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Abstract11

We employ an enriched microscopic heat conduction model that can account for12

size effects in heterogeneous media. Through, physically, relevant scaling arguments13

we improve the regularity of the corrector in the classical problem of periodic homog-14

enization in the three-dimensional setting and, in doing so, we clarify the intimate15

role correctors play in measuring the difference between the heterogeneous solution16

(microscopic) and the homogenized solution (macroscopic). Moreover, if the data are17

of the form f = div FFF with FFF ∈ L3(Ω,R3), then we can prove the classical corrector18

convergence theorem as well.19
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Keywords: correctors, scale-size thermal effects, generalized Fourier’s law, microstruc-21

ture22

1 Introduction23

Analysis of correctors in homogenization theory for second-order elliptic equations with24

highly oscillatory coefficients provides an important link between the microscopic and25

macroscopic problem since it measures the difference between the heterogeneous solution26

and the homogenized solution. Simultaneously, correctors point out some of the limita-27

tions of such second-order elliptic systems due to their lack in accounting for scale-size28

effects in e.g. microheterogeneous bodies. The prototypical and landmark example for the29
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homogenization of second-order elliptic equations is Fourier’s law of heat conduction. In its30

simplest form, Fourier’s law relates the heat flux qqq as a linear function of the temperature31

gradient, that is:32

qqq = −κ∇u, (1.1)33

where u is the absolute temperature and κ > 0 the thermal conductivity that depends34

on properties of the material. In general, the coefficient κ may depend on temperature,35

space, and/or time, but often varies so little in cases of interest that it is reasonable to36

neglect this variation.37

The theory of periodic homogenization led to a deeper exploration of Fourier’s heat con-38

duction law as it pertains to heterogeneous periodic material with different conductivities.39

Effective heat fluxes were derived taking into account microstructure morphology and vol-40

ume fraction. The classical problem in the periodic homogenization for stationary heat41

conduction states:42

−div
(
K(

xxx

ε
)∇uε

)
= f in Ω,

uε = 0 on ∂Ω,
(1.2)

where K(yyy) ∈ L∞(Y,R3×3) is uniformly elliptic, symmetric, and Y -periodic with Y =43

[0, 1)3. If Ω ⊂ R3 is uniformly Lipschitz open set, then there exists a unique solution uε to44

(1.2) such that it converges weakly to a function u in H1
0(Ω), where the function u ∈ H1

0(Ω)45

is the unique solution to,46

−div
(
Keff∇u

)
= f in Ω,

u = 0 on ∂Ω,
(1.3)

with Keff
ij :=

∑3
l=1

∫
Y Kil(yyy)(δjl − ∂ylwj) dyyy and wj ∈ {H1

per(Y ) |
∫
Y wj dyyy = 0} solution to,47

−divy (K(yyy)(∇ywj − eeej)) = 0 in Y,

wj is Y − periodic.
(1.4)

The convergence of uε to u in H1
0(Ω) is only weak. If one seeks to improve the convergence48

then, usually, a corrector type term is introduced,49

uε − u− εû(·, ·
ε
) → 0 in H1(Ω), (1.5)50

where û(xxx,yyy):= −
∑N

k=1wk(yyy)
∂u
∂xk

(xxx) is the correction term. In order for the expression51

to belong in H1(Ω) it is required that wk ∈ W1,∞(Y ) and u ∈ H2(Ω) (see [4, Sect. 5,52

pg. 33]). With the introduction of two-scale convergence [28] (see also [1] and [24]) a53

rigorous justification was provided for the multiple-scale method and the corrector result54

(in N -dimensional space) in (1.5) was made rigorous through the following theorem:55
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Proposition 1.1. [1, Thm 2.6], [8, Prop. 9.12], [24, Thm. 22] Let û be given by,56

û(xxx,yyy) = −
N∑
k=1

wk(yyy)
∂u

∂xk
(xxx) + ũ1(xxx), (1.6)57

and suppose that ∇ywk ∈ Lr(Y,RN ), k = 1, . . . , N and ∇u ∈ Ls(Ω,RN ) with 1 < r, s < ∞58

and such that,59

1

r
+

1

s
=

1

2
. (1.7)60

Then,61

∇uε −∇u−∇yû(·,
·
ε
) → 0 in L2(Ω,RN ). (1.8)62

As one can immediately observe, the main unease with the above proposition is the higher63

integrability required on both local and homogenized solutions. However, with the intro-64

duction of periodic unfolding operators [9, 10], one can obtain a more general corrector65

result without requiring any regularity assumption on the cell function wk, stating66

∇uε −∇u−
N∑
k=1

Qε(
∂u

∂xk
)∇ywk → 0 in L2(Ω,RN ), (1.9)67

where Qε is the scale-splitting operator defined in [9]; see the elegant proof in [11]. More-68

over, based on the scale-splitting operator, upper bound estimates on the convergence rate69

in terms of ε were obtained in [23] (with some additional regularity assumptions on the70

homogenized solution). Furthermore, the upper bound estimates on the convergence rate71

can be made tighter by using boundary layer correctors (see e.g. [27], [2], [32]). Therefore,72

it seems that in order to lift the (restrictive) regularity conditions in Proposition 1.1 one73

must have knowledge of the operator Qε.74

In this work, we commence with a higher-gradient heat equation model so as when passing75

to the limit the homogenized problem coincides with (1.3), however, the local solutions wk76

satisfy a higher-gradient local problem and, hence, possess better regularity properties than77

classical local solutions. This aforementioned higher regularity of the local solution com-78

pensated by the mild assumption that the data are of the form f := div FFF , FFF ∈ L3(Ω,R3)79

allows us to prove Proposition 1.1 with weaker than usual assumptions and without using80

the scale-splitting operator. The approach marshalled in this article is motivated from81

generalized continuum mechanic theories (see e.g. [17]). It is well understood that the82

effective properties of heterogeneous materials can depend not only on the volume frac-83

tion of the phases or their geometrical distribution but also on the absolute size of the84

constituents (see e.g. [19]). By introducing physically relevant scaling arguments related85

to the absolute size of the constituents, we introduce a new length scale parameter that86

models scale-dependent thermal effects (see e.g. [16, 15]). Hence, by arguing as in the87

work of [30], the solution of the enriched microscopic problem can be seen as a vanishing-88

viscosity solution that coincides with the classical homogenized solution of (1.3). The89
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higher regularity that the enriched microscopic model possesses is transferred to the local90

solution with the minimal assumptions of a uniformly Lipschitz open set Ω and non-smooth91

coefficients.92

We have organized the paper as follows: In Section 2 we explain in detail the scaling93

argument we employ, present the enriched microscopic model, provide some motivation94

for its use, and prove some general qualitative results as they pertain to existence and95

uniqueness of solution as well as the variational nature of the problem. In section Section 396

we state the main results, we discuss their consequences, and demonstrate symmetry97

relations for the higher-gradient effective coefficients as well as explore their variational98

structure. Section 4 is dedicated to proving the main results in Section 3. Finally, we99

reserve Section 5 for some discussion and remarks.100

2 Problem set-up101

2.1 Generalized Fourier’s law102

Fourier’s law of heat conduction is widely regarded as a limiting approximation of some103

general (potentially nonlinear) constitutive law for the heat flux that may depend on104

higher-gradients [12] [7], [33]. For instance, the temperature of a rarefied gas at the slip105

regime, namely when 0.001 < Kn < 0.3 where Kn is the non-dimensional Knudsen number,106

deviates from Fourier’s law of heat conduction [33]. Moreover, in the same article a107

generalized heat conduction model, from a phenomenological point of view, was postulated108

under the assumption that the gas is isotropic. The authors’ speculation was that the heat109

flux in a rarefied gas in the slip regime, depends linearly on on the temperature gradient110

but also on higher-order temperature derivatives,111

qqq = K∇u+ L:∇∇u+M
...∇∇∇u, (2.1)112

where K is a second order tensor, L is a third order tensor, and M is a fourth order tensor113

with : and
... denoting second and third order contraction, respectively. In the case where114

we have isotropy and the medium is centro-symmetric, the higher-gradient heat flux can115

reduce further,116

qqq = K∇u+M
...∇∇∇u, (2.2)117

where Kij :=ηδij and Mijkl:=ℓ1δikδjl+ ℓ2δilδjk+ ℓ3δijδkl for scalars η and ℓi, i = 1, 2, 3 that118

will be assumed to be constant or piece-wise constant. The heat conduction inequality119

asserts that,120

qqq.∇u ≤ 0, (2.3)121

for all temperature fields. Furthermore, the tensor M has a physical meaning and is often122

referred to as the spatial retardation (see [7]).123
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In addition to the above mentioned works, emerging primarily from the physics commu-124

nity, non-classical laws of Fourier’s heat conduction have, for many years now, attracted125

considerable attention from the theoretical mechanics community as well (see e.g. [18],126

[5]). In recent years, the motivation for deriving non-classical heat conduction models in127

the mechanics field stemmed from trying to understand the presence of thermal fluctua-128

tion fields in heterogeneous materials with a microstructure. Specifically, the authors in129

[18] postulate the existence of a free energy function that has an added dependence on130

the gradient of the entropy density variable. Based on this enhanced free energy, an en-131

hanced heat equation was derived containing a term with a characteristic length related to132

material parameters that can account for scale-size thermal effects in microheterogeneous133

bodies.134

Finally, all of the above theoretical or computational non-classical approaches seem to135

have found some validation in recent experimental work where evidence of size-dependent136

thermal effects were reported in heterogeneous materials (see e.g. [16, 15]).137

2.2 Scale-dependent thermal effects138

In this paragraph, we postulate the modified heat flux in (2.2) and derive an additional139

length scale parameter that encapsulates the size-dependent thermal effects in the context140

of an idealized periodic microstructure. We assume that our working domain Ω is periodic141

with period ℓ and with overall characteristic length L. Define the dimensionless coordinates142

and temperature,143

xxx∗ =
xxx

L
, u∗(xxx∗) =

u(xxx)

L
. (2.4)144

Moreover, we can define the following non-dimensional tensors:145

KK∗ = K, MM∗ = M, (2.5)

where K:=maxzzz∈Yℓ
|K(zzz)|, M:=maxzzz∈Yℓ

|M(zzz)| with Yℓ:=(−ℓ/2, ℓ/2]3 the periodic cell146

characterizing the body Ω. We can now introduce an additional length scale relation147

between K and M as follows:148

M = ℓ2TEK. (2.6)149

Thus, the non-dimensional heat flux becomes,150

qi =
3∑

j=1

KK∗
ij

∂u∗

∂x∗j
+

3∑
k,l=1

K
(ℓTE

L

)2 ∂

∂x∗j

(
M∗

ijkl

∂2u∗

∂x∗k∂x
∗
l

) . (2.7)151

If we use the notation, qqq∗:=K−1qqq then we have a non-dimensional form of the heat flux,152
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qqq∗ = K∗∇u∗ +
(ℓTE

L

)2
div∗ (M∗:∇∗∇∗u∗) . (2.8)153

We remark that since the coefficients K andM are Yℓ periodic the corresponding normalized154

coefficients K∗ and M∗ are Y ∗ periodic where Y ∗:= ℓ
LY with Y :=(−1/2, 1/2]3. Finally,155

henceforth, if no confusion arises we will drop the ∗ notation in order to expedite our156

presentation.157

2.3 The microscopic problem158

We consider a material with a periodic microstructure of period ε:=ℓ/L ≪ 1 occupying159

a region Ω ⊂ R3. The region Ω that the heterogeneous material occupies is assumed160

to be a uniformly Lipschitz open set (see [14, Definition 2.65]). The exterior boundary161

component will be denoted by Σ:=∂Ω while the vector nnn will denote the unit normal on Σ162

pointing in the outward direction. The ε periodic problem, generated by defining the non-163

dimensional number ε as the ratio of ℓ/L, will permit us to obtain an effective equation164

when ε → 0. However, unlike in classical homogenization problems, different cases ought165

to be considered depending on how the intrinsic length scale ℓTE scales with ℓ (or L).166

Here, since we are interested in recovering Fourier’s classical law of heat conduction as an167

effective limit, we will only consider the scaling,168

ℓTE/ℓ ∼ 1. (2.9)169

The physical meaning of the above scaling, is that the intrinsic length ℓTE is comparable170

with the length of the heterogeneities. Naturally, other type of scalings are possible,171

however, we will not address other cases here. We refer the reader to [30] for different172

type of scalings in the context of generalized continuum mechanics.173

Therefore, under the scaling in (2.9), the (generalized) heat flux becomes,174

qqqε = K(
xxx

ε
)∇uε + ε2div

(
M(

xxx

ε
):∇∇uε

)
. (2.10)175

The microscopic problem is then characterized by the following equation and boundary176

conditions,177

−div
(
K(

xxx

ε
)∇uε − ε2div

(
M(

xxx

ε
):∇∇uε

))
= f in Ω,

ε2M(
xxx

ε
)∇∇uε:nnn⊗nnn = 0 on Σ,

uε = 0 on Σ,

(2.11)

where f is some given source that belongs in L2(Ω). We remark, that prescribing a178

homogeneous Dirichlet boundary condition, as is usually the case, is no longer sufficient.179

We require, additionally, to prescribe a zero heat flux for what we refer to as a normal180

double heat flux that is directly related to the spatial retardation coefficient M (see next181

section on the weak formulation of the problem). In direct analogy with second-gradient182

elasticity, such a term is referred to as normal double traction (see [26, 20, 21]).183
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2.3.1 Notation and assumptions184

- We employ the Einstein notation of repeated indices unless otherwise stated.185

- Throughout the work we assume that the uniform strong ellipticity condition holds,186

i.e., there exist positive (generic) constants c1 and c2 such that:187

c1|www|2 ≤ www.K(xxx).www ≤ c2|www|2,
c1|www|2|qqq|2 ≤ www ⊗ qqq:M(xxx):www ⊗ qqq ≤ c2|www|2|qqq|2,

(2.12)

for all www,qqq ∈ R3 − {000}.188

2.3.2 Auxiliary formulas189

For the readers’ convenience and for the expediency of the our results, we introduce certain190

formulas that we will make use of in obtaining the variational formulation of (2.11). These191

formulas, among others, can also be found in [20, Appendix].192

For any smooth enough scalar function ξ defined on Σ or on a neighborhood of Σ, the193

tangential and normal components of ∇ξ are,194

(∇ξ)τ=−nnn× (nnn×∇ξ)=∇ξ − (∇ξ)nnnn, (∇ξ)n:=∇ξ ·nnn. (2.13)195

Moreover, we introduce the surface gradient of ξ using the projection operator Π:=I−nnn⊗nnn,196

∇sξ=(I−nnn⊗nnn)∇ξ=Π∇ξ. (2.14)197

Thus, we can write down a useful integration by parts formula on surfaces,198 ∫
Σ
∇sξ ds =

∫
Σ
ξ(div nnn)nnnds+

∫
∂Σ

JξνννK dℓ, (2.15)199

where200

νi = ϵϵϵijktjnk, (2.16)201

is the unit normal vector on ∂Σ and tangent to Σ, ttt is the unit tangent vector to ∂Σ, and202

ϵϵϵ is the Levi-Civita tensor. Lastly, we remark, the jump term on (2.15) is on a ridge, i.e.203

the line on Σ where the tangent plane of Σ is discontinuous.204

Remark 2.1. The above formulas are used with a high degree of frequency in emulsions205

and capillary fluids (see e.g. [31]). We refer the reader to the appendix of reference [20]206

or [21] for an excellent exposition of the above formulae and related topics.207
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2.4 Weak formulation208

The primary setting for for the variational formulation of (2.11) is the space H2(Ω)∩H1
0(Ω)209

where the Sobolev space H2(Ω) is a Hilbert space with norm,210

∥u∥H2(Ω) =
(
∥u∥2L2(Ω) + ∥∇u∥2L2(Ω,R3) + ∥∇∇u∥2L2(Ω,R3×3)

)1/2
. (2.17)211

Since the varational formulation of (2.11) is not a standard one, we write down the details212

for the readers convenience using the notation introduced in Section 2.3.2. Hence, if we213

multiply (2.11) by a test function v ∈ {ϕ ∈ C∞(Ω) | ϕ = 0 on Σ} and integrate by parts214

several times (including integration by parts on surfaces using formula (2.15)) we obtain,215

−
∫
Σ

(
Kij(

xxx

ε
)∂xjuε−ε2∂xk

(
Mikpq(

xxx

ε
)∂2

xpxq
uε

))
niv ds

+

∫
Ω
Kij(

xxx

ε
)∂xjuε∂xjv dxxx−ε2

{∫
Σ
Mikpq(

xxx

ε
)∂2

xpxq
uεnknmni∂xmv dσ

+

∫
∂Σ

r
Mikpq(

xxx

ε
)∂2

xpxq
uεnkΠiℓνℓv

z
dl−

∫
Σ
Πℓm∂xm(Mikpq(

xxx

ε
)∂xpxquεnkΠiℓ)v dσ

}
+ε2

∫
Ω
Mikpq(

xxx

ε
)∂xpxquε∂xixk

v dxxx=

∫
Ω
f v dxxx.

(2.18)

Using the fact that we have imposed a homogeneous Dirichlet boundary condition and216

a zero normal double heat flux for the spatial retardation on Σ, we can see that the217

variational formulation (in vectorial form) reduces to the following: Find uε ∈ H2(Ω) ∩218

H1
0(Ω) such that,219 ∫

Ω
K(

xxx

ε
)∇uε.∇v dxxx+ε2

∫
Ω
M(

xxx

ε
)∇∇uε:∇∇v dxxx=

∫
Ω
f v dxxx, (2.19)220

for all v ∈ H2(Ω) ∩H1
0(Ω).221

Remark 2.2. The weak form in (2.18) also provides a way for recovering the strong form222

of problem (2.11) in the sense of distributions. For more details, the interested reader can223

consult [30].224

Remark 2.3. Existence and uniqueness of a solution in (2.19) that belongs in H2(Ω) ∩225

H1
0(Ω) is a matter of applying the Lax-Milgram lemma together with Poincaré’s inequality226

in H1
0(Ω) and the assumptions regarding the ellipticity of the tensors in Section 2.3.1.227

Hence, immediately, we can derive the following estimate from (2.19),228

(
∥uε∥2H1(Ω) + ε2 ∥∇∇uε∥2L2(Ω,R3×3)

)1/2
≤ c(Ω) ∥f∥L2(Ω) . (2.20)229
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2.5 Variational formulation230

The weak solution to (2.19) can be classified as the unique minimum of the functional231

Jε(θ),232

uε= argmin
θ∈H2(Ω)∩H1

0(Ω)

Jε(θ), (2.21)233

where234

Jε(θ):=
1

2

∫
Ω
K(

xxx

ε
)∇θ.∇θ dxxx+

1

2

∫
Ω
ε2M(

xxx

ε
)∇∇θ:∇∇θ dxxx−

∫
Ω
f θ dxxx. (2.22)235

A standard computation of the variational derivative of Jε will recover (2.19) and the236

Euler-Lagrange equations in succession.237

3 Main results238

3.1 Homogenization via unfolding Γ–convergence239

We define the following domain decompositions (see [9, 13, 10, 11]):240

K−
ε :=

{
ℓ ∈ Zd | ε(ℓ+ Y ) ⊂ Ω

}
, Ω−

ε := int
(
∪ℓ∈K−

ε
ε(ℓ+ Y )

)
, Λ−

ε := Ω\Ω−
ε . (3.1)

ε

ε

Ω

Ω−
ε

0 ∈ R3

ε
[
x
ε

]
∈ Z3

εy ∈ εY

x ∈ Ω

Figure 1: Unfolding operator on a periodic grid

Let [zzz]Y = (⌊z1⌋, ⌊z2⌋, ⌊z3⌋) denote the integer part of zzz ∈ R3 and denote by {zzz}Y the241

difference zzz−[zzz]Y which belongs to Y . Regarding our multiscale problem that depends on a242

small length parameter ε > 0, we can decompose any xxx ∈ R3 using the maps [·]Y : R3 7→ Z3
243

and {·}Y : R3 7→ Y the following way (see Fig. 3.1 (right)),244

xxx = ε
([xxx

ε

]
Y
+

{xxx
ε

}
Y

)
. (3.2)245
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Definition 3.1. ([10, Def. 2.1, pg. 1588]) For any Lebesgue measurable function φ on Ω246

we define the periodic unfolding operator by,247

Tε(φ)(xxx,yyy) =

{
φ
(
ε
[
xxx
ε

]
Y
+ εyyy

)
for a.e. (xxx,yyy) ∈ Ω−

ε × Y

0 for a.e. (xxx,yyy) ∈ Λ−
ε × Y.

(3.3)248

Regarding properties of the unfolding operator, the reader can consult [9, 13, 10, 11].249

Definition 3.2. ([6, Def. 12 and Prop. 14, pg. 458]) Let Fε : L
p(Ω) → R be a sequence250

of functionals and F : Lp(Ω× Y ) → R (p > 1). We say that Fε unfolding Γ-converges to251

F if for all u ∈ Lp(Ω× Y ):252

1. For every sequence uε ∈ Lp(Ω) such that Tε(uε) ⇀ u in Lp(Ω× Y ) one has,253

F (u) ≤ lim inf
ε→0

Fε(uε); (3.4)254

2. there exists a sequence uε ∈ Lp(Ω) such that Tε(uε) ⇀ u in Lp(Ω× Y ) and255

F (u) = lim
ε→0

Fε(uε). (3.5)256

Theorem 3.1. The sequence of functionals Jε unfolding Γ-converge in the weak topology257

of H2(Ω) ∩H1
0(Ω) to Jeff as ε → 0,258

Jε
Γ→ Jeff , (3.6)259

where260

Jeff(θ):=
1

2

∫
Ω
Keff∇θ.∇θ dxxx−

∫
Ω
fθ dxxx, (3.7)261

Keff
ik :=

∫
Y
K(yyy)(∇ywk − eeek).(∇ywi − eeei) +M(yyy)∇y∇ywk:∇y∇ywi dyyy, (3.8)262

with wk the Y -periodic local solution to,263

−divy (K(yyy)(∇ywk − eeek)− divy(M(yyy)∇y∇ywk))=0 in Y. (3.9)264

Remark 3.1. The first part of (3.8) is what one would expect as a result from the homog-265

enization of second order linear elliptic equations while the second part is new, specific to266

the inclusion of the second-gradient thermal effects.267
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Theorem 3.2. Let uε and u be the unique minimizers of (2.22) and (3.7), respectively.268

Moreover, let f :=div FFF , FFF ∈ L3(Ω,R3) then,269

∇uε −∇u−∇yû(·,
·
ε
) → 0 in L2(Ω,R3), (3.10)270

as ε → 0 with271

û(xxx,yyy) = −wk(yyy)
∂u

∂xk
(xxx) + ũ1(xxx). (3.11)272

Remark 3.2. We note in the above theorem, the assumptions that ∇ywk ∈ Lr and ∇u ∈273

Ls with 1/r+1/s = 1/2 are no longer needed. Furthermore, if we compare (3.11) with G.274

Griso’s result in (1.9), we see that (3.11) is more accessible to computations, hence, more275

practical.276

3.2 Remarks on the homogenized coefficients277

3.2.1 Symmetry278

Since we work within a variational framework, the homogenized coefficients inherit the279

symmetry that is imposed on them from the framework. If one were to obtain the effective280

tensor through a multiple scale expansion then the tensor would have the following, non-281

symmetric, form:282

Keff
ik :=

∫
Y
Kij(yyy)(δjk −

∂wk

∂yj
) dyyy. (3.12)283

Naturally, the two forms, (3.8) and (3.12), are equivalent (since the tensors K and M are284

assumed to be isotropic). The proof is virtually identical to the classical case (see [34]),285

however, we feel it should be included here since it is a higher-gradient generalization of286

the classical case:287

Multiply with a test function (3.9) and integrate by parts to obtain,288

0 =

∫
Y
Mmjpq

∂2wk

∂yp∂yq

∂2v

∂ym∂yj
dyyy +

∫
Y
Kmj

∂(wk − yk)

∂yj

∂v

∂ym
dyyy. (3.13)289

Selecting v = wi we have,290

0 =

∫
Y
Mmjpq

∂2wk

∂yp∂yq

∂2wi

∂ym∂yj
dyyy +

∫
Y
Kmj

∂(wk − yk)

∂yj

∂wi

∂ym
dyyy. (3.14)291

If we add and subtract coordinate yi on the wi term of the second integral we obtain,292

∫
Y
Kij(yyy)(δjk −

∂wk

∂yj
) dyyy

=

∫
Y
Mmjpq

∂2wk

∂yp∂yq

∂2wi

∂ym∂yj
dyyy +

∫
Y
Kmj

∂(wk − yk)

∂yj

∂(wi − yi)

∂ym
dyyy.

(3.15)
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3.2.2 Variational characterization of the higher-order effective tensor293

By (3.8), we can see that Keff is symmetric as well, and is determined in its entirety294

from the knowledge of the quadratic form Keffξξξ · ξξξ for any constant vector ξξξ ∈ R3. Using295

definition (3.8) one can check that,296

Keffξξξ · ξξξ =

∫
Y
K(yyy)(−ξξξ+∇ywξ).(−ξξξ+∇ywξ) dyyy +

∫
Y
M(yyy)∇y∇ywξ:∇y∇ywξ dyyy, (3.16)297

where wξ is the solution of the following cell problem,298

{
−divy (K (∇ywξ−ξξξ)−divy (M:∇y∇ywξ))=0 in Y,

yyy 7→ wξ(yyy) is Y − periodic.
(3.17)

Using completely standard techniques stemming from the calculus of variations we can299

write for our case,300

Keffξξξ · ξξξ= inf
v∈H2

per(Y)

(∫
Y
K(yyy)(∇yv−ξξξ).(∇yv−ξξξ) dyyy+

∫
Y
M(yyy)∇y∇yv:∇y∇yv dyyy

)
, (3.18)301

with H2
per(Y):={v ∈ H2(Y) | v is Y − periodic}. It follows immediately that the effective302

coefficients are elliptic (satisfy Legendre condition), i.e. Keffξξξ · ξξξ ≥ K|ξξξ|2 where K =303 ∫
Y K(yyy) dyyy.304

4 Proof of the main results305

4.1 Proof of Theorem 3.1306

Theorem 3.1. The sequence of functionals Jε unfolding Γ-converge in the weak topology307

of H2(Ω) ∩H1
0(Ω) to Jeff as ε → 0,308

Jε
Γ→ Jeff , (3.6)309

where310

Jeff(θ):=
1

2

∫
Ω
Keff∇θ.∇θ dxxx−

∫
Ω
fθ dxxx, (3.7)311

Keff
ik :=

∫
Y
K(yyy)(∇ywk − eeek).(∇ywi − eeei) +M(yyy)∇y∇ywk:∇y∇ywi dyyy, (3.8)312

with wk the Y -periodic local solution to,313

−divy (K(yyy)(∇ywk − eeek)− divy(M(yyy)∇y∇ywk))=0 in Y. (3.9)314
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Proof. Define,315

Eε(θ):=

{
1
2a(θ, θ) if θ ∈ H2(Ω) ∩H1

0(Ω)

+∞ if θ ∈ L2(Ω)\H2(Ω) ∩H1
0(Ω),

(4.1)316

with317

a(θ, θ):=

∫
Ω
K(

xxx

ε
)∇θ.∇θ dxxx+

∫
Ω
ε2M(

xxx

ε
)∇∇θ:∇∇θ dxxx, (4.2)318

and319

Eeff(θ):=

{
1
2

∫
Ω Keff∇θ.∇θ dxxx if θ ∈ H2(Ω) ∩H1

0(Ω)

+∞ if θ ∈ L2(Ω)\H2(Ω) ∩H1
0(Ω).

(4.3)320

It suffices to show that Eε
Γ→ Eeff where the energy Eε is finite.321

Γ-limit inferior inequality.322

Let uε ∈ H2(Ω) ∩H1
0(Ω) be a solution to (2.11) then based on the estimates in (2.20) and323

properties of the periodic unfolding operator Tε (see [10] for a definition) we have,324

• Tε(uε) ⇀ u in L2(Ω,H2(Y))325

• Tε(∇uε) ⇀ ∇xu+∇yû in L2(Ω,H1(Y,R3))326

• Tε(ε∇∇uε) ⇀ ∇y∇yû in L2(Ω×Y,R3×3).327

Then, for all φφφ ∈ L2(Ω,C1
per(Y,R3)) we have,328

0≤1

2

∫
Ω
K(

xxx

ε
)(∇uε−φφφ).(∇uε−φφφ) dxxx+

1

2

∫
Ω
ε2M(

xxx

ε
)(∇∇uε−∇φφφ):(∇∇uε−∇φφφ) dxxx. (4.4)

Opening up the parentheses in the above expression we obtain,329

Eε(uε)≥
∫
Ω
K(

xxx

ε
)∇uε.φφφdxxx−1

2

∫
Ω
K(

xxx

ε
)φφφ.φφφdxxx

+

∫
Ω
ε2M(

xxx

ε
)∇∇uε:∇φφφdxxx−1

2

∫
Ω
ε2M(

xxx

ε
)∇φφφ:∇φφφdxxx

=

∫
Ω×Y

K(yyy)Tε(∇uε).Tε(φφφ) dyyydxxx− 1

2

∫
Ω×Y

K(yyy)Tε(φφφ).Tε(φφφ) dyyydxxx

+

∫
Ω×Y

ε2M(yyy)Tε(∇∇uε):Tε(∇φφφ) dyyydxxx−1

2

∫
Ω×Y

ε2M(yyy)Tε(∇φφφ):Tε(∇φφφ) dyyydxxx

ε→0→
∫
Ω×Y

K(yyy)(∇xu+∇yû).φφφdyyydxxx−1

2

∫
Ω×Y

K(yyy)φφφ.φφφdyyydxxx

+

∫
Ω×Y

M(yyy)∇y∇yû:∇yφφφdyyydxxx−1

2

∫
Ω×Y

M(yyy)∇yφφφ:∇yφφφdyyydxxx

(4.5)
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Since the space L2(Ω,C1
per(Y,R3)) is dense in L2(Ω × Y,R3), the above inequality holds330

for a sequence of regular functions of the form φφφε(xxx,yyy) Y -periodic in yyy with the following331

convergence properties,332

• Tε(φφφε) ⇀ ∇xu+∇yû in L2(Ω×Y,R3)333

• Tε(ε∇φφφε) ⇀ ∇y∇yû in L2(Ω×Y,R3×3).334

Upon extracting a (a non-relabeled) sub-sequence, we obtain in the limit inferior of (4.5),335

lim inf
ε→0

Eε(uε)≥
1

2

∫
Ω×Y

(
K(yyy)(∇xu+∇yû).(∇xu+∇yû)

+M(yyy)∇y∇yû:∇y∇yû
)
dyyydxxx

≥1

2

∫
Ω

inf
v∈H2

per(Y)

∫
Y

(
K(yyy)(∇xu+∇yv).(∇xu+∇yv)

+M(yyy)∇y∇yv:∇y∇yv
)
dyyydxxx

=
1

2

∫
Ω
Keff∇xu.∇xu dxxx

Γ-limit superior inequality.336

We will construct the recovery sequence for smooth functions initially and then use a337

diagonalization argument to complete the proof.338

Let uuu ∈ H2(Ω) ∩ H1
0(Ω). Using the density of C∞

0 (Ω) in H2(Ω) ∩ H1
0(Ω) we can suppose339

without loss of generality that u ∈ C∞
0 (Ω). Furthermore, let û ∈ C2

per(Y) be a minimizer340

of,341

inf
v∈H2

per(Y)

{∫
Y
K(yyy)(∇xu+∇yv).(∇xu+∇yv) dyyy+M(yyy)∇y∇yv:∇y∇yv

}
. (4.6)342

Existence of such a minimizer is shown using classical arguments of coercivity and lower343

semi-continuity of,344

v 7→ inf
v∈H2

per(Y)

(∫
Y
K(yyy)(∇yv−ξξξ).(∇yv−ξξξ) dyyy+

∫
Y
M(yyy)∇y∇yv:∇y∇yv dyyy

)
. (4.7)345

Define the sequence,346

uε(xxx) = u(xxx) + εû(
xxx

ε
). (4.8)347

Then,348

• Tε(uε) → u in L2(Ω,H2(Y))349
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• Tε(∇uε) → ∇xu+∇yû in L2(Ω,H1(Y,R3))350

• Tε(ε∇∇uε) → ∇y∇yû in L2(Ω×Y).351

Thus,352

Eε(uε) =
1

2

∫
Ω

(
K(

xxx

ε
)∇uε.∇uε+ε2M(

xxx

ε
)∇∇uε:∇∇uε

)
dyyydxxx

=
1

2

∫
Ω×Y

(
K(yyy)T (∇uε).T (∇uε)+ε2M(yyy)T (∇∇uε):T (∇∇uε)

)
dyyydxxx.

(4.9)

Hence, passing to the limit as ε → 0 in the expression above we obtain,353

lim
ε→0

Eε(uε)

=

∫
Ω×Y

(K(yyy)(∇xu+∇yû).(∇xu+∇yû)+M(yyy)∇y∇yû):∇y∇yû) dyyydxxx

=
1

2

∫
Ω

inf
v∈H2

per(Y)

∫
Y

(
K(yyy)(∇xu+∇yv).(∇xu+∇yv)+M(yyy)∇y∇yv:∇y∇yv

)
dyyydxxx

=
1

2

∫
Ω
Keff∇xu.∇xu dxxx

(4.10)

We can conclude the proof using a density and diagonalization argument.354

Remark 4.1. The Euler-Lagrange equation of (3.7) is,355

∫
Ω
Keff∇u.∇ϕdxxx =

∫
Ω
f ϕ dxxx (4.11)

for all ϕ ∈ H1
0(Ω). In the sense of distributions we can recover,356

−div
(
Keff∇u

)
= f in D(Ω),

u = 0 on ∂Ω,
(4.12)

with Keff given in (3.8).357

The above equation is precisely the limit problem that has been obtained countless times358

in the homogenization literature. The difference in this work is that the local solution359

used to construct the effective tensor Keff belong satisfy a higher-gradient problem with360

wk ∈ H2
per(Y ) (and not only in H1(Y )). This newly found local solution regularity is361

combined with the theorem below to prove the classical corrector convergence result.362
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The next theorem is included only for completion purposes and is a consequence of G.363

Stampacchia’s interpolation theorem [35]. Practically, it allows one to control the Lp
364

norm of the gradient of the weak solution of a second order elliptic system with constant365

coefficients, for p ∈ [2,∞), by controlling the integrability of the data. We refer the366

interested reader to [3, Thm. 3.28, pg. 76] (and references therein) for a modern treatment367

on the subject. Our aim here is to apply the theorem below to the second order elliptic368

system with constant coefficients in (4.12) to obtain the necessary integrability for the369

homogenized solution to compensate for the remaining regularity that is needed in the370

classical corrector convergence theorem.371

Theorem 4.1. Let u ∈ H1
0(Ω,R3) be a weak solution of the Dirichlet problem372

−div(A∇u) = −div FFF , (4.13)

where the constant coefficients Aijαβ satisfy the Legendre-Hadamard condition, and FFF ∈373

Lp(Ω,R3) for some 2 ≤ p < ∞. Then, ∇u ∈ Lp(Ω,R3) and374

∥∇u∥Lp(Ω,R3) ≤ c ∥FFF∥Lp(Ω,R3) (4.14)375

A proof of this theorem can be found in [22][Thm. 7.1, pg. 138] and [3, Thm. 3.29, pg.376

79 and disc. on Sect. 3.5, pg. 78].377

4.2 Proof of Theorem 3.2378

Theorem 3.2. Let uε and u be the unique minimizers of (2.22) and (3.7), respectively.379

Moreover, let f :=div FFF , FFF ∈ L3(Ω,R3) then,380

∇uε −∇u−∇yû(·,
·
ε
) → 0 in L2(Ω,R3), (3.10)381

as ε → 0 with382

û(xxx,yyy) = −wk(yyy)
∂u

∂xk
(xxx) + ũ1(xxx). (3.11)383

Proof. The proof of this theorem amounts to essentially a compensated regularity ar-384

gument, where the burden of regularity is split (un-equally) between the local solution385

and the homogenized solution. We argue as follows: by the assumption on the body386

force f we can apply Theorem 4.1 and obtain ∇u ∈ L3(Ω,R3). Moreover, since the lo-387

cal solution wk ∈ H2
per(Y ) we extend it by periodicity to the entire space. By applying388

standard Sobolev embedding theory we can obtain ∇ywk ∈ L6(R3,R3) (see e.g. [14, The-389

orem 2.31]). Therefore, the above compensated regularity argument makes the expression390

∇uε − ∇u − ∇yû(·, ·
ε) well defined in the L2 norm and hence, we can prove Proposition391

9.12 in [8, pg. 185] directly. In what follows, we provide the actual steps of the argument392
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that is given in [8, Proposition 9.12, pg. 185] with the appropriate adjustments that the393

second-gradient thermal effects introduce.394

Staring from the ellipticity of the second order tensor K we have,395

c1

∥∥∥∇uε(xxx)−∇u(xxx)−∇yû(xxx,
xxx

ε
)
∥∥∥2
L2(Ω,R3)

≤
∫
Ω
K(

xxx

ε
)(∇uε(xxx)−∇u(xxx)−∇yû(xxx,

xxx

ε
)).(∇uε(xxx)−∇u(xxx)−∇yû(xxx,

xxx

ε
)) dxxx

≤
∫
Ω
K(

xxx

ε
)(∇uε(xxx)−∇u(xxx)−∇yû(xxx,

xxx

ε
)).(∇uε(xxx)−∇u(xxx)−∇yû(xxx,

xxx

ε
)) dxxx

+

∫
Ω
M(

xxx

ε
)(ε∇∇uε−∇y∇yû):(ε∇∇uε−∇y∇yû) dxxx

(4.15)

where the last inequality is due to the ellipticity condition of the tensor M. Hence, opening396

up the expression above, using the structure of equation (2.11), and the symmetry of the397

tensors K and M we have,398

c1

∥∥∥∇uε(xxx)−∇u(xxx)−∇yû(xxx,
xxx

ε
)
∥∥∥2
L2(Ω,R3)

≤
∫
Ω
fuε dxxx−2

∫
Ω
K(

xxx

ε
)∇uε.(∇u+∇yû)dxxx+

∫
Ω
K(

xxx

ε
)(∇u+∇yû).(∇u+∇yû)dxxx

−2

∫
Ω
εM(

xxx

ε
)∇∇uε:∇y∇yûdxxx+

∫
Ω
M(

xxx

ε
)∇y∇yû:∇y∇yûdxxx.

(4.16)

By unfolding, we can see that we are able to pass to the limit in each expression due to399

estimate (2.20). Thus,400

lim
ε→0

c1 ∥∇uε−∇u−∇yû∥2L2(Ω,R3)≤
∫
Ω×Y

fudyyydxxx

−
∫
Ω×Y

K(yyy)(∇u+∇yû).(∇u+∇yû)dyyydxxx

−
∫
Ω×Y

M(yyy)∇y∇yû:∇y∇yûdyyydxxx=0.

(4.17)

On the last step we made use of equation (4.10).401

5 Discussion402

Lastly, remark that it has been observed in [29] that the above generalized heat conduction403

problem can be formulated as a classical gradient system with an induced gradient flow404

equation,405
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∂tu = +∇GDS (u) in Ω, (5.1)406

with G the metric tensor and L (u) :=
∫
Ω log u dxxx the entropy. Naturally, assumptions407

have to be made on the coefficients so that model is thermodynamically correct. Although,408

we will address the time-dependent case in future work, we would like to point out that409

this added gradient structure could be used to pass to the limit in the time dependent410

case through evolutionary Γ-convergence (see e.g. [25]).411
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