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Abstract 

The objective of this study is to compare the performance of machine-learning strategy 

versus a physical friction-energy wear approach to predict the fretting wear volume of a 

low-alloyed steel contact by varying several loading parameters. Then, an artificial 

neural network (ANN) is used to predict the wear volume at each loading condition. 

These predictions were compared versus a physics-based friction energy wear modeling 

considering the third-body theory and the contact-oxygenation concept. A parametric 

study is performed to compare the prediction errors as a function of the proportion of the 

experiments involved in the modeling process. The results suggest that the physical 

modeling is more performant than ANN when a restricted number of experimental data 

is available for the calibration process.  

Keywords: Fretting wear; Artificial Neural Network; Friction energy approach 

1. Introduction 

Fretting is a surface degradation process observed between two surfaces in contact 

submitted to normal load and undergoing small displacement oscillatory movements [1]. 

It has a profound impact on many engineering areas (nuclear applications, aeronautics, 

electrical contacts, cables, etc.) as it causes detrimental consequences reducing the 

durability of mechanical components. Depending on the applied displacement amplitude, 
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fretting can induce either cracking or wear damage if small or large sliding amplitudes 

are applied respectively [2,3]. Fretting wear activated under gross slip condition is 

considered a plague for contact assemblies as it leads to severe wear mechanisms as 

abrasion, adhesion, corrosion, seizure, etc. triggering ejection of wear particles [4]. It is 

well established that fretting is ruled by at least fifty parameters ranging from mechanical 

loading conditions, material properties, to surrounding environment [5–11]. The 

interactions between all these parameters render wear kinetics prediction a complex 

target if physics-based models are used. 

Machine learning is a promising tool in forecasting the outcomes of complicated systems 

at elevated accuracy. Since its birth in the 20th century, its usage has increased 

exponentially touching nearly all fields of modern science and engineering as medicine, 

computer vision, speech recognition, etc. Machine learning is a branch of artificial 

intelligence gathering statistical and optimization algorithms aiming at predicting the 

outcomes without being explicitly programmed to do so [12]. Artificial neural network 

(ANN) is a particular family of machine learning computing algorithms mimicking the 

performance of human neuron cells [13]. ANNs learn from data by trial and errors similar 

to the way biological cells learn from the outer environment. ANN was applied in 

tribology by Jones and co-authors in 1997 [13] who displayed the feasibility of the latter 

in predicting material wear response. Then, Velten and co-workers [14] extended this 

work by increasing the number of input variables and test conditions as well as the 

optimizing the prediction of the ANN. In fretting, several attempts were made to model 

the impact of loading conditions on fatigue and wear response [15–18]. For instance, 

fretting fatigue life duration as well as fretting crack lengths and stress intensity factor 
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were recently modeled by Nowell [19] and Gorji et al. [12] respectively revealing an 

interesting potential of ANN in such application. However, fretting wear volume and 

coefficient of friction were modeled by Velten et al. [14], Haviez et al. [17], and 

Kolodziejczyk and co-authors [20] revealing precise predictions of fretting wear response 

of materials at different experimental conditions. This latter work will be particularly 

extended in this article where a relatively bigger data base as well as higher number of 

inputs will be examined. For instance, in the current study, six fretting input parameters 

will be examined as the number of sliding cycles, the contact pressure, the sliding 

amplitude, the sliding frequency and finally the contact lengths parallel and 

perpendicular to the sliding direction. On the other hand, four input parameters are 

tested in [20] being the number of fretting cycles, the contact pressure, the displacement 

amplitude, and the surface roughness. Following this, the ANN wear volume predictions 

will be compared versus physics-based energy wear models taking into account the third 

body theory and the contact oxygenation concept. A parametric study will be then 

performed to compare the prediction errors as a function of the proportion of the 

experiments involved in the modeling process of each method.    

2. Fretting wear experimental results 

The experimental data in the current study (i.e. the wear volume at each loading 

condition) are extracted from previous publications [21,22] where the experimental work 

is carried out using the same test bench under the same environment by varying six 

loading parameters which will be detailed in the following sections. Only a few elements 

of the experimental approach are recalled here to better understand the experimental 

data considered.   
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2.1 Contact configuration and experimental setup 

The investigated contact geometry was formed of a homogenous 34NiCrMo16 flat-on-

flat configuration (Fig. 1a) characterized by a rectangular contact area “A = LC × LT” 

where “LC” is the longitudinal contact length collinear with the sliding direction (δ) and 

“LT” is the transverse contact length perpendicular to the sliding direction (δ). A grinding 

process is applied on the flat specimens, which leads to a surface roughness Ra=0.25 

µm. Tests were performed at ambient temperature (25 °C ± 5 °C) and relative humidity 

(RH=40% ± 10%) using a hydraulic test machine (Fig. 1b) customized specifically for 

testing large flat contacts (see Refs. [21,22]). This machine allows measuring the normal 

force and the sliding amplitude imposed during the test and recording the obtained 

tangential force and the coefficient of friction. It was shown that by varying several 

loading parameters, the friction coefficient was stable in this study at an average value 

equal to 0.7±0.04 as detailed in Refs. [21,22]. 

 

Fig. 1. Schematic illustration of the: (a) crossed flat-on-flat contact configuration and the (b) 

fretting wear experimental set-up. 
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2.2 Experimental strategy 

A multi-scale test strategy was used starting from a reference key test condition 

(repeated three times) defined by a number of fretting cycles N=20000 cycles, contact 

pressure p=100 MPa, sliding amplitude δs= ±100 µm, sliding frequency f=1 Hz, and a 

square contact area A=25 mm² (LC=LT=5 mm) (Fig. 2). Then, a cross-experimental 

approach was used where each time one parameter was varied while fixing the others at 

the reference conditions. In this approach, the sliding amplitude was varied from δs= ±25 

to ±200 µm (Fig. 2a), the contact pressure from p=25 to 175 MPa (Fig. 2a), the sliding 

frequency from f=0.5 to 10 Hz (Fig. 2b), the number of fretting cycles from N=5000 to 

40000 cycles (Fig. 2b), and finally the contact area from A=2.5 to 25 mm² (Fig. 2c) by 

varying the contact lengths LC and LT separately as shown in Fig. 2c. Note that for 

contact lengths smaller than 2 mm, textured flat-on-flat samples were used instead of 

mono-contact configuration as fully detailed in Ref [22]. 

 

Fig. 2. Multi-scale experimental strategy proposed to study and model the influence of loading 

parameters on fretting wear damage: (a) contact pressure versus sliding amplitude; (b) number 

of fretting cycles versus sliding frequency; and (c) collinear contact length (LC) versus transverse 

contact length (LT) to the sliding direction. 
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To enrich the database with more complex loading conditions for validating and testing 

machine learning predictions, additional experiments were conducted such that two or 

more loading conditions are varied instead of one with respect to the reference test 

conditions (Xref, Yref) with X and Y ∈ [N, p, δs, f, LC, LT]. By combining all the test 

conditions, a total of 150 tests is used for both training and validation of the neural 

network which are fully described in previous articles [21,23,24](Fig. 3).  

 

Fig. 3. Illustration of the additional tests used to enhance machine learning predictions such that 

(Xref, Yref) are the reference loading conditions and X and Y∈ [N, p, δs, f, LC, LT]. 
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hidden and the output layers are connected to each other by weights and biases. These 

latter are the core of the learning process which is accomplished by optimizing the 

weights and biases in order to reduce the error known as the loss function between the 

parameter to be predicted (i.e. experimental wear volume) and the output ANN predicted 

wear volume. These weights and biases are initialized with random values, then the 

optimization is fulfilled using backpropagation algorithm where the weights and biases 

are adjusted to reduce the loss function. The training backpropagation algorithm is 

Levenberg–Marquardt which uses interpolation between gradient-based and Gauss–

Newton methods through iterative algorithm. The weights’ adjustment is done each 

iteration known as “epoch” such that the learning process is run at several epochs until 

the weights are optimized. The speed for the learning procedure is adjusted using a 

hyper parameter known as the learning rate which is a parameter selected by the user to 

optimize the performance and the speed of the learning process.  

For the first two hidden layers, the neuron activation functions used are sigmoidal 

tangent (tansig) and for the last hidden layer a linear purlin function is introduced. 

Analogous to the action potential rate firing in the brain, the activation function in each 

hidden neuron transforms the weighted input sum stemming from the previous neurons 

connected to it and outputs a value which allows deciding whether the neuron should be 

activated or not i.e. whether the neuron’s input is important or not in the prediction 

process.  

In order to train the neural network the input data must be split into three parts which are 

the training the data where the weights are optimized, validation data to check the 

performance of the network while training and finally the test data which correspond to 
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the set of data the model has never seen serving to check the performance of model 

and its generalization capacity. To obtain performant ANN, large quantity of data should 

be used and big portion of this data should be used for training. In this study, the data 

set (i.e. 150 experiments) will be split into 70% for training, 10% for validation and 20% 

for testing procedure. 

 

Fig. 4. Description of the artificial neural network used in the current study with six input loading 

parameters and one output parameter which is the wear volume. 
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performance of the ANN, %E will vary at each simulation. To estimate the variation of 

this error, the simulation is run 10 times at each imposed conditions of hyper parameters 

allowing the estimation of an average value and a standard deviation of %E.  

E% =
100

1

n
∑ Vexp,i

i=n
i=0

× √∑  (Vexp,i−Vpred,i)
2i=n

i=0

𝑛
    with n = 150 experiments  

(1) 

Fig. 5a shows that the %E decreases by increasing the number of epochs from 10 to 

1000, following this it stabilizes at 25% when the number of epochs exceeds 1000. On 

the other hand, the %E is relatively low and stable around 25% when the learning rate is 

smaller than 10-4 (Fig. 5b), then it increases and becomes less stable when the learning 

rate exceeds 10-4. Hence, in order to guarantee a stable and relatively low relative error 

less than 25% along with a relatively fast training time, the number of epochs and the 

learning rate in this study will be fixed at 10000 and 0.00001 respectively. 
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Fig. 5: Evolution of the percentage error (%E, Eq. 1) by varying the: (a) number of epochs from 

10 to 2x104 while fixing the learning rate at 0.00001; (b) learning rate from 0.1 to 10-6 while fixing 

the number of epochs at 10000 (in this parametric study, 70% of data is used for training, 10% 

for validation and 20% for testing procedure). 

3.2 Results of ANN 

Fig. 6 compares the evolution of the wear kinetics predicted by ANN to the trends 
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Fig. 6. Comparison between experimental and ANN evolution of wear kinetics as a function of 

loading parameters: (a) number of fretting cycles; (b) contact pressure; (c) sliding amplitude; (d) 

sliding frequency; (e) collinear contact length LC; and (c) transverse contact length LT. 
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It is remarked that the ANN perfectly predicts not only the linear tendency detected by 

varying the number of fretting cycles but also the decreasing and increasing nonlinear 

evolutions observed at the other loading parameters. This reflects the learning capacity 

of ANN and its ability to capture the regressions of more complex systems where larger 

number of input parameters is introduced.  

Fig. 7 shows the evolution of the wear volume predicted by ANN compared to that 

obtained experimentally. In addition to the good prediction of the training and validation 

datasets, ANN has a very good performance on the test data corresponding to 30 

randomly selected experiments the trained network has never seen but was able to 

predict with high accuracy. This reflects the generalizing ability of ANN in forecasting 

complex conditions. Besides, the percentage error (%E) between the experimental and 

the ANN predicted results (Eq. 1) is less than 20% signifying the reliability of this model 

in predicting wear volume. 

 

Fig. 7. Comparison between experimental wear volume and the wear volume predicted by ANN.  
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Fig. 8 pictures the evolution of the average error of the ANN predictions as a function of 

the percentage of data points used in training. Similarly to Section 3.1, as the choice of 

data is selected randomly during the training process, %E will vary at each simulation. 

To better assess the variation and the stability of this error, the simulation is run 10 times 

at each percentage of training data allowing the estimation of an average value and a 

standard deviation of %E. By increasing the percentage of training data from 10% to 

70%, the error decreased from 60% to 25% respectively with a marked reduction in the 

standard deviation of %E. This reflects the necessity of having a sufficient quantity of 

training data to optimize the performance and the stability of the ANN predictions. 

 

Fig. 8. Evolution of the ANN error %E (Eq. 1) as a function of the percentage of training data 

points. 
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4. Predicting wear volume using physical friction energy wear modeling 

In this part, the wear volume prediction is predicted based on the energy wear law 

relating the wear volume (V) to the accumulated dissipated friction energy (∑Ed) at the 

interface through the energy wear rate α (such that V=αx∑Ed) [25]. Then, two cases will 

be assessed. In the first case, a plain friction energy wear model is investigated by 

considering a constant energy wear rate. In the second case, an extended friction 

energy wear model will be considered such that the energy wear rate will vary as a 

function of the loading parameters described in section 2.2. 

4.1 Case 1: Plain friction energy wear model 

In this case the energy wear rate is fixed at a constant value estimated by averaging the 

energy wear rates of a selected number of calibration data points “n” (Eq. 2).  

Vpred,�̅� = �̅� × ∑Ed where �̅� =
1

n
∑ 𝛼𝑖

i=n
i=0   (2) 

By averaging the energy wear rates of the entire data base with n=150 experiments to 

estimate “�̅�”, bad predictions of the wear volume are obtained (Fig. 9) with %E=58.55%. 

This scattering suggests that the plain friction energy wear approach, being useful and 

easier to establish, is however not sufficiently elaborated to fully capture the effect of the 

studied loading parameters (i.e. contact pressure, frequency, sliding amplitude and 

contact size) on the fretting wear rates and consequently on the final fretting wear 

volumes.    
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Fig. 9. Prediction of the experimental wear volume using the plain energy wear approach (Eq. 2) 

such that the energy wear rate is estimated by averaging the individual energy wear rates of all 

the data points (i.e. n=150 experiments). 
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concept (COC) which is fully detailed in a previous works [22]. On the other hand, LTBT 

represents the length scale controlling the third body (i.e. wear particles) ejection 

process (i.e. Third Body Theory (TBT)) which corresponds to the collinear length scale 

(i.e. LTBT = LC) as detailed in [22]. In this research work, it was also shown that LTBT and 

the sliding amplitude δs parameters can be combined by the ratio LTBT/δs reflecting the 

synergic interaction between the collinear length scale and the fretting sliding amplitude 

regarding the debris ejection process. By merging these loading parameters, the energy 

wear rate can be extended as follows: 

α∗ = αref × [
N

Nref
]

nN

× [
LCOC

LCOC,ref
]

nCOC

× [
LTBT/δs

LTBT,ref/δs,ref
]

nTBT

× [
p

pref
]

np

× [
f

fref
]

ηf
 (4) 

The advantage of this energy wear model is that it requires small of quantity of data to 

be calibrated. This calibration is obtained by finding the unknown exponents (nN, np, nf, 

nTBT and nCOC) which are obtained separately for each loading parameter by minimizing 

the standard deviation between the experimental total wear volume (V) and the 

predicted wear volume (Vpred) as detailed in [21]. Fig. 10 synthetizes the capacity of the 

given extended friction energy wear approach to predict the wear volume extension 

applying a wide range of fretting loadings and contact size configurations [22].  
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Fig. 10. Comparison between the experimental and the predicted wear volumes using the physical 

modeling (Eq. 4) such that Nref = 20000 cycles, pref=100 MPa, fref= 1 Hz, δs,ref= ±0.1 mm, LCOC, ref= LTBT, ref= 

Lref= 5 mm, αref= 4.23x10
-5

 mm
3
/J, nN= 0, np= 0.6, nf= -0.35, nCOC= -0.4 and nTBT= -0.6 [22]. 
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Fig. 11. Schematic description of the method used in selecting the data points used in energy 

wear model calibration.   

Fig. 12 pictures the evolution of the average error of the ANN and friction energy wear 

model predictions as a function of the percentage of calibration data points. By 

considering first the plain friction energy wear model (Eq. 2) with constant energy wear 

rate, the error is relatively high and remains stable around 58% whatever the percentage 

of data points used in calibration. 
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On the other hand, using the extended friction energy wear approach (V=α*∑Ed) and 

starting from at least three calibration experiments for each loading parameter, %E is 

around 30% which is nearly half the error obtained for ANN for the same quantity of 

calibration data. This error remains stable around 30% by increasing the number of 

training data of the model. This low and stable evolution of %E of the extended energy 

approach suggests that this latter is more representative of the physics of the studied 

fretting wear process as it considers both COC and TBT processes in its formulation. By 

contrast to the physical modeling which remains surprisingly stable whatever the 

percentage of calibration data points, the ANN displays a continuous decrease of %E. It 

is interesting to note that with only 10% of the training data, the ANN model performs the 

same as the plain friction energy model. However, this proportion must exceed 60% to 

equalize the performance of the extended friction energy wear approach. This suggests 

that ANN is equivalent to a raw physical model when a small quantity of data is 

available, yet it becomes equivalent to physics-based regression models only when a 

very large quantity of data is used for training the model (i.e. in the present analysis 60% 

of the data points). So, care should be taken when utilizing ANN especially that the 

model is less stable when a small number of experiments is available. This comparison 

underlines that the extended friction energy wear modeling, by capturing the physics of 

the surface damage mechanisms such as the contact oxygenation and the third body 

flows, is able to precisely predict the wear volume even when a restricted number of 

experiments is used for calibration. The deeper is the physical description, the better the 

predictions but also the lower the experimental cost to establish the parameters of the 

model. 
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Alternatively, if the physical model is not sufficiently elaborated, the ANN strategy 

appears more performant even with a restricted number of training data points. It should 

be noted that in this study the comparison between physics-based and ANN models is 

carried out by comparing their prediction efficiency when the percentage of data 

employed in the calibration (training) procedure is increased such that the maximum 

number of available experiments is 150. Hence, it would be interesting to check the 

effect of the absolute number of experiments in the stability of this analysis so that a 

precise limit can be defined between big data and small data which was not 

unfortunately investigated in this paper. Although 150 experiments seems a small 

database from a statistical point of view, it appears relatively large from a tribological 

standpoint. This is due to the fact that fretting tests are complex, expensive, and time 

consuming making it quite difficult to find larger datasets in literature. Additionally, 

fretting tests are reproducible as they only affect the extreme surface of the material; 

hence, they are less impacted by the microstructure and material defects that would 

generate higher dispersion in experimental results as the case of fretting-fatigue and 

cracking problems. Besides, the current neural network, aiming at fitting and predicting 

the linear or non-linear evolutions of the wear volume, is relatively simple compared to 

the complexity of larger neural networks as those involved in computer vision, image 

classification and speech recognition where thousands up to millions of training samples 

are required. These aspects together justify that the 150 experiments would be sufficient 

for the current study. Another aspect concerns the versatility of the models. For 

instance, the given extended friction energy wear modeling was developed for dry 

ambient temperature. Its extension to more complex ambient conditions like variable 

temperature or lubrication implies developing new physical models taking into account 
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for instance the occurrence of glaze layer [7] or tribofilms [26] respectively. This requires 

interesting but long and fastidious developments to elaborate adequate formalisms able 

to capture these various effects on the fretting wear rate fluctuations. A major interest of 

ANN is its capacity to be more easily transposed to predict such various ambient 

conditions. In the same vein, machine learning also appears potentially more efficient in 

modeling time-dependent processes as the evolution of friction coefficient as a function 

of time which can be predicted using recurrent neural networks. 

6. Conclusion 

In this work machine learning approach is applied to predict gross slip fretting wear 

response of low alloyed steel under different loading conditions. In particular, artificial 

neural network (ANN) is applied to predict wear volume. It appears that neural networks 

simulation succeeds in establishing the experimental linear and nonlinear dependencies 

of wear kinetics on the loading parameters but also predicts with sufficient accuracy the 

wear volume of significant portion of unseen test conditions. However, when compared 

to extended physical model, ANN requires large quantity of data points and becomes 

unreliable when small data base is utilized. However, it remains more performant than 

less extended physical models and in the presence of wider range of loading parameters 

as lubrication, contact temperature, etc. The given work also underlines the necessity to 

consider a significant quantity of experimental data to train the model. Current 

investigations are currently undertaken to establish the cost/result balance of such ANN 

strategy (i.e. number of experimental data required for the training process versus 

scattering of the prediction), but also to establish the potential gain versus more physical 
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wear modeling involving for instance the third body theory and/or the contact 

oxygenation concept [22,27]. 

Acknowledgements  

This research did not receive any specific grant from funding agencies in the public, 

commercial, or not-for-profit sectors. 

Reference 

[1] P.L. Hurricks, The mechanism of fretting-A review, Wear. 15 (1970) 389–409. doi:10.1016/0043-
1648(70)90235-8. 

[2] O. Vingsbo, S. Soderberg, On fretting maps, Wear. 126 (1988) 131–147. doi:10.1016/0043-1648(88)90134-2. 
[3] H. Proudhon, J.Y. Buffière, S. Fouvry, Three-dimensional study of a fretting crack using synchrotron X-ray 

micro-tomography, Eng. Fract. Mech. 74 (2007) 782–793. doi:10.1016/j.engfracmech.2006.06.019. 
[4] M. Godet, The third-body approach: A mechanical view of wear, Wear. 100 (1984) 437–452. 

doi:10.1016/0043-1648(84)90025-5. 
[5] J.M. Dobromirski, Variables of fretting process : Are there 50 of them?, Stand. Frett. Fatigue Test Methods 

Equipment. ASTM. (1992) 60–66. 
[6] E.K. Hayes, P.H. Shipway, Effect of test conditions on the temperature at which a protective debris bed is 

formed in fretting of a high strength steel, Wear. 376–377 (2017) 1460–1466. doi:10.1016/j.wear.2017.01.057. 
[7] A. Dreano, S. Fouvry, G. Guillonneau, Understanding and formalization of the fretting-wear behavior of a 

cobalt-based alloy at high temperature, Wear. 452–453 (2020) 203297. doi:10.1016/j.wear.2020.203297. 
[8] S. Fouvry, P. Arnaud, A. Mignot, P. Neubauer, Contact size, frequency and cyclic normal force effects on Ti–

6Al–4V fretting wear processes: An approach combining friction power and contact oxygenation, Tribol. Int. 
113 (2017) 460–473. doi:10.1016/j.triboint.2016.12.049. 

[9] A.R. Warmuth, S.R. Pearson, P.H. Shipway, W. Sun, The effect of contact geometry on fretting wear rates 
and mechanisms for a high strengthsteel, Wear. 301 (2013) 491–500. doi:10.1016/j.wear.2013.01.018. 

[10] A.M. Kirk, W. Sun, C.J. Bennett, P.H. Shipway, Interaction of displacement amplitude and frequency effects in 
fretting wear of a high strength steel: Impact on debris bed formation and subsurface damage, Wear. 482–483 
(2021) 203981. doi:10.1016/j.wear.2021.203981. 

[11] T. Zhu, P.H. Shipway, Contact size and debris ejection in fretting: The inappropriate use of Archard-type 
analysis of wear data and the development of alternative wear equations for commonly employed non-
conforming specimen pair geometries, Wear. 474–475 (2021) 203710. doi:10.1016/j.wear.2021.203710. 

[12] M.B. Gorji, A. de Pannemaecker, S. Spevack, Machine learning predicts fretting and fatigue key mechanical 
properties, Int. J. Mech. Sci. 215 (2022) 106949. doi:10.1016/j.ijmecsci.2021.106949. 

[13] S.P. Jones, R. Jansen, R.L. Fusaro, Preliminary investigation of neural network techniques to predict 
tribological properties, Tribol. Trans. 40 (1997) 312–320. doi:10.1080/10402009708983660. 

[14] K. Velten, R. Reinicke, K. Friedrich, Wear volume prediction with artificial neural networks, Tribol. Int. 33 
(2000) 731–736. doi:10.1016/S0301-679X(00)00115-8. 

[15] R. Ramesh, R. Gnanamoorthy, Artificial neural network prediction of fretting wear behavior of structural steel, 
en 24 against bearing steel, en 31, J. Mater. Eng. Perform. 16 (2007) 703–709. doi:10.1007/s11665-007-
9100-9. 

[16] F. Aydin, R. Durgut, Estimation of wear performance of AZ91 alloy under dry sliding conditions using machine 
learning methods, Trans. Nonferrous Met. Soc. China (English Ed. 31 (2021) 125–137. doi:10.1016/S1003-
6326(20)65482-6. 

[17] L. Haviez, R. Toscano, M. El Youssef, S. Fouvry, G. Yantio, G. Moreau, Semi-physical neural network model 
for fretting wear estimation, J. Intell. Fuzzy Syst. 28 (2015) 1745–1753. doi:10.3233/IFS-141461. 

[18] S. Anand Kumar, S. Ganesh Sundara Raman, T.S.N. Sankara Narayanan, R. Gnanamoorthy, Prediction of 
fretting wear behavior of surface mechanical attrition treated Ti-6Al-4V using artificial neural network, Mater. 
Des. 49 (2013) 992–999. doi:10.1016/j.matdes.2013.02.076. 

[19] D. Nowell, P.W. Nowell, A machine learning approach to the prediction of fretting fatigue life, Tribol. Int. 141 
(2020) 105913. doi:10.1016/j.triboint.2019.105913. 

[20] T. Kolodziejczyk, R. Toscano, S. Fouvry, G. Morales-Espejel, Artificial intelligence as efficient technique for 
ball bearing fretting wear damage prediction, Wear. 268 (2010) 309–315. doi:10.1016/j.wear.2009.08.016. 



23 
 

[21] S. Baydoun, S. Fouvry, S. Descartes, P. Arnaud, Fretting wear rate evolution of a flat-on-flat low alloyed steel 
contact: A weighted friction energy formulation, Wear. 426–427 (2019) 676–693. 
doi:10.1016/j.wear.2018.12.022. 

[22] S. Baydoun, S. Fouvry, S. Descartes, Modeling contact size effect on fretting wear: A combined contact 
oxygenation - Third body approach, Wear. 488–489 (2021) 204168. doi:10.1016/j.wear.2021.204168. 

[23] S. Baydoun, P. Arnaud, S. Fouvry, Explicit formulations of adhesive wear extension in fretting interfaces 
applying the contact oxygenation concept, Wear. 488–489 (2022) 204147. doi:10.1016/j.wear.2021.204147. 

[24] S. Baydoun, P. Arnaud, S. Fouvry, Modelling adhesive wear extension in fretting interfaces: An advection-
dispersion-reaction contact oxygenation approach, Tribol. Int. 151 (2020) 106490. 
doi:10.1016/j.triboint.2020.106490. 

[25] S. Fouvry, P. Kapsa, An energy description of hard coating wear mechanisms, Surf. Coatings Technol. 138 
(2001) 141–148. doi:10.1016/S0257-8972(00)01161-0. 

[26] J. He, J. Peng, Y. Ren, Z. Cai, J. Liu, M. Zhu, Study on improving fretting wear properties of AISI 4135 steel 
via diverse surface modifications under grease lubrication, Wear. 490–491 (2022) 204210. 
doi:10.1016/j.wear.2021.204210. 

[27] P. Arnaud, S. Baydoun, S. Fouvry, Modeling adhesive and abrasive wear phenomena in fretting interfaces: A 
multiphysics approach coupling friction energy, third body and contact oxygenation concepts, Tribol. Int. 161 
(2021) 107077. doi:10.1016/j.triboint.2021.107077. 

 


