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Abstract. The increasing challenges in industry paved the way towards the next 

generation factory model or namely "Industry 4.0" through the availability and 

development of recent technologies in ICT such as industrial internet of things 

(IIoT) and cyber-physical production systems (CPPS). One of the main pillars of 

this paradigm is Zero defect manufacturing (ZDM), which aims to get work-

pieces "right the first time". However, this technological uplift can prove itself to 

be very challenging in an industrial environment especially when it comes to the 

choice of available sensors, the motivation behind that choice, and the insurance 

that they comply with different guidelines for further exploitation in decision 

support. This is even more relevant when addressing low-volume high-variety 

industrial entities such as make-to-order (MTO) SMEs, inherently characterized 

by limited resources and highly variable business processes collaborating to re-

spond to the demands of an increasingly cutting-edged market. This paper pre-

sents a collaborative approach to devise a suitable sensor network in an industrial 

machining environment generally and in an MTO SME context specifically, 

based on a joint analysis of all business process data related to quality control 

issues. Furthermore, the paper showcases the benefits of the approach in a real-

world case study involving a 3-axis universal machining center as early valida-

tion. 

Keywords: Sensor network, IIoT, machining process, industry 4.0, zero-defect 

manufacturing, collective manufacturing. 

1 Introduction 

The cost of poor quality, including the tolls of repair, rework, scrap, service calls, and 

so on, is estimated to range between 5 and 30% of a manufacturing company’s total 

income with most of them ranging in the 10-20% area [14]. 
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Industry 4.0, first introduced in Germany [7], has managed to make a breakthrough in 

manufacturing quality control (QC) through concepts such as Industrial Internet of 

Things (IIoT) and Cyber-Physical Systems (CPS) through data-based defect detection. 

ZDM is generally defined as a strategy to get rid of defects in production. As such, 

it has always been considered the next level of quality control and consequently was 

seen from a "quality" lens mainly through quality management strategies. The frame-

work (Fig.1) depicts this tendency from a high-level schematic perspective by only 

pointing sensors toward products on the CNC machine. Nevertheless, this approach has 

been increasingly questioned and deemed limited in literature as per recent reviews [12] 

asking for a more holistic approach by taking into consideration other production-re-

lated aspects. 

Most SMEs trying to undergo an early lift towards an industry 4.0 approach face the 

hurdle of a high initial expenditure with no result certainties [9]. While bigger compa-

nies can afford certain strategies such as extensively equipping the shop floor with the 

necessary technologies to implement a smart-factory approach [2], small manufactur-

ing factories can find it difficult to strategically statue between the early acquisition and 

development cost and the inaction toll on their business and hence justify a similar 

approach. This situation begs the question of how to ensure that the required expendi-

ture is in sync with the company’s needs and typology of issues. 

Contrary to the widespread data-driven approach which starts from gathering data 

as much as possible through shop-floor sensor coverage, uncorrelated to the business 

processes and quality issues, and then diagnoses what problems can arise and how to 

treat them, our work strives for a more end-to-end and holistic and collaborative ap-

proach by analyzing business processes and linking them to non-compliance (NC) his-

tory to determine the problems which can typically arise in the shop-floor to negatively 

impact the end-product. Starting from this all-processes collaborative NC analysis, we 

determine the needs in terms of data coverage, and hence the typology and characteris-

tics of the sensors to be used to bridge the data-flow gap based upon a grid of attributes, 

leading to an SN minimizing the needed sensing resources while maximizing detection 

to provide the necessary informative capacity for sensing the defects, which is the nec-

essary first foothold for a ZDM initiative. This paper presents an answer to "how to 

appropriately design a sensor network for zero defect manufacturing in a high-variety 

manufacturing environment" by taking into account SMEs’ characteristics when aim-

ing toward I4.0. 

 

Fig. 1. ZDM overview in industry 4.0 
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While the approach is thought to be global and can be applied to any type of industry 

where raw material transformation is at stake to conceive the final product, our paper 

scope will focus on subtractive manufacturing with the case study being implemented 

in a metallurgical industry machining SME which production is heavily oriented to-

wards an MTO business model. 

The paper will be structured as follows: section 2 will discuss literature work related 

to the topic at hand, section 3 will present the proposed framework of our approach, 

section 4 will be dedicated to its implementation steps, and section 5 will describe a 

real-world case study based on the implementation while section 6 will conclude this 

paper and introduce future research perspectives. 

2 Related Works 

Many papers regarding the use of SN, in the manufacturing industry in general and in 

QC in particular, provide solutions for a specific industry and type of machines or the 

application of a specific solution. As such, Zheng et al [15] give a conceptual frame-

work for smart manufacturing and some implementation showcases for industry 4.0 but 

don’t delve into the devising of the sensing strategy if not being globally depending on 

the typology of considered machines. 

Kulinska et al [6] present a study to reduce non-conformity and improve quality 

control through a Poka-Yoke sensor-enabled approach. And while the study considers 

NCs as an input it offers no link between the choice of the solution and the problems at 

hand and is rather specific to the hydraulic industry. A generic situation stated by the 

study of Silva et al [13] regarding the lack of general methodology for AI and machine 

vision systems in industrial QC. 

Additionally, Marques et al [8], while dealing with IoT-based automatic NC detec-

tion in the scope of a metalworking SME use case similar to our work, focuses on ar-

chitecture and interoperability of the data collection and communication, not covering 

the initial part regarding the choice of sensors and its link with business-oriented data 

or NC history. 

Govindarajan et al [4] present an approach to dealing with legacy systems in the 

manufacturing industry, but the scope of the paper encases the data acquisition phase 

and how to integrate it into a particular architecture and project. Preuveneers et al [10] 

in its overview of I4.0 and the smart factory confirm the lack of context-aware decision 

making and how it can influence the cost of automation in general and sensors in par-

ticular as one of the main pillars of data acquisition. Psarommatis et al [11] propose a 

generic methodology to provide a tool for designing a manufacturing system that can 

enable a ZDM approach using digital twin models that were based on simulations. 

Eleftheriadis et al [1] emphasized the difficulty of implementing ZDM when the 

manufacturing processes involve complex operations or a large number of components, 

such products often have a high probability of detective output and hence documenta-

tion of best practices has been gathered on the process management side. 

On a wider scope, Psarommatis et al [12] presented a literature review on zero defect 

manufacturing summarizing the state-of-the-art, highlighting shortcomings and further 
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directions in research regarding ZDM in which they concluded that cost-benefit com-

parative analysis is not evident when it came to implementing it, especially for the early 

technological expenditure. The paper also stated that certain industries are under-re-

searched in the literature, among which we find the metal industry and complex 3D 

parts since collecting defect data and training algorithms on well-defined NCs can be 

challenging. 

Similarly, Galetto et al [3] show the difficulty of predicting defects and costs for 

quality inspection in low-volume productions due to multi-level uncertainty and devel-

oped an approach targeting the inspection level to accurately analyze and compare dif-

ferent inspection strategies. 

Compared to the cited papers, our work suggests an approach in which we aim to 

address the choice of a sensor network for ZDM by starting from shopfloor NCs, paving 

the way for a cost-effective and reliable early industry 4.0 uplift regarding the IoT-

based monitoring choice. 

3 Proposed Framework 

 

Fig. 2. The approach’s general framework 

3.1 Overview 

An overview of our approach can be seen in (Fig.2) as a framework in which the input 

will be all the data related to defects. From in-process product control by machine op-

erators on the shopfloor to process monitoring by the quality inspector through final 

control checks reports with laser precision machines. The expected output will be an 

accurately designed sensor network to help optimize machine behavior, ultimately lead-

ing to iterative reduction of defects towards a zero-defect manufacturing policy. This 

overview can be decomposed into several building blocks as follows: 

3.2 Non-compliances 

A non-compliance [5] is the absence or the inability to meet a planned requirement. It 

encompasses all the breaches in specifications for a manufactured product. Require-

ments which can be fixed either by the client or by internal standards such as customer 
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requirements, quality requirements, quality management requirements, Regulatory re-

quirements ... 

NCs can be classified by tiers from minor to critical depending on many criteria such 

as occurrence or impact. Each NC is reported with many other attributes such as the 

problem, the detection time, the impacted product, details on why/how it happened, in 

which machine, the cost, and the decision (salvaged/scrapped …), and so on. 

In industry, and especially for manufacturing actors which are bound by demanding 

and challenging norms such as ISO-9001 and EN-9001 (aerospace and armament sec-

tors), these non-compliances or nonconformities are to be closely monitored from the 

beginning of the process (client's request for quotation) until the products end of man-

ufacturing life (EOML). 

3.3 Defects Analysis 

As stated by ISO-9001 [5], a defect is a type of NC where a product (for the manufac-

turing scope) will fail to meet intended use requirements. This specific type of noncon-

formity needs to be filtered out from the different quality data sources (ERP, quality 

reports, quality reviews). This will on one hand ensure that the SN will be able to 

"sense" the defect through physical measurements and on another hand will be the input 

specifying the type and specifications of these measurements, which will be the step-

ping stone for the sensor network choice. 

The defect analysis can be tricky to perform and even trickier to link to specific 

processes or operations in an MTO industrial environment. Notably, the high variety 

tag implies that there are multiple types of products, specifications, clients, and so on. 

Each workpiece can be conceptually considered to be virtually a new one, which will 

introduce several complexity layers in the root-cause analysis. 

Another difficulty comes from the low-volume aspect which gives little to no his-

torical data to extract knowledge from in order to build the defect classification. 

3.4 Sensor Choice 

For the main manufacturing-related data sources that can be monitored in-process, we 

find the following when thinking of suitable industrial monitoring for SMEs: 

─ Temperature: can be used to detect surface condition issues, tool-wear, tool chatter, 

and also inappropriate machining parameters such as speed or advance for cutting 

(milling, drilling, turning ...). Thermocouples are inserted into cutting material 

through holes or welding and are unsuited for out-of-lab research since tools are 

changed hundreds of times a day in the industry, making the monitoring unpractical 

and costly as well as dangerous for the tool integrity (compliance with ISO/client 

norms). Contact-less pyrometers with suitable metal wavelengths compatibility and 

measuring range (150 to 1000°C) should be privileged, as close as possible to the 

cutting field. 

─ Force: it can be used to detect excessive clamping, plastic deformations, collisions, 

spindle head condition, coaxial misalignment, and tool wear. Laboratory 
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dynamometric table dimensions aren't suited for industrial purposes due to dimen-

sion and measuring range, and customized spindle-head force/torque acquirers are 

costly and raise the same issue of interchangeability and tool integrity as the one 

raised by embedded thermocouples. If necessary, can be indirectly measured through 

spindle electric current. 

─ Acoustic emissions: can detect surface condition issues, tool chatter, and elastic 

stress. The sensor placement can however be tricky since it needs to be close to the 

machining field while also keeping a distance in order to not be flooded by ambient 

noise and the clogged environment. They can add another layer of redundancy and 

variability with the vibration sensors since they both convey energy-related data 

from the material (tool and/or workpiece). 

─ Vibration: industrial metal-removal machining involves operations (milling, drill-

ing, turning ...) where a lot of rotation movements are entangled, from the engine to 

the bearings to the spindle until the cutting tool, vibration is one of the most im-

portant data sources for process and machine monitoring and can detect surface con-

dition issues, poor clamping, bearings condition, imbalances, and tool chatter. Since 

the physical phenomenon is related to the rotation oscillations, the sensor needs to 

be positioned as close as possible to the operation field to capture a high ratio of 

signal to noise. 

For vibration, one of the main choice criteria is the measuring range. The sensor's 

frequency needs to be adapted to the transformation operation speed. At the very least, 

to be able to capture the fundamental frequency of the operation the sensor has to have 

a maximum frequency range of: 

𝑓𝑠𝑒𝑛𝑠𝑜𝑟 =
𝑅𝑠𝑝𝑖𝑛𝑑𝑙𝑒 ∗ 𝑛𝑡𝑒𝑒𝑡ℎ

60
 

With 𝑓𝑠𝑒𝑛𝑠𝑜𝑟 being the maximum frequency the sensor can acquire in Hz, 𝑅𝑠𝑝𝑖𝑛𝑑𝑙𝑒  

the maximum spindle rotation speed in rpm, and 𝑛𝑡𝑒𝑒𝑡ℎ being the maximum number of 

teeth of the machining used tools (1 for drills, generally 3-4 for mills but can go as far 

as 12 or more). 

In general, one preferably needs to have at least 3 or 4 times the maximum calculated 

frequency in order to be able to also capture the frequency spectrum harmonics which 

also conveys crucial information about vibratory energy. 

4 Implementation 

4.1 Overview 

The proposed approach in this paper was implemented in Tardy SAS, a subtractive 

metallurgy industry SME that offers a wide range of services from conceiving to real-

izing metal workpieces and special purpose machines. As an MTO rank 1 substractor 

for different critical sectors such as armament and aerospace, Tardy is faced with grow-

ing demand over technically challenging low-volume/high-variety requests. As such, 
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implementing an approach toward zero-defect strategies is of the utmost importance to 

keep client satisfaction and company reputation in an increasingly competitive market. 

In order to do so Tardy needs an efficient uplift towards this I4.0 concept to enhance 

the reactivity, security, and control over the highly variable production processes while 

keeping in mind the inherent conditions and resources (old legacy machine, technolog-

ical investments limitations ...). 

4.2 Defect Classification 

A thorough analysis was conducted to come up with a classification of the main man-

ufacturing deviation causes, both on a quantitative level with QC data, NCs reports, 

business process bottlenecks, cost prices, and customers feedback as on a qualitative 

level with field surveys of different process stakeholders. As a result, we achieved the 

following classification: 

─ Tool issues: Accounted for roughly 49% of the critical deviations. Using the right 

tool for the right operation can be very challenging for make-to-order production in 

which every workpiece is unique in terms of specifications, machining parameters 

used materials, and so on. This results in a lack of visibility and control of tools 

functioning and lifetime management, leading to cutting tool issues such as wear, 

breakage, heating, and deviation. 

─ Material deformation: Accounted for 27% of the critical deviations. Since The trans-

formation process involves material removal from raw parts, depending on the draw-

ings, production process, and operations sequence, the raw will need to be locked 

down at different angles/positions/intensity. 

If the clamping is too tight a raw deformation can occur during the cutting with risks 

of tool breakage or making the produced piece outside of tolerance limits, which can 

be very precise (up to 2×10-5m). If the clamping is not tight enough slight movements 

or vibrations throughout the removal process can occur, leading to bad surface quality 

such as roughness or altered material coating and deviation in the tool path. 

The make-to-order nature results in a lack of control over the clamping dispositions, 

which not only can cause tool issues but is also related to machine safety in terms of 

spindle, clamping table, and claws. 

4.3 Target Data Sources 

From the critical deviations classification stated above as well, it was decided to deploy 

a sensor network that will be able to monitor vibration in order to tend to the deviations. 

The SN must also be able to differentiate between different sets of machine-cutting 

parameters, i.e. {tool feed rate, cutting depth, rotation speed} in addition to differenti-

ating between other parameters such as tool type (shape, material, geometry), angle, 

and so on. While there are general guidelines for those parameters such as tool feed rate 

cutting advance and rotation speed depending on the material couple workpiece/tool 

suggested by raw/tool suppliers, precisely and accurately defining them remains a 
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difficult task in an MTO paradigm considering the variety and complexity of the pro-

cesses. It is often decided by rule of thumb and left for the machine operator to custom-

ize on the go depending on how the machining unfolds. 

This lack of fine-tuning leads to many issues by reducing cutting efficiency, the 

quality of the final product (finish, roughness ...) and its compliance with requirements, 

the safety of the machine (especially the spindle head), the consumption rate of new 

cutting tools and so on. Optimizing it can lead to greater customer satisfaction, machine 

up-time, and fabrication costs. 

5 Experimentation 

5.1 Overview 

From the implementation of the approach that was devised above and the deviations 

classification that collaboratively resulted from it, an initial SN was deployed and real-

world experimental steps were devised to validate it. 

5.2 Setup 

                          

Fig. 3. CNC machine                    Fig. 4. ICP 603C01                    Fig. 5. KRYPTON DAQ 

The used machine was a 3-axis portal-type universal machining CINCINNATI Dart 

500 (Fig.3), with a maximum rotation speed of 6000rpm. 

The global setup of the SN was comprised of 2 piezoelectric ICP 603C01 industrial 

stainless-steel accelerometers (Fig.4) with a measurement range of 0-10000 Hz, a sen-

sitivity of 100 mV/g, a temperature working range of -54 to +124 °C and an IP protec-

tion index: IP68. The sensors were linked through 2×3m Heavily reinforced waterproof 

data cables to an industrial data acquisition module (DAQ). 

The data source, i.e., vibration, was chosen for its compatibility with the monitoring 

of material deformation and tool issues. The sensors were chosen for their cost-effec-

tiveness and characteristics (measuring range, sensitivity, working temperature, and 

waterproofing).  

The DAQ is an industrial Dewesoft KRYPTON with a certified robustness an IP68 

index, and a maximum sampling rate of 250 kHz. 

In terms of placement, the first sensor was fixed as close to the spindle head as pos-

sible (left in Fig.6) while the second was placed on the table clamping claw (right in 

Fig.6). Both positions were secured using a magnetic mounting base and accurately 
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placed to not hinder machining operations while also having minimal distance from the 

cutting operation area. 

 

Fig. 6. Sensors placement 

5.3 Experiment Protocol 

An experimental protocol was devised to validate the sensor characteristics as well as 

their exploitability. The protocol consisted of different variations of milling and drill-

ing. The varying parameters were feed rate, rotation speed, usage of lubricant or not, 

and used material. 

Milling. The milling operations used two mills. A 16mm 2-teeth carbide inserts mill 

(nominal feed of 800mm/min and a nominal rotation of 3200rpm). A second 63mm 3-

teeth carbide inserts mill (nominal feed of 390mm/min and a nominal rotation speed of 

1200rpm). 

The chosen variations were combinations of feed rate (140%, 120%, 100%, 75%, 

50%), rotation (120%, 100%, 75%, 50%), lubricant (with/without), and material (mild 

steel/aluminum). 

The milling was done on 120×90×41mm (X-Y-Z axis) cuboids in two sequences for 

each raw. The first sequence using the first mill milled 2 grooves in X-axis in respec-

tively 18 and 9 runs of 0.5 and 1mm depth each until -9mm, then 3 grooves in Y-axis 

in respectively 18-9-6 runs each with 0.5-1-1.5mm depth until -9mm. The second se-

quence used the second mill for a first surfacing until -4.5mm depth in two runs and a 

second until -9mm in two runs also. 

Drilling. The drilling was made in two sequences using two drills. An 8mm steel point 

drill with a nominal feed rate of 150mm/min and a nominal rotation speed of 1000rpm. 

A second 8mm steel drill with a nominal feed rate of 150mm/min and a nominal rota-

tion speed of 1250rpm with the same variations in parameters. 

The drilling was made on the milled raws in two sequences. A first sequence of 6×4 

holes of -1.5mm each for guiding. Then a second sequence of 6×4 holes, each drilled 
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in 10 runs with a logarithmically decreasing depth until reaching the maximum depth 

of -15mm. 

5.4 Data Pipeline 

 

Fig. 7. Data pipeline 

As per Fig.7, the DAQ powers the accelerometers. It receives analog signals, and 

calibers and converts them (2 kHz sample rate) to a numerical signal. The signal can be 

visualized on Dewesoft X and stored in compressed files in near real-time. After con-

version into regular data files (text, CSV, HDF5, JSON, S3 ...), parsing will extract 

suitable data/metadata which is then sent to Elasticsearch (ES) for batch ingestion. Each 

data point is stored as a JSON document (Fig.8) in a 3 nodes distributed (1 master, 2 

slaves) ES cluster for a total load of 30 Gb storage representing around 220 million ES 

documents. 
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Fig. 8.    JSON data-scheme 

5.5 Exploitation 

 

Fig. 9. Table/spindle milling time series 

An analysis of the time series data indicates that the end-to-end proposed solution 

offers the ability to sense and monitor the machining operations in terms of precision 

(up to 10-6 g) and variability of data. The SN meets the different requirements in terms 

of targeted phenomenon by being able to finely represent the different machining se-

quences (Fig.9). It also accurately captures the variation in machine parameters 

(Fig.10), tool wear impact as well as tool breakage (Fig.11). 
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Fig. 10. Milling variations time series 

The designed SN also offers good scalability perspectives since more sensors can be 

added to the DAQ (vertical) and DAQs can be synced to monitor several machines 

(horizontal). The data pipeline can also be turned from a batch-oriented strategy to a 

stream-oriented one for near real-time monitoring and reactivity. 

 

Fig. 11. Second mill (left) insert breakage 

6 Conclusion 

Zero defect manufacturing as an I4.0 concept that aims to provide a holistic approach 

to reduce deviations presents a lot of challenges to adopting for industrial actors, all the 

more so for MTO SMEs with high-volume/low-variety aspects and limited resources. 

As such, our paper offers an approach to tackle this issue through the angle of sensor 

network design, an essential building block for the IIoT and CPPS systems aiming to 

be a stepping stone towards ZDM. The methodology presents a design of the SN 

through all business-related process collaboration to ensure the suitability and exploit-

ability of the acquired data. The different steps of the approach were validated in a real-

world case study from both architectural and data angles. For future work, we aim to 
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increase the scope of machines and sensor types to tackle more NC as well as integrate 

this work into a more holistic approach by including an AI-centered decision support 

system for ZDM. 
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