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Abstract

Counterfactual explanations and adversarial attacks
have a related goal: flipping output labels with minimal
perturbations regardless of their characteristics. Yet, adver-
sarial attacks cannot be used as is in a counterfactual ex-
planation perspective, as such perturbations are perceived
as noise and not as actionable and understandable image
modifications. Building on the robust learning literature,
this paper proposes an elegant method to turn adversarial
attacks into semantically meaningful perturbations, without
modifying the classifiers to explain. The proposed approach
hypothesizes that Denoising Diffusion Probabilistic Mod-
els are excellent regularizers for avoiding high-frequency
and out-of-distribution perturbations when generating ad-
versarial attacks. The paper’s key idea is to build attacks
through a diffusion model to polish them, which allows
studying a model regardless of its robustification level. Ex-
tensive experimentation shows the advantages of our coun-
terfactual explanation approach over current State-of-the-
Art in multiple testbeds.

1. Introduction
The research branch of explainable artificial intelligence

has yielded remarkable results, gradually opening the ma-
chine learning black boxes. The production of counter-
factual explanations (CE) has become one of the promis-
ing pipelines for explainability, especially in computer vi-
sion [25, 28, 49, 54]. As a matter of fact, CE are an intuitive
way to expose how an input instance can be minimally mod-
ified to steer the desired change in the model’s output. More
precisely, CE answers the following: what does X have to
change to alter the prediction from Y to Y ′? From a user
perspective, these explanations are easy to understand since
they are concise and illustrated by examples. Henceforth,
companies have adopted CE as an interpretation methodol-
ogy to legally justify the decision-making of machine learn-
ing models [60]. To better appreciate the potential of CE,
one may consider the following scenario: a client goes to a
photo booth to take some ID photos, and the system claims

the photos are invalid for such usage. Instead of performing
random attempts to abide by the administration criteria, an
approach based on CE could provide visual indications of
what the client should fix.

The main objective of CE is to add minimalistic semantic
changes in the image to flip the original model’s prediction.
Yet, these generated explanations must accomplish several
objectives [28,49,60]. A CE must be valid, meaning that the
CE has to change the prediction of the model. Secondly, the
modifications have to be sparse and proximal to the input
data, targeting to provide simple and concise explanations.
In addition, the CE method should be able to generate di-
verse explanations. If a trait is the most important for a cer-
tain class among other features, diverse explanations should
change this attribute most frequently. Finally, the semantic
changes must be realistic. When the CE method inserts out-
of-distribution artifacts in the input image, it is difficult to
interpret whether the flipping decision was because of the
inserted object or because of the shifting of the distribution,
making the explanation unclear.

Adversarial attacks share a common goal with CE: flip-
ping the classifier’s prediction. For traditional and non-
robust visual classifiers, generating these attacks on input
instances creates imperceptible noise. Even though it has
been shown that it contains meaningful changes [24] and
that adversarial noise and counterfactual perturbations are
related [13, 23], adversarial attacks have lesser value. In-
deed, the modifications present in the adversaries are unno-
ticeable by the user and leave him with no real feedback.

Contrary to the previous observations, many papers (e.g.,
[47]) evidenced that adversarial attacks toward robust clas-
sifiers generate semantic changes in the input images. This
has led works [51, 70] to explore robust models to produce
data using adversarial attacks. In the context of counterfac-
tual explanations, this is advantageous [5, 52] because the
optimization will produce semantic changes to induce the
flipping of the label.

Then two challenges arise when employing adversarial
attacks for counterfactual explanations. On the one hand,
when studying a classifier, we must be able to explain its
behavior regardless of its characteristics. So, a naive ap-
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plication of adversarial attacks is impractical for non-robust
models. On the other hand, according to [57], robustify-
ing the classifier yields an implicit trade-off by lowering
the clean accuracy, as referred by the adversarial robustness
community [10], a particularly crucial trait for high-stakes
areas such as the medical field [40].

The previous remarks motivate our endeavor to mix the
best of both worlds. Hence, in this paper, we propose robus-
tifying brittle classifiers without modifying their weights to
generate CE. This robustification, obtained through a simple
filtering preprocessing leveraging diffusion models [19], al-
lows us to keep the performance of the classifier untouched
and unlocks the production of CE through adversarial at-
tacks.

We summarize the novelty of our paper as follows: (i)
We propose Adversarial Counterfactual Explanations, ACE
in short, a novel methodology based on adversarial attacks
to generate semantically coherent counterfactual explana-
tions. (ii) ACE performs competitively with respect to the
other methods, beating previous state-of-the-art methods in
multiple measurements along multiple datasets. (iii) Fi-
nally, we point out some defects of current evaluation met-
rics and propose ways to remedy their shortcomings. (iv)
To show a use case of ACE, we study ACE’s meaningful
and plausible explanations to comprehend the mechanisms
of classifiers. We experiment with ACE findings producing
actionable modifications in real-world scenarios to flip the
classifier decision.

To promote the research in counterfactual explanations,
we will make our code available upon acceptance.

2. Related Work
Explainable AI. The main dividing line between the dif-

ferent branches of explainable artificial intelligence stands
between Ad-Hoc and Post-Hoc methods. The former pro-
motes architectures that are interpretable by design [3, 4,
21, 50] while the latter considers analyzing existing mod-
els as they are. Since our setup lies among the Post-Hoc
explainability methods, we spotlight that this branch splits
into global and local explanations. The former explains
the general behavior of the classifier, as opposed to a sin-
gle instance for the latter. This work belongs to the latter.
There are multiple local explanations methods, from which
we highlight saliency maps [8, 26, 32, 35, 61, 68], concept
attribution [15, 31, 33] and model distillation [14, 55]. Con-
cisely, these explanations try to shed light on how a model
took a specific decision. In contrast, we focus on the on-
growing branch of counterfactual explanations, which tack-
les the question: what does the model uses for a forecast?
We point out that some novel methods [17, 59, 62, 63] call
themselves counterfactual approaches. Yet, these systems
highlight regions between a pair of images without produc-
ing any modification.

Counterfactual Explanations. CE have taken momen-
tum in recent years to explain model decisions. Some meth-
ods rely on prototypes [37] or deep inversion [56], while
other works explore the benefits of other classification mod-
els for CE, such as Invertible CNNs [22] and Robust Net-
works [5, 52]. A common practice is using generative tools
as they give multiple benefits when producing CE. In fact,
using generation techniques is helpful to generate data in
the image manifold. There are two modalities to produce
CE using generative approaches. On the one hand, many
methods use conditional generation techniques [37, 54, 58]
to fit what a classification model learns or how to control
the perturbations. On the other hand, unconditional ap-
proaches [28, 30, 44, 49, 53, 67] optimize the latent space
vectors. Among the counterfactual approaches, we draw at-
tention to Jeanneret et al. [28]’s work. This method uses
a modified version of the guided diffusion [12] to steer
the generation toward the target label. In contrast, even
when we use DDPM, we use adversarial attacks directly on
the image space to generate semantic changes before post-
processing it through the diffusion model without relying
on controlling the generation process.

Adversarial Attacks and their relationship with CE.
Adversarial attacks share the same main objective as coun-
terfactual explanations: flipping the forecast of a target ar-
chitecture. On the one hand, white-box attacks [7, 10, 16,
27, 39, 42] leverage the gradients of the input image with
respect to a loss function to construct the adversary. Also,
universal noises [41] are adversarial perturbations created
for fooling many different instances. On the other hand,
black-box attacks [2, 48, 69] restrain their attack by check-
ing merely the output of the model. Finally, Nie et al. [45]
study DDPMs from a robustness perspective, disregarding
the benefits of counterfactual explanations.

In the context of CE for visual models, the produced
noises are indistinguishable for humans when the network
does not have any defense mechanism, making them use-
less. This lead works [1,23,46] to approach the relationship
between these two research fields. Compared to previous
approaches, we manage to leverage adversarial attacks to
create semantic changes in undefended models to explore
their semantic weaknesses perceptually in the images; a dif-
ficult task due to the nature of the data.

3. Adversarial Counterfactual Explanations
The key contribution of this paper is the Adversarial

Counterfactual Explanations (ACE) method. ACE produces
counterfactual images in two steps, as seen in Figure 1. We
briefly introduce these two steps here and detail them in the
following sections.
Step 1. Producing pre-explanation images (§3.1). Let
Lclass(x; y) be a function measuring the agreement be-
tween the sample x and class y. This function is typically
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Figure 1. Pre-explanation Construction and Refinement ACE generates the counterfactual explanation in a two-step sequence. Initially,
(a) To generate semantic updates in the input image, the DDPM processes the instance before computing the loss function Lclass(y

′),
where y′ is the target label. Then, it uses the gradients of the image with respect to the criterion to update it. After all the iterative updates
(b) we generate a binary mask using the magnitude’s difference between the explanation and input image. Leveraging this mask, we refine
the pre-explanation using RePaint’s inpainting method.

the cross-entropy loss of the classifier we are studying with
respect to y. With ACE, generating the pre-explanation im-
age of (x, y) for the target class y′ ̸= y consists in finding
x′ minimizing Lclass(F (x′); y′). Here, F (x′) is a filtering
function that constrains the attack to stay in the manifold of
the training images. In a nutshell, the filtering process F ro-
bustifies the fragile classifier under examination to generate
semantic changes without modifying its weights.
Step 2. Bringing the pre-explications closer to the input im-
ages (§3.2). The pre-explanation generation restricts only
those pixels in the image that are useful in switching the
output label from y to y′. The rest of the pixels are only
implicitly constrained by the design of F . Accordingly, the
purpose of this second step is to keep these non-explicitly
constrained pixels identical to those of the input image.

3.1. Pre-explanation generation with DDPMs

To avoid generating adversarial noise and producing use-
ful semantics, the previously introduced function F should
have two key properties. (i) Removing high-frequency in-
formation that traditional adversarial attacks generate. In-
deed, these perturbations could change the classifier’s de-
cision without being actionable or understandable by a hu-
man. (ii) Producing in-distribution images without distort-
ing the input image. This property seeks to maintain the
image structures not involved in the decision-making pro-
cess as similar as possible while avoiding giving misleading
information to the user.

Denoising Diffusion Probabilistic Models [19], com-
monly referred to as DDPM or diffusion models, achieve
these properties if used properly. On the one hand, each in-
ference through the DDPM is a denoising process; in partic-
ular, it removes high-frequency signals. On the other hand,

DDPMs generate in-distribution images.
As a reminder, DDPMs rely on two Markov chains, one

inverse to the other. The forward chain adds noise from a
state t into t + 1 while the reverse chain removes Gaussian
noise from t+ 1 to t. Noting xt the instance at time step t,
the forward chain is directly simulated from a clean instance
x0 through

xt =
√
αt x0 +

√
1− αt ϵ, ϵ ∼ N (0, I), (1)

where αt is a time-dependent constant. At inference, the
DDPM produces a mean µt(xt) and a deviation matrix
Σt(xt). Using these variables, the next less noisy image
is sampled from

xt−1 = µt(xt) + Σt(xt) ϵ, ϵ ∼ N (0, I). (2)

Thus, the DDPM denoising algorithm iterates the previous
step until t = 0 arriving at an image without noise. Please
refer to previous works [12, 19] for a thorough understand-
ing of diffusion models.

ACE pre-explanation generation. Starting from a
query image x, we can obtain a filtered version by applying
the forward DDPM process up to level τ (Eq. 1) and then
denoise it iteratively thanks to the iterative DDPM denois-
ing steps from level t = τ (Eq 2). In this case, to highlight
the use of this intermediate step τ , we denote the diffusion
filtering process as F = Fτ (Figure 1a). Thus, we opti-
mize the image through the DDPM filtering process, Fτ ,
before computing the classification loss. So, we obtain the
pre-explanations with

argmin
x′

Lclass(Fτ (x
′); y′) + λd d(x

′, x), (3)

where λd is a regularization constant and d a distance func-
tion.
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3.2. Bringing the pre-explanations closer to the in-
put images

By limiting the value of τ , the DDPM will not go far
enough to generate a normal distribution, and the recon-
struction will somehow preserve the overall structure of the
image. However, we noted that a post-processing phase
could help keep irrelevant parts of the image untouched.
For example, in the case of faces, the denoising process
may change the hairstyle while targeting the smile attribute.
Since hairstyle is presumably uncorrelated with the smile
feature, the post-process should neutralize those unneces-
sary alterations.

To this end, we first compute a binary mask m delineat-
ing regions that qualify for modifications. To do so, we con-
sider the magnitude difference between the pre-explanation
and the original mask, we dilate this gray-scale image and
threshold it, yielding the desired mask. This matter being
settled, we need to fuse the CE inside the mask along with
the input outside the mask.

In that aim, a natural strategy is using inpainting meth-
ods. So, we leverage RePaint’s recent technique [38], orig-
inally designed for image completion, and adapt it to our
picture-in-picture problem (Figure 1b). This adaptation is
pretty simple and integrates very well with the rest of our
framework. It starts from the noisy pre-explanations xτ and
iterate the following altered denoising steps:

xt−1 = µt(x
′
t) + Σt(x

′
t) ϵ, ϵ ∼ N (0, I). (4)

where x′
t = xt ·m+ xi

t · (1−m) is the raw collage of the
current noisy reconstruction xt and the noisy version xi

t of
the initial instance at the same noise level t obtained with
Eq. 1. At the end of this process, the final image x0 will be
identical to the input sample outside of the mask, and very
similar to the CE within the mask.

4. Experimentation
4.1. Evaluation Protocols and Datasets

Datasets. In line with the recent literature on counter-
factual images [28, 29, 49, 54], first, we evaluate ACE on
CelebA [36], with images of size of 128 × 128 and a
DenseNet121 classifier [20], for the ’smile’ and ’age’ at-
tributes. Following Jacob et al. [25], we experimented on
CelebA HQ [34] and BDD100k [65]. CelebA HQ has a
higher image resolution of 256 × 256. BDD100k contains
complex traffic scenes as 512 × 256 images; the targeted
attribute is ’forward’ vs ’slow down’. The decision model
is also a DenseNet121, trained on the BDD-IOA [64] exten-
sion dataset. Regarding the classifiers for which we want to
generate counterfactuals, we took the pre-trained weights
from DiME [28] open source for CelebA and from STEEX
[25] for CelebA HQ and BDD100k, for fair comparisons.

Evaluation criteria for quantitative evaluation.
Validity of the explanations is commonly measured with the
Flip Rate (FR), i.e. how often the CE is classified as the tar-
get label.
Diversity is measured by extending the diversity assessment
from Mothilal et al. [43]. As suggested by Jeanneret et
al. [28], the diversity is measured as the average LPIPS [66]
distance between pairs of counterfactuals.
Sparsity or proximity has been previously evaluated with
several different metrics [49,54], in the case of face images
and face attributes. On the one hand, the mean number of
attributes changed (MNAC) measures the smallest amount
of traits changed between the input-explanation pair. Simi-
larly, this metric leverages an oracle network pretrained on
VGGFace2 [6] and then fine-tuned on the dataset. Fur-
ther, Jeanneret et al. [28] showed the limitations of the
MNAC evaluation and proposed the CD metric to account
for the MNAC’s limitations. On the other hand, to measure
whether an explanation changed the identity of the input,
the assessment protocol uses face verification accuracy [6]
(FVA). To this end, the evaluation uses a face verification
network. However, FVA has 2 main limitations: i) it can
be applied to face related problems only, ii) it works at the
level of classifier decisions which turns out to be too rough
when comparing an image to its CE, as it involves only a
minimal perturbation. For face problems, we suggest skip-
ping the thresholding and consider the mean cosine distance
between the encoding of image-counterfactual pairs, what
we refer to as Face Similarity (FS). To tackle non-face im-
ages, we propose to extend FS by relying on self-supervised
learning to encode image pairs. To this end, we adopted
SimSiam [9] as an encoding network to measure the cosine
similarity. We refer to this extension as SimSiam Similarity
(S3). Finally, also for classifiers that are not related to faces,
Khorram et al. [30] proposed COUT to measure the transi-
tion probabilities between the input and the counterfactual.
Realism of counterfactual images [54] is usually evaluated
by the research community with the FID [18] between the
original set and the valid associated counterfactuals. We be-
lieve there is a strong bias as most of the pixels of counter-
factuals are untouched and will dominate the measurement,
as observed in our ablation studies (Sec. 4.6). To remove
this bias, we split the dataset into two sets, generating the
CE for one set and measuring the FID between the gener-
ated explanations and the other set, iterating this process ten
times and taking the mean. We call this metric sFID.

Implementation details. One of the main obstacles of dif-
fusion models is transferring the gradients through all the
iterations of the iterative denoising process. Fortunately,
diffusion models enjoy a time-step re-spacing mechanism,
allowing us to reduce the number of steps at the cost of a
quality reduction. So, we drastically decreased the num-
ber of sampling steps to construct the pre-explanation. For
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Smile Age

Method FID sFID FVA FS MNAC CD COUT FID sFID FVA FS MNAC CD COUT

DiVE 29.4 - 97.3 - - - - 33.8 - 98.2 - 4.58 - -
DiVE100 36.8 - 73.4 - 4.63 2.34 - 39.9 - 52.2 - 4.27 - -
STEEX 10.2 - 96.9 - 4.11 - - 11.8 - 97.5 - 3.44 - -
DiME 3.17 4.89 98.3 0.729 3.72 2.30 0.5259 4.15 5.89 95.3 0.6714 3.13 3.27 0.4442

ACE ℓ1 1.27 3.97 99.9 0.874 2.94 1.73 0.7828 1.45 4.12 99.6 0.7817 3.20 2.94 0.7176
ACE ℓ2 1.90 4.56 99.9 0.867 2.77 1.56 0.6235 2.08 4.62 99.6 0.7971 2.94 2.82 0.5641

Table 1. CelebA Assessment. Main results for CelebA dataset. We extracted the results from DiME and STEEX papers. In bold and italic
we show the best and second-best performances. ACE outperforms all methods in every assessment protocol.

CelebA [36], we instantiate the DDPM [12] model us-
ing DiME’s [28] weights. In practice, we set τ = 5
out of 50 steps. For CelebA HQ [34], we fixed the
same τ , but we used the re-spaced time steps to 25
steps. For BDD100k [65], we follow the same settings as
STEEX [25]: we trained our diffusion model on the 10.000
image subset of BDD100k. To generate the explanations,
we used 4 steps out of 100. Additionally, all our methods
achieve a success ratio of 95% at minimum. We will de-
tail in the supplementary material all instructions for each
model on every dataset. We adopted an ℓ1 or ℓ2 distance
for the distance function. Finally, for the attack optimiza-
tion, we chose the PGD [39] without any bound and with
50 optimization steps.

4.2. Comparison Against the State-of-the-Art

In this section, we quantitatively compare ACE against
previous State-of-the-Art methods. To this end, we show
the results for CelebA [36] and CelebA HQ [34] datasets
in Table 1 and Table 2, respectively. Additionally, experi-
ments on the BDD100k [65] dataset are given in Table 3.
To extend the study of BDD, we further evaluated our pro-
posed approach on the BDD-IOA [64] validation set, also
presented in Table 3. Since DiME has shown superior per-
formance over the previous literature [29, 49, 54], we com-
pare only to DiME.

DiME experimented originally on CelebA only. Hence,
they did not tune their parameters for CelebA HQ and
BBD100k. By running their default parameters, DiME
achieves a flip rate of 41% in CelebA HQ. We fix this by
augmenting the scale hyperparameter for their loss func-
tion. DiME’s new success rate is 97% for CelebA HQ. For
BDD100k, our results showed that using fewer steps im-
proves the quality. Hence, we used 45 steps out of their
re-spaced 200 steps. Unfortunately, we only managed to
increase their success ratio to 90.5%.

These experiments show that the proposed methodol-
ogy beats the previous literature on most metrics for all
datasets. For instance, ACE, whatever the chosen distance,
outmatches DiME on all metrics in CelebA. For the Cele-
bAHQ, we noticed that DiME outperforms ACE only for

the COUT and CD metrics. Yet, our proposed method re-
mains comparable to theirs. For BDD100k, we remark that
our method consistently outperforms DiME and STEEX.

Two additional phenomena stand out within these re-
sults. On the one hand, we observed that the benefit of fa-
voring ℓ1 over ℓ2 depends on the characteristics of the target
attribute. We noticed that the former generates sparser mod-
ifications, while the latter tends to generate broader editing.
This makes us emphasize that different attributes require
distinct modifications. On the other hand, these results val-
idate the extensions for the FVA and FID metrics. Indeed,
the difference between the FVA values on CelebA are small
(from 98.3 to 99.9). Yet, the FS shows a major increase.
Additionally, for the Age attribute on CelebA HQ, ACE ℓ2
shows a better performance than DiME for the FID metric.
The situation is reversed with sFID as DiME is slightly su-
perior.

To complement our extensive experimentation, we tested
ACE on a small subset of classes on ImageNet [11] with
a ResNet50. We selected three pairs of categories for the
assessment, and the task is to generate the CE targeting the
contrary class. For the FID computation, we used only the
instances from both categories but not external data since
we are evaluating the in-class distribution.

We show the results in Table 4. Unlike the previous
benchmarks, ImageNet is extremely complex and the clas-
sifier needs multiple factors for the decision-making pro-
cess. Our results reflect this aspect. We believe that current
advancements in CE still need an appropriate testbed to val-
idate the methods in complex datasets such as ImageNet.
For instance, the model uses the image’s context for fore-
casting. So, choosing the target class without any previous
information is unsound.

4.3. Diversity Assessment

In this section, we explore ACE’s ability to generate di-
verse explanations. Diffusion models are, by design, capa-
ble of generating distributions of images. Like [28], we take
advantage of the stochastic mechanism to generate percep-
tually different explanations by merely changing the noise
for each CE version. Additionally, for a fair comparison,
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Smile Age

Method FID sFID FVA FS MNAC CD COUT FID sFID FVA FS MNAC CD COUT

DiVE 107.0 - 35.7 - 7.41 - - 107.5 - 32.3 - 6.76 - -
STEEX 21.9 - 97.6 - 5.27 - - 26.8 - 96.0 - 5.63 - -
DiME 18.1 27.7 96.7 0.6729 2.63 1.82 0.6495 18.7 27.8 95.0 0.6597 2.10 4.29 0.5615

ACE ℓ1 3.21 20.2 100.0 0.8941 1.56 2.61 0.5496 5.31 21.7 99.6 0.8085 1.53 5.4 0.3984
ACE ℓ2 6.93 22.0 100.0 0.8440 1.87 2.21 0.5946 16.4 28.2 99.6 0.7743 1.92 4.21 0.5303

Table 2. CelebAHQ Assessment. Main results for CelebA HQ dataset. We extracted the results from STEEX’s paper. In bold and italic
we show the best and second-best performances, respectively. ACE outperforms most methods in many assessment protocols.

Method FID sFID S3 COUT FR

BDD-OIA

DiME 13.70 26.06 0.9340 0.3188 91.68
ACE ℓ1 2.09 22.13 0.9980 0.7404 99.91
ACE ℓ2 3.3 22.75 0.9949 0.7840 100.0

BDD100k

STEEX 58.8 - - - 99.5
DiME 7.94 11.40 0.9463 0.2435 90.5

ACE ℓ1 1.02 6.25 0.9970 0.7451 99.9
ACE ℓ2 1.56 6.53 0.9946 0.7875 99.9

Table 3. BDD Assessement. Main results for BDDOIA and
BDD100k datasets. We extracted STEEX’s results from their pa-
per. In bold and italic we show the best and second-best perfor-
mances, respectively.

we do not use the RePaint’s strategy here because DiME
does not have any local constraints and can, as well, change
useless structures, like the background. To validate our ap-
proach, we follow [28] assessment protocol. Numerically,
we obtain a diversity score of 0.110 while DiME reports
0.213. Since DiME corrupts the image much more than
ACE even without RePaint, the diffusion model has more
opportunities to generate distinct instances. In contrast,
we do not go deep into the forward noising chain to avoid
changing the original class when performing the filtering.

To circumvent the relative lack of diversity, we vary the
re-spacing at the refinement stage and the sampled noise.
Note that later in the text, we show that using all steps with-
out any re-spacing harms the success ratio. So, we set the
new re-spacing such that it respects the accuracy of coun-
terfactuals and fixed the variable number of noise to main-
tain the ratio between τ and the re-spaced number of sam-
pling steps (5/50 in this case). Our diversity score is then of
0.1436. Nevertheless, DiME is better than ACE in terms of
diversity, but this is at the expense of the other criteria, be-
cause its diversity comes, in part, from regions of the images
that should not be modified (for example, the background).

4.4. Qualitative Results

We show some qualitative results in Figure 2 for all
datasets and included some ImageNet examples. From an

Method FID sFID S3 COUT FR

Zebra – Sorrel

ACE ℓ1 84.5 122.7 0.9151 -0.4462 47.0
ACE ℓ2 67.7 98.4 0.9037 -0.2525 81.0

Cheetah – Cougar

ACE ℓ1 70.2 100.5 0.9085 0.0173 77.0
ACE ℓ2 74.1 102.5 0.8785 0.1203 95.0

Egyptian Cat – Persian Cat

ACE ℓ1 93.6 156.7 0.8467 0.2491 85.0
ACE ℓ2 107.3 160.4 0.7810 0.3430 97.0

Table 4. ImageNet Assessement. We test our model in ImageNet.
We generated the explanations for three sets of classes. Producing
CE for these classes remains a challenge.

attribute perspective, some have sparser or coarser charac-
teristics. For instance, age characteristics cover a wider sec-
tion of the face, while the smile attribute is mostly located
in small regions of the image. Our qualitative results ex-
pose that different distance losses impose different types of
explanations. For this case, ℓ1 loss exposes the most local
and concrete explanations. On the other hand, the ℓ2 loss
generates coarser editing. This feature is desired for cer-
tain classes, but it is user-defined. Additionally, we note
that the generated mask is useful to spot out the location of
the changes. This is advantageous as it exemplifies which
changes were needed and where they were added. Most
methods do not indicate the localization of the changes,
making them hard to understand. In the supplementary ma-
terial, we will include more qualitative results.

4.5. Actionability

Counterfactual explanations are expected to teach the
user plausible modifications to change the classifier’s pre-
diction. In this section, we study a batch of counterfactual-
input tuples generated with our method. If ACE is capable
of creating useful counterfactual explanations, we should be
qualified to understand some weaknesses or some behaviors
of our classifier. Additionally, we should be able to fool the
classifier by creating the necessary changes in real life. To
this end, we studied the CelebA HQ classifier for the age
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Figure 2. Qualitative Results. ACE create sparse but realistic changes in the input image. Further, ACE enjoys from the generate mask,
which helps in understanding which and where semantic editing were added. The first row displays the input images, the second one the
counterfactual explanations and the third the corresponding mask.

Figure 3. Actionability. From browsing our counterfactuals, we
found two weaknesses of the scrutinized classifier. Row 1: We
tested if a frown could change the classification from young to old.
Row 2: we checked if having high cheekbones flipped is enough
to classify someone as smiling. Both experiments were successful.

and smile attributes.
After surveying some images and their explanations, we

identified two interesting results (Figure 3). Many of the
counterfactual explanations changing from ’young’ to ’old’
evidence that frowning could change the prediction of the
classifier. So, we tested this hypothesis in the real life.
We took a photo one individual before and after the frown,
avoiding changing the scenery. We were successful and
managed to change the prediction of the classifier. For
smile, we identified a spurious correlation. Our counter-
factuals show that the classifier uses the morphological trait
of high cheekbones to classify someone as smiling as well

as having red cheeks. So, we tested whether the classifica-
tion model wrongly predicts as smiling someone with high
cheekbones even when this person is not smiling. We also
tested whether we can enhance it with some red make up
in the cheeks. Effectively, our results show that having high
cheekbones is a realistic adversarial feature toward the smil-
ing attribute for the classifier. Also, the classifier confidence
(probability) can be strengthened by adding some red make
up in the cheeks. These examples demonstrate the applica-
bility of ACE in real scenarios.

4.6. Ablation Studies

In this section, we scrutinize the differences between the
pre-explanation and the refined explanations. Then we ex-
plore the effects of using other types of adversarial attacks.
Finally, we show that the S3 metric gives similar results as
the FVA, as a sanity check.
Pre-Explanation vs Counterfactual Explanations. We
explore here, quantitatively and qualitatively, the effects of
the pre-explanations (Pre-CE). Additionally, we use the dif-
fusion model without any inpainting strategy to filter the ex-
planations with (FR-CE) and without (F-CE) the re-spacing
method. Finally, we compare them against the complete
model (ACE). To quantitatively compare all versions, we
conducted this ablation study on the CelebA dataset for both
’smile’ and ’age’ attributes. We assessed the components
using the FID, sFID, MNAC, CD, and FR metrics. Note
that, we did not include the FVA or FS metrics in this as-
sessment, as these values did not vary much and do not pro-
vide insightful information; the FVA is ∼99.9 and FS ∼0.87
for all versions.

We show the results in Table 5. We observe that pre-
explanations have a low FID. Nonetheless, their sFID is
worse than the F-CE version. As said before, we noticed
that including both input and counterfactual in the FID as-
sessment introduces a bias in the final measurement, and
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Smile

Method FID sFID MNAC CD FR

Pre-CE 1.87 4.63 3.48 3.05 99.82
FR-CE 8.31 10.30 3.43 1.68 99.97
F-CE 2.64 4.61 3.16 1.56 93.37

ACE 1.27 3.97 2.94 1.73 99.86

Age

Pre-CE 3.93 6.71 3.76 3.17 99.55
FR-CE 7.10 9.09 3.13 2.66 99.77
F-CE 4.23 6.20 3.53 3.04 93.50

ACE 2.08 4.62 2.94 2.82 99.35

Table 5. Refinement Ablation. We show the importance of each
component from ACE. FR stands for flip rate.

this experiment confirms this phenomenon. Additionally,
one can check that the MNAC metric between the pre-
explanation and the FR-CE version does not vary much, yet,
the CD metric for the FR-CE is much better. This evidences
that the generative model can capture the dependencies be-
tween the attributes. Also, we notice that the flip rate (FR)
is much lower when using all diffusion steps instead of the
re-spaced alternative. We expected this behavior, since we
create the pre-explanation to change the classifier’s predic-
tion with re-spaced time steps within the DDPM.

Qualitatively, we point out to Figure 4, where we exem-
plify the various stages of ACE. For instance, we see that
the pre-explanation contains out of distribution artifacts and
how the refinement sends it back to the image distribution.
Also, we highlight that the filtering modifies the hair, which
is not an important trait for the classifier. The refinement is
key to avoid editing these regions.
Effect of Different Adversarial Attacks. At the core of
our optimization, we have the PGD attack. PGD is one of
the most common attacks due to its strength. In this section,
we explore the effect of incorporating other attacks. Thus,
we tested C&W and the standard gradient descent (GD).
Note that the difference between PGD and GD is that GD
does not apply the sign operation.

Our results show that these attacks are capable of gen-
erating semantic changes in the image. Although these are
as successful as the PGD attack, we are required to opti-
mize the pre-explanation for twice as many iterations. Even
when our model is faster than [28], we still require about
250 DDPM iterations to generate a single explanation.
Validity of the S3 Metric. In this paragraph, we show
that the S3 and the FS metrics are equivalent when used
in the same test bed, i.e., CelebA HQ. To this end, we as-
sess whether the ordering between ACE, pre-explanation,
and DiME are equal. To have a reference value, we evalu-
ate the measurements when using a pair of random images.
So, we show the values (ordering) for both metrics in Ta-
ble 6 for the Age and Smiling attribute. As we expect, the

Figure 4. Refinement Ablation. We observe that pre-explanations
can have out-of-distribution artifacts. After filtering them, the dif-
fusion process creates in-distribution data, but there are unneces-
sary changes such as the background. ACE is capable of changing
the key features while avoiding modifying unwanted structures.

Metric Random ACE Pre-CE DiME

Smile

FS 0.2649 (4) 0.8941 (2) 0.9200 (1) 0.6729 (3)
S3 0.4337 (4) 0.9876 (2) 0.9927 (1) 0.9396 (3)

Age

FS 0.2649 (4) 0.7743 (2) 0.8300 (1) 0.6597 (3)
S3 0.4337 (4) 0.9417 (2) 0.9870 (1) 0.9379 (3)

Table 6. S3 equivalence to FS. The S3 metric and the FS are
equivalent in a similar context. We show the metric and the order
(in parenthesis) and observe that both orderings are equal.

ordering is similar between both metrics. Nevertheless, we
stress that FS is adequate for faces since the network was
trained for this task.

5. Conclusion

In this paper, we proposed ACE, an approach to generate
counterfactual explanations using adversarial attacks. ACE
relies on diffusion models to robustify the target classifier
to create semantic changes via the adversary regardless of
the classifier’s robustness. ACE has multiple advantages re-
garding previous literature, notably seen in the counterfac-
tual metrics. Moreover, we highlight that our explanations
are capable of showing natural traits to find sparse and ac-
tionable modifications in real life, a feature not presented
before. For instance, we were able to fool the classifier with
physical modifications in the image as well as finding natu-
ral adversarial examples.
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[25] Paul Jacob, Éloi Zablocki, Hedi Ben-Younes, Mickaël Chen,
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ryna Lewandowska, Jacek Tabor, and Bartosz Zieliński. In-
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Supplementary Material: Adversarial Counterfactual Visual Explanations

A. Detailed Implementation Details

For each dataset, we used different configurations in ar-
chitecture and for the generation of the pre-explanation.
When using the distance loss ℓ1, we set the distance reg-
ularization constant to λd = 0.001 while λd = 0.1 for ℓ2.
For the final refinement, firstly, we normalize the mask by
the maximum pixel’s difference magnitude. For the dilation
step, we set the mask as a square with a width and height of
15 pixels for all datasets. Next, we will show all implemen-
tation details for each dataset.

CelebA [36]: We used the same architecture and weights
as [28]. Additionally, we set τ = 5 with a total amount
of steps as 50. At the refinement stage, we used the same
threshold of 0.15 for both ℓ1 and ℓ2 experiments for smile
and age attributes.

CelebA HQ [34]: Our model follows the same archi-
tecture than [12] for ImageNet 256 × 256 unconditional
generation. Since CelebA HQ is far less complex than Im-
ageNet, we reduced the number of channels from 256 to
128. Also, our model generates samples using 500 diffusion
steps instead of 1000. For training, we iterated our model
for 120.000 iterations with a batch size of 256 on two V100
GPUs following [12]’s code. We set the learning rate to 104,
a weight decay of 0.05, and no dropout.

To generate the pre-explanations, we noise the image un-
til τ = 5 out of 25 re-spaced steps. To binarize the mask,
we used a threshold of 0.15 and 0.1 for the smiling attribute
with the ℓ1 and ℓ2 distance losses, respectively. For the age
attribute, we used 0.15 for ℓ1 and 0.05 for ℓ2.

BDD100k/OIA [64,65]: The counterfactual explanation
research community opted to use BDD100k in a 512× 256
setup. This is highly demanding computationally to create
a DDPM. Thus, since we knew a priori that we do not need
many iterations for ACE to generate counterfactuals, we
trained our diffusion model partially in the Markov chain.
That is, our DDPM cannot generate images from pure noise.
Instead, we trained it to generate images solely from a quar-
ter of the complete chain, requiring an input instance to
warm up the generation. So, we trained our model to gen-
erate instances with 250 steps out of 1000. This enabled us
to use a lighter model. Artitecnologically, our UNet model
has four downsampling stages with 128 s channels, where
s is the downsampling stage. Finally, we used the attention
layer at the deeper layer of the UNet. At the training phase,
we used a batch size of 256, a learning rate of 104, and a
weight decay and dropout of 0.05 for 50.000 iterations.

To generate our explanations, we used 5 out of 100 (re-
spaced) diffusion steps. For ℓ1, we used a threshold of 0.05
and 0.1 for ℓ2 for both datasets.

ImageNet [11]: For this dataset, we took advantage of
previous works. In this case, we utilised [12]’s model on
ImageNet 256. To generate the explanations, we used 5
steps out of 25 for the pre-explanations and set the threshold
to 0.15 to binarize the mask for all cases.

B. Qualitative Results
In this section, we show more qualitative results. We

will display the input image, its pre-explanation, the mask,
and the final counterfactual for both ℓ1 and ℓ2 losses on all
datasets. Note that we added a small discussion on the cap-
tion analyzing the results.

12



Figure 5. Additional CelebA qualitative results. We show examples for the Smiling attribute for both distances losses. From our qualitative
experiments, we see that removing the smile attributes is harder than adding them. Additionally, we see that the ℓ1 loss creates more sparse
editings.
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Figure 6. Additional CelebA qualitative results. We show examples for the Age attribute for both distances losses. The results show that
the ℓ1 loss creates more out-of-distribution artifacts.
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Figure 7. Additional CelebA HQ qualitative results. We show examples for the Smiling attribute for both distances losses. We see similar
behavior in the CelebA dataset.
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Figure 8. Additional CelebA HQ qualitative results. We show examples for the Age attribute for both distances losses. These examples
show that transforming Old to Young is less informative than the other way.
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Figure 9. Additional BDD qualitative results. We show examples for the Forward / Slow Down binary class for ℓ2 distance loss. We show
a zoom of the changes in the image since the perturbations are sparse. We see that ACE adds traffic light colors in the buildings to change
the prediction.
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Figure 10. Additional BDD qualitative results. We show examples for the Forward / Slow Down binary class for ℓ1 distance loss. We show
a zoom of the changes in the image since the perturbations are sparse. We show a zoom of the changes in the image since the perturbations
are sparse. We see that ACE adds traffic light colors in the buildings to change the prediction.
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Figure 11. Additional ImageNet qualitative results. We show examples for the Zebra / Sorrel categories class. The first column is the ℓ1
distance loss while the second one is ℓ2. The initial row is zebra to sorrel and the second one is the inverse. To change from zebras to
sorrels, some examples show not only incorporating the brown color sorrel horses but also the context in the background (e.g. adding a
stable-like background). Vice-versa, to classify a horse as a zebra it is enough to add some strips.
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Figure 12. Additional ImageNet qualitative results. We show examples for the Cheetah / Cougar categories class. The first column is the ℓ1
distance loss while the second one is ℓ2. The first row is cheetah to cougar and the second is the inverse. We mainly see that changing from
cheetah to cougar is enough to target the face of the animal. Vice-versa, to classify a cougar as a cheetah, ACE adds spots and characteristic
cheetah stripes on the face.
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Figure 13. Additional ImageNet qualitative results. We show examples for the Egyptian / Persian cat categories class. The first column is
the ℓ1 distance loss while the second one is ℓ2. The row is Egyptian to Persian cat and the second is the inverse. To change from Egyptian
to Persian, we mainly see that ACE adds the Persian cats’ fluffy fur. Conversely, from Persian to Egyptian it adds spots.
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