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Guided-Generative Network: A new robust deep
learning architecture for noise characterization
in Monte-Carlo rendering

Jérome Buisine, Fabien Teytaud, Samuel Delepoulle and Christophe Renaud

Abstract Current methods for generating realistic computer-generated images rely
on stochastic lighting simulation techniques based on a Monte Carlo approach. These
Monte Carlo simulations construct light paths between the camera and light sources
within the virtual 3D model to calculate the appearance of objects and provide
realistic images. Insufficient sampling of the light path space results in high variance
between individual pixels in the image which is visually perceived as noise. To
reduce this noise, the number of light path samples must be increased until the noise
is no longer visible, but this has the disadvantage of significantly increasing the
computation time. Finding the right number of samples needed for human observers
to perceive no noise remains an open problem that this paper addresses using a new
neural network architecture called Guided-Generative Network (GGN). As it is often
difficult to extract features from an image for classification tasks, the GGN attempts
to automatically find the desired features for noise detection. This is done through an
architecture composed of 3 models that collaborate to characterize the noise present
and guide the classification. The results obtained show that the GGN can correctly
solve the problem without prior knowledge of the noise while being competitive
with existing methods. A visual validation experiment of the images obtained by the
model indicates a significant reliability to the requested task.

1 Introduction

Modern realistic image algorithms mimics the natural process of acquiring pictures
by simulating the physical interactions of light between every existing objects, lights
and cameras lying within a 3D modelled scene. Light simulation process in a 3D
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scene is known as global illumination and was formalised by Kajiya [14] with the
light transport rendering equation T}

Lo(x» wo) = Le(x, wo) +/ Li(xa wi) : fr(X, w; — wo) - cos B;dw; (D
Q

where (see Fig.[I] for the annotations):

e L,(x,w,) is the lightness traveling from point x in direction w,;

e L.(x,w,) is point x emitted lightness (it is null if point x does not lie on a light
source surface);

* the integral represents the set of lightness L; incident in x from the hemisphere
of the directions Q and reflected in the direction w,. The reflected lightness
are weighted by the materials’ reflecting properties (bidirectionnal reflectance
function f, (x, w; — w,)) and the incident cosine angle.

This equation cannot be analytically solved in most cases and Monte-Carlo (MC)
approaches are generally used to estimate the value of the final image pixels. Sam-
pling is achieved by constructing random light paths between the camera and the
light sources located in the 3D scene in order to collect the contribution of the light
emitted by each light source to the pixels in the image.

Fig. 1: A generated light path reaching a light source present in the scene where the
term L, is obtained by the sum of the terms L, and L;.

The final MC estimator approximation of the expected value for n samples is
obtained from the empirical mean. This computation initially causes considerable
noise when generating the image computation due to insufficient sampling of the
path space, but as the number of samples progresses, this noise is reduced and almost
invisible (see Fig. 2).

As a matter of fact, convergence requires often several hours (even days) before a
visually usable image is available, due to both the complexity of paths computation
and the high number of samples that are required. Then, information about the
number of paths that are really required for the image to be visually converged is
unknown. Early stopping the computation leads to considerable visual noise in the
image. On the other hand, continuing the computation with a high number of samples
results in substantial computation costs. Furthermore the identification of features
relevant for the identification of visual noise is difficult given the nature of the noise
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(a) 1 sample (b) 20 samples (c) 10, 000 samples

Fig. 2: A view of the scene Kitchen available from [2] rendered using the PBRT
engine [16] with 3 levels of sampling per pixel. The number of samples required can
be significantly high before residual noise is no longer noticeable.

generated, which is awfully dependent on the computational algorithms used and the
complexity of virtual scenes (material properties, caustic effects, indirect lighting,
etc.).

In this paper, we propose an approach exploiting deep learning methods such as
U-Net denoising autoencoder [[18] and generative neural networks (GAN) [10] to
automatically generate noise feature maps (NFM) which guide a discriminator neural
network to better characterize the task of identifying visually perceptible noise in
computer generated images.

Based on these ideas, the work presented in this paper is organised as follows:
first, in Section 2] the previous works related to this problem are presented. Then,
in Section [3] the proposed neural network architecture is introduced. The results
obtained on a large database are detailed in Section[d] with comparisons to previous
methods. In Section[5] a noise perception experiment is proposed in order to validate
the performance of the GGN model on the noise detection task, before concluding
and discussing the perspectives in Section[6}

2 Previous works

When trying to identify noise in an image, two problems arise; on the one hand, it
is necessary to find attributes to characterise this noise and on the other hand, it is
necessary to have access to the visual detection thresholds of this artefact for many
images in order either to train learning models or to verify the results obtained. On
this last point, the works carried out in [8] and [20] use a base of 12 images calculated
with different sampling levels. These images, of size 512 x 512, have been cut into
16 disjoint blocks (of size 128 x 128) for which noise prediction thresholds have
been acquired from human users. However, these images are not publicly available
and the visual effects that appear in them do not cover all the effects that exist in
real images. More recently a larger database has been published in [3] for which 40
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images with various light effects are available with a large number of sampling levels
and associated human perceptual thresholds. The images are of size 800 x 800 and
are sliced in a manner similar to previous work into 16 non-overlapping blocks of
size 200 % 200. Fig.Fillustrates the way in which the data relating to these images are
presented: division into blocks, human perceptual thresholds associated with each
block, reference image calculated with a large number of samples.

8680] 5286 6553|2293

7153 | 7086 6420|2626

4420165804560 7820

‘;_—I—""

(a) Image block num- (b) Human thresholds  (c) Reference image (d) Reconstructed
bering

Fig. 3: Some of the data associated to the image dataset available in [S]] : (a) the 16
image blocks, (b) the human visual threshold for each block (in samples per pixel)
(c) the reference image computed with 10, 000 samples per pixel and (d) the image
reconstructed from the human thresholds.

Identifying the representative characteristics of MC noise is also a complex task
and various proposals have been made. [8] proposed to extract 26 features from
each image block. Each colour image represented in the RG B colour space is first
converted to the Lab colour space. The L channel, which appears to be the most
noise-sensitive [[7]], is selected and 13 denoising filters are applied to it separately
to extract the desired features: 2 linear filters with averaging filters of sizes 3 x 3
and 5 X 5 ; 6 linear filters with Gaussian filters of same sizes and with standard
deviations o € {0.5, 1, 1.5}; 2 median filters and 2 adaptive Wiener filters of same
sizes. An additional wavelet filter is applied in order to provide a 13*” image without
high-frequency values. They then compute the mean and standard deviation of the
pixel’s value from these 13 gray images in order to get their 26 features. These
features are then used as inputs of a support vector machine (SVM) classifier that
allows to predict the binary label (noisy, noiseless) of each image block.

In [20], authors proposed to first compute an approximated reference image
using quick ray-tracing technique [23]] which is computed once at the beginning
of the image rendering process. Next, they compute a noise mask for both the
current image obtained during the rendering process and the reference image. Noise
masks are obtained following an approach used in astrophotography [9]]: a Gaussian
convolution with a convolution coefficient o is first applied to the original image,
then the mask is obtained by the difference between it and the blurred image. Finally,
the two masks are passed to an SVM model that allows to classify the current image
block as still noisy or not where each block is of size 128 x 128. Giving 2 images
directly as input to an SVM model can lead to curse of dimensionality, as the image
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size increases. The SVM model will therefore need more time to learn and find its
hyper separator plane.

More recently [4]] proposed to use the SVD-Entropy [1] measurement as a noise
characterization feature. They consider a sliding window composed of S images
(see Fig. [), for which each block composing them has a different and decreasing
noise level due to a different progress state in the computational process. Then, they
compute the SVD-Entropy over the S noise levels for each block and use a recurrent
neural network (RNN) model with long short-term memory (LSTM) cells [12] to
classify the last image of the sliding window as still noisy or not.

20 samples 40 samples n samples

Fig. 4: Representation of a sliding window composed of S images; each image in the
window has an increasing number of samples per pixel and therefore a decreasing
noise level.

3 Guided-Generative Network

As mentioned earlier, it is difficult to identify the features that are representative of
noise in images generated in MC methods. In this paper, we aim to propose an ap-
proach where these features are generated automatically before binary classification.
For this purpose, we rely on the notion of noise mask [20] which will be provided
by a generative neural network model and the use of a sliding window of images
that appears to bring a better robustness of the models [4]. The proposal for such an
approach is justified by the emergence of robust deep convolution learning methods
for both noise processing and recognition [11} [17].

Our proposed GGN architecture whose purpose is to obtain automatic noise-
related features is composed of 3 neural network models, for which a sliding window
of images of different noise levels of size S is used. Before going into the details of
each sub-model, Fig. [5]illustrates the desired interaction between each of them.
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Denoising Autoencoder Feature Map Generator Discriminator

For each noise level in the sliding window
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SSIM error backpropagation BCE Loss backpropagation
for noise level image
Reference S input images

Fig. 5: The proposed model architecture where a sliding window of images of
different noise level and of size S is given as input an the autoencoder model. Its
task is to denoise the images in order to obtain a sliding window of approximated
reference images of size S. One after the other, the two image sliding windows, the
input one and the approximated reference one, are sent to the feature map generator
model in order to compute their respective noise feature map (NFM) Finally, the
two NFMs obtained are transmitted to the Discriminator to evaluate whether the
last image of the input sliding window is considered to be still noisy or not. The
propagation of the error is then possible thanks to the known label (noisy / not noisy)
from the last image of the input sliding window.

(3, 200, 200)
(16, 200, 200)
l (32, 100, 100)
(64, 50, 50)
(128, 25, 25)
(128, 12, 12)
(128, 25, 25)
(64, 50, 50)
(32, 100, 100)
(16, 200, 200)
(3, 200, 200)

Fig. 6: Representation of the different layers of the U-Net denoising model.

3.1 Denoising Autoencoder

In [20], a noise mask is computed from both the image being calculated (potentially
noisy) and an approximate reference image, obtained by the ray-tracing method. The
main drawback is that some important light effects cannot be simulated by ray tracing
and thus induces errors as compared to the final image that should be computed.
The idea proposed to remedy this problem is an autoencoder neural network to
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best denoise an image. In computer graphics, the preservation of structures and
light effects is important, that’s why the autoencoder used is of type U-Net as
exploited for denoising task in [[18] [13], since it makes it possible to preserve the
structure of the image more easily while proposing a powerful denoising of the input
image. U-Net is a convolutional autoencoder with skip connections and regular
dimensionality progression. The proposed encoder and decoder (see Fig. [6) have
symmetrical structure: each 4 encoder stages uses two 3 x 3 convolutions and doubles
the dimensional depth K, while each 4 decoder stages has two 3 x 3 deconvolutions
and reduces the depth by half. All intermediate stages use batch normalization and
LeakyReLU activation functions. The output stage has two 3 x 3 deconvolutions
with LeakyReLU, and a final 1 X 1 convolution with LeakyReL.U activation to output
the final denoised image. Each downsampling stage uses a 2 X 2 MaxPooling, and
the upsampling stages use 2 X 2 Bilinear Upsampling. An additional ZeroPadding
layer is used for the decoder stage when it is necessary to obtain an odd tile size
after upsampling. We set K = 16 as image input is of size 200 x 200 which implies
a rather substantial storage. Also, the structural similarity metric (SSIM) [21] was
used for loss function i.e., L(§,y) = 1 — SSIM (J, y) where § is the known reference
block image computed with 10, 000 samples, and y is the output image of the U-Net
neural network. The SSIM also offers good structure preservation [6}[19] rather than
a function of L1 or L2, both related to pixel values. As mentioned before, the use of
a sliding window of input images of size S is actually processed for better detection
robustness later on. Each image of different noise level is sent one after the other to
the U-Net in order to be denoised and to obtain a sliding window of S approximated
reference images. Thus, the model learns to denoise the images on several noise
levels.

3.2 Feature Map Generator

The feature map generator is also an autoencoder and has the same structure as the
previous denoising model but without skip connections and regular dimensionality
progression as proposed by a U-Net model (see Fig.[7). Then a final 1 1 convolution
is applied with LeakyReLU activation to output the final expected gray image with
K = 1. Hence, this model takes as input an image sliding window of size S and
aims at producing a NFM with unknown expectation. In our approach, as detailed
in Fig.[3] it will take either the sliding window of input image or the sliding window
of approximated reference images obtained previously. It is important to note that
models such as the variational autoencoders (VAE) [[15] which generally offer better
generated data were also tested but did not provide good results.
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Fig. 7: Representation of the different layers of the Feature Map Generator model.
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3.3 Discriminator for binary classification

Finally, the discriminator takes as input 2 NFM obtained from the Feature Map
Generator, either the NFM from the input sliding window or the NFM from the
sliding window of approximated reference images. The discriminator (see Fig.
must provide a binary label, so it is first composed of 3 convolution layers which
doubles the dimensional depth K with a kernel size of 3x3 and padding of 2 to reduce
the dimensionality of the NFM. For each of these convolution layers, intermediate
layers of batch normalization, LeakyReLU and MaxPooling with a kernel size of 3,
a stride of size 2 and a padding of size 1 are processed. Then 4 classical linear layers
are exploited to propagate and reduce the information until reaching a probability
of belonging to a noisy or non-noisy label. The first linear layer returns data of size
K X 4 then the two following layers reduce the output data by half. The last linear
layer proposes a single output before applying a Sigmoid function. Each linear layer
applies intermediate layers such as a batch normalization, a LeakyReLU layer and a
50% dropout layer to avoid overfitting. Only the last layer, where the probability is
obtained, does not have a dropout layer.

The binary cross-entropy loss function [[6]] is used to both propagate the error of
the discriminator, but also the feature map generator. This provides representative
NFMs of the noise present in the images and guides the discriminator in the ex-
pected classification task, hence the name Guided-Generative Network for such an
architecture.

The next section details the training procedure of such an architecture and the
results we obtained.
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Fig. 8: Representation of the different layers of the discriminator model.

4 Results and comparisons

The proposed architecture is composed of the 3 models. Figures|[6] [7]and [8]represent
respectively the parameters of the denoiser, the noise feature map generator and
the discriminator. The whole code allowing to train the architecture is available at:
https://github.com/prise-3d/GGN-MC-rendering. The 3 models are trained together
with respect to the input data and the associated human thresholds of the synthetic
images (see the proposed training process in Fig. 5). From the 40 images available
in the database [[5]], 35 images have been selected for training, and 5 for verifying the
model performance.

4.1 Experimental setup

The amount of data is quite significant with 35 images, where each image is composed
of 16 blocks of size 200 x 200. For each image 500 different noise levels ranging
from 20 to 10, 000 samples per pixel are used. This allows to train the model from a
total of 280, 000 labeled data. Input and reference images have been normalized by
the maximum value of a colour channel (i.e. 2%). Regarding the training parameters,
the model was trained on the data for 30 epochs, with a batch size of 64 (i.e. 4375
iterations per epoch) and a sliding window of images of size S = 6, which we
consider sufficiently robust for prediction. The 3 models (denoiser, noise feature
map generator and discriminator) use the Adam optimization algorithm.

The experiments were conducted under the Linux system (Debian 10) with a RTX
2080 GPU using the Python programming language (version 3.9) and the PyTorch
framework (version 1.10).
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4.2 Results overview

The U-Net Autoencoder model appears to provide MC noise removal results that are
close to the reference image, as illustrated in Fig. [0} where the SSIM scores show
an improvement in the quality and closeness of the resulting image compared to the
reference image.

(a) Noisy image (b) Denoised image (c) Reference
SSIM: 0.6433 SSIM: 0.9859 SSIM: 1.0

Fig. 9: Result of the U-Net Autoencoder denoising on one block of the Kitchen image
with corresponding SSIM scores.

An overview of the outputs of the Feature Map Generator is available in Fig. [I0]
for the same image block that as been used in Fig. 0] Let us note that differences
appear between the two NFMs obtained. These ones are due to the fact that different
noise levels coexist in the same sliding window for the images under calculation,
whereas these differences are attenuated in the images that are denoised in the second
sliding window. This confirms the interest of the approach, as the NFM provides
discriminating information as to the presence or absence of noise in the images
considered.

These NFM are then sent to the Discriminator for evaluation of the probability
of the last image of the input sliding window to belong to label 1, noisy, and label 0,
not noisy.

4.3 Model comparisons

The model obtained after a training of 30 epochs on the training dataset is compared
to the RNN with LSTM cells proposed by [4]] with the same training conditions, i.e.
the same train and test dataset, the same batch size and the same sliding window size
(S = 6). The amount of data exploited from the image database and the input size of
the features of the two other methods [8} required as input to the SVM models
did not allow us to compare them due to the curse of dimensionality.
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X

(a) Input noise feature map  (b) Approximated reference
feature map

Fig. 10: Results of the Feature Map Generator on the block of Fig. El : the NFM from
the sliding windows of computed images (a) and the NFM from the denoised images

(b).

As suggested by [4], RNN model is composed of 3 LSTM layers with the following
respective number of hidden units: 512, 128, 32 and a dropout rate of 40% on each
one in order to avoid overfitting. Each LSTM layer has a Sigmoid activation function
for cell state and hidden state. A Hard Sigmoid activation function is set to activate
the input/forget/output gate. A dense layer of size 1 is then used with the Sigmoid
activation function as output in order to predict the expected label. As well as the
GGN, the LSTM model is trained during 30 epochs where the binary cross-entropy
loss is employed to propagate the error during training.

The metrics used to compare the performance of the two models are the accuracy
and the area under the ROC curve (AUC ROC) [3]], which defines how well the model
separates the two classes of the binary classification. Note that the main objective
of the GGN model is to be able to predict at least as accurately as the LSTM model
while abstaining from finding input features for the classifier, since these features
are automatically extracted beforehand.

LSTM GGN

Denoiser 1,380,000
Parameters 1,604,257 G?ner.at.or 1,540,000

Discriminator 675,650

Total 3,595,650
Training time 52,5 min 6741 min

Denoiser 3.18G
FLOPs 0.000967 G Generator 232G

Discriminator 0.67565 G

Total 5.54098 G

Table 1: Comparison of the complexity of the LSTM and GGN models. The number
of trainable parameters of each network, training time and the number of floating-
point operations (FLOPs) are indicated in Giga-FLOPs.
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Table ] provides indicators of the complexity of the models. It can be observed
that the GGN model has a higher complexity than the LSTM and required a consid-
erable training time. This is mainly due to the fact that the GGN model uses a lot
of convolutional layers implying a significant number of floating-point operations
(FLOPs) in order to take as input directly the images.

o
N
a

Accuracy
Accuracy

o
~
=)

— LSTM (128, 32, 8)
LSTM (256, 64, 16)

0.65 0.65
—— LSTM (512, 128, 32)
—— LSTM (1024, 256, 64)
0.60 0 5 10 15 20 25 30 060 0 5 10 15 20 25 30
Epochs Epochs
(a) LSTM learning curves with different recur- (b) GGN learning curve

rent layers size

Fig. 11: Learning curves of the compared models using accuracy metric. The default
decision threshold was fixed to 0.5 in order to compute accuracy.

The learning curves of the two models obtained after 30 epochs are proposed in
Fig The accuracy is computed with a decision threshold of 0.5, i.e. the choice
of the not noisy label is obtained if the prediction of the model is lower than this
threshold (resp. noisy). The parameters of the recurrent layers have been analyzed for
the LSTM model by changing the number of hidden units in layers (see sub-figure
[[Ta). Even if we increase the number of parameters, we can observe a certain limit
of the performances of the model (the accuracy remains close and still fluctuates).
With a decision threshold set to 0.5, GGN model indicates for the chosen decision
threshold a lower performance in accuracy than LSTM during the learning process
(see sub-figure [IIb). In addition to the learning curves, the performance of the
models on the training and testing datasets is presented in Table 2] with several
decision thresholds in order to check the accuracy performance. The LSTM model
seems to have a better generalisation and its performance remains better with a
threshold at 0.5. However, even if the GGN has a slight overfitting, it shows a correct
performance in test when its decision threshold # > 0.95 which remains quite close
to the LSTM model.

Fig.[12]shows the predictions of the models during the rendering of some images
and illustrates the general behaviour of the prediction results obtained. The decision
threshold of GGN is set at # = 0.95 as it avoids early prediction on the whole set of
images in the training database although its accuracy is lower. Indeed, a conservative
capability, although less effective, is to be preferred to an early termination, which
would imply a poor quality of the final image obtained. It can be noticed that GGN
fluctuates and hesitates much less than LSTM which indicates a stability of the
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t Accuracy | AUC ROC | Accuracy | AUC ROC | Accuracy | AUC ROC
threshold |  Train Train Test Test Global Global

0.3 0.7619 0.9115 0.8122 0.9297 0.7682 0.9137

0.4 | 0.8085 0.9115 0.8456 0.9297 0.8131 0.9137

05 | 0.8281 0.9115 0.8519 0.9297 0.8311 0.9137

s| 06 | 08329 0.9115 0.8385 0.9297 0.8336 0.9137
21 07 | 08225 09115 0.8055 0.9297 0.8204 0.9137
=l 08 | 0.7965 0.9115 0.7542 0.9297 0.7912 0.9137
09 | 0.7533 0.9115 0.6896 0.9297 0.7454 0.9137

0.95 | 0.7331 0.9115 0.6654 0.9297 0.7246 0.9137
0.98 | 0.6888 0.9115 0.6284 0.9297 0.6812 0.9137

0.3 0.6598 0.9735 0.6641 0.8422 0.6603 0.9571

04 | 0.7152 0.9735 0.6719 0.8422 0.7098 0.9571

0.5 0.7902 0.9735 0.7310 0.8422 0.7828 0.9571

z| 0.6 | 0.8219 0.9735 0.7415 0.8422 0.8118 0.9571
8 0.7 | 0.8553 0.9735 0.7554 0.8422 0.8429 0.9571
0.8 | 0.8809 0.9735 0.7709 0.8422 0.8672 0.9571

0.9 | 0.9067 0.9735 0.7858 0.8422 0.8916 0.9571

0.95 | 0.9204 0.9735 0.8013 0.8422 0.9055 0.9571
0.98 | 0.9201 0.9735 0.8216 0.8422 0.9078 0.9571

Table 2: Performance of the models on the training and testing sets with several
proposed t-probability decision thresholds for comparing the accuracy of each model.
The AUC ROC score therefore does not change for the t-value but remains indicative.
The best accuracy scores are indicated with a grey background corresponding to the
t-value.

model when predicting. It allows in particular in certain cases to avoid a prediction
too early of computation as illustrated for a block of the Classroom image. The GGN
sometimes tends to predict later than the LSTM, such as with the San-Miguel image
block, but it is less disturbing than stopping the calculations too early (which may
involve a still significant residual noise). Thus GGN highlights good results even
though initially no indication of noise features was given. The model slightly overfits
but provides predictions that are fairly accurate.

Fig. [T3] shows the histogram of the thresholds predicted for each image by each
model (histograms in blue). Blocks where users still perceive noise with the maxi-
mum number of samples used in our experiments (10, 000 paths per pixel) are not
shown on these graphs, since in this case the human threshold is assumed to be
higher. These histograms can be compared to the human thresholds (red histogram).
It can be seen that the shape of the GNN histogram seems closer to that of the human
thresholds. For the LSTM, its histogram seems more like a Gaussian distribution
although flattened. However, the GGN provides many predictions with a value of
10,000. This corresponds to the fact that it believes that the stopping threshold
should be higher than this value, without being able to provide a precise value, since
the maximum number of samples in the image database corresponds to this value.

Fig. [[4] illustrates the distribution of absolute errors made by each of the two
approaches, considering this error as the difference between the human perceptual
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Fig. 12: Comparison of LSTM and GGN model predictions on some blocks of 3
images from the test set for each noise level ranging from 20 to 10, 000 samples. The
vertical dashed red curve represents the expected human threshold, the horizontal
dashed orange curve represents the model prediction threshold, and the vertical blue
curve represents the model noise threshold prediction once the probability decision
threshold is reached. The decision threshold t for the LSTM model is set at 0.5 and
that of the GGN is set at 0.95 which makes it possible to avoid predicting the end of
the block computation too early.

threshold and the value predicted by the algorithms for each of the 16 blocks of the
40 images (in this figure all blocks are considered).

These distributions are represented at the same scale in order to better interpret
the difference between these two models. The model LSTM with SVD-Entropy
has a more spread out error distribution, but tends to predict later than earlier. It
sometimes stops considerably earlier than the human threshold, resulting in errors
of at least 6,000 on samples (remember that the maximum number of samples in
our experiments was set at 10, 000.). On the contrary, the GGN provides thresholds
closer to the subjective human thresholds. In addition, it makes fewer early detection
errors than its counterpart and the number of overdue thresholds is lower than the
LTSM. Note that in this last case the computation time of the corresponding block
is longer than that needed to reach the human threshold, but the results obtained do
not provide any perceptible noise in the end.
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Fig. 13: Histogram of the predicted thresholds over all the blocks of the scenes for
each model compared to the histogram of the expected human thresholds. Blocks
where human thresholds pointing ahead still noticeable noise on some reference
image blocks (i.e. still noisy at 10, 000 samples) are not considered on these graphs.

Fig. [T5] further details the predictions of the models against the expected human
thresholds on each of the blocks. It allows a clear visualization of the good perfor-
mances of each model. For both models, only the predictions for human thresholds
lower than 10,000 samples have been presented. We can also note that for some
blocks, both models predict that the block is still noisy even after 10,000 samples
(leading to a prediction up to 10, 000 samples). The dispersion of the points is much
greater for the LSTM than for the GGN. In fact, the proposed regression line high-
lights the good performance of the GGN model for the requested task. Moreover, the
regression lines indicate that the GGN performs better with a correlation coefficient
of 0.902 against 0.718 for the LSTM.
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Fig. 15: Predicted model thresholds versus expected human thresholds for the LSTM
and GGN approaches. Some thresholds are not predicted even after 10, 000 samples
as the maximum number of samples was set here to 10, 000.

5 Visual experiment

In order to evaluate the performance of the models, a visual experimental validation
of the models’ predictions has been conducted. Each model predicts a number of
samples in a block of 200 x 200 pixels from which the human should no longer
perceive noise. The objective of the validation experiment is to verify whether or not
noise is still perceived by a human after reconstructing the images from the models’
predictions. A final reconstructed image is obtained in the same way as proposed
in Fig. 3] but with thresholds obtained by a model. In this manner, it is possible to
ensure the proper behavior or not of the models.

For this purpose, we developed an application, which allows to compare two
images, the first one being the image reconstructed from the predicted thresholds of



GGN: A deep learning architecture for noise characterization in rendering 17

Scene n°55 of 84

.Q‘J /

& I {

R ,‘r';“}{‘_/—" ‘I
! s

E 3

-

Are these pictures identical?

- pressqr ) =

Fig. 16: Representation of the validation application: the images reconstructed from
the predictions of the perception models are displayed next to the images recon-
structed from the human thresholds, so that they can be compared by the observers.

a model, the other one being the human reference image, i.e. the one reconstructed
from the average human subjective thresholds from the image database (same as
proposed in Fig.[3). The question asked to the participants was: Do the images look
the same to you?. The objective of asking this question to a participant is to know
if noise is still perceptually present or not in the image proposed by the model in
comparison with the image resulting from the human thresholds.

5.1 Experiment settings and configuration

For some blocks of the 40 images available, noise could still be present on the
image considered as reference and computed with 10, 000 samples per pixel. It was
not disturbing for the models to have knowledge of this data, because it is the same
as having data where noise was always present in the model input. However, for the
visual validation of the results, it is necessary that the human reference (reconstructed
from the human thresholds) consists of a noise level that is imperceptible to humans.

Therefore, only images with subjective thresholds lower than 10, 000 samples for
the 16 blocks were kept for this experiment, i.e. a total of 28 images out of the 40
available in [3]].

For each of these 28 images, three images are compared to the reconstructed
human image:
» the image reconstructed from the GGN model predictions;
 the image reconstructed from the LSTM model predictions with SVD-Entropy on
the same training set of the GGN model;
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* an image reconstructed from a number of samples eight times lower than the
human threshold for each block, in order to have an image in which the noise is
visible.

This third noisy image has the objective to let appear noise and to avoid false
positives. Indeed, with respect to the question asked, if the participant never notices
noise on the reconstructed images from the two models, then he/she risks answering
positively to the presence of noise on one of the two, which can lead to the generation
of erroneous results (false positives).

The Fig. [T6] illustrates the application proposed to the participants, where two
images are presented. One of them is the human reference image, the second one is a
reconstructed image from a model or with a defined noise level. It is also important
to specify that the human image is randomly positioned among the two proposed
images, in order to counterbalance a systematic response effect of the position on the
right or left of the reference image. The participant can then answer if he perceives
a difference between the two images or not. As the human reference is the "ground
truth", if no difference is perceptible, this means that the model’s performance is
correct and meets the expectations.

5.2 Analysis of results

The population of participants for this experiment was quite diverse: students,
colleagues, and families, for a total of 17 participants (5 women and 12 men) with an
average age of 31. Two subjects with deuteranopia (color blindness) were included
in the study, but their data did not seem to differ from the others in retrospect.
They reported that their colorblindness did not interfere with their ability to perform
the task. The results obtained are presented in the table [3 below which highlights
the average percentage of images perceived as noiseless compared to the human
reference image for the 3 classes of reconstructed images targeted.

Noisy | LSTM | GGN
Images |80/476|403/476|419/476
Percentage| 17% 85% 88%

Table 3: Number of images and percentage of images considered not noisy by the
users during the experiment for each of the 3 classes of images presented.

In addition to the results obtained and to target the problematic images, the table
M] offers a visual of the results obtained per image (scene) for each of the three
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Model GGN LSTM Noisy
Scene Answers | Percentage | Answers | Percentage | Answers | Percentage
Arcsphere 16/17 | 94.12% 16/17 | 94.12% 7/17 41.18%
Bunny Fur 16/17 | 94.12% 16/17 | 94.12% 3/17 17.65%
Car2 15/17 | 88.24% 11/17 | 64.71% 5/17 29.41%
Caustic 14/17 | 82.35% 13/17 | 76.47% 2/17 11.76%
Coffee Splash 15/17 | 88.24% 13/17 | 76.47% 0/17 0.00%
Crown 14/17 | 82.35% 15/17 | 88.24% 4/17 23.53%
Dragon 16/17 | 94.12% 15/17 | 88.24% 1/17 5.88%
Ecosys 14/17 | 82.35% 16/17 | 94.12% 11/17 | 64.71%

Eponge Fractal 1| 15/17 | 88.24% 16/17 | 94.12% 8/17 47.06%
Eponge Fractal 2| 14/17 | 82.35% 13/17 | 76.47% 2/17 11.76%

Ganesha 17/17 | 100.00% | 15/17 | 88.24% 7/17 41.18%
Glass Of Water 17/17 | 100.00% | 15/17 | 88.24% 2/17 11.76%
Indirect 13/17 | 76.47% 16/17 | 94.12% 2/17 11.76%
Landscape* 12/17 | 70.59% 16/17 | 94.12% 7/17 41.18%

Living Room 2 14/17 82.35% 14/17 82.35% 0/17 0.00%
Living Room 4 16/17 | 94.12% 16/17 | 94.12% 0/17 0.00%
Low table 13/17 | 76.47% | 15/17 | 88.24% 1/17 5.88%
Pavilion Day 1 15/17 | 88.24% 12/17 | 70.59% 2/17 11.76%
Pavilion Day 2 14/17 | 82.35% | 12/17 | 70.59% 1/17 5.88%
Pavilion Day 3 15/17 | 88.24% 15/17 | 88.24% 3/17 17.65%
Pavilion Night2 | 16/17 | 94.12% | 12/17 | 70.59% 0/17 0.00%

Sanmiguel 1 14/17 | 82.35% 15/17 | 88.24% 3/17 17.65%
Sanmiguel 2* 12/17 | 70.59% | 15/17 | 88.24% 1/17 5.88%
Staircase 1* 12/17 | 70.59% 16/17 | 94.12% 1/17 5.88%
Staircase 2 15/17 | 88.24% | 15/17 | 88.24% 2/17 11.76%
Tt 16/17 | 94.12% 15/17 | 88.24% 0/17 0.00%

Vw Van 16/17 | 94.12% | 10/17 | 58.82% 1/17 5.88%
Test percentage | 36/51 70.05% | 47/51 92.15% - -

Table 4: Results of the experiment for each image with respect to the number of
participants. The * character specifies that the scene has been used in the test set.

reconstructed images in relation to the human reference image. The results on the
images from the test set are also detailed for each of the models for which we can note
that the GGN model is less performing than the LSTM model with SVD-Entropy,
70.05% and 92.15% respectively. This is mainly due to the fact that a generative
model tends to overfit [24].

By analyzing the 3 images from the test set that were included in the 28 selected
images, blocks of the images reconstructed Staircase 1 and Landscape by the GGN
model do indeed still contain slight noise. However, the case of the image Sanmiguel
view 2 is particular, only one predicted threshold of a block is lower than the human
reference.

Figure [T7] proposes a representation of the differences of predictions on the 3
problematic scenes by using heat maps. This representation uses a heatmap associ-
ated to the number of samples from visual thresholds and predicted by each model:
for each block the colors vary from blue to red (from 0 to 10, 000 of samples), in
order to be able to visually compare the different results. It highlights the difficulties
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Fig. 17: Heat map comparison of LSTM and GGN model predictions on problematic
scenes. For each scene the scale of values can be different in order to visually compare
the heat maps of the models predictions to the human reference (expected thresholds).

that GGN has on the Staircase 1 and Landscape scenes, but also to understand the
visual results obtained from the Sanmiguel 2 scene. One important thing that can be
noticed by this representation is that the suggested GGN thresholds for images Stair-
case I and Landscape are low in some blocks in comparison to the human reference,
but also to the LSTM. Indeed, our training set was composed with only few scenes
that require a low number of samples in several blocks. It would appear that the
GGN model does not seem to correctly interpret this fast convergence on this kind
of scene and stops too early. On the contrary, for the scene Sanmiguel 2, only one
block has a threshold with too low samples level (block 5 with 4180 samples) and
the GGN model suggests that a lot of samples are needed in some blocks. It seems
that it is still enough for the perception of this image reconstructed by the predicted
thresholds to lead to a perception of difference to the human reference (with more
or less precision compared to the human reference image on some blocks). On the
contrary, the LSTM model seems to predict too early on 8 blocks of the Sanmiguel 2
scene, but has a higher rate than the GGN model of reconstructed images perceived
as identical in the experiment (82% vs. 70% for the GGN). This must come from the
fact that a single block with a still perceptible noise is more strongly discernible in
the whole image, than a noise more distributed in several blocks (as for the image
reconstructed by the predicted thresholds of the LSTM model).
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6 Conclusion

In this paper, we propose a guided generative network (GGN) architecture that
generates accurate noise detection data to guide a binary classification task. The
GGN architecture is composed of 3 models: an autoencoder model that denoises the
input images from the reference data, a generative model that seeks to design a noise
mask from a images (whether it is still composed of noise or has been denoised),
and a discriminator that distinguishes whether there is a difference between the two
previously computed noise masks. This approach has been applied to the problem
of noise detection in photorealistic computer graphics where Monte Carlo methods
are used to compute the images. Unlike previous detection approaches that focus on
finding specific noise features to improve the performance of the model, the proposed
architecture automatically generates features characterising the presence of noise in
an image to guide the detection model.

The GGN provides results that are just as meaningful as LSTM, if not more accu-
rate, in predicting the number of samples required. Indeed, its decision threshold is
more robust and conservative, which is a preferable behaviour in computer graphics:
stopping the calculation early leads to a still noticeable noise, while stopping later
allows to obtain the same (or improved) quality even if the calculation time is higher.
However, it had been noticed that the GGN as well as generative models could have
difficulties to generalize and propose predictions far from human thresholds on im-
ages poorly represented in the training base. Verifying the performance of the model
on a larger diversity of images would be one of the first work perspectives.

Then the work carried out in this article has focused on a single Monte Carlo
integrator, namely the path tracer, which is widely used in lighting simulation. Other
integrators exist, allowing the treatment of complex light phenomena. However, they
generate a different kind of computational noise, for which it will be interesting to
study the robustness of the GGN to be able to take into account these new types of
noise, either separately, or by learning the different types of noise simultaneously. A
complementary aspect is the extension of the approach to the detection of noise in
computer-generated image sequences, for which the disappearance of noise in each
individual image may not be sufficient to ensure that temporal noise is not present
when viewing the sequence. In any case, this future work will involve the generation
of new image databases, which will be made available to the scientific community.
Finally it would be important to consider methods to avoid such generative model to
overfit over training data [22].
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