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Abstract: We investigate the existence of acoustic Tamm states at the interface between two one-
dimensional (1D) comblike phononic crystals (PnCs) based on slender tubes and discuss their
topological or trivial character. The PnCs consist of stubs grafted periodically along a waveguide
and the two crystals differ by their geometrical parameters (period and length of the stubs). We use
several approaches to discuss the existence of Tamm states and their topology when connecting two
half-crystals. First, we derive a necessary and sufficient condition on the existence of interface states
based on the analysis of the bulk band structure and the symmetry of the band edge states. This
approach is equivalent to an analysis of the Zak phases of the bulk bands in the two crystals. Indeed,
a topological interface state should necessarily exist in any common bandgap of the two PnCs for
which the lower (upper) band edges have opposite symmetries. A novelty of our structure consists
in the fact that the symmetry inversion results from a band closure (flat band) rather than from a
gap closure, in contrast to previous works. Then, such interface states are revealed through different
physical quantities, namely: (i) the local density of states (LDOS), which exhibits a high localization
around the interface; (ii) sharp peaks in the transmission spectra in the common bandgap when two
finite crystals are connected together; (iii) the phases of the reflection coefficients at the boundary
of each PnC with a waveguide, which have a direct relationship with the Zak phases. In addition,
we show that the interface states can transform to bound states in the continuum (BICs). These BICs
are induced by the cavity separating both PnCs and they remain robust to any geometrical disorder
induced by the stubs and segments around this cavity. Finally, we show the impossibility of interface
states between two connected PnCs with different stub lengths and similar periods. The sensitivity of
these states to interface perturbations can find many practical applications in PnC sensors.

Keywords: topological interface states; phononic crystals; comblike structure; Zak phase

1. Introduction

Phononic crystals (PnCs) are artificial periodic devices used for controlling and manip-
ulating sound and elastic waves [1–3] in analogy with electromagnetic waves in photonic
crystals and electron wave functions in semiconductors [4]. Of particular interest, one-
dimensional (1D) periodic systems based on slender tubes have been studied to design
band-gap materials [5,6] with potential applications for controlling noise, filtering, sensing,
demultiplexing and acoustic metamaterials with negative modulus [7–10]. Within this
field, several devices have been proposed to achieve transmission gaps and filters such as
Helmholtz resonators [11,12], asymmetric loops [13] and side-coupled stubs [5,6]. Addi-
tionally, breaking the periodicity of the perfect phononic crystal by a defect may give rise to
localized defect modes within the forbidden gaps [14]. Particularly, great interest has been
paid to localized surface modes called Tamm states [15], which were originally discovered
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for electrons in condensed matter physics. Later, Tamm states have been extended to
classical wave systems such as acoustics [16–18], photonics [19–21] and plasmonics [22].

In recent years, several studies have been devoted to investigate the existence of
interface Tamm states based on the topological properties of band structures in the con-
sidered artificial materials that can be revealed through the Berry phase approach [23].
In 1D periodic systems, the topology of the bands is characterized by the concept of Zak
phase, a special kind of Berry phase [24–28]. Recently, topological interface states and Zak
phase have been extended to various branches of physics such as photonics [26,29–34],
plasmonics [22,35], acoustics and mechanical systems [36–39] and metamaterials [40,41].
The topological invariant has been successfully applied to predict the existence of interface
states from the Zak phases of bulk bands. The Zak phase of each bulk band is calculated
from different approaches such as: the symmetry of the band-edge states [42] or a condition
on the sign of the phase of the reflection coefficient at the termination of the periodic
structure [26,32].

Topological interface states have been the subject of a great interest in acoustic wave
systems. Meng et al. [43] and Xiao et al. [27] showed interface states in phononic crys-
tals based on cylindrical waveguides with periodically alternating cross-sectional areas.
To et al. [44] studied the existence of acoustic interfacial waves in multilayers. However,
few works [42,45] have been devoted to study interface states in periodic acoustic systems
based on locally grafted resonators or stubs. Generally, the previous studies are based on
1D dimerized devices described by the Su–Schrieffer–Heeger (SSH) model [46–49] and the
bandgap inversion process with topological transition points. However, in this work, we
use a very different approach from the SSH model which is based on the band inversion
around flat bands and show that a unit cell with only one stub is sufficient to introduce
topological Tamm states at the interface between two PnC systems (Figure 1). In contrast
to previous works, the symmetry inversion in our structure results from a band closure
rather than the bandgap closure. First, we show the possibility of existence of interface
states between two comblike structures through an analysis of the bulk band structure and
the symmetry of the band edge states. This approach is equivalent to the analysis of the
Zak phases of the bulk bands in the two PnCs. The Zak phase of each band is calculated
both directly from its definition based on a double integration over the Brillouin zone and
the unit cell (Equation (2) of the paper), or from the symmetry of the band-edge states.
Indeed, we show the existence of a topological interface state inside the common bandgap
of two PnCs for which the lower (or upper) band edges have opposite symmetries. Then,
we show that such interface states can be revealed by an analysis of the local density of
states (LDOS) at the interface between two semi-infinite PnCs (Figure 1a). Furthermore,
we confirm the existence of such topological interface states by several arguments, namely,
a reflection phase condition and transmission spectra. When two finite periodic systems
are connected together, the Tamm states are revealed by asymmetrical sharp peaks in the
shape of Fano resonances [50] in the transmission spectra inside the common bandgaps
(Figure 1c). These modes can become topological bound states in the continuum (BICs)
with infinite quality factor [51] for some geometrical parameters. These BICs are induced
by the cavity separating both PnCs and remain robust to any geometrical perturbation in
the stubs and segments around this cavity. Moreover, in addition to true localized Tamm
states that fall inside the common bandgaps of two PnCs, we discuss the existence of
semilocalized interface states, which appear as well-defined resonances within the bandgap
of one PnC and the bulk band of the other one. Finally, we show the impossibility of
interface states between two PnCs with different stub lengths and similar periods. The
analytical calculations developed here are performed by means of the Green’s function
approach [3,52]. It is worth noticing that the interface states predicted here can be observed
experimentally in the low-frequency domain using slender tubes or Helmholtz resonators
as in the experiments based on the impulse response technique [12,14,53–55].
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Figure 1. (a) Interface between two semi-infinite PnCs terminated by segments of lengths d1
2 and d2

2 .
Each PnC is composed of one stub by period. (b) Semi-infinite PnCs (the first PnC in the left and the
second one in the right) in contact with a waveguide. r1 and r2 are the reflection coefficients for the
PnC1 and PnC2, respectively. (c) Interface between two finite PnCs each one composed of 3 cells. I, R
and T denote the incident, reflected and transmitted acoustic waves, respectively.

The outline of this paper is as follows: In Section 2, we discuss the possibility of the
existence of acoustical Tamm states from the band structures and Zak phases of the bulk
bands of periodic infinite PnCs. In Section 3, we show the interface states through the
analysis of the dispersion relation and LDOS spectra of two semi-infinite PnCs (Figure 1c).
In Section 4, we prove the existence of interface states from reflection phases and the
transmission coefficient. In Section 5, we give a conclusion for this work.

2. Interface States from Zak Phases and Symmetry of Edge Modes

The PnC device considered here is a 1D periodic system consisting of alternating
stubs grafted periodically along a waveguide (Figure 1). The tubes and waveguides are
filled with the same fluid (air) and characterized by the same impedance Z = ρv

a , where
ρ = 1.2 kg/m3 is the mass density of air, v = 342 m/s is the longitudinal speed of acoustic
wave and a = 3.14 cm2 is the cross section of the guide [53]. The PnCs are made by the
same material (air) with different geometrical parameters: the first PnC (on the left-hand
side) is made by stubs of length d′1 and a period of length d1 with a tube of length d1

2 at the
surface, whereas the second PnC (on the right-hand side) is made by stubs of length d′2
and a period of length d2 with a tube of length d2

2 at the surface (Figure 1b). The Dirichlet
boundary condition is applied at the end of stubs, which means closed stubs yielding the
vanishing of the velocity or of the derivative of the pressure field. It should be pointed
out that the validity of our results is subject to the requirement that the propagation is
monomode, i.e., the cross section of the slender tubes is supposed to be much smaller than
their length and the propagation wavelength λ (

√
a << di, λ).

The dispersion relation of an infinite comblike PnC structure, composed of stubs of
length d′i and separated from each other by the period di, is given by [5]
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cos(ki
Bdi) = Ci +

1
2

SiC′i
S′i

, (1)

where Ci = cos(kdi), Si = −j sin(kdi), C′i = cos(kd′i) and S′i = −j sin(kd′i) (i = 1, 2). k = ω
v

is the wave-vector of the acoustic wave in the slender tubes and j =
√
−1. ω is the angular

frequency.
The Zak phase is a special type of Berry phase in 1D periodic systems. It is defined for

the nth band by [26,27]

θZak
n =

∫ π/d1

−π/d1

[
i
∫

unit cell

1
2ρv2 dxu∗n,q(x)∂qun,q(x)

]
dq, (2)

where x represents the spatial coordinate and un,q is the Bloch wave eigenfunction with
a given wave vector q. For the nth band of a 1D PnC, the pressure field is defined as
pq;n,q(x) = un,q(x) exp(iqx). The quantity 1

2ρv2 is the weight function of an acoustic system.
Although the Zak phase of a given band can be calculated analytically from the

knowledge of the Bloch eigenfunctions, it can also be determined from the symmetry of
the band-edge states. If the unit cell admits an inversion symmetry and the origin of the
coordinates is fixed at the symmetry center, the Zak phase calculated from Equation (2) can
take only two defined values, 0 or π [26,32,42]. If the wave field at the edges of the selected
band has identical symmetry, meaning both are symmetric or antisymmetric, then the Zak
phase of this band is zero. Otherwise, the Zak phase is π.

To demonstrate the topological properties in our PnC structure, we consider first
an infinite comblike structure composed by stubs of length d′1 = 10 cm and a period of
length d1 variable (Figure 1). We should note here that our unit cell contains only one
stub, in contrast to what has been studied in the literature, where authors have considered
dimerized unit cells made of two stubs by unit cell [25–27,29]. In the latter, the band gaps
can close and reopen by changing the period of the system. Our proposal is, in contrast to
such systems, based on the acoustic analogue of the SSH model [42,45–49] with dimerized
unit cells. Indeed, the symmetry inversion in our PnC structure results from a band closure
rather than from a gap closure. The advantage of our proposed approach lies in the fact
that the gaps around the flat bands are hybridization gaps where the imaginary part of the
wave vector takes very high values and consequently the interface mode becomes very
localized. However, in more common cases where the final gap is obtained by leaving
the degeneracy of a closed gap (as, for instance, in the SSH model), this gap is of Bragg
type and the interface states may be less localized. In addition, our system may present a
topological BIC induced by the cavity separating the two PnCs. This BIC remains robust
under any geometrical perturbation in the stubs and segments around this cavity.

Figure 2 shows the bandgap structure of an infinite comblike PnC composed by stubs
of length d′1 = 10 cm as a function of the period of length d1. The bandgaps of the comblike
structure originate either from the periodicity of the crystal (Bragg gaps) or from local
resonant states induced by the grafted stubs (hybridization gaps). One can notice the
existence of band crossing points (labeled 1–6 by green circles) that represent the situation
where the dispersion curve becomes totally flat (without dispersion) and the widths of
the corresponding passbands vanish. By changing the parameter d1, the bands close and
reopen at these points. The edge modes of two bands in the vicinity of a flat band are
characterized by the same symmetry. The symmetric and antisymmetric band edge states
as a function of d1 are indicated by pink and cyan colors, respectively. As a function of
d1, the Zak phase is zero if the band edge states are characterized by the same symmetry,
otherwise the Zak phase is π. The gray color represents areas where the Zak phase is π,
while the dark cyan color indicates areas where the Zak phase is 0.

Now, two PnCs with different values of d1 near a band crossing point can exhibit
a common bandgap such that the symmetries of the upper band edge state for the first
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PnC and the lower band edge state for the second PnC are the same (see the vertical
dashed lines and encircled area in Figure 2 for some selected values of d1). This property
is sufficient to ensure that the common gap can support a topological interface state. It
is shown [26] that it is sufficient to look at the symmetry of the lower (or upper) band
edges of a common bandgap to know if it supports an interface state or not. For example,
consider two phononic crystals labeled PnC1 and PnC2 in Figure 2 for d1 = 2 cm and
d2 = 7 cm, respectively. One can see that around the crossing bands noted 3 at 3429 Hz, the
two PnCs present a common gap (indicated by large circles) and the symmetry of the upper
edge mode of PnC1 is similar to the symmetry of the lower edge mode of PnC2 (this is
shown in more detail in the following). A similar analysis can be done for PnC2 and PnC3
around point 4 and PnC1 and PnC3 (or PnC4) around point 1, etc. It can be noticed that it is
preferable to not chose both PnCs very close to the same crossing point, because in that case,
the common bandgap between the two PnCs becomes very narrow and the topological
interface state will appear very close to the passbands. Figure 2 gives us a clear idea on how
the two PnCs should be chosen before coupling them to achieve a common bandgap that
can support an interface state in a broad bandgap. Generally, the existence of topological
interface states is analyzed on the basis of the gap closure process in the framework of
the SSH model [27,29]; here, we provide another approach based essentially on the band
closure mechanism around flat bands. An analysis of the possibility of topological Tamm
states for the four PnCs shown in Figure 2 is discussed in detail below.

1 2

3 4 5 6

Figure 2. Bandgaps (white area) separated by bands (shaded area) of an infinite PnC as a function
of d1, while d′1 is fixed at 10 cm. The green circles labeled 1 to 6 indicate the positions of the band
crossing points (where the dispersion curves become flat). The vertical dashed lines correspond to
the four PnCs discussed in Figure 3. Pink and cyan colors indicate the symmetric and antisymmetric
edge modes of the common bandgaps, respectively. The bands with π and 0 Zak phases are indicated
by gray and dark cyan colors, respectively.

Indeed, in order to give a better idea about the possible combinations of PnCs that
can display interface states, we provide in Figure 3a–d, four examples of band structures
(frequency as a function of dimensionless Bloch wave vector k1

Bd1) of infinite PnCs, indi-
cated by vertical lines in Figure 2 for four values of the period d1. Let us notice that in
these band structures, the lowest dispersion curve displays a cut-off frequency that is a
result of the boundary condition at the end of stubs which are closed tubes. This is useful
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in the determination of their Zak phases from the symmetry of the band edge states. To
identify the Zak phase of each bulk band, we use either the integral in Equation (2) or the
symmetry of the acoustic pressure field at the band edge states. The Zak phase is π if the
band edge states of a given band have opposite symmetries with respect to the symmetry
plane of the unit cell. Otherwise, the Zak phase is zero if the band edge states have the same
symmetry (i.e., both symmetric or both antisymmetric). The Zak phase of each bulk band is
denoted π or zero in black in (a)–(d). The pink (cyan) dots at the band edges represent the
symmetric (antisymmetric) states. Some examples of the symmetries of these edge modes
are displayed in Figure 4 for d1 = 2 cm (Figure 4a–d) and d1 = 13 cm (Figure 4e–l). The
pressure fields of the different modes are obtained from the transfer matrix method (see
Supplementary Materials SM1).

Figure 3. (a–d) Band structures for four infinite PnCs with different values of the period d1 and
d′1 = 10 cm. The Zak phases of each bulk band are labeled π or 0 in black. The pink (cyan) dots at the
band edges represent the symmetric (antisymmetric) states. G1 and G2 indicate the position of the
first and second common bandgaps. The bandgaps are colored in blue or red depending on whether
the signs of the reflection phases of the semi-infinite PnCs are negative or positive.

Based on the above symmetry argument, we study the existence of a topological
interface state in the common bandgaps for different combinations of the four PnCs 1 to
4. These crystals are indicated by dashed lines in Figure 2 and the symmetries of their
band edge states are highlighted by cyan and pink colors. The corresponding dispersion
curves and bandgaps are given in Figure 3. One can see that all bandgaps that can support
interface states are of the hybridization type. Thus, for the combination PnC1+PnC2,
there is no interface state in the lowest common bandgap around 1800 Hz, denoted G1 in
Figure 3. Indeed, the lower (resp., upper) edge states of the corresponding gaps have the
same symmetry, namely, they are both symmetric (resp., antisymmetric) as illustrated in
Figure 2 and in Figure 4. In contrast, the higher common bandgap around 3400 Hz, denoted
G2, supports an interface state because the lower (resp., upper) band edge states have
opposite symmetries. A similar conclusion holds for the combinations PnC3+PnC4. The
same symmetry argument allows us to conclude that for the combinations PnC1+PnC3 and
PnC2+PnC4, there is one interface state in the lower common bandgap and no interface state
in the higher common bandgap. Finally, the combinations PnC1+PnC4 and PnC2+PnC3
display an interface state in both common bandgaps. All these conclusions about the
interface states in the common bandgaps G1 and G2 are summarized in Table 1.
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Figure 4. (a–l) Square modulus of the pressure field of different band edge states labeled A1–L3,
respectively, for d1 = 2 cm and d1 = 13 cm. Pink and cyan colors indicate the symmetric and
antisymmetric edge modes, respectively.

In addition, the sign of the reflection phases in the bandgaps can be deduced from the
Zak phases of the bulk bands from the relation [26,32],

sgn(φn) = (−1)n+1 exp

(
i

n−1

∑
m=1

θZak
m

)
. (3)

The sign of the reflection phases in the bandgaps of the four PnCs are plotted in
Figure 3 in red and blue colors. The red and blue colors correspond to sgn(φn) > 0 and
sgn(φn) < 0, respectively. Moreover, the existence of topological interface states can be
predicted by the signs of the reflection phases in the bandgaps. A topological interface state
can be obtained in the different configurations if the reflection phases of two PnCs take
opposite signs, i.e., the colors in the common bandgaps are different. All these conclusions
about the possibility of the existence of interface states based on the sign of the phase of the
reflection coefficients for different configurations in Figure 3 are in accordance with those
summarized in Table 1.
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Table 1. The existence or nonexistence of topological interface states for different interface configura-
tions constructed from the four PnCs in Figure 3.

PnCs Common Bandgap G1 Common Bandgap G2

PnC1/PnC2 No Yes
PnC1/PnC3 Yes No
PnC1/PnC4 Yes Yes
PnC2/PnC3 Yes Yes
PnC2/PnC4 Yes No
PnC3/PnC4 No Yes

3. Interface States from Dispersion Relation and Local Density of States

In this section, we discuss the existence of interface states through the analysis of
the dispersion relation of the semi-infinite PnCs and the local density of states (LDOS) at
the interface point (labeled 0) between two semi-infinite comblike PnCs (Figure 1a). The
acoustic interface states can be directly obtained through the dispersion relation of the
semi-infinite PnCs (Figure 1a), namely, [3,52]

g−1(ω2) = g−1
1 (ω2) + g−1

2 (ω2) = 0, (4)

where gi(ω
2) (i = 1, 2) is the Green’s function element at the surface of each PnC before

their coupling. For open boundary conditions at the surface, its expression is given by [52]

gi(ω
2) =

1
∆i

[
Si
F
−

S′′i
FC′′i

(Ci −
1
ti
)

]
, (5)

where

∆i = Ci −
SiS′′i
C′′i
− 1

ti
, (6)

with C′′i = cos(k di
2 ), S′′i = −j sin(k di

2 ) (i = 1, 2) and F = −jω
Z . The parameter ti is defined

as ti = exp(ki
Bdi), where di is the period of each PnC (Figure 1a,b) and ki

B is the Bloch
wavevector of each PnC given by Equation (1).

Now, we introduce the surface impedance Zi of each semi-infinite PnC as follows

g−1
i (ω2) =

jω
Zi

(i = 1, 2). (7)

From Equations (4) and (7), one can get easily

Z1 + Z2 = 0, (8)

which is the well-known matching impedance condition [43] that should be satisfied in
order to realize interface states between two media.

Moreover, the interface states can be revealed by the LDOS at the connection point
(labeled 0) between the two PnCs (Figure 1a), which is given by [3,52],

n(ω) =
2ω

π
Im[g(ω2)] =

2ω

π
Im
[

g1(ω
2)g2(ω

2)

g1(ω2) + g2(ω2)

]
. (9)

Now, we discuss the common bandgaps between two semi-infinite PnCs and the
existence of the interface state from the maxima of the LDOS at the junction point between
the two crystals. For that purpose, let us fix the parameters d1 = 2 cm, d′1 = d′2 = 10 cm and
vary the parameter d2. For each value of d2, we can plot the projected band structures of
both crystals 1 and 2 from Figure 2. Their superposition is shown in Figure 5a as a function
of the parameter d2 where the white areas represent the common bandgaps of the two
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PnCs. The blue branches inside the gaps are the localized interface Tamm states obtained
from the maxima of the LDOS (Equation (9)), as illustrated in Figure 5b for a few values of
d2. The dispersion curves of the interface states decrease when increasing d2 and merge
inside the bulk bands where they become resonant (leaky) modes. From Figure 5b, one can
observe that for d2 = 10 cm and 16 cm, there is an interface mode in each of the common
bandgap, whereas at d2 = 13 cm, the interface state exists only in the lower bandgap.
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Figure 5. (a) Projected bandgap structure as a function of the period of the second PnC of length d2

and a fixed period of the first PnC d1 = 2 cm. The lengths of the stubs are assumed to be similar
(d′1 = d′2 = 10 cm). Shaded areas represent bulk bands, while white areas display common bandgaps
between the two PnCs. Blue branches represent interface Tamm states inside the common bandgaps
obtained by the maxima of LDOS. (b) Examples of LDOS spectra as a function of frequency for three
values of d2: d2 = 10 cm, d2 = 13 cm and d2 = 16 cm.

4. Interface States from Reflection Phases and Transmission Coefficient

In this section, we show the existence and the position of topological interface states in
our phononic systems from the phases of the reflection coefficients at the boundary of each
PnC with a waveguide (Figure 1b) or the transmission spectrum through two connected
finite PnCs (Figure 1c).

The reflection coefficient ri (i = 1, 2) is calculated separately between each PnC and a
homogeneous waveguide characterized by impedance Z (i.e., g−1(ω2) = jω

Z ). Its expression
is given by

ri =
Zi − Z
Zi + Z

(i = 1, 2). (10)

From Equation (10), one can deduce

Zi = Z
(

1− ri
1 + ri

)
. (11)

Equations (7) and (11) enable us to get r1r2 = 1, which is equivalent to |r1||r2| = 1 and
φPnC1 + φPnC2 = 0. In addition, from Equation (3), the Zak phase of a given bulk band can
be obtained from the sign of the reflection phase in the bandgaps surrounding this band,
namely, [26,42]

exp(iθZak
n ) = − sgn(φn)

sgn(φn−1)
, (12)

where φn and φn−1 are the reflection phases of the nth and (n− 1)th bandgap, respectively.
If the bandgaps have the same reflection phase sign (both positive or both negative), the
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Zak phase is π, otherwise it is 0. This property has been exploited experimentally to deduce
the Zak phases from the reflection phases [32].

Now, one can predict the existence and the position of the interface states through
the reflection phases intersections, i.e., when the condition φPnC1 + φPnC2 = 0 is satisfied.
In Figure 6a,b, we plot the reflection amplitudes and the corresponding phases for two
PnCs made of the same material with different geometries: d1 = 2 cm and d′1 = 10 cm
(PnC1) and d2 = 13 cm and d′2 = 10 cm (PnC3). The red (green) curves show the results
for the first (second) PnC. The reflection amplitudes reach unity in the bandgap frequency
regions. Based on the sign of the reflection phases, we have identified the Zak phases of
each bulk band of the two PnCs. In addition, the position of the topological interface states
can be obtained by the surface impedance condition φPnC1 + φPnC3 = 0 [26,32]. Indeed, the
intersection between φPnC1 (red curves) and−φPnC3 (green curves) at f = 1874.60 Hz in the
second common bandgap (G2) shows the position of the interface Tamm state (indicated
by a blue filled circle at f = 1874.60 Hz). However, the signs of the phases in the second
common bandgap G2 are similar and therefore such a gap cannot support an interface state.
This result is also confirmed in the transmission spectra in Figure 6c when we consider two
connected finite PnCs, each one made of N = 3 cells with different geometries (Figure 1c).
Despite the small number of cells (N = 3), the transmission bandgap regions coincide
well with those of the infinite crystal. The interface Tamm state (labeled T) appears as a
transmission peak at f = 1874.6 Hz inside the first common bandgap G1 and coincides
well with the interface state between two semi-infinite PnCs (indicated by a filled circle in
Figure 6b). The intensity of the resonance reaches unity since the impedance adaptation at
the interface between the two finite PnCs (i.e., no reflection at the interface) is respected.

Figure 6. (a,b) Reflection amplitudes and the corresponding phases at the boundary of each PnC
with the waveguide system (Figure 1b). The first PnC (PnC1) is made by stubs of length d′1 = 10 cm
and period of length d1 = 2 cm, while the second PnC (PnC3) is made by stubs of length d′2 = 10 cm
and period of length d2 = 13 cm. The blue dot in (b) indicates the position of the interface state.
(c) Transmission coefficient for two finite connected PnCs, each one is made of N = 3 stubs (Figure 1c).

The behavior of the transmission as a function of the frequency for the six combinations
listed in Table 1 is given in Figure 7. One can notice the existence of interface states in
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the first and second common bandgaps labeled T and T’, respectively. The existence of
these modes for each pair of PnCs is in accordance with the predicted results in Table 1 and
Figure 3. However, there exists a particular case (PnC2/PnC3) where the two predicted
modes in the lower and upper bandgaps (see Table 1) do not appear in the transmission
spectrum of Figure 7d. These modes belong to what is called BICs, which are characterized
by a zero width, infinite lifetime or infinite quality factor [51]. Indeed, the position of the
BIC can be obtained from vanishing the denominator of the transmission and reflection
coefficients (see Equations (S.17)–(S.20) in the SM2). However, this quantity is complex
and therefore the BIC is obtained from vanishing both its real and imaginary parts. After a
tedious analytical calculation, we show that the BIC position is given by the geometrical
parameters

d1 + d2

d′1
=

2m
n

, (13)

and the frequency

f =
mv
2d′1

, (14)

where m and n are nonzero integers. This mode corresponds to stationary modes of the
cavity of length d1+d2

2 surrounded by two stubs of length d′1 with a Dirichlet boundary
condition at its extremities. This mode is independent of the number of cells N and the
semi-infinite waveguides. Therefore, the BIC positions of the lower and upper modes
in Figure 7d with d1 = 7 cm and d′1 = 10 cm are given, respectively, by m = n = 1 in
Equations (13) and (14) (i.e., d2 = 13 cm and f = 1710 Hz) and m = n = 2 (i.e., d2 = 13 cm
and f = 3420 Hz). These two modes are indicated by vertical arrows in Figure 7d.

Figure 8a illustrates the shape and the width of the lower interface branch in Figure 5a
in the transmission spectra for a fixed d1 = 2 cm and a variable d2 from 10 cm to 18 cm. One
can see that for d2 = 10 cm (red curve), the interface state appears as a Fano resonance [50]
with an asymmetrical shape. When d2 increases, the interface resonance becomes symmetric,
its width decreases and its position shifts to lower frequencies. For d2 = 18 cm, this
resonance becomes a BIC with zero width at f = 1710 Hz (indicated by a blue arrow).
Indeed, Equations (13) and (14) give exactly dBIC

2 = 18 cm and fBIC = 1710 Hz for
m = n = 1, d1 = 2 cm and d′1 = 10 cm. The evolution of the transmission spectra (in
color scale) as a function of d2 and the frequency is given in Figure 8b. The interface state
appears as a sharp branch resonance, its width decreases as d2 increases and closes at
dBIC

2 = 18 cm and fBIC = 1710 Hz giving rise to the BIC. When d2 tends to dBIC
2 , the width

of the resonance goes to zero and therefore, the quality factor of theses modes diverges to
infinity as illustrated in Figure 8c. Despite the small number of cells considered in each
PnC in Figure 8b (N = 3 cells), the interface branch is very close to the one obtained in
Figure 5a for two semi-infinite PnCs.

In order to check the robustness of the topological BIC against geometrical perturba-
tions, we introduced a disorder in the system by changing the lengths of the stubs and
periods for a finite system made of 10 cells. We kept the cavity of length d1+d2

2 and the two
surrounding stubs of length d′1 unchanged and we introduced the disorder in the other
lengths of the periods and stubs. To this end, we numerically implemented a disorder real-
ization of strength δ ranging from zero (unperturbed system) to 0.1 (perturbed system). The
lengths of the periods di (i = 1, 2) were uniformly random in the interval [di − δdi, di + δdi]
(i = 1, 2) and the lengths of the stubs d′i (i = 1, 2) were uniformly random in the interval
[d′i − δd′i, d′i + δd′i] (i = 1, 2). For each strength of the perturbation, 10 different disorder
realizations were considered. Figure 8d compares the effect of the disorder on the BIC
(at dBIC

2 = 18 cm) and two other modes (labeled 1 and 2 in Figure 8b). As predicted, we
can see that the BIC is much more robust to the disorder strength δ compared to the other
two modes; this is because the BIC is a mode decoupled from the rest of the system and
depends only on the cavity of length d1+d2

2 surrounded by two stubs of length d′1 with a
vanishing pressure field at the connection points. As δ increases, the BIC stays pinned at the



Crystals 2022, 12, 1685 12 of 19

same frequency fBIC = 1710 Hz, whereas the other modes 1 and 2 fluctuate. In addition,
one can notice that as d2 goes away from dBIC

2 , the mode becomes more sensitive to the
disorder strength.

Figure 7. (a–f) Transmission spectra when two finite PnCs are connected together, each one made of
N = 3 stubs (Figure 1c) for different combinations of PnCs pairs in Table 1, which are constructed from
the four PnCs in Figure 3. The lengths of the stubs are fixed at d′1 = d′2 = 10 cm. T and T’ indicate the
positions of the acoustic interface states in the first and second common bandgaps, respectively.

In addition to the transmission coefficient, another interesting quantity can be used
to deduce the existence of the interface states in the system such as the variation of the
total density of states (DOS) of the whole structure and the phase of the determinant of
the scattering matrix S (det(S) = rr′ − t2), the so called Friedel phase θF [56]. For a lossless
system, one can show that the two quantities are related by the following expression (see
SM2 for the details of the calculation) [57],
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dθF
dω

= 2π∆n(ω), (15)

where ∆n(ω) is the variation of the density of states between the finite PnC in Figure 1c
and a reference system formed out of the two semi-infinite waveguides and the finite PnCs.
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Figure 8. (a) Transmission spectra for certain values of d2 around dBIC
2 and a fixed d1 = 2 cm (PnC1).

(b) Variation of the transmission coefficient as a function of d2 and frequency in the first common
bandgap. The crosses indicated by 1, 2 and BIC give the values of d2 for which the effect of disorder
is discussed in panel (d). (c) Quality factor of the interface states deduced from the width of the
resonances in (a) as a function of d2. (d) Evolution of the interface modes marked by crosses in panel
(b) for 10 realizations of disorder by varying the disorder strength δ: BIC (blue curve), mode 1 (cyan
curve) and mode 2 (red curve).

Figure 9a reproduces the transmission spectrum for d1 = 2 cm and d2 = 13 cm with
d′1 = d′2 = 10 cm as discussed in Figure 7b. Figure 9b shows the variation of the DOS
(red curves) as a function of frequency. The interface state appears as a well-defined peak
inside the first common bandgap. The variation of the DOS gives a clear signature of the
different interface states inside the bandgaps. Obviously, the phase of the determinant
of the scattering matrix can be represented by the same curve based on the theoretical
demonstration of Equation (15). It is worth noticing that the latter quantity has been
measured experimentally in photonic circuits [57].

Let us mention that the interface modes can be affected by external perturbations,
for instance by changing the temperature of the gas in the waveguides [58]. This effect is
further discussed in SM3.

In order to show the effect of the tubes at the surface on the topological interface state,
we plotted in Figure 10 the variation of interface state as a function of ε, where ε represents
the detuning of the tubes at the surface from d1

2 + d2
2 (i.e., ε = ds1 + ds2− (d1+d2)

2 ). The other
tubes of the PnCs are fixed at d1 = 2 cm (PnC1), d2 = 13 cm (PnC3) and d′1 = d′2 = 10 cm.
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One can see that the interface states appear as localized states inside the common bandgaps
of the two PnCs (white areas); their positions depend on the variation of ε. Obviously, the
interface state that appears at ε = 0 (i.e., ds1 = d1

2 and ds2 = d2
2 ) strongly depends on the

lengths ε and goes to lower frequencies as ε increases. Moreover, the interface states appear
periodically as a function of ε.

Figure 9. (a) Transmission coefficient for PnC1 and PnC3 with d′1 = d′2 = 10 cm. (b) Variation of the
DOS as a function of frequency. The vertical dashed lines indicate the limits of the first and second
common bandgaps.

Figure 10. Interface states as function of ε for fixed values of the length of the stubs d′1 = d′2 = 10 cm
and periods d1 = 2 cm for PnC1 and d2 = 13 cm for PnC3. ε represents the detuning of the tubes at
the surface from d1

2 + d2
2 .

In addition to true localized interface states that fall inside the common bandgaps
of two different PnCs, one can also obtain pseudointerface states (or semilocalized states)
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which appear as resonances within the bandgap of one PnC and the bulk band of the other
one. Figure 11a gives a zoom of the dispersion curves around the first common bandgap of
two PnCs with d1 = 2 cm (PnC1 with black curves) and d2 = 13 cm (PnC3 with red curves).
One can notice the existence of a region of frequency around 2100 Hz where the bandgap
of PnC1 coincides with the bulk band of PnC3. In order to illustrate the behavior of the
pseudointerface states, we plotted in Figure 11b,c the variation of the DOS as a function of
frequency for ε = 0 and ε = −2.5 cm, respectively, around the common bandgap of the
two PnCs. For ε = 0 (i.e., the two tubes at the interface are fixed at d1

2 and d2
2 ), one obtains

the topological interface state which falls inside the common bandgap of the two PnCs. By
slightly changing ε from ε = 0, the interface state moves inside the common bandgap until
it merges within the bulk band of PnC3 (red curves) and becomes a resonant (leaky) mode
for ε = −2.5 cm (Figure 11c).

�
�

�����

��� ��� ���

�
�	



�

	
�


�
��

�
�
�

����

����

����

����

����
����

���

�����

�����

� �� �� 	�

���

�����

� �� �� 	�

��

����������

�����


�� � �� �� 	� �� ��

 �
 �

��
��

��

!" ���##$�%#���

����������

&�'	�!�	

���� ����

&�(�'
)�'(�'

�	�*

"


�� � �� �� 	� �� ��

 �
 �

� �
�
��

��

&�'	�!�	

���� ����

&�(�' )�'(�'

!*��%+$�,����

������

���

Figure 11. (a) Zoom of the dispersion curves for PnC1 with d1 = 2 cm (black curves) and PnC3 with
d1 = 13 cm (red curves) around the first common bandgap G1. (b,c) Variation of the total DOS of a
finite PnC composed of PnC1 (d1 = 2 cm) and PnC3 (d2 = 13 cm) for ε = 0 (b) and ε = −2.5 cm in
Figure 10. Horizontal dashed line indicates the limit of the bandgap of PnC3. (d,e) Square modulus
of the pressure field (in arbitrary units) versus the space position along the two combined PnCs for
the localized and pseudointerface states at fL = 1874.60 Hz and fR = 1994.89 Hz in (b) and (c),
respectively.

In order to show the spatial localization of the localized and pseudo interface states,
we present in Figure 11d,e the distribution of the pressure field |P|2 (in arbitrary units)
as a function of the space position along the two combined PnCs at the frequency of the
interface Tamm states in Figure 11b,c for ε = 0 and ε = −2.5 cm, respectively. For the
localized Tamm state (labeled L in Figure 11b at fL = 1874.60 Hz), one can observe that
the pressure field of this state is strongly localized at the interface between the two PnCs
located at x = 5 cm and decays rapidly in the bulk away from the interface. The main
acoustic energy is localized in the first segment of length d2

2 of the second PnC. However,
for the pseudointerface state (labeled R in Figure 11c at fR = 1994.89 Hz), the pressure field
decreases rapidly from the interface inside the first PnC (on the left side), while it decreases
less rapidly in the bulk of the second PnC (on the right side).

In all the previous sections, we fixed the lengths of the stubs at d′1 = d′2 = 10 cm to
get interface states. Here, we discuss the possibility of the existence of interface states
as a function of the lengths of the stubs for a fixed value of the period. To this end, we
plot in Figure 12a the bandgap structure (white areas) of an infinite PnC as a function
of the length d′1 for a fixed period d1 = 10 cm. One can observe the existence of band
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crossing points (labeled 1 to 6) where the bands close and reopen as function of d′1. By
slightly shifting from these points, one can obtain a common bandgap between two PnCs
for different values of d′1. The symmetry of the band edge states as a function of d′1 are
shown by pink and cyan colors for symmetric and antisymmetric states, respectively. From
the symmetry argument, one can obtain the Zak phases of the bulk bands such as zero
or π depending on the value of d′1. The areas where the Zak phase is π are indicated by
a gray color, while the areas where the Zak phase is zero are indicated by a dark cyan
color. Based on the symmetry of the band edge states, one can notice that it is impossible
to get interface states in all common bandgaps for any two PnCs whatever the value of
d′1, since their edge states are characterized by the same symmetry (i.e., both symmetric or
both antisymmetric). For example, consider two PnCs with different values of d′1 such as
d′1 = 6 cm and d′1 = 12 cm (PnCI and PnCII indicated by vertical dashed lines), one can
obtain a common bandgap between these two PnCs (indicated by large circles); however,
the symmetries of their lower (upper) band edges are similar, and therefore the common
bandgap does not support an interface state. This result is also confirmed in the DOS and
transmission spectra in Figure 12b,c, when we consider a finite PnC (Figure 1c) composed
of two finite PnCs (PnCI and PnCII). One can see that there is no interface state signature
inside the common bandgap (indicated by vertical dashed line) of the two PnCs.

(a) PnCI

1
2

4 5 6
3

PnCII

(b)

(c)

Figure 12. (a) Bandgaps (white area) separated by bands (shaded area) of an infinite PnC as a function
of the length of the stub d′1, while the length of the period d1 is fixed at 10 cm. The green circles labeled
1 to 6 indicate the positions of the band crossing points (where the dispersion curves become flat).
The vertical dashed lines correspond to the two PnCs. Pink and cyan colors indicate the symmetric
and antisymmetric edge modes of the common bandgaps, respectively. (b,c) DOS and transmission
spectra for a finite PnC (Figure 1c) composed of two finite PnCs (PnCI and PnCII) with d′1 = 6 cm
and d′2 = 12 cm and a fixed period d1 = d2 = 10 cm.

5. Conclusions

We investigated the existence of acoustic interface states between two topologically
different PnCs. The PnCs were both 1D periodic comblike structures made of the same
material but with different geometries. Contrary to the dimerized SSH model based on
gapless bands with two stubs by cell, we proposed a new platform based on band closure
(flat bands) and only one stub by unit cell. The tunability of common bandgaps and interface
states was well discussed around the flat bands. First, we analyzed the possibility of the
existence of interface states through an analysis of the band structure and the symmetry of
the band edge states. This approach was equivalent to the analysis of the Zak phases of
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the bulk bands of the two PnCs. The Zak phases of the bulk bands were determined using
two approaches: (i) the symmetry of the band edge states and (ii) the sign of the reflection
phases at the boundary of each PnC with a waveguide. Then, we showed that such interface
states could be revealed by the LDOS which exhibited a high localization at the connection
point between two semi-infinite PnCs. Moreover, the position of the interface state was
deduced from the reflection-phase-matching condition φPnC1 + φPnC2 = 0. Furthermore,
when two finite periodic systems were connected together, the Tamm states were revealed
by sharp peaks in the transmission spectra. We demonstrated that the three methods
supported each other and revealed the existence and the frequency position of the acoustic
interface states. In addition to true localized interface states, we discussed the possibility of
the existence of semilocalized interface states (i.e., interface resonances) that appear when
the bandgap of one PnC coincides with the bulk band of the second one. In addition, we
showed the possibility of the existence of topological BICs. These BICs were confined in the
cavity separating both PnCs and remained very robust to any geometrical disorder induced
by the stubs and segments around this cavity. Finally, we demonstrated that there was
no interface state regardless of the lengths of the stubs between two different PnCs with
similar periods. The calculations of the dispersion relations, DOS and scattering parameters
were obtained by means of the Green’s function method. The slender tubes used in this
work could easily be extended to 1D side-coupled millimeter-scale Helmholtz resonators
operating in the subwavelength domain [55], as well as to 2D topological PnCs [36,59,60].
In analogy with other waveguide devices, these results can be straightforwardly transposed
to electromagnetic waves in photonic circuits with an experiment in the radiofrequency
domain using standard coaxial cables [57] and to metal–insulator–metal (MIM) plasmonic
nanostructures [22,61]. This work is in progress.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12121685/s1, title Supplementary material: Tunable Topo-
logical Acoustic Tamm States in Comblike Structures Based on Band Inversion around Flat Bands.
The inverse of the Green’s function of the stub of length d

′

i in the space of interface M
′

i = {0, 0} is given
by [3,52].

Author Contributions: Investigation, S.K., Y.R., M.A., M.E.G. and E.H.E.B.; software, S.K., Y.R., M.A.
and M.E.G.; supervision, E.H.E.B. and B.D.-R.; writing—original draft, S.K., Y.R., M.A. and M.E.G.;
writing—review and editing, E.H.E.B., A.T. and B.D.-R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available from the authors upon reasonable request.

Acknowledgments: The work of S. Khattou, Y. Rezzouk, M. Amrani and M. El Ghafiani was sup-
ported by the National Center of Scientific and Technical Research (CNRST) under the Excellence
scholarship of Research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kushwaha, M.S.; Halevi, P.; Dobrzynski, L.; Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev.

Lett. 1993, 71, 2022. [CrossRef] [PubMed]
2. Khelif, A.; Adibi, A. (Eds.) Phononic Crystals: Fundamentals and Applications; Springer: Berlin, Germany, 2016.
3. Dobrzynski, L.; El Boudouti, E.H.; Akjouj, A.; Pennec, Y.; Al-Wahsh, H.; Lévêque, G.; Djafari, R.B. Phononics; Elsevier: Amsterdam,

The Netherlands, 2017.
4. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059. [CrossRef]

[PubMed]
5. Kushwaha, M.S.; Akjouj, A.; Djafari-Rouhani, B.; Dobrzynski, L.; Vasseur, J.O. Acoustic spectral gaps and discrete transmisson in

slender tubes. Solid State Commun. 1998, 106, 659–663. [CrossRef]

https://www.mdpi.com/article/10.3390/cryst12121685/s1
https://www.mdpi.com/article/10.3390/cryst12121685/s1
http://doi.org/10.1103/PhysRevLett.71.2022
http://www.ncbi.nlm.nih.gov/pubmed/10054563
http://dx.doi.org/10.1103/PhysRevLett.58.2059
http://www.ncbi.nlm.nih.gov/pubmed/10034639
http://dx.doi.org/10.1016/S0038-1098(98)00112-4


Crystals 2022, 12, 1685 18 of 19

6. El Boudouti, E.H.; Mrabti, T.; Al-Wahsh, H.; Djafari-Rouhani, B.; Akjouj, A.; Dobrzynski, L. Transmission gaps and Fano
resonances in an acoustic waveguide: Analytical model. J. Phys. Condens. Matter 2008, 20, 255212. [CrossRef]

7. Narayanaamurti, V. Phonon optics and phonon propagation in semiconductors. Science 1981, 213, 717–723. [CrossRef]
8. Lee, S.H.; Park, C.M.; Seo, Y.M.; Wang, Z.G.; Kim, C.K. Acoustic metamaterial with negative modulus. J. Phys. Condens. Matter

2009, 21, 175704. [CrossRef]
9. Fang, N.; Xi, D.; Xu, J.; Ambati, M.; Srituravanich, W.; Sun, C.; Zhang, X. Ultrasonic metamaterials with negative modulus. Nat.

Mater. 2006, 5, 452–456. [CrossRef]
10. Mouadili, A.; El Boudouti, E.H.; Djafari-Rouhani, B. Acoustic demultiplexer based on Fano and induced transparency resonances

in slender tubes. Eur. Phys. J. Appl. Phys. 2020, 90, 10902. [CrossRef]
11. Wang, Z.G.; Lee, S.H.; Kim, C.K.; Park, C.M.; Nahm, K.; Nikitov, S.A. Acoustic wave propagation in one-dimensional phononic

crystals containing Helmholtz resonators. J. Appl. Phys. 2008, 103, 064907. [CrossRef]
12. Robertson, W.M.; Ash, J.; McGaugh, J.M. Breaking the sound barrier: Tunneling of acoustic waves through the forbidden

transmission region of a one-dimensional acoustic band gap array. Am. J. Phys. 2002, 70, 689–693. [CrossRef]
13. Akjouj, A.; Al-Wahsh, H.; Sylla, B.; Djafari-Rouhani, B.; Dobrzynski, L. Stopping and filtering waves in phononic circuits. J. Phys.

Condens. Matter 2003, 16, 37. [CrossRef]
14. Munday, J.N.; Bennett, C.B.; Robertson, W.M. Band gaps and defect modes in periodically structured waveguides. J. Acoust. Soc.

2002, 112, 1353–1358. [CrossRef] [PubMed]
15. Tamm, I.Y. Rukovoyashchie idei v tvorchestve Faradeya. Phys. Z. Sowjetunion 1932, 1, 733.
16. El Hassouani, Y.; El Boudouti, E.H.; Djafari-Rouhani, B.; Aynaou, H.; Dobrzynski, L. Surface and interface acoustic waves in

solid-fluid superlattices: Green’s function approach. Phys. Rev. B 2006, 74, 144306. [CrossRef]
17. Mei, X.; Ke, M.; He, Z.; Yu, Z.; Yu, L.; Liu, Z. Acoustic Tamm states in double 1D phononic crystals. J. Wuhan Univ. Technol. Mater.

2012, 27, 374–376. [CrossRef]
18. Khattou, S.; Amrani, M.; Mouadili, A.; Djafari-Rouhani, B. Acoustic Tamm states in slender tubes. Mater. Today Proc. 2021, 45,

7394–7398. [CrossRef]
19. Djafari-Rouhani, B.; El Boudouti, E.H.; Akjouj, A.; Dobrzynski, L.; Vasseur, J.O.; Mir, A.; Fettouhi, N.; Zemmouri, J. Surface states

in one-dimensional photonic band gap structures. Vacuum 2001, 63, 177–183. [CrossRef]
20. Liu, X.X.; Tsai, C.F.; Chern, R.L.; Tsai, D.P. Dispersion mechanism of surface magnetoplasmons in periodic layered structures.

Appl. Opt. 2009, 48, 3102–3107. [CrossRef]
21. El Abouti, O.; El Boudouti, E.H.; El Hassouani, Y.; Noual, A.; Djafari-Rouhani, B. Optical Tamm states in one-dimensional

superconducting photonic crystal. Phys. Plasmas 2016, 23, 082115. [CrossRef]
22. Rezzouk, Y.; Amrani, M.; Khattou, S.; Djafari-Rouhani, B. Plasmonic Tamm states in periodic stubbed MIM waveguides: Analytical

and numerical study. J. Opt. Soc. Am. B 2022, 39, 600–610. [CrossRef]
23. Liu, F.; Wakabayashi, K. Novel topological phase with a zero berry curvature. Phys. Rev. Lett. 2017, 118, 076803. [CrossRef]

[PubMed]
24. Xiao, D.; Chang, M.; Niu, Q. Berry Phase Effects on Electronic Properties. Rev. Mod. Phys. 2010, 82, 1959–2007. [CrossRef]
25. Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 1979, 62, 1989. [CrossRef]
26. Xiao, M.; Zhang, Z.Q.; Chan, C.T. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys. Rev. X

2014, 4, 021017. [CrossRef]
27. Xiao, M.; Ma, G.; Yang, Z.; Sheng, P.; Zhang, Z.Q.; Chan, C.T. Geometric phase and band inversion in periodic acoustic systems.

Nat. Phys. 2015, 11, 240–244. [CrossRef]
28. Atala, M.; Aidelsburger, M.; Barreiro, J.T.; Abanin, D.; Kitagawa, T.; Demler, E.; Bloch, I. Direct measurement of the Zak phase in

topological Bloch bands. Nat. Phys. 2013, 9, 795–800. [CrossRef]
29. Zhu, W.; Ding, Y.Q.; Ren, J.; Sun, Y.; Li, Y.; Jiang, H.; Chen, H. Zak phase and band inversion in dimerized one-dimensional locally

resonant metamaterials. Phys. Rev. B 2018, 97, 195307. [CrossRef]
30. Wang, Q.; Xiao, M.; Liu, H.; Zhu, S.; Chan, C.T. Measurement of the Zak phase of photonic bands through the interface states of a

metasurface/photonic crystal. Phys. Rev. B 2016, 93, 041415. [CrossRef]
31. Belozorov, D.P.; Girich, A.; Nedukh, S.V.; Moskaltsova, A.N.; Tarapov, S.I. Microwave analogue of Tamm states in periodic

chain-like structures. Prog. Electromagn. Res. Lett. 2014, 46, 7–12. [CrossRef]
32. Gao, W.S.; Xiao, M.; Chan, C.T.; Tam, W.Y. Determination of Zak phase by reflection phase in 1D photonic crystals. Opt. Lett. 2015,

40, 5259–5262. [CrossRef]
33. Chen, Z.; Han, P.; Leung, C.W.; Wang, Y.; Hu, M.; Chen, Y. Study of optical Tamm states based on the phase properties of

one-dimensional photonic crystals. Opt. Express 2012, 20, 21618–21626. [CrossRef] [PubMed]
34. Elshahat, S.; Mohamed, Z.E.A.; Almokhtar, M.; Lu, C. High tunability and sensitivity of 1D topological photonic crystal

heterostructure. J. Opt. 2022, 24, 035004. [CrossRef]
35. Wang, L.; Cai, W.; Bie, M.; Zhang, X.; Xu, J. Zak phase and topological plasmonic Tamm states in one-dimensional plasmonic

crystals. Opt. Express 2018, 26, 28963–28975. [CrossRef] [PubMed]
36. Ma, G.; Xiao, M.; Chan, C.T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 2019, 1, 281–294. [CrossRef]
37. Liao, D.; Yue, Z.; Zhang, Z.; Wang, H.X.; Cheng, Y.; Liu, X. Observations of Tamm modes in acoustic topological insulators. Appl.

Phys. Lett. 2022, 120, 211701. [CrossRef]

http://dx.doi.org/10.1088/0953-8984/20/25/255212
http://dx.doi.org/10.1126/science.213.4509.717
http://dx.doi.org/10.1088/0953-8984/21/17/175704
http://dx.doi.org/10.1038/nmat1644
http://dx.doi.org/10.1051/epjap/2020190324
http://dx.doi.org/10.1063/1.2894914
http://dx.doi.org/10.1119/1.1477430
http://dx.doi.org/10.1088/0953-8984/16/1/004
http://dx.doi.org/10.1121/1.1497625
http://www.ncbi.nlm.nih.gov/pubmed/12398442
http://dx.doi.org/10.1103/PhysRevB.74.144306
http://dx.doi.org/10.1007/s11595-012-0468-5
http://dx.doi.org/10.1016/j.matpr.2021.01.504
http://dx.doi.org/10.1016/S0042-207X(01)00188-9
http://dx.doi.org/10.1364/AO.48.003102
http://dx.doi.org/10.1063/1.4960983
http://dx.doi.org/10.1364/JOSAB.440599
http://dx.doi.org/10.1103/PhysRevLett.118.076803
http://www.ncbi.nlm.nih.gov/pubmed/28256872
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1103/PhysRevLett.62.2747
http://dx.doi.org/10.1103/PhysRevX.4.021017
http://dx.doi.org/10.1038/nphys3228
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1103/PhysRevB.97.195307
http://dx.doi.org/10.1103/PhysRevB.93.041415
http://dx.doi.org/10.2528/PIERL13122502
http://dx.doi.org/10.1364/OL.40.005259
http://dx.doi.org/10.1364/OE.20.021618
http://www.ncbi.nlm.nih.gov/pubmed/23037280
http://dx.doi.org/10.1088/2040-8986/ac45d2
http://dx.doi.org/10.1364/OE.26.028963
http://www.ncbi.nlm.nih.gov/pubmed/30470065
http://dx.doi.org/10.1038/s42254-019-0030-x
http://dx.doi.org/10.1063/5.0093995


Crystals 2022, 12, 1685 19 of 19

38. Ortiz, O.; Priya, P.; Rodriguez, A.; Lemaitre, A.; Esmann, M.; Lanzillotti-Kimura, N.D. Topological optical and phononic interface
mode by simultaneous band inversion. Optica 2021, 8, 598–605. [CrossRef]

39. Chen, Z.G.; Wu, Y. Tunable topological phononic crystals. Phys. Rev. Appl. 2016, 5, 054021. [CrossRef]
40. Fan, L.; Yu, W.W.; Zhang, S.Y.; Zhang, H.; Ding, J. Zak phases and band properties in acoustic metamaterials with negative

modulus or negative density. Phys. Rev. B 2016, 94, 174307. [CrossRef]
41. Zhang, Z.; Cheng, Y.; Liu, X.; Christensen, J. Subwavelength multiple topological interface states in one-dimensional labyrinthine

acoustic metamaterials. Phys. Rev. B 2019, 99, 224104. [CrossRef]
42. Li, Z.W.; Fang, X.S.; Liang, B.; Li, Y.; Cheng, J.C. Topological interface states in the low-frequency band gap of one-dimensional

phononic crystals. Phys. Rev. Appl. 2020, 14, 054028. [CrossRef]
43. Meng, Y.; Wu, X.; Zhang, R.Y.; Li, X.; Hu, P.; Ge, L.; Huang, Y.; Xiang, H.; Han, D.; Wang, S.; et al. Designing topological interface

states in phononic crystals based on the full phase diagrams. Nat. J. Phys. Phys. Rev. B 2018, 20, 073032. [CrossRef]
44. To, A.C.; Lee, B.J. Multifunctional One-Dimensional Phononic Crystal Structures Exploiting Interfacial Acoustic Waves. MRS

Online Proc. Libr. (OPL) 2009, 1188, 145–149. [CrossRef]
45. Zheng, Z.; Yin, J.; Wen, J.; Yu, D. Multiple topological interface states in broadband locally resonant phononic crystals. J. Appl.

Phys. 2021, 129, 184901. [CrossRef]
46. Su, W.; Schrieffer, J.R.; Heeger, A.J. Solitons in polyacetylene. Phys. Rev. Lett. 1979, 42, 1698. [CrossRef]
47. Meier, E.J.; An, F.A.; Gadway, B. Observation of the topological soliton state in the Su–Schrieffer–Heeger model. Nat. Commun.

2016, 7, 13986. [CrossRef] [PubMed]
48. Coutant, A.; Sivadon, A.; Zheng, L.; Achilleos, V.; Richoux, O.; Theocharis, G.; Pagneux, V. Acoustic Su-Schrieffer-Heeger lattice:

Direct mapping of acoustic waveguides to the Su-Schrieffer-Heeger model. Phys. Rev. B 2021, 103, 224309. [CrossRef]
49. Cáceres-Aravena, G.; Real, B.; Guzmán-Silva, D.; Amo, A.; Torres, L.E.F.; Vicencio, R.A. Experimental observation of edge states

in SSH-Stub photonic lattices. Phys. Rev. Res. 2022, 4, 013185. [CrossRef]
50. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 1961, 124, 1866. [CrossRef]
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