CPM fitting() screens the parameters
so that run CPM smoothin() returns smoothed regions with a circularity larger than the
given value and the total silhouette value as large as possible.
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Algorithm 3: Cellular Potts model with region homogeneity

input : Partition, dataMap, and parameters
% regionList, analyser, dict, H functions, coefficients, T , and counter are
supporting objects and variables initialized with the parameters.

% Calculate the system energy.
H = 0;
for k = 1:length(H functions) do

fh = H functions(k);
H = H + fh(analyser,dict) ∗ coefficients(k);

% Update labels for given times.
while true do

% Select a point randomly.
rim = analyser.rim points;
rim = find(rim);
if isempty(rim) then

% There is only one region.
break;

i = ceil(rand() ∗ length(rim));
i = rim(i);

% Select a label from neighbors of the point.
neighbors = dataMap.neighborsOfPoint(i);
j = ceil(rand() ∗ length(neighbors));
j = neighbors(j);
if any(regionsList.var(i,:) & regionsList.var(j,:)) then

% The i-th and j-th points are in a region.
continue;

% Check connectedness.
m = zeros(3,’logical’);
x0 = dataMap.coordinates(i).x - 2;
y0 = dataMap.coordinates(i).y - 2;
for k = neighbors do

x = dataMap.coordinates(k).x - x0;
y = dataMap.coordinates(k).y - y0;
m(y,x) = any(regionsList.var(i,:) & regionsList.var(k,:));

array = m([1,2,3,6,9,8,7,4]);
brray = m([2,3,6,9,8,7,4,1]);
if sum(array ∼= brray) > 2 then

continue;

% Get a change of energy.
oldLabel = regionsList.var(i,:);
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regionsList.var(i,:) = regionsList.var(j,:);
newH = 0;
for k = 1:length(H functions) do

fh = H functionsk;
newH = newH + fh(analyser,dict) ∗ coefficients(k);

dH = newH - H;

% Adapt the change when possible.
p = exp(-dH / T);
if p > rand() then

H = newH;
counter = counter - 1;
if counter < 1 then

break;

else
regionsList.var(i,:) = oldLabel;

return regionsList.var
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