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We model, via classical molecular dynamics simulations, the plastic phase of ice VII across a wide range of
the phase diagram of interest for planetary investigations. Although structural and dynamical properties of
plastic ice VII are mostly independent on the thermodynamic conditions, the hydrogen bond network (HBN)
acquires a diverse spectrum of topologies distinctly different from that of liquid water and of ice VII simulated
at the same pressure. We observe that the HBN topology of plastic ice carries some degree of similarity with
the crystal phase, stronger at thermodynamic conditions proximal to ice VII, and gradually lessening upon
approaching the liquid state. Our results enrich our understanding of the properties of water at high pressure
and high temperature, and may help in rationalizing the geology of water-rich planets.

I. INTRODUCTION

With at least nineteen solid forms, water has the most
complex phase diagram of any pure substance.1,2 At high
pressures and high temperatures, water is of interest for
the Earth’s mantle and for the geology of water-rich plan-
ets3–9. At these conditions, water can acquire several
high density forms1,8,10–22, one of which is ice VII,8,20,21.
Oxygen atoms in ice VII form a body-centered cubic
(bcc) structure with Pn3m space group and two atoms
per unit cell. Each oxygen atom is surrounded by four
hydrogen atoms, two of which covalently bonded and two
H-bonded to it, according to the Bernal-Fowler rules23.
The hydrogen bond network (HBN) is endowed with pro-
ton disorder and consists of two independent interpene-
trating sub-networks not hydrogen bonded to each other,
each of them topologically equivalent to the HBN of cubic
ice17,24. Proton disorder disappears at low temperatures,
when ice VII transitions to proton-ordered ice VIII25–27.
The domain of stability of ice VII extends above 2 GPa
across a wide region of pressures and temperatures
(fig. 1). Such large domain of stability renders it ex-
tremely interesting for the modeling of the interior of
icy moons where it is a stable form, and for planetary
investigations. In particular, it is believed that the ther-
moelastic properties of ice VII (as well as of other high-
pressure polymorphs) can have implications for the dy-
namics of cold slab subduction in the Earth lower man-
tle, and for the evolution of icy planets and satellites.
Ice VII is able to dissolve several halides20,21,28,29, and
recent first-principle simulations have shown that, upon
breaking the HBN of ice VII, salt impurities are able to

a)Electronic mail: fausto.martelli@ibm.com

diffuse within the ice VII matrix causing proton diffu-
sion. As a result, ice VII may allow the release of nutri-
ents from the core of super-Earths and mini-Neptunes to
liquid oceans30, hence affecting their compositions. As a
matter of fact, several ”phases” of ice VII seem to exist.
According to ab initio molecular dynamics simulations,
continuous electric fields can allow protons to jump from
one molecule to another following a Grotthuss-like mech-
anism, effectively generating superionic ice VII31. Supe-
rionic phases of other ice polymorphs can be obtained at
higher pressures and temperatures and have been deemed
to be of relevance to giant icy bodies like Uranus and Nep-
tune7,16,32–34. Numerical simulations place superionic ice
VII at the boundaries of ice VII and liquid water above
20 GPa and 2000 K32,35–37. Nonetheless, both classical
and ab initio simulations have predicted that, at lower
pressure and temperature, the boundary between ice VII
and liquid water is a plastic phase 32,37–48 (fig. 1). At
these conditions, oxygen atoms remain crystallographi-
cally ordered, but water molecules rotate on time scales
comparable to those in the liquid state creating a dy-
namical HBN. This effect arises as a combination of the
temperature and pressure exerted to ice VII resulting in
enough energy to break HBs, but not enough to melt
the sample nor to allow hydrogen atoms to detach from
the oxygens. As a consequence, ice VII and its plastic
counterparts are separated by a first-order phase tran-
sition32,40. All these phases, namely crystalline, plastic
and superionic ice VII, reflect the tremendous (and in-
triguing) complexity of this crystallographic phase and
of high pressure water at large.

Computer simulations have widely investigated the
structural and dynamical properties of plastic ices37–48,
but no focus has been devoted to the HBN and its topol-
ogy. Considering the relevance of high pressure crys-
talline phases endowed with hydrogen mobility in ex-
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FIG. 1. Pictorial representation of the pressure Vs tempera-
ture phase diagram obtained from our simulations. The yel-
low circles represent the thermodynamic points simulated to
locate the existence domain of the plastic phase. The blue cir-
cles represent the thermodynamic points adopted to perform
our investigations.

plaining the properties of water-rich (exo)planets and the
potential role of these phases in transferring salts to liq-
uid oceans via modifications of the HBN, rationalizing
the properties of the HBN of plastic ice VII may be of
relevance for planetary science. In this article, we in-
spect the topology of the HBN of plastic ice VII modeled
via classical molecular dynamics simulations at different
thermodynamic conditions. We limit our investigations
to P ≤ 10 GPa, above which proton diffusion (not cap-
tured by classical molecular dynamics) might occur. We
show that, although structural and dynamical properties
are mostly independent on the thermodynamic condition,
the HBN acquires distinct topologies. In fig. 1 we report
a schematic representation of the phase diagram obtained
from our simulations. The blue circles represent the ther-
modynamic points at which we have inspected the topol-
ogy of the HBN.
The article is organized as follows: in Section II we de-
scribe the numerical setup and the analysis adopted to
inspect the HBN. Section III is devoted to the discussion
of the results of our work, and in Section IV we present
our conclusions.

II. NUMERICAL SIMULATIONS

A. Classical molecular dynamics simulations

Our study is based on classical molecular dynamics
(MD) simulations of a system composed of N = 1024
rigid water molecules described by the TIP4P/2005 in-
teraction potential49 in the isobaric (NPT ) ensemble.
This water model is able to reproduce relatively well
the phase diagram of water at the thermodynamic con-
ditions of interest of this work40,50. Numerical simula-
tions have been performed with the GROMACS 18.0.1
package51. Coulombic and Lennard-Jones interactions
are calculated with a cutoff distance of 1.1 nm and
long-range electrostatic interactions are treated using the
Particle-Mesh Ewald (PME) algorithm. Temperatures

and pressures are controlled using the Nosé-Hoover ther-
mostat52,53 with a constant of 1 ps, and the Parrinello-
Rahman barostat54 with a time constant of 1 ps. Equa-
tions of motions are integrated with the Verlet algo-
rithm55 with a time step of 2 fs. After initial equili-
brations of 1 ns, we perform production runs for another
2 ns. The initial configurations of ice VII have been ob-
tained with the GenIce tool56

B. Analysis of the hydrogen bond network

We investigate the topology of the HBN using the ring
statistics, a theoretical tool that has been instrumental
in understanding the properties of water10,57–65, water
systems66–72 and network-forming materials73–81.
In order to compute the ring statistics it is necessary to
(i) define the link between atoms/molecules, (ii) provide
a definition of ring, or closed loop, and (iii) provide a cri-
terion to count rings. Possible definitions of link between
molecules can be based, e.g., on the formation of bonds,
interaction energies, geometric distances, etc.. We fol-
low the geometrical criterion of HB reported in Ref.82

according to which two water molecules A and B are hy-
drogen bonded if the distance dOAOB

< 3.5 Å and the

angle ̂HBOBOA < 30◦. In this regard, any quantitative
measure of HBs in liquid water is somewhat ambiguous,
since the notion of an HB itself is not uniquely defined.
However, qualitative agreement between many proposed
definitions have been deemed satisfactory over a wide
range of thermodynamic conditions83,84. Next, we de-
fine as ring any close loop that, starting from a water
molecule and recursively traversing the network defined
by HBs, ends when the starting point is reached or the
path is shorter than the maximal size considered (18 wa-
ter molecules in our case)59. Although several method-
ologies and criteria have been introduced to investigate
the network topology in network-forming materials, the
methodology adopted in this work provides information
about the HBN directly linked to translational diffusion,
rotational dynamics and structural properties of water58.

III. RESULTS

To locate the domain of existence of the plastic phase
reported in fig. 1, we have followed previous inves-
tigations and combined information about the radial
distribution function computed between oxygen atoms,
gOO(r), the mean square displacement of oxygen atoms,
the rotational autocorrelation function evaluated on the
intramolecular O-H bonds, and the angular distribution
of the polar angles θ for the O-H vectors37–48. In this
article, we will not discuss them, rather we will focus on
the HBN, reported in fig. 2.
The HBN of ice VII is rich in hexagonal rings n = 6, as
reported in fig. 2 (a). The hexagonal geometry dominates
the network, accounting for ∼ 40% of the configurations.
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Longer rings (n > 6) occur only on even lengths, namely
n = 8, n = 10, n = 12, n = 14, n = 16 and n = 18, each
present in variable percentage fluctuating around ∼ 10%.
The lack of odd rings is due to the fact that ice VII has
two interpenetrating and independent cubic networks.
As expected, the topology of the HBN is mostly inde-
pendent on the pressure in ice VII. Increasing the pres-
sure from 6 GPa (black circles) to 7 GPa (red squares)
does not cause any sensitive effect in the rings pathways.
Fig. 3 a) shows a representative snapshot of the network
of ice VII emphasizing an hexagonal (green) and an oc-
tagonal (orange) ring. In fig. 2 (b) and (c) we report the
P (n) computed on isobars at P = 6 GPa and P = 7 GPa,
respectively (our results apply also to other pressures).
At a given pressure, depending on the temperature, the
plastic phase carries a certain degree of reminiscence of
the HBN of ice VII. Such similarity is stronger at thermo-
dynamic conditions closer to ice VII and tends to lessen
upon moving towards the liquid at higher temperatures.
At P = 6 GPa and T = 400 K (panel (b), red squares)
the system is plastic (see fig. 1) and water molecules are
allowed to rotate. As a consequence, the configurational
entropy increases with respect to ice VII. The topology of
the HBN is therefore different from that of ice VII in the
sense that accounts for odd rings and reaches sizes up to
n = 15. On the other hand, it is possible to notice that
the P (n) does not follow a smooth distribution like in the
liquid at the same pressure (orange symbols) but, rather,
is characterized by an alternating profile of local maxima
in correspondence with n = 4, n = 6 and n = 8 and
corresponding local minima at n = 5 and n = 7. Upon
further increasing the temperature to T = 450 K (green
diamonds) and to T = 500 K (blue triangles) we observe
a progressive smoothing P (n) with a slight decrease of
n = 8 and a corresponding slight increase of n = 5 which,
nonetheless, still represents a minimum at all thermody-
namic conditions. Considering that pentagonal and hep-
tagonal rings are not present in ice VII, the minimum
in correspondence of n = 5 for the plastic phases is a
further indication of the link with ice VII. The minima
at n = 5 and n = 7 eventually disappears in the liquid
phase (orange symbols), whose topology is very broad
and dominated by n = [5, 11], with long rings accounting
for the high density of the liquid phase. The trend that
emerges, therefore, clearly shows how the HBN of plastic
ice VII lean towards that of liquid water upon increasing
the temperature at a given pressure. To quantify this
trend, we compute dPP (n) =

√
(P p(n) − P l(n))2. The

metric dPP (n), reported in the inset, gives a measure
of how different the topology of a plastic phase P p(n)
is from that of the liquid phase P l(n). At 400 K, the
topology of the plastic phase clearly deviates from that
of the liquid with strongest deviations in correspondence
of n = 8. Upon increasing the temperature, the entries
of dPP corresponding to shorter rings decrease in value
(green diamonds and blue triangles), while those corre-
sponding to longer rings remain mostly unaffected. The
overall trend here presented is general and independent
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FIG. 2. Panel (a): ring distribution P (n) computed for ice
VII at 6 GPa and 300 K (black circles) and at 7 GPa and
300 K (red squares). Panel (b): P (n) computed for plastic
phases at 6 GPa and T = 400, 450 and 500 K as red, green
and blue empty symbols, respectively, and for liquid phase at
6 GPa and T = 700 K as orange symbols. Panel (c): P (n)
computed for plastic phases at 7 GPa and T = 400, 500 and
600 K as red, green and blue filled symbols, respectively, and
for liquid phase at 7 GPa and T = 700 K as orange symbols.
Insets in panel a) and b): difference between P (n) of the
plastic phase and the P (n) of the crystal phase for a given n.

on the pressure, and the case at P = 7 GPa is reported
in fig. 2 (c) for comparison. A snapshot of the network
in plastic ice VII is reported in fig. 3 b), where we em-
phasize an eleven-folded ring, absent in the network of
ice VII.
Our study shows that the topology of the HBNs in plas-
tic ice VII (as well as in high pressure liquid water) are
more complex than that of water phases at lower pres-
sures, where configurations with n > 10 are rarely popu-
lated58–60,85. Considering that the topology of the HBN
sets the properties of water58,60 and that ices with proton
mobility are endowed with a spectrum of electrical con-
ductivity32,35, we posit that the complex HBN of plastic
ice might play a yet unexplored important role in plane-
tary science.

As we have previously stated, ice VII has two inter-
penetrating cubic lattices with two independent HBNs,
which we will call network A and network B. In order to
fully rationalize the nature of the HBN in plastic ice, it
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a) b)

FIG. 3. Panel a): representative snapshot of the hydro-
gen bond network in ice VII. Oxygen atoms are depicted as
red spheres, hydrogen atoms are white spheres. Two rings,
namely a hexagonal (n = 6, yellow lines) and a octagonal
(n = 8, orange lines) are emphasized to clarify the concept of
ring. Panel b): representative snapshot of the hydrogen bond
network in plastic ice VII. A eleven-folded ring (absent in the
network of ice VII) is emphasized with orange lines.

A

B

TIce VII Plastic ice

FIG. 4. Schematic representation of the evolution of networks
A and B as a function of the applied temperature at a given
pressure. The two networks are independent in ice VII and
mix in the plastic phase. Each circle represent a state point.
The mixing between the two networks occur in the timescale
of molecular rotations.

is important to investigate whether molecular rotations
mix the two networks, which therefore would intertwine
and become dependent, or whether the two networks re-
main separate and independent. In order to address this
issue, we have labeled each water molecule in ice VII
belonging to the network A or to the network B. Switch-
ing on molecular rotations in the plastic phase, we have
recorded the list of bonded neighbors for each molecule
belonging to network A (B) and checked which network
the neighbors belong to. We have found that the two
networks indeed mix, hence indicating that the two inde-
pendent HBNs characterizing ice VII, melt. The mixing
between the two networks occurs on timescales compara-
ble to the molecular rotations. In fig. 4 we report a picto-
rial representation of the temperature-dependence of the
two networks A and B. The networks are independent in
ice VII and the mixing occurring in the plastic phase is
reported as a single line.

The activation of molecular rotations in the plastic
phase has direct consequences on the amplitude of vibra-
tions of oxygen atoms around their equilibrium positions.
As shown in fig. 5, the amplitude of oxygen vibrations δr
measured by the mean squared displacement in the plas-
tic phase is almost four times larger compared to that of

0 10 20 30 40 50
Time (ps)

0

0.003

0.006

 δ
r (

nm
2 )

Ice VII (300 K)
plastic (400 K)
plastic (450 K)
plastic (500 K)

t

t’

FIG. 5. Oscillation δr computed in terms of mean squared
displacement on the isobar at 6 GPa. Ice VII is reported as
black line, while the plastic phase at 400 K, 450 K and 500 K
as red, green and blue lines, respectively. The right panel
reports a pictorial representation of the oscillations of oxygen
atoms around the equilibrium lattice point induced by the
change of bonded molecules occurring from time t to time t′.
The green dots represent the equilibrium positions, while the
red dots the shifted positions induced by the formation of an
HB emphasized as red dashed lines.

ice VII. In fig. 5 we report the values of δr at 6 GPa for ice
VII at 300 K (black) and the plastic phase at 400 K (red),
450 K (green) and 500 K (blue). We can observe that the
value of δr jumps from from ∼ 0.001 nm2 in ice VII at
300 K (black) to ∼ 0.004 nm2 in plastic ice VII at 400 K
(red). Upon increasing the temperature, the increment in
the value of δr is smaller compared to the jump observed
entering the plastic phase. Therefore, we infer that the
higher oscillations in the plastic phase with respect to ice
VII are caused by molecular rotations: oxygen atoms are
pulled in the direction of constantly changing hydrogen
atoms resulting in enhanced deviations from the equilib-
rium position. A pictorial representation of such effect
is reported in the right panel of fig. 5, where the vertical
orange lines and the green dots indicate the equilibrium
lattice positions and the red dots the displaced oxygen
centers induced by the change of hydrogen bond occur-
ring moving from time t to time t′.

In order to delve deeper into the properties of the HBN
of plastic ice, we have inspected the percentage of broken
and intact HBs, which provide information on the nature
of the HBN and on the fluidity of water molecules66–68.
In fig. 6 we report the percentage nd of having a coordi-
nation configuration of the kind AxDy with x acceptors
A and y donors D, for the case at P = 6 GPa in panel
(a) and P = 7 GPa in panel (b), respectively. As ex-
pected, the HBN of ice VII is dominated by A2D2 con-
figurations, meaning that most of water molecules accept
2 HBs and donate 2 HBs. Increasing the temperature
the percentage of A2D2 drops drastically and other con-
figurations increase, indicating that the HBN is popu-
lated by coordination defects. However, we can observe
that plastic phases are characterized by different distri-
butions depending on the temperature, hence confirming
that the HBN of plastic ice is affected by the thermody-
namic conditions. For a given pressure, the plastic phases
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FIG. 6. Percentage nd of having a coordination configurations
of the kind AxDy, with x acceptors A and y donors D. Panel
(a): nd for ice VII (black filled circles) and for the isobar
at P = 6 GPa (filled symbols). Panel (b): nd for ice VII
(black filled circles) and for the isobar at P = 7 GPa (empty
symbols).

at increasingly high temperatures represent intermediate
phases between ice VII and the liquid phase.

IV. CONCLUSIONS

Plastic ice VII sits at the boundaries of crystalline ice
VII and liquid water at thermodynamic conditions of rel-
evance for planetary investigations, where the flux of hy-
drogen atoms seems to play a crucial role in defining the
properties of water-rich planets, and the transfer of salts
from the core to liquid oceans may promote chemical re-
actions important to sustain life . Therefore, in this study
we have assessed the properties of the dynamical hydro-
gen bond network (HBN) in plastic ice VII modeled via
classical molecular dynamics simulations on a wide range
of thermodynamic conditions. We have observed that the
topology of the HBN of plastic ice carries some degree of
reminiscence of the crystal ice VII, stronger at thermo-
dynamic conditions proximal to ice VII, and gradually
lessening upon approaching the liquid state.
Although ice VII is composed by two interpenetrating
and independent cubic lattices, molecular rotations al-
low the two networks to ”melt” and mix becoming indis-
tinguishable in the plastic phase. Nonetheless, molecu-
lar rotations induce enhanced fluctuations of the oxygen
atoms around their equilibrium lattice positions.

Planetary science has so far focused on liquid water,
crystalline and superionic ices to explain the properties
of water-rich planets. We propose that the dynamical,
complex HBN of plastic ices (shall their existence be con-
firmed experimentally) makes them potential candidate
to play an active role in the geology of planets and in the
transfer of salt from their cores to liquid oceans. Finally,
our results expand our understanding of the properties

at high pressures.
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