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Abstract. A one-dimensional wave propagation through elastically asymmetric media is investigated. A class
of metamaterials possessing an arbitrary elastic asymmetry is proposed. This asymmetry results in different
wave speeds of tensile and compressive components of elastic waves. The faster component can overtake the
slower one resulting in their dissipative annihilation through energy cascades. Efficient absorbing assemblies
are presented and analysed numerically. The length of the asymmetric part needed to damp a harmonic
signal is determined analytically and validated numerically. Transmission properties for random self-affine
wave packets are studied: a universal scaling for the transmission factor variation with the length of the
asymmetric part was established.

Résumé. La propagation unidimensionnelle des ondes à travers des milieux élastiquement asymétriques est
étudiée. Une classe de métamatériaux possédant une asymétrie élastique arbitraire est proposée. Cette asy-
métrie entraîne différentes vitesses des composants de traction et de compression : le composant le plus
rapide dépasse le plus lent, entraînant leur annihilation dissipative par des cascades d’énergie. Des assem-
blages de damping efficace sont présentés et analysés numériquement. La longueur de la partie asymétrique
nécessaire pour amortir un signal harmonique est déterminée analytiquement et validée numériquement.
Les propriétés de transmission pour les paquets d’ondes auto-affines aléatoires sont étudiées : une mise à
l’échelle universelle pour la variation du facteur de transmission avec la longueur de la partie asymétrique a
été établie.
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2 Vladislav A. Yastrebov

1. Introduction

Elastically asymmetric materials are rather common in nature and include granular materials,
soils, materials with internal flaws (e.g. cracked rocks, concrete) and others [1]. Natural materials
are in general stiffer in compression than in tension due to respective closing and opening of
internal cracks [2]. However, there is a class of structures and materials which have the opposite
asymmetry, i.e. they can be hard-in-tension and soft-in-compression, like wires/ropes and fibre
networks, whose elements buckle under compressive loads [3–5]. In soft matter, living cells,
due to elastic asymmetry of fibrin and collagen, are able to self-adjust in response to external
loads [6–10]. However, for most solid materials the elastic asymmetry is rather small, it could be
also centred not at zero deformation, and is hard to control. In contrast, the asymmetry could
be infinitely high in granular chains or granular crystals, which represent a particular class of
artificial assemblies whose asymmetry and non-linearity comes from the contact interaction [11–
13]. In addition to elastic or inelastic asymmetry [14, 15], the asymmetry of the interfacial
behaviour is relevant for many systems: for example, the asymmetry of the skin drag in marine
fauna [16] or asymmetry of friction in natural (e.g., fur, snake skin) or artificial (e.g., ski-tour skis,
kirigami) systems [17, 18]. Finally, a particular type of asymmetry, which is non-centred at zero,
exists in mechanical response of rate-independent elasto-plastic materials at the yield surface,
and also in materials experiencing twinning [14], however, these types of inelastic asymmetry are
out of scope of the present discussion.

Mechanical behaviour of elastically asymmetric materials depends on the “directionality” of
the strain tensor, i.e. on the signs of principal strains. Here, we define an elastically asymmetric
material as a material for which exist such orientations of the strain tensor ε̄ that the following
statement holds

∀δ¿ 1 : σ(δε̄) 6= −σ(−δε̄), (1)

where σ is the Cauchy stress tensor, δ is the amplitude factor, and δε̄ is the infinitesimal
strain tensor. Materials with such asymmetry are called heteromodular, bimodulus or bimodular.
Therefore, the Young’s shear and bulk moduli of such materials depend on the loading direction
and on its sign. Obviously, because of this asymmetry only “one-sided” derivatives or directional
derivatives for the elastic tensor can be defined:

C(ε̄) = ∂σ

∂ε

∣∣∣∣
dir=ε̄

.

These elastically asymmetric materials, while retaining their strong asymmetry, can remain linear
in the sense of argument multiplication (amplitude independent):

σ(αε) =ασ(ε), ∀α≥ 0, (2)

but not in the sense of superposition

σ(ε1 +ε2) 6=σ(ε1)+σ(ε2).

In addition to this asymmetry, elastic anisotropy often comes into play [19, 20]. For elastically
asymmetric and isotropic materials, in particular case, the relation between the stresses and
strains can be formulated in terms of principal values [1,21], with the anisotropic and asymmetric
materials, the situation is more complicated: for example, a formulation of constitutive relations
for orthotropic materials can be found in [22,23]. However, to the best of the author’s knowledge, a
general theory of elastic anisotropic asymmetry in which the anisotropy comes from a particular
asymmetry direction, which could be further combined with the independent anisotropy of the
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Vladislav A. Yastrebov 3

material itself, does not exist. A more general class of materials, for which, at given configuration
{ε0,σ}, the following statement holds:

−σ(ε0 −δε̄) 6=σ(ε0 +δε̄), for ‖δε̄‖→ 0,

cannot be called elastically asymmetric. Since such materials for ∀ε0 6= 0 do not demonstrate
asymmetric behaviour centred at zero strain, the linearity in the sense of (2) is lost. Since this
property is an essential feature for the following analysis, this class of materials is out of scope of
the current study.

The general theory of heteromodular materials was developed by Ambartsumyan in a series of
pioneering papers [21, 24] and others, which were later summarized in a monograph [25], which
apart from the general formulation contains plenty of solutions for mechanical problems. Among
additional solutions obtained by other authors and presenting a fundamental interest is the
solution of Boussinesq problem obtained in [26], which, however, cannot be readily used within
the superposition principle because of the inherent non-linearity. Different attempts to extend
the theory of heteromodulus materials exist, using different combinations of invariants [25, and
references therein], e.g. using the first stress invariant and the second deviatoric invariant [27] or
all three of them [28, 29]. A slightly more general non-linear theory for heteromodulus materials
was given in [30] by Green and Mkrtichian, one of the followers of Ambratsumyan. In [28] a link
between wave propagation velocities and elastic properties within a rather general model based
on all three strain invariants was derived and used for few data provided in [25]. Other theoretical
results on the statics of asymmetric materials could be found in [1, 31–33].

However, the most interesting and intriguing effects these materials demonstrate is in dy-
namics. Because of the strong and amplitude-independent non-linearity, these materials obey
strongly unconventional wave propagation and vibrational patterns. Nevertheless, such be-
haviour has not yet been fully investigated: the propagation of elastic waves in asymmetric me-
dia was studied in [34–38]. Since the propagation of compressive and tensile parts follow a sim-
ple linear non-dispersive equation, the particularity of such studies reduces to the understand-
ing of propagation of particular points such as signotons, semi-signotons and shocks, the points
at which the deformation changes its sign, and their motion, emergence and annihilation follow
very non-trivial behaviour [34]. Several simple scenarios of one-dimensional wave propagation
in heterogeneous medium were treated analytically in [39]1 and numerically in [40]. The prob-
lem of one-dimensional wave propagation in elastically asymmetric medium was studied from
the non-reciprocity point of view in [41]; studies on non-reciprocity of wave motion in other types
of systems could be found in works of Vakakis and collaborators [42, e.g.] among many others. In
general, the non-reciprocity provides a powerful control over the wave propagation, which could
be used to construct, for example, acoustic diodes [43] and other exotic devices. In [41] a spatial
modulation of the elastic asymmetry was investigated following a very similar set-up to the one
considered in the current paper; by combining spatial modulation the authors obtained a con-
trollable non-reciprocity for a simple incident signal containing a single tensile and compressive
components. This study was followed by a detailed investigation of non-reciprocity in a single
asymmetric spring element in the interface between symmetric media carried out by the same
authors [44]. The theory of Green and Mkrtichian [30], adjusted for the case of isotropic heteroge-
neous material in infinitesimal deformations, was used by Benveniste in [45] to obtain solutions
for plane and spherical waves for compressible and incompressible heteromodulus materials,
which demonstrated a peculiar (for the classical elasticity) propagation of a coupled longitudinal
and shear wave at the same speed.

1The reader has to use caution in handling the first presented example considered in this paper: the amplitude of the
shock wave increases gradually starting from zero amplitude, which is not explicitly showed in the paper.
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4 Vladislav A. Yastrebov

In terms of spatio-temporal numerical integration of wave equations in an asymmetric
medium, shock waves naturally formed because of the overlap of tensile and compressive waves
result in emergence of spurious oscillations. To handle better this artefact, an adapted integra-
tion technique could be used. In [46] the authors suggested a collocation and least-squares (CLS)
method, which over-performs other alternative integration methods in terms of accuracy and in
simplicity of use. It is worth mentioning here that such a strongly non-linear hyperbolic prob-
lem with inherent shock waves and other discontinuities has to be treated using general ener-
getic principles and so-called entropy conditions formulated in [47], notably the choice between
possible solution has to follow the principle of the growth of entropy of particles crossing the
shock front. Application of these principles to selection of physical solutions in bi-linear (a gen-
eralization of the elastic asymmetry) [48–51] and also tri-linear systems was carried out in [50].
Interestingly, the latter case, also relevant for contact-based metamaterials, apart from entropy
inequality requires additional conditions on isolation of physically feasible solutions.

Vibration of heteromodular was studied by many authors, whose contributions are well
summarized in [52], where some fundamental results were obtained for gyroscopic and non-
gyroscopic systems using analytical and numerical tools. The approaches used in the above-
cited paper were developed in earlier works on vibration of systems with internal impacts,
which render them elastically asymmetric, among them we could cite [53–55], more results are
summarized in the monograph [56].

Here, we focus on a particular property of the overlap of compressive and tensile components,
which could result in a very efficient annihilation of the waves if some damping is present in the
system. This phenomenon was already studied theoretically and numerically in [36, 37], here we
carry out a numerical analysis with a different perspective for simple and, more complex, realistic
incident wave patterns and obtain a more general conclusion for the energy damping as well as
for signal deformation and polarization.

The structure of the paper is as follows, we present a new class of materials with control-
lable and arbitrary asymmetry centred at zero, this asymmetry comes from internally architected
contacts (Section 2). After presenting the governing equations and the solution methods in Sec-
tions 3, 4, to start, we show simple simulations of a mono-harmonic elastic wave propagating in
bimodular one-dimensional medium (Section 5). The damping properties of simple assemblies
of bimodular materials are studied in Sections 6, 7. A more general study of the damping prop-
erties for random nominally self-affine and compact incident wave packets is conducted in Sec-
tion 8, in Section 9 we develop a simple geometrical model to explain the observed behaviour.
We conclude in Section 10.

2. Architected materials with internal contacts

First, we propose a class of architected materials with an elastic asymmetry, which emerges from
internal contacts between parts of the elemental cell (see Figure 1). This asymmetry is control-
lable and reversible, non-destructive and arbitrary-strong, contrary to a marginal asymmetry oc-
curring in natural solid materials. The idea behind this novel architecture is that the non-adhesive
contact can bear only compressive loads and opens in case of tensile ones. This non-smooth and
amplitude-independent non-linearity renders the internal contact a good candidate for widen-
ing or enhancing novel and meta properties of architectured materials (see e.g. [57–59]). For ex-
ample, if a zero-thickness cut is introduced in the material, as shown in Figure 1(a), the resulting
elastic modulus along, for example, OY direction depends on the sign of the applied deforma-
tion: in case of tension, only thin ligaments bear the load and thus macroscopically the material
behaves as a soft one; on the contrary, in compression, the contact in the cut is closed and can
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Figure 1. Examples of design of elemental architected cells with asymmetric elastic prop-
erties: the effective stiffness depends on the sign of the axial strain component (compres-
sion/tension): architecture (a) is soft-in-tension and stiff-in-compression; architecture (b)
is stiff-in-tension and soft-in-compression (within a certain limit); architecture (c) is shear-
asymmetric. The associated deformation curves are also shown.

fully bear the load, thus resulting in a stiffer elastic behaviour. The elastic asymmetry can be con-
trolled by the dimensions of the cut and by materials used in the central and peripheral zones.
For the simple heterogeneous design presented in Figure 1(a), a rough estimation of the ratio
of the Young’s moduli in tension E+ and compression E− can be given from simple geometrical
consideration as

E+

E− ≈
(
1− li

l

)
E2

E1
,

where l is the square-cell size, li is the side-length of Π-shape cut, and E1,2 are Young’s moduli
of the inner and outer materials: to amplify the asymmetry, materials can be chosen such
that E1 > E2. Thus, the resulting asymmetry can greatly overpass the asymmetry of existing
materials, which are stiffer in compression than in tension, such as rocks and concrete. The
opposite asymmetry also occurs in Nature in fibrous materials [5, 60–62] and living cells [8]: this
asymmetry is based on local buckling of fibres under compression. In contrast to this mechanism,
our architecture uses contact interaction to achieve comparable asymmetry. A novel stiff-in-
tension and soft-in-compression architecture is presented in Figure 1(b): the contact is activated
in tension and renders the material stiffer than in compression; in the latter case only thin
ligaments bear the load as far as the gap remains open. The asymmetry of this material can be
also enhanced by combination of stiff and soft materials in the architecture. The shear-enhanced
asymmetry can be obtained, for example, through the design presented in Figure 1(c).

C. R. Mécanique — 2022, 350, 1-26



6 Vladislav A. Yastrebov

Such materials demonstrate unusual properties in dynamics both in vibration and wave
propagation [37, 54, 63]. The latter presents the main topic of this paper. Namely, we study
propagation of elastic waves through a one-dimensional assembly of symmetric and asymmetric
materials, the focus is put on the damping properties and further on the signal form change. We
show that the elastic asymmetry modifies the energy dissipation mechanisms, ensuring rapid
damping even for low-frequency signals.

3. Wave equation

A one-dimensional wave equation for longitudinal waves propagating through a bimodular
elastic material [34] with viscous dissipation of Kelvin–Voigt type (an elastic spring connected
in parallel with a damper) [64] is of the form:

u,t t = E

ρ
(u,x +α|u,x |),x + µ

ρ
u,xxt , −1 <α< 1, (3)

where u is the axial displacement, lower indices after comma denote partial derivation •,x and •,t

with respect to coordinate and time, respectively; ρ is the mass density (kg/m3), E is the elastic
modulus (Pa), and µ is the viscosity (Pa·s). The dimensionless factor α determines the material
asymmetry: the elastic moduli are equal to

E+ = E(1+α), E− = E(1−α)

in tension (u,x > 0) and compression (u,x < 0), respectively. Thus, the tensile and compressive
components of elastic waves propagate at different speeds given by

c± =
√

E±/ρ.

Note that for a signal which has either purely compressive or tensile deformation, the wave prop-
agation is governed by a linear Kelvin–Voigt model, however the superposition principle for de-
formation of different signs does not hold. The behaviour is independent of the signal ampli-
tude since the non-linearity is localized in a single point on deformation curve (change of sign),
which is centred at zero deformation. For one-dimensional systems, elastic asymmetry reduces
to bimodular material model, thus hereinafter these two terms will be used interchangeably.

4. Methods

We first consider propagation of elastic waves in structures made of materials shown in Fig-
ure 1(a,b); the structure includes one or two segments with bimodular materials. Oscillations
are induced at an excitation point in an elastically symmetric segment of a bar by applying a
harmonic force f = f0 sin(ω0t ) or a more complicated force as will be discussed in Section 8.
Forcing frequency ω0 is chosen in the interval in which viscous effects are almost negligible, i.e.
µω0/ρc±

2 ¿ 1. The induced elastic waves propagate to the left and to the right: on the left they
are absorbed by an absorbing layer. On the right they pass through a single segment of length L
of bimodular material [Configuration 1, see Figure 1(c)], which without loss of generality can be
considered to be stiff-in-tension and soft-in-compression, i.e. α1 > 0 and E+

1 > E−
1 . In addition,

we consider Configuration 2 (see Figure 2(b)), which has an extra segment of a bimodular mate-
rial with the opposite asymmetry, i.e. it is soft-in-tension and stiff-in-compression (α2 =−α1 < 0,
E+

2 < E−
2 ). The bimodular segment(s), are followed by a symmetric elastic bar with an absorbing

layer on its extremity. The equations of motion are solved numerically using finite differences
and Störmer–Verlet integrator. Since all the absorbing boundaries bound symmetric segments,

C. R. Mécanique — 2022, 350, 1-26



Vladislav A. Yastrebov 7

Figure 2. Configurations 1 and 2, which are used to study one-dimensional wave propaga-
tion in asymmetric media, are depicted in (a) and (b), respectively.

we enforce there u,t = ±c0u,x with the minus and plus sign at the right and left boundaries, re-
spectively, see implementation in [65]. The spatial discretization unit l reflects the size of the ar-
chitectured elemental cell, thus the boundaries between symmetric and asymmetric segments
pass between two springs separated by the concentrated mass. If λ0 À l (where λ0 is a signal
wavelength), such a homogenized model represents an effective medium for asymmetric archi-
tectured materials with internal contacts. The model is less reliable for short wavelengths λ/l ∼ 1,
but can be viewed as a first-order approximation.

5. Simple examples

In this section to a large extent we follow the work of [36]. Consider Configuration 1 with a single
wave

u,t (x, t ) ≈
−v0 sin

(
ω0

(
x

c0
− t

))
, if 0 ≤ t − x

c0
≤ 2π

ω0

0, elsewhere

propagating from the forcing point to the right (ω0 > 0) at speed c0 in the elastically symmetric
segment. To avoid high-frequency oscillations at extremities of the signal, we used a Gaussian
smoothing to initiate this localized wave, i.e. the following forcing was applied

f =
{

sign(ω0)[e(t ,3)−e(t ,5)], if 0 ≤ t ≤ 4π/|ω0|
0, otherwise,

where e(t , t ′0) = exp(−(2|ω0|t/π− t ′0)2). In the vicinity of t = 2π/ω0 such forcing is very similar
to f = sin(ω0t −π), but it produces a smoother signal. In this wave propagating to the right, the
tensile component is followed by a compressive one. We assume, that the elastic modulus of the
symmetric segment is equal to the compressive modulus of the bimodular material E0 = E− and
c0 = c−. When this single wave enters the bimodular segment, the tensile component accelerates
abruptly and propagates at speed c+ > c−, whereas the compressive component continues to
propagate at the same speed c− and passes smoothly from symmetric to bimodular segment,
and further to the other symmetric segment (see Figures 3(a) and 4(a)). In contrast, the tensile
component is partly reflected back towards the emitter because of the elastic contrast: it occurs

C. R. Mécanique — 2022, 350, 1-26
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Figure 3. Spatio-temporal wave tracing is presented in (a) for a tensile component (dashed
line) followed by a compressive one (solid line), (b) inverse incident signal, (c) inverse
incident signal passing through a configuration with sections of opposite asymmetries;
(a,b) and (c) correspond to Configurations 1 and 2, respectively (see Figure 2(a,b)).

on entering and escaping the bimodular segment. Within the bimodular segment, because of
the difference in wave speed of the compressive and tensile components, on re-entering into
elastically symmetric segment, these two components are separated by ∆t = L/(c+− c−) in time
and by∆x = L/(1−c−/c+) in space (so-called “rigid domain” following the terminology from [36]).
These properties can be used to construct a wave filter, which (1) due to reflection can partly
attenuate the passage of either tensile or compressive wave components, and (2) due to contrast
in speeds can separate the tensile and compressive components in space/time.

If the order of wave components is reversed (Figure 3(b)), i.e. ω0 < 0, then the compressive
component precedes the tensile one, and the system dynamics becomes more complex. The slow
leading component is overtaken by the faster tensile one and they start to interfere. Note that
contrary to the purely symmetric case considered in [37], the ratio of amplitudes of the tensile
and compressive components propagating in the bimodular segment is given by

A+/A− = 2/(1+ c+/c−)

(due to the reflection at the interface symmetric/asymmetric material), and their wavelengths
relate as

λ−/λ+ = c−/c+.

C. R. Mécanique — 2022, 350, 1-26
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Figure 4. Simulation results for α = 0.3, µ/ρ = 0.01 m2/s, E/ρ = 1 m2/s2: (a) and (b)
represent spatio-temporal deformation map (u,x ) and correspond to the diagram (a) and
(b) in Figure 3, respectively; x/l = 0 separates symmetric and asymmetric segments.

Note that contrary to the study of [36], thanks to absorbing layers, there is no additional waves
interacting with the shock front. The overlap process creates a discontinuity in deformation
(shock) and thus leads to emergence of high-frequency oscillations and accompanying viscous

C. R. Mécanique — 2022, 350, 1-26



10 Vladislav A. Yastrebov

dissipation, which results in partial or almost complete annihilation of tensile and compressive
wave components (see Figure 4(b)). However, these oscillations do not necessarily imply high-
frequency alteration between tension and compression. In the first stage, high-frequency oscil-
lations superpose with the compressive wave.2 The nature of these oscillations, which cannot be
removed through a time-step refining, is still to be investigated in detail. Since in Kelvin–Voigt
model the amplitude of a wave with a real wavenumber k decays in time t as exp(−µk2t/2ρ); in
the limit of high wavenumber k > 2c±/µ, the waves are overdamped and the harmonic part fully
disappears. At later stages, the oscillations produced by the overlap of tensile and compressive
components lead to frequent alteration of the deformation sign. As known from [53, 54], oscilla-
tors with piecewise-smooth characteristics posses sub-harmonic resonances at higher frequen-
cies, which ensure relatively high amplitude and enhanced dissipation.

It is straightforward to find an approximate propagation distance Lo needed for the tensile
and compressive parts of initially harmonic signal to superpose completely. We introduce the
following notations:

Emax = max{E+,E−}, Emin = min{E+,E−}

and
cmax = max{c+,c−}, cmin = min{c+,c−},

the material contrast is then denoted by

γ= Emax/Emin = (1+|α|)/(1−|α|) > 1

and
cmax/cmin =p

γ.

The overlap distance depends on wave speeds in the bimodular segment, on the amplitudes and
the initial separation in time of tensile and compressive components, which is equal to a half
of the period ∆T = π/ω0 in the symmetric segment (where the oscillations are forced). Equating
the length needed for faster and slower waves to travel to the same spatio-temporal point and
requiring the full-period overlap, we obtain the overlap distance

Lo = 2πcmax

ω0
(p
γ−1

) . (4)

The full geometrical overlap is needed because, as will be shown later, the speed of the shock
separating compressive and tensile components for equal amplitude waves, travels at the speed
in the interval between the two components. A detailed study of the shock wave speed for
the different cases could be found in [36, 39], some preliminary considerations are provided in
Section 9. It would be important to remark here that in the pioneering paper [34] different types of
particular points x∗ were introduced: (1)α (shocks) for which ε(x∗+)ε(x∗−) < 0, (2) β (signotons)
for which ε(x∗+) = ε(x∗−) = 0 but ε(x) changes its sign when crossing x = x∗, (3) γ (semi-
signotons) and ε(x∗+)ε(x∗−) = 0 but ε(x∗+) 6= ε(x∗−) and ε changes its sign3 when crossing
x = x∗ and (4) δ (simple discontinuity) for which ε(x∗+)ε(x∗−) > 0 and ε(x∗+) 6= ε(x∗−). If the
symmetric segment is stiff c0 = cmax, then the overlap distance is given by

Lo =λ0/
(p
γ−1

)
;

if c0 = cmin then
Lo =λ0 +λ0/

(p
γ−1

)
.

2Note that these oscillations do not emerge if tensile and compressive waves going in opposite directions pass through
each other.

3In the current work even if the value of ε = 0 on one of the sides, we will call this point semi-signoton or stable
semi-signoton in contrast to the classical one, which is unstable.
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Figure 5. The decimal logarithm of the ratio of transmitted to incident energy is plotted for
different forcing frequencies ω0 and different lengths of bimodular segment L: (a) Config-
uration 1 (see Figures 2(a), 3(b)), (b) Configuration 2 (see Figures 2(b), 3(c)). Dashed curves
mark transmission iso-levels, dash-dotted curves represent (4).

6. Energy-absorbing properties

The high-frequency cascades emerging in annihilation of tensile and compressive waves present
a powerful dissipative or energy-absorbing mechanism. To test its properties we analyse the en-
ergy passing through the bimodular segment(s) as a function of its length and forcing frequency
ω0. The injected energy is computed as the work of the forcing

Win = 1

2

∫ T

0
f (t )u,t dt , (5)

where T is the forcing time. The factor 1/2 appears here since only half of the energy goes
towards the bimodular segment, the other half goes to the left towards the absorbing layer.
The transmitted energy Wout is computed right after the bimodular segment(s) (see detectors
in Figure 1); it is computed as the energy passing through a point xd and computed as:

Wout = A
∫ Tsim

0

[
ρ

(
∂u

∂t

)2

+E

(
∂u

∂x

)2]∣∣∣∣
x=xd

c0 dt , (6)

where A is the area of the section, c0 is the wave velocity in the symmetric segment and xd is
the location of the detector. The time interval [0,Tsim] spans the entire duration of the simulation
to grasp all waves and most of reflections excited by incident waves. Because of the absorbing
layer on the far-right end of the structure, the energy integrated over time is equal to the energy
passed from left to right within the given time interval. The calculation of the injected energy Win

is also verified by the same calculations for a detector located prior to the bimodular segment(s),
which slightly differ from the accurate (5), because (6) accounts for the reflected waves from the
interfaces.
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Figure 6. Spectral density Φ(ω) at locations marked in Figure 4(b). (a) Configuration 1,
scenario of Figure 3(b). Initial peak at the incident frequency ω0 is visible, as well as an
emerging high-frequency peak at sub-resonance frequency 2ωr . Energy cascade with an
exponent in the interval [0.9,1] is highlighted. (b) The spectral density remains almost
unchanged for Configuration 1 and scenario of non-overlapping tensile and compressive
wave components, see Figures 3(a), 4(a).

The logarithm of the ratio of transmitted to incident signal energy log10(Wout/Win) is plotted in
Figure 5(a,b) as a function of the forcing frequencyω0 and the length of the bimodular segment L,
for Configurations 1 and 2, respectively. The following parameters were used E/ρ = 1 (m2/s2), el-
emental cell length is l = 1 (m), section area A = 1 (m2),α= 0.3, µ/ρ = 0.01 (m2/s). For Configura-
tion 1, the transmitted energy reduces significantly if the length of bimodular segment is greater
than the overlap length Lo given in (4). For Configuration 2 (see the scheme in Figure 3(c)), the
same qualitative effect is observed, however, it is greatly amplified4 by the bimodular segment of
the same length L but with the opposite asymmetry, which is introduced right after the first bi-
modular segment. After the first (partial) annihilation of tensile and compressive waves, the rem-
nants of the tensile component precedes the compressive ones. The second segment with the in-
verse asymmetry serves to collide them again and dissipate their energy. Multiple combinations
of antisymmetric segments can be used to ensure even more efficient damping as long as within
every segment tensile and compressive components overtake each other, i.e. the length of the
segment is greater than the overlap length L ≥ Lo (see (4)). From (4) and the simulation data it
follows that the absorption is very efficient for high and low frequencies as long as the following
condition is met:

ω0 ≥ 2πcmax

L
(p
γ−1

) . (7)

A comparable damping mechanism occur for a random wave packet, which contains a roughly
equal proportion of tensile and compressive components which “annihilate” via the same mech-
anism. It will be investigated in detail in Section 8.

4In average, the double layer enables to absorb energy in such a way that the remaining energy is two orders of
magnitude less than in the case of a single layer.

C. R. Mécanique — 2022, 350, 1-26



Vladislav A. Yastrebov 13

7. Spectral analysis

Presence of high-frequency energy cascades can be shown through spectral analysis. In Figure 6
the evolution of the spectral density of deformation u,x is shown for the cases depicted for the
simulations presented in Figure 4. The power spectral density is computed at several locations x
along the bimodular segment (marked with dashed lines equipped with a marker in Figure 4) for
the whole time history asΦ(ω, x) = û,x û∗

,x , where

û,x (ω, x) =
∫ Tsim

0
e−iωt u,x (x, t )dt

is the temporal Fourier transform, where •̂∗ denotes the conjugate value, and ω is the angular
frequency. We assume that at t < 0 and t > Tsim the studied system is at rest. The system is forced
mainly at frequency ω0 = 0.03 Hz, resulting in a smooth peak in Φ for the signal entering the
bimodular segment at x = 0. Note that the resonance frequencies of the bimodular element is
given by

ωr =
2 j

p
1−α2

√
E0/ρ

l
(p

1−α+p
1+α)

(see, [55]), where the main resonance occurs for j = 1 and high-frequency sub-harmonic reso-
nances occur at j > 1, j ∈ N. In the signal spectrum (Figure 6(a)) for the case of wave overlap
(Figure 4(b)), a second peak emerges at j = 2 sub-harmonic frequency of elemental cells. This
peak, which grows with the propagation distance, presents a sink for the energy transmitted from
low frequencies. The energy spectrum thus contains two peaks connected via a power law decay
segment with the exponent between −1.0 and −0.9 as shown in Figure 6(c). Note that the energy
decay of the main frequencyω0, as well as the rise and subsequent decay of sub-frequencies nω0,
for n ∈ N,n > 1 is consistent with the findings presented in [37], where the authors grasped the
main features of this dissipation mechanism. In contrast, when tensile and compressive compo-
nents separate (Figures 3(a) and 4(a)), the spectrum depicted in Figure 6(b) does not present any
particularities and the energy spectrum remains stable.

8. Random incident wave packet

Here, we consider a random incident wave packet containing many harmonics but compact
in space and time. The wave packet is induced by a force which follows a nominal self-affine
evolution localized in time/space:

f (t ) = exp

(
− (t − t0)2

σ2
i

)
kh∑

k=kl

Ak

(
k

kl

)−(0.5+H)

sin

(
2πkt

Ti
+ϕk

)
, (8)

where Ak is a random amplitude given by Ak = 1 + 0.2rk (N), where rk ∈ [−1,1] is a random
variable with a uniform probability density; ϕk ∈ [0,2π] is a random phase which is also selected
from a uniform distribution, kl is the lower summation number and represents a normalized
lower cut-off wavenumber, kh > kl is the upper summation limit and represents the upper cut-
off wavenumber, so kh −kl is the number of modes present in the signal, σi (s) determines the
duration of the signal and t0 is the centred signal time, Ti is the basic period and is selected to be
Ti = 4σi to avoid repetition of patterns in the incident signal; 0 < H < 1 is the Hurst exponent
controlling the self-affinity, so the spectrum of the signal follows a power law decay 〈Φk〉 ∼
k−(1+2H) = k−(5−2D f ), where the average 〈•〉 represents the ensemble average and D f = 2− H is
the fractal dimension, D f ∈ [1,2]. Examples of random wave packets and their spectra are shown
in Figure 7. Because of the viscous dissipation in the system, to study the effect of bimodular
segments, one has to select such parameters for the incident signal so that in the absence of
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Figure 7. Examples of random self-affine force used to generate incident wave packets
according to (8): (a) generated forces for kl = 6 and kh = {50,100,200} and H = 0.5 are
presented, two random realizations are shown for every combination of parameters; (b) the
corresponding power spectral densities of the coloured signals, to guide the eye, dashed
curves show a power law ∼ k−(1+2H). For representation purpose, the plots are shifted in
Y axis.

Table 1. Parameters used in simulation of a transmission of a random incident wave
packet, see (8) for notations

Parameter Notation Value Units
Signal lower cut-off kl 6 —
Signal higher cut-off kh 100 —
Standard deviation σi 1000 s
Basic period Ti 4000 s
Central time t0 3000 s
Hurst exponent H 0.5 —
Elastic contrast α [−0.3,0.3] —
Kinematic viscosity µ/ρ 0.003 m2/s
Reduced stiffness of symmetric layer E0/ρ 1 m2/s2

Reduced tension stiffness in first meta-segment E+/ρ 1 m2/s2

Simulated normalized length L/l 20,000 —
Simulated time T 30,000 s
Time step dt 0.2 s

such a segment, the signal passes through the entire system without significant filtering of high-
frequency modes. The selected parameters are summarized in Table 1, for such parameters
the ratio of transmitted to injected energy measured at the two detectors is Wout/Win ≈ 0.93;
the signal at detector 2 is compared with the signal at detector 1 in Figure 8 for α = 0, other
parameters remain the same as in Table 1. The simulation domain and its duration are kept rather
large because of the rich content of the signal.
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Figure 8. The velocity at detector 2 is compared with the velocity at detector 1 to visualize
how the signal changes after passing through the simulation domain due to viscous dissi-
pation but in absence of the elastic contrast, i.e. α= 0. The signal at detector 2 is shifted by
19,053 s to superpose with the signal at detector 1. The corresponding ratio of signal ener-
gies is ≈ 93%.

8.1. Transmission of energy

In Figure 9(a) we plot the energy ratio Wout/Win (transmission factor) as a function of bimodu-
lar length L for Configuration 1 (without second segment with the opposite asymmetry) and dif-
ferent elastic contrasts α. As seen from the figure, all the data could be described by the same
function with an exponential decay (to a certain positive limit) with respect to the length of the
bimodular segment raised to the power of 3/2:

T (L) = Wout

Win
=Tmin + (Tmax −Tmin)exp(−(L/L∗)3/2), (9)

where Tmin,Tmax are the minimal and the maximal values obtained for saturated transmitted
energy and transmitted energy in absence of bimodular segment, respectively; L∗ is the char-
acteristic length which characterizes the reduction in transmitted energy. However, it would be
reasonable to suggest a renormalization of the bimodular-segment length in order to account
for the difference is elastic moduli used for positive and negative values of α: the characteristic
length of intersection would scale as L ∼ cmax − cmin, therefore it would be reasonable to plot the
transmission factor with respect to the renormalized bimodular length L′

L′ =


L

l

2

1−p
(1−α)/(1+α)

, if α> 0,

L

l

2p
(1+α)/(1−α)−1

, if α< 0.

The mean value of the transmission factor and the error bars (root-mean-square deviation) are
obtained for 10 simulations carried out for different realizations of the incident signal (see Sup-
plementary material [65]). Contrary to a mono-harmonic signal, for a random wave packet the
transmission factor cannot be reduced below ≈10% because of eventual full elimination of either
tensile or compressive wave components, so that the remaining component, accordingly com-
pressive or tensile, persists. In order to obtain a more precise expression, it would be reasonable
to take into account the reflected part of the signal, i.e. the part of the signal that does not travel
through the bimodular segment, so the ultimate form of the transmission factor with the normal-
ization of the bimodular-segment length takes the form:

T ′(L′) = Wout +Wrefl

Win
=T ′

min + (T ′
max −T ′

min)exp(−(L′/L′
∗)3/2)+ Wrefl

Win
. (10)
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The last term can be estimated as Wrefl/Win ≈ (1− 2/(1+p
(1−α)/(1+α)))2 for α < 0, for α > 0

the reflected waves have a much smaller energy and can be neglected. Even for the negative
α, the value of the reflected energy is relatively small as could be seen in Figure 9(a) as the
shift between curves in the asymptotic limit of L → 0. Note that this simplification (10) is
possible because the reflected energy is independent of the length of bimodular segment. The
transmission factor taking into account the reflected energy T ′ is shown in Figure 9(b) and the
relevant normalization of the bimodular-segment length L′ allows to collapse all the data points
on a single master curve with the following parameters: fixed T ′

max = 0.93 and those obtained by
the mean least square fit T ′

min = 0.1128, L′∗ = 438.37.

8.2. Signal change

Apart from the reduction in the transmitted energy, it is important to understand how the shape
of the velocity signal changes after passing through the bimodular segment. In Figure 10 we show
examples of the input and output signal for the length of bimodular segment L/l = 5000 and
α=±1/4. The most evident observation is the change in standard deviation σ and average “sign”
of the signal. For α > 0 the output signal contains rather negative velocities, and vice versa, for
α < 0 the signal contains rather positive components. This change is important to understand
the energy absorption in the bimodular segment, because such trend in converting the signal
into purely mono-sign signal does not permit further overlap and annihilation, moreover, this
“sign-polarization” results in a net motion to the right or to the left of the entire system.

The “sign” of the signal can be characterized by skewness of the distribution µ̃3 = µ3/σ3,
where µ3 is the third moment of the probability distribution. For our data, the distributions
are computed over an input signal in the window of t ∈ [0,7σi ] and for the output signal in t ∈
[tmax−3.5σ, tmax+3.5σ], where tmax corresponds to the max |u̇| of the output signal. The standard
deviation of the signal reduces by a factor of three, and the skewness becomes considerably
positive for negative α and vice versa, i.e. the skewness is negative for positive α, see Table 2(a).
For L/l = 5000 the dependence on the level of elastic contrast α is quite marginal, whereas for
shorter lengths, for example, L/l = 1000 this dependence becomes pronounced since such a
length is not sufficient to ensure overlap of positive and negative parts, see Table 2(b). Note
that in the Configuration 2, in presence of the segment of the inverse asymmetry, the skewness
remains almost the same and the standard deviation is slightly reduced by ≈ 12.5%. In Figure 11
we show velocity probability densities of the incident signal and of the output signal which
passed through the bimodular of length L/l = 5000, the data are shown for different values of
the elastic contrast α. Note that incident signals are the same for different α, the small difference
in probability density functions (PDF) is explained by different reflections from the bimodular
interface.

9. Geometrical model

A simple geometrical explication could be given to the observed decrease in the transmitted
energy. Let us consider a wave packet in a symmetric non-dispersive medium travelling to
the right at wave speed c0 as a superposition of the positive and negative parts u,x (x − c0t ) =
〈u,x (x − c0t )〉− 〈−u,x (x − c0t )〉, where 〈x〉 = max{0, x}, within the bimodular segment the speed
of propagation for these parts would be different, moreover, the positive and negative parts will
change due to their gradual superposition accompanied by energy cascades:

u,x (x, t ) = 〈u,x (x − c0t , t )〉−〈−u,x (x − c0

√
(1−α)/(1+α)t , t )〉,
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Figure 9. (a) Transmission factor T (ratio of transmitted to injected energy) is plotted
with respect to the length of the bimodular segment L for different elastic contrasts α; the
curves represent (9) with parameters identified by the mean least square fit, dashed curves
correspond to α < 0, solid curves to α > 0. (b) Transmission factor taking into account
reflected energy T ′ and plotted with respect to the normalized length of the bimodular
segment L′, the master curve represent (10) with parameters identified by the mean least
square fit; the same data points as in (a) are plotted; the points represent the average data
computed over 10 realizations and the error bars are equal to the standard deviation.

by changing the variable x ′ = x − c0t and introducing new notations ϕ(x ′, t ) = 〈u,x′ (x ′, t )〉 and
ψ(x ′−∆ct , t ) =−〈−u,x′ (x ′, t )〉, where ∆c = c0(

p
(1−α)/(1+α)−1), we obtain the following equa-
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Figure 10. Illustration of signal’s change for two random realizations. The incident signal
(upper panels in (a,b)) deforms passing through the bimodular segment of length L/l =
5000 and takes the form of sign-polarized signal with mainly positive components forα> 0
and negative components for α< 0, see middle and lower panels in (a,b).

tion to represent the signal:

u,x′ (x ′, t ) =ϕ(x ′, t )+ψ(x ′−∆ct , t ),

of course, far from discontinuity point (shock), i.e. the points x ′∗(t ) at which the function changes
sign u,x′ (x ′∗+, t )u,x′ (x ′∗−, t ) < 0, functionsϕ andψpreserves their form, i.e. their time derivatives
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Figure 11. PDF of velocities of the incident signal and of the output signal which passed
through the bimodular segment of length L/l = 5000, individual points represent PDF
values of a particular test and the curves are the average data computed over 50 realizations,
both distributions are computed over 50 bins: (a,b) α=±1/8, (c,d) α=±1/6, (e,f) α=±1/4.
All the data are available in Supplementary material [65].
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Table 2. Averaged standard deviation and skewness of the input and output signals for
different vales of α and for (a) L/l = 5000 averaged over 50 realizations, (b) L/l = 1000
averaged over ten realizations

α Input signal Output signal
Std σ Skewness µ̃3 Std σ Skewness µ̃3

−1/4 0.0634 0.1882 0.0214 5.2150
−1/5 0.0631 0.1579 0.0210 4.9662
−1/6 0.0630 0.1399 0.0207 4.7409
−1/7 0.0623 −0.1475 0.0210 4.4319
−1/8 0.0628 0.1184 0.0206 4.3772

1/8 0.0622 −0.0146 0.0205 −5.0246
1/7 0.0620 −0.2617 0.0193 −4.6584
1/6 0.0621 −0.0355 0.0208 −5.2974
1/5 0.0621 −0.0525 0.0212 −5.4514
1/4 0.0620 −0.0803 0.0216 −5.8283

(a) L/l = 5000
−1/4 0.0627 −0.0225 0.0397 0.8776
−1/5 0.0626 −0.0600 0.0443 0.4105
−1/6 0.0625 −0.0836 0.0470 0.1804
−1/7 0.0624 −0.1011 0.0489 0.0718
−1/8 0.0623 −0.1139 0.0503 0.0239

1/8 0.0620 −0.2894 0.0486 −0.7302
1/7 0.0620 −0.2979 0.0462 −0.7522
1/6 0.0620 −0.3085 0.0432 −0.9362
1/5 0.0621 −0.3222 0.0383 −1.3727
1/4 0.0621 −0.3406 0.0320 −2.0355

(b) L/l = 1000

Figure 12. Motion of a α-discontinuity (shock) x ′∗ at speed cs in coordinate system at
which the positive part ϕ remains at rest: configuration (a) at t0 and (b) at t0 +∆t , dotted
lines represent the signal at time t0. Dashed areas under the curves for slowly varying
ϕ and ψ and for ∆t → 0 are given by φ(x ′∗)cs∆t for the tensile part (reddish one) and
|ψ(x ′∗)|(∆c−cs )∆t , these areas are equal and they correspond to the deformation amplitude
loss.

take the formϕ,t = 0 andψ,t =−∆cψ,x′ . However, atα-discontinuity (shock) the signal loses some
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amplitude following (see Figure 12):∫ ∞

−∞
u,x ′t dx = 2∆c

∑
x′∗

ϕ(x ′∗)|ψ(x ′∗)|
ϕ(x ′∗)+|ψ(x ′∗)| ,

where the sum is over all α discontinuities (following the terminology of [34]) and it always holds
thatϕ≥ 0 andψ≤ 0. This result could be obtained by simple geometrical interpretation sketched
in Figure 12 for anα-discontinuity moving at speed cs : if we assume small change of deformation
at distance cs∆t , i.e. |ϕ(x)−ϕ(x + cs∆t )| ¿ 1 and |ψ(x)−ψ(x − cs∆t )| ¿ 1 then in the course of
its propagation from instance t0 to instance t0 +∆t , the α-discontinuity will release the integral
of deformation of the positive part given by csϕ(x ′∗)∆t which appears to be equal to the lost
deformation of the negative part |ψ(x ′∗)|(∆c − cs )∆t . By equating these two terms the speed of
theα-discontinuity cs can be found, it depends on the asymmetry of the jump and in the moving
coordinate system x ′ it is given by:

cs (x ′∗) =∆c
|ψ|

ϕ+|ψ|
∣∣∣∣

x′=x′∗
.

To obtain its absolute speed, one needs to simply add c+ speed. As follows from this equation, the
speed of the α-discontinuity can be non-constant even though the positive and negative parts
propagate at constant speeds. For equal values of ϕ and ψ, the speed of the α-discontinuity is
simply cs = ∆c/2, which was used in Section 5 to deduce the full overlap distance. The squared
values of all deformation losses with a Young’s modulus factor and integrating them in time and
in section A would give us the total loss in potential energy predicted by this simplified geometric
model:

Wloss(t ) = A(E++E−)

2
∆c

∫ t

0

∑
x′∗(t ′)

(
ϕ(x ′∗)ψ(x ′∗)

ϕ(x ′∗)+|ψ(x ′∗)|
)2

dt ′. (11)

Even though this equation is not easy to use with a random signal, it could serve to obtain an
asymptotic solution for small overlaps, it could be also helpful for a numerical treatment or for
the analysis of simple signals.

Let us consider, for example, a signal ϕ= 〈a+ sin(k(x − c+t ))〉 and ψ=−〈−a− sin(k(x − c−t ))〉,
values of ϕ and ψ at α-discontinuity in the moving coordinate system x ′ = x − c+t will be:

ϕ(x ′∗, t ) = a+ sin(kx ′∗), ψ(x ′∗, t ) =−a− sin(k(∆ct −x ′∗)), x ′∗ =
∫ t

0
cs (t )dt

then the following integral equation can be formulated for the α-discontinuity speed:

cs (t ) =∆c
a− sin(k(∆ct −x ′∗))

a− sin(k(∆ct −x ′∗))+a+ sin(kx ′∗)
, x ′∗ =

∫ t

0
cs (t )dt

which greatly simplifies for a+ = a− = a because in this case cs =∆c/2 and

ϕ(x ′∗, t ) = a sin(k∆ct/2) =−ψ(x ′∗, t ).

For this simple case (see Figure 13(a)) the energy loss per one α-discontinuity would be given by:

Wloss(x ′∗, t ) =∆c
A(E++E−)a2

4

∫ t

0
sin2(k∆cs t )dt ′ = A(E++E−)a2

8

(
L− sin(kL)

k

)
,

which results in the following evolution of the energy loss reformulated in length of the bimodular
layer following L = ∆ct = 2cs t and expressed as the remaining energy normalized by the initial
energy (W0 −Wloss(L))/W0:

1− Wloss(L)

W0
=

1− kL− sin(kL)

2π
, if L < 2π/k

0, otherwise.
(12)

In Figure 13(a) the evolution of the signal within this simplified geometrical model is shown for
the case a+ = a− (see Supplementary material [65] for the code). In this case the signal fully
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Figure 13. Evolution of the deformation signal u,x′ (x ′, t ) in time in the reference coordinate
system x ′ moving at speed c+, this evolution is simulated with a geometrical overlap model
for (a) a+ = a− and (c) for a−/a+ = 1.5; the remaining parameters are ρ = 2 kg/m2, E+ = 1
Pa, E− = 2 Pa, c+ = 1/

p
2 m/s, c− = 1 m/s, ∆c = 1 − 1/

p
2 m/s, λ = 1 m, k = 4π/λ,

dt = λ/(N∆c), where N = 4000 is the spatial discretization. Every snapshot taken every
100 time steps dt is shifted vertically by the value of 500dt . In (b) and (d) the evolution
of the remaining potential energy in the signal compared to the initial energy is computed
using the geometrical overlap model and compared with analytical solution (12) in (b); in
(d) solid, dashed and dash-dotted lines represent the remaining energy computed by (14).

disappears. The evolution of the transmitted energy is shown in Figure 13(b) and compared
with (12). In case when a+ 6= a− (Figure 13(c)), the evolution of the energy loss is not easy to
compute, but the remaining energy can be readily computed. The integral deformation for the
considered case is given as 2a±/k for positive and negative parts of a single wave, so the absolute
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value of their difference is 2|a−−a+|/k which is nothing but the remaining integral deformation
of the part with the greater amplitude, say a− > a+, i.e.∫ y

0
a− sin(kx ′)dx ′ = 2(a−−a+)/k,

where a non-zero signal will remain only within the intervals [0+2π, y +2π]. From this equation,
we can find the value of y as:

y = 1

k
arccos(2a+/a−−1). (13)

Therefore, the remaining energy per wavelength will be given by

1− Wloss

W0
= 2kE−a−2

π(E+a+2 +E−a−2)

∫ y

0
sin2(kx)dx = kE−a−2

π(E+a+2 +E−a−2)

(
y − sin(2k y)

2k

)
, (14)

where y should be substituted from (13). In Figure 13(c) we show the evolution of the signal shape
for a−/a+ = 1.5, the change in α-discontinuity speed as well as the remnant non-zero signal of
the compressive component can be easily observed. In Figure 13(d) the evolution of the energy
obtained using the geometrical model is plotted for different amplitudes a−/a+ = {1.2,1.5,2}.
Naturally, the larger the amplitude difference, the more energy remains in the signal. In the
same figure, the remaining energy is estimated using (14) for the same amplitude ratios and it
is shown with horizontal lines, the match between the model and the equation is perfect. Note
that qualitatively the shape of transmission factor obtained for this simple signal is very similar
to those observed for a random self-affine signal shown in Figure 9. Of course, the geometrical
model cannot capture the full complexity of energy cascades and viscous damping, but it permits
to understand better and predict rather accurately the change in the signal after it passes through
a bimodular section.

10. Conclusions

A new concept for architected materials was developed in which the elastic asymmetry can be
finely adjusted by combining internal contacts and components of different stiffness. Propaga-
tion of one-dimensional elastic waves in the resulting elastically asymmetric media was studied.
The overlap of tensile and compressive wave components propagating at different speeds results
in emergence of energy cascades leading to a partial or, in particular cases, almost complete an-
nihilation of tensile and compressive wave components. This phenomenon was already known
to the community but we investigated it from a new perspective, carried out a rather complete
spectral analysis and considered a novel configuration with two segments of inverse asymmetry,
which results in extreme damping of the incident signal. The efficient wave damping happens if
the bimodular segment is chosen longer than the wave-overlap distance, Equation (4). The ratio
of the overlap length to the incident wavelength scales as Lo/λ0 ∼ 1/(

p
γ−1). The key advantage of

the proposed architected materials consists in fact that the elastic asymmetry γ can be adjusted
to be very high, which would enable to keep the damping device relatively small compared to the
incident wavelength.

In the more realistic situation of an incident wave containing many modes, only partial anni-
hilation can occur, however, the signal after passing through a relatively long bimodular segment
appears “polarized” either to positive or negative deformation. This original observation was
made in the study of self-affine incident wave packets (Gaussian envelope) passing through a bi-
modular section. This analysis permitted us to obtain a rather universal form of the ratio of trans-
mitted to injected energy (transmission factor) with respect to the length of bimodular segment
and also to obtain relevant normalizations. In addition, a simple model of geometrical overlap
was developed and some simple analytical results for the transmission factor were obtained.
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The demonstrated efficient damping and sign-polarization mechanisms can be used in shock
absorbing and wave filtering systems, and, hypothetically, in seismic protection from surface
waves. For further investigation, the one-dimensional model should be extended to two- and
three-dimensional cases, where the compressive/tensile elastic asymmetry should be enhanced
with shear asymmetry and complemented by elastic anisotropy.

The computational code for simulation of the one-dimensional wave propagation in asym-
metric medium with absorbing boundaries is available in Supplementary material [65] as well as
the data of hundreds of simulations and the scripts for their post-processing and figure plotting.
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