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Abstract

Recently, several studies have proven the global convergence and generalization abilities of
the gradient descent method for two-layer ReLU networks. Most studies especially focused on
the regression problems with the squared loss function, except for a few, and the importance
of the positivity of the neural tangent kernel has been pointed out. On the other hand, the
performance of gradient descent on classification problems using the logistic loss function has not
been well studied, and further investigation of this problem structure is possible. In this work, we
demonstrate that the separability assumption using a neural tangent model is more reasonable than
the positivity condition of the neural tangent kernel and provide a refined convergence analysis
of the gradient descent for two-layer networks with smooth activations. A remarkable point of
our result is that our convergence and generalization bounds have much better dependence on the
network width in comparison to related studies. Consequently, our theory provides a generalization
guarantee for less over-parameterized two-layer networks, while most studies require much higher
over-parameterization.

1 Introduction

In recent years, many studies have been devoted to explaining the great success of over-parameterized
neural networks, where the number of parameters is much larger than that needed to fit a given training
dataset. On the other hand, this study treats less over-parameterized two-layer neural networks using
smooth activation functions and analyzes the convergence and generalization abilities of the gradient
descent method for optimizing this type of network.

For over-parameterized two-layer neural networks, Du et al. (2019); Arora et al. (2019); Chizat &
Bach (2018a); Mei et al. (2018) showed the global convergence of the gradient descent. These studies
are mainly divided into two groups depending on the scaling factor of the output of the networks to
which the global convergence property has been demonstrated using different types of proofs. For
the scaling factor 1/m, (m: the number of hidden units), Chizat & Bach (2018a); Mei et al. (2018)
showed the convergence to the global minimum over probability measures when m → ∞ by utilizing
the Wasserstein gradient flow perspective (Nitanda & Suzuki, 2017) on the gradient descent. For the
scaling factor 1/mβ (β < 1), Du et al. (2019) essentially demonstrated that the kernel smoothing
of functional gradients by the neural tangent kernel (Jacot et al., 2018; Chizat & Bach, 2018b) has
comparable performance with the functional gradient as m → ∞ by making a positivity assumption
on the Gram-matrix of this kernel, resulting in the global convergence property. In addition, Arora
et al. (2019) provided a generalization bound via a fine-grained analysis of the gradient descent. These
studies provide the first steps to understand the role of over-parameterization of neural networks and
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the gradient descent on regression problems using the squared loss function. For the classification
problems with logistic loss, a few studies (Allen-Zhu et al., 2018a; Cao & Gu, 2019a,b) investigated
the convergence and generalization abilities of gradient descent under a separability assumption with a
suitable model instead of the positivity of the neural tangent kernel. In this study, we further develop
this line of research on binary classification problems.

Our contributions. We provide fine-grained global convergence and generalization analyses of the
gradient descent for two-layer neural networks with smooth activations under a separability assumption
with a sufficient margin using a neural tangent model, which is a non-linear model with feature extrac-
tion through a neural tangent. We demonstrate that a separability assumption is more suitable than
the positivity condition of the neural tangent kernel because (i) the positive neural tangent kernel leads
to weak separability and conversely, (ii) separability leads to the positivity of the neural tangent kernel
only on a cone spanned by labels, which is very small space compared to the whole space. Therefore,
the separability condition is rather weak in this sense but it is enough to ensure global convergence
for the classification problems. Thus, a significantly improved convergence and generalization analyses
with respect to network width can be obtained because the positivity of the neural tangent kernel is
not required. Consequently, our theory provides a generalization guarantee for less over-parameterized
two-layer networks trained by gradient descent, while most existing results relying on the positive neu-
ral tangent kernel essentially require high over-parameterization. To the best of our knowledge, this is
the first work that shows the global convergence and the generalization guarantees for neural networks
without over-parameterization on classification problems with logistic loss in the literature. 1 Most
studies (Allen-Zhu et al., 2018a; Cao & Gu, 2019a,b) have focused on highly over-parameterized neural
networks with ReLU activation, and less over-parameterized settings have been considered difficult for
showing the global convergence property of gradient descent. However, we note that these studies
provided global convergence and generalization analyses of the (stochastic) gradient descent for (deep)
ReLU networks by making a similar but different assumption than ours. Thus, our and these studies
do not include each other because of the difference of the network structure (i.e., network depth and
activation type) and assumptions.

We here describe the main result informally. A neural tangent model is an infinite-dimensional non-
linear model using transformed features (∂θσ(θ

(0)⊤x))θ(0)∼µ0
, where σ is a smooth activation and µ0 is

a distribution used to initialize the parameters of the input layer in two-layer neural networks. Theorem
1 states that gradient descent can find an ǫ-accurate solution in terms of the expected classification
error for a wide class of over-parameterized two-layer neural networks under a separability assumption
using a neural tangent model.

Theorem 1 (Informal). Suppose that a given data distribution is separable by a neural tangent model
with a sufficient margin under L∞-constraint. If for any ǫ > 0, the hyperparameters satisfy one of the
following

(i) β ∈ [0, 1), m = Ω(ǫ
−1
1−β ), T = Θ(ǫ−2), η = Θ(m2β−1), n = Ω̃(ǫ−4),

(ii) β = 0, m = Θ̃(ǫ−3/2), T = Θ̃(ǫ−1), η = Θ(m−1), n = Ω̃(ǫ−2).

then with high probability over the random initialization and choice of samples of size n, the gradient
descent with a learning rate η achieves an expected ǫ-classification error within T -iterations.

Related work. A few recent studies (Allen-Zhu et al., 2018a; Cao & Gu, 2019a,b) are closely related
to our work because they also treated the logistic loss function. As stated above, problem settings in our
and these studies are somewhat different, but we compare our result with those specialized to two-layer

1Following the initial version of our manuscript, Ji & Telgarsky (2020); Chen et al. (2019) have provided the global
convergence and generalization guarantee for ReLU networks with polylogarithmic width based on our separability
assumption.
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Table 1: Summary of hyperparameter settings and assumptions to achieve an expected ǫ-classification
error by gradient descent for binary classifications. The “Separability” column denotes the types of
models where a separability assumption is made. m is the number of hidden units, n is the size of
the training data, and T is the number of iterations of gradient descent. The notations Ω̃ and Θ̃ hide
the logarithmic terms in the big-Ω and -Θ notations. Smooth activations include sigmoid, tanh, swish
activations, and several smooth approximations of ReLU. As for Allen-Zhu et al. (2018a); Cao & Gu
(2019a,b); Chen et al. (2019), we pick up results specialized to two-layer networks.

Activation Separability Deep m n T

Allen-Zhu et al. (2018a) ReLU Smooth Target yes Ω̃(ǫ−10) Ω(ǫ−4) Θ̃(ǫ−2)

Cao & Gu (2019a) ReLU ReLU NN yes Ω̃(ǫ−14) Ω̃(ǫ−4) Θ̃(ǫ−2)

Cao & Gu (2019b) ReLU ReLU NN yes Ω̃(ǫ−14) Ω̃(ǫ−2) Θ̃(ǫ−2)

Ji & Telgarsky (2020) ReLU Neural Tangent no Ω(polylog(n, ǫ)) Ω̃(ǫ−2) Θ(ǫ−1)

Chen et al. (2019) ReLU Neural Tangent yes Ω(polylog(n, ǫ)) Ω̃(ǫ−2) Θ(ǫ−1)

This work Smooth Neural Tangent no
Ω(ǫ−1) Ω̃(ǫ−4) Θ(ǫ−2)

Θ̃(ǫ−3/2) Ω̃(ǫ−2) Θ̃(ǫ−1)

network to argue the reasonableness of the separability assumption by a neural tangent model. More
recently, following the initial version of our manuscript, Ji & Telgarsky (2020); Chen et al. (2019) have
shown that polylogarithmic network width suffices for ReLU networks to achieve an arbitrary small
classification errors based on our separability assumption. On the other hand, separability assumptions
were made on an infinite-width two-layer ReLU network in Cao & Gu (2019a,b) and on a smooth target
function in Allen-Zhu et al. (2018a). For generalization analyses, our study and Ji & Telgarsky (2020);
Chen et al. (2019) exhibit much better dependency on the network width owing to a better problem
setting with a fine-grained analysis. Table 1 provides a comparison of the hyperparameter settings of
networks and gradient descent in related studies to achieve an expected ǫ-classification error. As evident
in Table 1, our theory and Ji & Telgarsky (2020); Chen et al. (2019) ensure the same generalization
ability as those of Allen-Zhu et al. (2018a); Cao & Gu (2019a,b) for a more comprehensive class of
two-layer networks with respect to the network width.

Other related work. Brutzkus et al. (2018); Li & Liang (2018) provided generalization analyses of
the stochastic gradient descent for two-layer networks. Brutzkus et al. (2018) assumed that datasets
are linear separable and this restrictive assumption was relaxed to mixtures of well separated data
distributions in Li & Liang (2018). As for the convergence rate analysis, the network widthm = Ω̃(ǫ−24)
and the number of samples (iterations) n = Θ(T ) = Õ(ǫ−12) are required to achieve an expected ǫ-
classification error in Li & Liang (2018). In Allen-Zhu et al. (2018b); Zou et al. (2018), the global
convergence analyses in terms of optimization without the specification of network size were provided,
but we note that better generalization bounds cannot be obtained from these results because the
complexities of neural networks also cannot be specified.

Apart from the abovementioned studies, there are many other studies (Brutzkus & Globerson, 2017;
Zhong et al., 2017; Tian, 2017; Soltanolkotabi, 2017; Du et al., 2019; Zhang et al., 2018; Arora et al.,
2019; Oymak & Soltanolkotabi, 2019; Zhang et al., 2019; Wu et al., 2019) that focus on regression
problems. Based on the positivity condition of the neural tangent kernel, Du et al. (2019); Arora
et al. (2019); Zhang et al. (2019); Wu et al. (2019) showed the global convergence of gradient descent
methods for neural networks with the required network widths Ω(n6) (Du et al., 2019; Wu et al.,
2019), Ω(n7ǫ−2) (Arora et al., 2019), and Ω(n4) (Zhang et al., 2019). Because sample complexities are
generally slower than or equal to n = Ω(ǫ−2), these network widths are very large compared to results
for classification problems. As stated above, the reason of such improvement on the network width for
classification problems is that the property of logistic loss can lead to a more reasonable assumption
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(i.e., separability assumption by a neural tangent model) than the positivity assumption of the neural
tangent kernel. Moreover, we would like to emphasize that proof techniques are quite different for
the squared loss and the logistic loss functions because the latter function lacks the strong convexity.
Thus, we cannot utilize the linear convergence property for the logistic loss and parameters will diverge,
which also causes the difficulty of showing better generalization ability without a fine-grained analysis.

2 Preliminary

Here, we describe the problem setting for the binary logistic regression and discuss the functional
gradients to provide a clear theoretical view of the gradient methods for two-layer neural networks.

2.1 Problem Setting

Let X = R
d and Y be a feature space and the set of binary labels {−1, 1}, respectively. We denote

by ν a true probability measure on X × Y and by νn an empirical probability measure, deduced from
observations (xi, yi)

n
i=1 independently drawn from ν, i.e., dνn(X,Y ) =

∑n
i=1 δ(xi,yi)(X,Y )dXdY/n,

where δ is the Dirac delta function. The marginal distributions of ν and νn on X are denoted by νX

and νXn , respectively. For ζ ∈ R and y ∈ Y, let l(ζ, y) be the logistic loss: log(1 + exp(−yζ)). Then,
the objective function to be minimized is formalized as follows:

L(Θ)
def
= E(X,Y )∼νn [l(fΘ(X), Y )] =

1

n

n
∑

i=1

l(fΘ(xi), yi),

where fΘ : X → R is a two-layer neural network equipped with parameters Θ = (θr)
m
r=1. When we

consider a function fΘ as a variable of the objective function, we denote L(fΘ) def
= L(Θ).

The two-layer neural network treated in this study is formalized as follows. For parameters Θ =
(θr)

m
r=1 (θr ∈ R

d) and fixed constants (ar)
m
r=1 ∈ {−1, 1}m:

fΘ(x) =
1

mβ

m
∑

r=1

arσ(θ
⊤
r x), (1)

where m is the number of hidden units, β is an order of the scaling factor, and σ : R → R is a
smooth activation function such as sigmoid, tanh, swish (Ramachandran et al.)), and other smooth
approximations of ReLU. In the training procedure, the parameters Θ = (θr)

m
r=1 of the input layer

are optimized. This setting is the same as those in Du et al. (2019); Arora et al. (2019); Zhang et al.
(2019); Wu et al. (2019), except for the types of activation functions, scaling factor, and loss function.

2.2 Functional Gradient

We denote by L2(ν
X
n ) the function space from X to R, equipped with the inner product 〈·, ·〉L2(νX

n ):

〈φ, ψ〉L2(νX
n )

def
= EX∼νX

n
[φ(X)ψ(X)] , ∀φ, ∀ψ ∈ L2(ν

X
n ).

Following the tradition in the literature of boosting and kernel methods, we call L2(ν
X
n ) the function

space, although this space is actually an n-dimensional space because the cardinality of the support of
νXn is n. The key notion to explain the behavior of the gradient descent is the functional gradient in
this function space L2(ν

X
n ). We define the functional gradient at a predictor f : X → R as,

∇fL(f)(x) def
=

{

∂ζ l(ζ, yi)|ζ=f(xi)
(x = xi),

0 (otherwise).
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This is simply a Fréchet differential (functional gradient) in L2(ν
X
n ). That is, it follows that

L(f + φ) = L(f) + 〈∇fL(f), φ〉L2(νX
n ) + o(‖φ‖L2(νX

n )), ∀f, ∀φ ∈ L2(ν
X
n ).

Therefore, the functional gradient descent using ∇fL(f) directly optimizes L in a function space
L2(ν

X
n ) and converges to a global minimum because the objective function L is convex with respect

to a function f . However, because ∇fL(f) contains no information regarding the unseen data, this
method is meaningless in terms of generalization. Thus, some smoothing techniques are required
to guarantee the generalization. The gradient descent method for two-layer neural networks can be
recognized as a type of kernel-smoothed functional gradient using the neural tangent kernel (Jacot
et al., 2018), and this perspective is significantly useful in showing the global convergence because it
characterizes the behavior of the vanilla gradient descent in a function space.

3 Brief Review of Functional Gradient Methods

Functional gradient methods have been mainly studied for gradient boosting (Mason et al., 1999;
Friedman, 2001) and kernel methods (Kivinen et al., 2004; Smale & Yao, 2006; Ying & Zhou, 2006;
Raskutti et al., 2014; Wei et al., 2017) in the machine learning community, but more recently, it has
been found to be useful in explaining the behavior of gradient descent for neural networks (Jacot et al.,
2018; Chizat & Bach, 2018b; Du et al., 2019; Allen-Zhu et al., 2018b; Arora et al., 2019). Our analysis
is also heavily based on the functional gradient perspective of gradient descent. Thus, we briefly review
the functional gradient methods.

In gradient boosting, ∇fL(f) is approximated by finding a similar function in weak learners G:

φf ∈ argmax
φ∈G

〈∇fL(f), φ〉L2(νX
n ) (2)

and the gradient method in a function space is performed using a descent direction −φf . This approx-
imation is a type of smoothing of functional gradients. In kernel methods, this smoothing procedure
is realized by using the kernel smoothing technique:

Tk∇fL(f) def
= EνX

n
[∇fL(f)(X)k(X, ·)] = 1

n

n
∑

i=1

∇fL(f)(xi)k(xi, ·), (3)

where k is a kernel function. It should be noted that this kernel smoothing (3) is a special case of
gradient boosting (2) because of the following equation:

Tk∇fL(f)
‖Tk∇fL(f)‖Hk

∈ argmax
‖φ‖Hk

≤1

〈∇fL(f), φ〉L2(νX
n ) ,

where (Hk, 〈, 〉Hk
) is the reproducing kernel Hilbert space associated with a kernel k. When this kernel

smoothing well approximates a functional gradient ∇fL(f) and satisfies

〈∇fL(f), Tk∇fL(f)〉L2(νX
n ) ≥ ∃µ‖∇fL(f)‖2L2(νX

n ), (4)

the kernel-smoothed functional gradient descent f+ ← f−ηTk∇fL(f) performs like the pure functional
gradient descent, leading to the global convergence property because it tends to a stationary point in
a function space, which is simply a global minimum.

Recently, several studies (Jacot et al., 2018; Chizat & Bach, 2018b; Du et al., 2019; Allen-Zhu et al.,
2018b; Arora et al., 2019) implicitly or explicitly pointed out that the gradient descent for neural
networks is essentially recognized as an approximation to the kernel-smoothed functional gradient
method using a neural tangent kernel (NTK) (Jacot et al., 2018):

kNTK(x, x′)
def
= Eθ(0)∼µ0

[∂θσ(θ
(0)⊤x)⊤∂θσ(θ

(0)⊤x′)], (5)
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where µ0 is a distribution to initialize the parameters of the input layer in this setting. In most proofs
using NTK, the global convergence property has been demonstrated by showing the condition (4) from

the positivity of the Gram-matrix H∞ def
= (kNTK(xi, xj))

n
i,j=1 and the similarity between the gradient

descent and the kernel-smoothed functional gradient with NTK when m → ∞. This is a reason why
very high over-parameterization is generally required in related studies.

In this study, we found that the positivity of the Gram-matrix of NTK is not required on binary
classification problems and a separability assumption, which is a weaker condition than the positivity,
is enough for global convergence. Consequently, we can give global convergence and generalization
guarantees to a gradient method for less over-parameterized two-layer neural networks.

4 Global Convergence Analysis of the Gradient Method

The following is an update rule of gradient descent with respect to the input parameters Θ = (θr)
m
r=1:

Θ(t+1) ← Θ(t) − η∇ΘL(Θ(t)), (6)

where ∇ΘL(Θ(t)) = (∂θrL(Θ(t)))mr=1 and η > 0 is a learning rate. We here make the assumption:

Assumption 1.

(A1) Assume that supp(νX) ⊂ {x ∈ X | ‖x‖2 ≤ 1}. Let σ be a C2-class function and there exist
K1,K2 > 0 s.t. ‖σ′‖∞ ≤ K1 and ‖σ′′‖∞ ≤ K2.

(A2) A distribution µ0 on R
d used for the initialization of θr has a sub-Gaussian tail bound: ∃A, ∃b > 0

such that Pθ(0)∼µ0
[‖θ(0)‖2 ≥ t] ≤ A exp(−bt2).

(A3) Assume that the number of hidden units m ∈ Z+ is an even number. Constant parameters

(ar)
m
r=1 and parameters Θ(0) = (θ

(0)
r )mr=1 are initialized symmetrically: ar = 1 for r ∈ {1, . . . , m2 },

ar = −1 for r ∈ {m2 + 1, . . . ,m}, and θ
(0)
r = θ

(0)
r+m

2
for r ∈ {1, . . . , m2 }, where the initial parameters

(θ
(0)
r )

m
2
r=1 are independently drawn from a distribution µ0.

(A4) Assume that there exist ρ > 0 and a measurable function v : Rd → {w ∈ R
d | ‖w‖2 ≤ 1} such

that the following inequality holds: for ∀(x, y) ∈ supp(ν) ⊂ X × Y,

y
〈

∂θσ(θ
(0)⊤x), v(θ(0))

〉

L2(µ0)
= yEθ(0)∼µ0

[∂θσ(θ
(0)⊤x)⊤v(θ(0))] ≥ ρ. (7)

Remark. Clearly, many activation functions (sigmoid, tanh, and smooth approximations of ReLU
such as swish) satisfy the assumption (A1). Typical distributions, including the Gaussian distribution,
satisfy (A2). The purpose of the symmetrized initialization (A3) is to bound the initial value of
the loss function L(Θ(0)) uniformly over the number of hidden units m. This initialization leads to
fΘ(0)(x) = 0, resulting in L(Θ(0)) = log(2). Assumption (A4) implies the separability of a dataset
using the neural tangent model. We next discuss the validity of this assumption.

4.1 Separability Assumption (A4) by the Neural Tangent

The explicit feature representation: x → ∂θσ(θ
(0)⊤x), of NTK (5) is called the neural tangent, which

is a non-linear feature extraction from X to an infinite-dimensional space. That is, assumption (A4)

ensures the separability of the transformed data (∂θσ(θ
(0)⊤
r x), y) through the neural tangent for (x, y) ∈

supp(ν) with a margin ρ in an infinite-dimensional space by the weight: v(θ(0))dµ0. We remark that
this assumption is somewhat weaker than the positivity assumption on the Gram-matrix of NTK
and is satisfied in many cases by the universal approximation ability of the neural tangent models.
In addition, we remark that the separability of the training dataset instead of supp(ν) is enough to
guarantee global convergence only for empirical risk minimization.
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Theoretical comparison of kernel assumptions. In previous studies (Du et al., 2019; Arora et al.,
2019; Zhang et al., 2019; Wu et al., 2019) the positivity of the Gram-matrix H∞ = (kNTK(xi, xj))

n
i,j=1

was required to ensure the condition (4). Here, we remark that the assumption (A4) is weaker than
this positivity condition in the following sense.

Proposition 1. (i) Assume H∞ � λ0In and ‖σ′‖∞ ≤ K1, then there exists a measurable map
v : Rd → {w ∈ R

d | ‖w‖2 ≤ 1} such that ∀i ∈ {1, . . . , n},

yi

〈

∂θσ(θ
(0)⊤xi), v(θ

(0))
〉

L2(µ0)
≥ λ0
nK1

.

(ii) Suppose assumption (A4) holds, then
∑n

i,j=1 ξiH
∞ξj ≥ ρ2‖ξ‖22, (∀ξ ∈ {(αiyi)

n
i=1 | αi ≥ 0}).

As seen in Proposition 1-(i), the positivity H∞ � λ0In leads to weak separability with a margin of
O(λ0/n) on the training dataset. Conversely, from Proposition 1-(ii), the separability with a margin of
ρ leads to the positivity ρ2 of H∞ only on a cone spanned by the labels: {(αiyi)

n
i=1 | αi ≥ 0}. Because

this cone is very restrictive, this limited positivity is much weaker than the positivity on the whole
space. However, we found that this limited positivity is sufficient to ensure the global convergence of
the gradient descent for binary classification problems with logistic loss. Indeed, from Proposition 3,
the positivity of H∞ is required only along the functional gradients: ∇fL(fΘ)(xi) = ∂ζ l(fΘ(xi), yi),
and these functional gradients are always contained in this limited space, unlike the squared loss
function. This is a reason why the positivity of NTK is not required for the binary classification
problem with logistic loss. Thus, a much better convergence and generalization ability can be shown
for logistic loss than the previous results that relied on the positivity of H∞ because the positivity of
NTK on the whole space is redundant and a separability condition provides a better positivity only on
a required small space. Concretely, from Proposition 1-(i), we can immediately check a deteriorated
convergence result depending on the positivity of H∞ by replacing ρ in Theorem 2 with O(λ0/n),
producing m = O(nλ−1

0 ǫ−1) when β = 0.
Remark. For regression problem, Allen-Zhu et al. (2018b,c); Zou et al. (2018); Oymak & Soltanolkotabi

(2019); Zou & Gu (2019) make a different separation where examples are away from each other:
‖xi − xj‖2 ≥ ρ.Zou & Gu (2019) shows that this assumption is essentially same as the positivity
of NTK. Thus, it also completely differs from (A4) as shown in Proposition 1

Universal approximation property of neural tangent models. We consider the case where
all feature vectors have a common bias term: x = (x0, . . . , xd−1, s) ∈ X (s > 0 is a sufficiently
small constant for a bias term). In this case, we can easily confirm that neural tangent models

include typical two-layer infinite-width neural networks with activation σ′: E[w(θ(0))σ′(θ(0)
⊤

x)] by
setting v(θ(0)) = (0, . . . , 0, w(θ(0))), where w is a real-valued function. Thus, Assumption (A.4) with a
certainly positive constant ρ is satisfied as long as a data distribution is separable by an infinite-width
two-layer network with mild weights w(θ). Moreover, we note that these networks have the universal
approximation property (Hornik, 1991; Sonoda & Murata, 2017), so that there are a lot of examples
such that the assumption (A4) is satisfied.

4.2 Main Results

We here define the L1-norm of the functional gradient, which measures the convergence.

‖∇fL(fΘ)‖L1(νX
n )

def
=

1

n

n
∑

i=1

|∂ζ l(fΘ(xi), yi)| =
1

2n

n
∑

i=1

|yi − 2pΘ(Y = 1 | xi) + 1|.

Here, ζ is the first variable of l and pΘ(Y = 1 | x) = 1
1+exp(−fΘ(x)) is a conditional probability on Y = 1,

defined by fΘ. Because ‖∇fL(fΘ)‖L1(νX
n ) is simply a gap between the labels and conditional label

probabilities of the model, this norm is a reasonable measure for the binary classification problems.
The following is the first main result to ensure global convergence.
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Theorem 2 (Global Convergence). Suppose Assumption 1 holds. Set K = K4
1 +2K2

1K2+K
4
1K

2
2 . For

∀β ∈ [0, 1), ∀δ ∈ (0, 1) and ∀m ∈ Z+ such that m ≥ 16K2
1

ρ2 log 2n
δ , consider gradient descent (6) with a

learning rate of 0 < η ≤ min
{

mβ, 4m
2β−1

K2
1+K2

}

and the number of iterations T ≤
⌊

mρ2

32ηK2
2 log(2)

⌋

. Then, it

follows that with probability at least 1− δ over the random initialization,

1

T

T−1
∑

t=0

‖∇fL(fΘ(t))‖2L1(νX
n ) ≤

16 log(2)

ρ2T

(

m2β−1

η
+K

)

. (8)

We here derive a corollary, which states that an arbitrary small empirical classification error can
be achievable by appropriately setting η,m, and T as follows. From Markov’s inequality,

P(X,Y )∼νn [Y fΘ(t)(X) ≤ 0] ≤ 2‖∇fL(fΘ)‖L1(νX
n ),

where we used the following relationship:

0.5 |yi − 2pΘ(Y = 1|xi) + 1| ≥ (1 + exp(γ))−1 ⇐⇒ yifΘ(xi) ≤ γ.

Thus, a convergence rate of ‖∇fL(fΘ(t))‖2L1(νX
n ) leads to a rate of empirical classification error.

Corollary 1. Suppose the same assumptions as in Theorem 2 hold. If for ∀ǫ, δ > 0, the hyperparam-
eters satisfy

β ∈ [0, 1), m = Ω(ρ
−1
1−β ǫ

−1
1−β ), T = Ω(ρ−2ǫ−2), η = Θ(m2β−1),

then with probability at least 1− δ, gradient descent (6) with a learning rate of η finds a parameter Θ(t)

satisfying P(X,Y )∼νn [Y fΘ(t)(X) ≤ 0] ≤ ǫ within T -iterations.

The Landau notations are applied with respect to ǫ, ρ → 0. Utilizing this theorem, we can show
the convergence of the loss function which leads to a better result at the price of slight increase of m.

Theorem 3. Suppose the same assumptions in Theorem 2 hold. Then there exists a uniform constant
C > 0 such that for 0 < ∀α ≤ ρ

4K2
, with probability at least 1− δ,

1

T

T−1
∑

t=0

L(Θ(t)) ≤ C
(

1

T
+
α2m

ηT
+ exp

(

−αρm
1−β

4

)

+
α2

ρ

√

m

ηT
+

1

ρ

√

ηT

m

)

.

Corollary 2. Suppose the same assumptions as in Theorem 3 hold. Then there exists a uniform
constant C > 0 and the following statement holds. If for any ǫ > 0, the hyperparameters satisfy

β = 0, m = Θ(ρ−2ǫ−3/2 log(1/ǫ)), T∗ = Θ(ρ−2ǫ−1 log2(1/ǫ)), η = Θ(m−1),

then with probability 1− δ, 1
T

∑T−1
t=0 L(Θ(t)) ≤ C

(

ǫ+ 1
ρ2T log2

(

1
ǫ

)

)

for 0 < ∀T ≤ T∗.

This corollary is obtained immediately from Theorem 3 by setting α = Θ(ρǫ3/2). The convergence
of classification error also derived from the corollary because L(fθ) ≥ ‖∇fL(fΘ(t))‖L1(νX

n ) and it also

derives a sharper bound on the distance ‖Θ(T ) −Θ(0)‖2.
Proposition 2. Suppose the same assumption and consider the same hyperparameter setting as in
Corollary 2. Then, there exists a uniform constant C such that with probability 1− δ,

‖Θ(T ) −Θ(0)‖2 ≤ Cǫ3/4 log2(ρ−2ǫ−1).

Moreover, by combining Theorem 2 and Corollary 2 with the well-known margin bound (Koltchin-
skii & Panchenko, 2002; Mohri et al., 2012; Shalev-Shwartz & Ben-David, 2014) on the expected classi-
fication error and by specifying the Rademacher complexity of the function class attained by gradient
descent, we can obtain the second main result for the generalization ability of gradient descent.
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Theorem 4 (Generalization Bound). Suppose Assumption 1 holds. Set K = K4
1 + 2K2

1K2 +K4
1K

2
2 .

Fix ∀γ > 0. Consider the gradient descent (6) with a general hyperparameter setting in Theorem 2 or
a specific setting in Corollary 2, with δ ∈ (0, 1). For these cases, we set parameters Cη,m,T and Dη,m,T

as follows:

(Former case) Cη,m,T = ρ−1T−1/2
(

mβ− 1
2 η−1/2 +

√
K
)

, Dη,m,T =
√

ηT

(Latter case) Cη,m,T = ǫ+ ρ−2T−1 log2 (1/ǫ) , Dη,m,T = ǫ3/4 log2(ρ−2ǫ−1).

Then, there exists a uniform constant C > 0 and it follows that with probability at least 1− 3δ over a
random initialization and random choice of dataset S,

min
t∈{0,...,T−1}

P(X,Y )∼ν [Y fΘ(t)(X) ≤ 0] ≤ C(1 + exp(γ))Cη,m,T + 3

√

log(2/δ)

2n

+ Cγ−1m
1
2−βDη,m,T (1 +K1 +K2)

√

d

n
log
(

n(1 +K1 +K2)(log(m/δ) +D2
η,m,T )

)

. (9)

Moreover, when σ is convex and σ(0) = 0, we can avoid the dependence with respect to the dimension
d. With probability at least 1− 3δ over a random initialization and random choice of dataset S

min
t∈{0,...,T−1}

P(X,Y )∼ν [Y fΘ(t)(X) ≤ 0] ≤ C(1 + exp(γ))Cη,m,T + 3

√

log(2/δ)

2n

+
CK1m

1
2−β

γ
√
n

(

Dη,m,T +

√

log(Am/δ)

b

)

. (10)

This theorem provides an upper-bound on an expected classification error with high probability
for a network obtained by gradient descent within T -iterations. There is a trade-off between the
optimization and complexity terms in (9), (10) with respect to η,m, and T . However, there are several
choices of these hyperparameters to achieve a desired precision ǫ of the expected classification error.

Corollary 3. Suppose the same assumptions as in Theorem 4 hold. If for any ǫ > 0, the hyperparam-
eters satisfy one of the following

(i) β ∈ [0, 1), m = Ω(ρ
−2
1−β ǫ

−1
1−β ), T = Ω(ρ−2ǫ−2), η = Θ(ρ−2ǫ−2T−1m2β−1), n = Ω̃(ρ−2ǫ−4),

(ii) β = 0, m = Θ(ρ−2ǫ−3/2 log(1/ǫ)), T = Θ(ρ−2ǫ−1 log2(1/ǫ)), η = Θ(m−1), n = Ω̃(ǫ−2),

then with probability at least 1− δ, the gradient descent (6) with a learning rate of η finds a parameter
Θ(t) satisfying P(X,Y )∼ν [Y fΘ(t)(X) ≤ 0] ≤ ǫ within T -iterations.

This corollary can be immediately proven by substituting the concrete values of β,m, T, η, and
n into the right hand side of inequalities (9), (10) and by checking that this hyperparameter setting
satisfies the conditions required in Theorem 4.

From Corollary 3, for an arbitrary small ǫ > 0, an expected ǫ-classification error is achieved by the
gradient descent within O(1/ǫ2)-or O(1/ǫ)-iterations when the transformed data distribution by the

neural tangent: (∂θ(θ
(0)⊤
r ·))θ∼µ0 is separable in the infinite-dimensional space L2(µ0) under the L∞-

constraint with a sufficient margin ρ. In comparison to the results in Allen-Zhu et al. (2018a); Cao &
Gu (2019a,b), which also derived a generalization bound by making a similar separability assumption
using a ReLU network or a smooth target function instead of the tangent model, our result has much
better dependency on the network width and can explain the generalization ability for a less over-
parameterized two-layer network, as summarized in Table 1. However, we note that their theories
cover deeper networks and are not included in our theory because of the difference of the problem
settings (e.g., network depth and the type of activation functions). To reduce the network width, the
best choice of β ∈ [0, 1) is β = 0 for the first setting, leading to a small network width m = Ω(ǫ−1).
We note that an arbitrary large width is also covered by this result.
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4.3 Proof Idea

In this section, we provide a proof idea for Theorems 2, 3, and 4. We introduce two important propo-
sitions that connect the gradient descent with the functional gradient descent to justify an intuitive
explanation in Section 3. Proposition 3-(i) states that the gradient descent method is certainly similar
to the kernel smoothed gradient methods by the neural tangent kernel when a parameter Θ is suffi-
ciently close to a stationary point and the learning rate η is sufficiently small, and Proposition 3-(ii)
states that the loss landscape is almost convex with respect to the parameter when fΘ is sufficiently
close to a stationary point in the function space. Here, We define an approximated neural tangent
kernel: kΘ depending on the parameters Θ as follows:

kΘ(x, x
′)

def
= ∂ΘfΘ(x)

⊤∂ΘfΘ(x
′). (11)

This kernel is actually an approximation to the vanilla NTK as follows:

m2β−1kΘ(0)(x, x′)→ kNTK(x, x′) (m→∞).

Proposition 3. Suppose assumption (A1) holds and β ∈ [0, 1).
(i) We set Θ+ = Θ− η∇ΘL(Θ) and K = K2

1 + 2K2 +K2
1K

2
2 . If η ≤ mβ, then

∣

∣

∣L(fΘ+)−
(

L(fΘ)− η 〈∇fL(fΘ), TkΘ∇fL(fΘ)〉L2(νX
n )

)∣

∣

∣ ≤ η2K

2m2β−1
‖∇ΘL(Θ)‖22.

(ii) It follows that for Θ = (θr)
m
r=1 and Θ∗ = (θ∗r )

m
r=1, (θr, θ

∗
r ∈ R

d),

L(Θ) +∇ΘL(Θ)⊤(Θ∗ −Θ) ≤ L(Θ∗) +
K2

mβ
‖∇fL(fΘ)‖L1(νX

n )‖Θ∗ −Θ‖22.

The next proposition states that the kernel smoothed gradients have comparable optimization
ability to pure functional gradients in terms of minimizing the L1-norm around an initial parameter

Θ(0). We define the ‖ · ‖2,1-norm in the parameter space Θ = (θr)
m
r=1 as ‖Θ‖2,1 def

=
∑m

r=1 ‖θr‖2.

Proposition 4. Suppose Assumption 1 holds. For ∀δ ∈ (0, 1) and ∀m ∈ Z+, such that m ≥
16K2

1

ρ2 log 2n
δ , the following statement holds with probability at least 1 − δ over the random initializa-

tion of Θ(0) = (θ
(0)
r )mr=1. If ‖Θ−Θ(0)‖2,1 ≤ mρ

4K2
, then

〈∇fL(fΘ), TkΘ∇fL(fΘ)〉L2(νX
n ) ≥

ρ2

16m2β−1
‖∇fL(fΘ)‖2L1(νX

n ).

This proposition is specialized to binary classification problems because the positivity of the Gram-
matrix is required for regression problems to make a similar statement as discussed earlier.

Combining these two propositions, we can connect the gradient descent with the functional gradient
descent and show the global convergence (Theorem 2) which with the almost convexity (Proposition 3-
(ii)) is also used to derive the convergence rate for the loss function (Theorem 3). In addition, applying a
well-known result (Koltchinskii & Panchenko, 2002), we can derive a skeleton of a generalization bound
(Theorem 4) composed of the margin distribution and Rademacher complexity. As for the margin
distribution, the upper bound is obtained by Theorem 2 and 3. As for ways to bound Rademacher
complexity, please see the Appendix.

5 Conclusion

In this paper, we have provided refined global convergence and generalization analyses of the gradient
descent for two-layer neural networks with smooth activations on binary classification problems. The
key in our analysis is the separability assumption by a neural tangent model and we have explained
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the reasonability of this assumption in comparison to the positivity of NTK. Consequently, theoretical
justification has been provided for less over-parameterized neural networks. However, our theory is
restricted to the deterministic gradient descent and two-layer networks; hence, its possible extensions
to stochastic gradient descent and deep neural networks are also interesting. Another possible future
study is to relax the positivity assumption on the Gram-matrix for regression problems by utilizing our
theory and conducting further investigations of the trajectory of gradient descent, such as the shortest
pass analysis (Oymak & Soltanolkotabi, 2018).
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Appendix

A Relationship between Kernel Assumptions

Proof of Proposition 1. We here prove the statement (i). SinceH∞ is invertible, we set w = (H∞)−1(y1, · · · , yn)⊤
and set

v(θ(0)) =

n
∑

j=1

∂θσ(θ
(0)⊤xj)wj .

Then, we get

yi

〈

∂θσ(θ
(0)⊤xi), v(θ

(0))
〉

L2(µ0)
= yiH

∞
i∗ w = 1.
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We can bound the norm of ‖v(θ(0))‖2 as follows:

‖v(θ(0))‖2 ≤
n
∑

j=1

‖∂θσ(θ(0)⊤xj)‖2|wj |

≤
∥

∥

∥

∥

(

‖∂θσ(θ(0)⊤xj)‖2
)n

j=1

∥

∥

∥

∥

2

‖w‖2

≤ √nK1‖w‖2

≤ nK1

λ0
.

Thus, by resetting v(θ(0))← λ0v(θ
(0))

nK1
, we conclude the statement (i).

We next prove the statement (ii). For ξ = (αiyi)
n
i=1 (αi > 0),

n
∑

i,j=1

ξiH
∞ξj =

n
∑

i,j=1

Eθ(0)∼µ0
[ξi∂θ(θ

(0)⊤xi)
⊤∂θ(θ

(0)⊤xj)ξj ]

= Eθ(0)∼µ0





∥

∥

∥

∥

∥

n
∑

i=1

ξi∂θ(θ
(0)⊤xi)

∥

∥

∥

∥

∥

2

2





≥ Eθ(0)∼µ0





(

n
∑

i=1

ξi∂θ(θ
(0)⊤xi)

⊤v(θ(0))

)2




≥
(

Eθ(0)∼µ0

[

n
∑

i=1

ξi∂θ(θ
(0)⊤xi)

⊤v(θ(0))

])2

=

(

n
∑

i=1

αiEθ(0)∼µ0

[

yi∂θ(θ
(0)⊤xi)

⊤v(θ(0))
]

)2

≥ ρ2
(

n
∑

i=1

αi

)2

≥ ρ2
n
∑

i=1

α2
i

= ρ2‖ξ‖22,

where we used ‖v(θ(0))‖2 ≤ 1 for the first inequality, the convexity of ‖ · ‖22 and Jensen’s inequality
for the second inequality, Assumption (A4) for the third inequality, and ‖ · ‖2 ≤ ‖ · ‖1 for the last
inequality. Thus, we finish the proof of the statement (ii).

B Auxiliary Results

In this section, we introduce several existing results for proving our statements. We first describe the
Hoeffding’s inequality.

Lemma 1 (Hoeffding’s inequality). Let Z,Z1, . . . , Zm be i.i.d. random variables taking values in
[−a, a] for a > 0. Then, for any ǫ > 0, we get

P

[∣

∣

∣

∣

∣

1

m

m
∑

r=1

Zr − E[Z]

∣

∣

∣

∣

∣

> ǫ

]

≤ 2 exp

(

− ǫ
2m

2a2

)

.
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We here define the covering number as follows.

Definition 1 (Covering Number). Let (V, ‖ ·‖) a metric space. A subset Û ⊂ V is called an ǫ-(proper)
cover of V if for ∀v ∈ V , there exists v′ ∈ Û such that ‖v − v′‖ < ǫ. Then, ǫ-covering number
N (V, ǫ, ‖ · ‖) of V is defined as the cardinally of the smallest ǫ-cover of V , that is,

N (V, ǫ, ‖ · ‖) def
= min{|Û | | Û is an ǫ-cover of V }.

The following lemma provide a bound on the Rademacher complexity by Dudley’s integral. For a
real-valued function class F over X and a subset X = (xi)

n
i=1, F|X is defined as {(h(xi))ni=1 ∈ R

n |
h ∈ F} ⊂ R

n, and F|X can be equipped with ‖ · ‖∞-norm over X .

Lemma 2 (Bartlett et al. (2017)). Let F be a class of real-valued functions taking values in [0, 1] from
X and assume 0 ∈ F . For examples ∀X = (xi)

n
i=1 of size n, we get

ℜ(F|X) ≤ inf
α>0

(

4α+
12√
n

∫ 1

α

√

log(N (F|X , ǫ, ‖ · ‖∞))dǫ

)

.

Note that we reformulate the statement in Lemma 2 from ‖ · ‖2-covering to ‖ · ‖∞-covering.

C Proofs of Main Results

In this section, we give an outline of proofs of Theorem 2 and 4.

Global convergence. We first introduce two important propositions which connects gradient meth-
ods with functional gradient methods. The following proposition states that gradient descent methods
become similar to kernel smoothed gradient methods by the neural tangent kernel when a parameter
Θ is sufficiently close to a stationary point and a learning rate η is sufficiently small.

Proposition 5 (Restatement of Proposition 3). Suppose assumption (A1) holds and β ∈ [0, 1).
(i) We set Θ+ = Θ− η∇ΘL(Θ) and K = K2

1 + 2K2 +K2
1K

2
2 . If η ≤ mβ, then

∣

∣

∣L(fΘ+)−
(

L(fΘ)− η 〈∇fL(fΘ), TkΘ∇fL(fΘ)〉L2(νX
n )

)∣

∣

∣ ≤ η2K

2m2β−1
‖∇ΘL(Θ)‖22.

(ii) It follows that for Θ = (θr)
m
r=1 and Θ∗ = (θ∗r )

m
r=1, (θr, θ

∗
r ∈ R

d),

L(Θ) +∇ΘL(Θ)⊤(Θ∗ −Θ) ≤ L(Θ∗) +
K2

mβ
‖∇fL(fΘ)‖L1(νX

n )‖Θ∗ −Θ‖22.

The next proposition states that kernel smoothed gradients have comparable optimization ability
to pure functional gradients in terms of the L1-norm around an initial parameter Θ(0). We introduce

the ‖ · ‖2,1-norm in the parameter space Θ = (θr)
m
r=1 as ‖Θ‖2,1 def

=
∑m

r=1 ‖θr‖2.
Proposition 6 (Restatement of Proposition 4). Suppose Assumption 1 holds. For ∀δ ∈ (0, 1) and

∀m ∈ Z+, such that m ≥ 16K2
1

ρ2 log 2n
δ , the following statement holds with probability at least 1− δ over

the random initialization of Θ(0) = (θ
(0)
r )mr=1. If ‖Θ−Θ(0)‖2,1 ≤ mρ

4K2
, then

〈∇fL(fΘ), TkΘ∇fL(fΘ)〉L2(νX
n ) ≥

ρ2

16m2β−1
‖∇fL(fΘ)‖2L1(νX

n ).

This proposition is specialized to binary classification problems because the positivity of the Gram-
matrix is needed for regression problems in order to make a similar statement as discussed earlier.

We specify the possible number of iterations of gradient descent (6) such that Θ(t) can remain in

the neighborhood: {Θ | ‖Θ−Θ(0)‖2 ≤
√
mρ

4K2
} ⊂ {Θ | ‖Θ−Θ(0)‖2,1 ≤ mρ

4K2
}.

15



Proposition 7. Suppose Assumption (A1) and (A3) hold. Consider gradient descent (6) with learn-

ing rate 0 < η < 4m2β−1

K2
1+K2

and the number of iterations T ∈ Z+. Then,

1

T

T−1
∑

t=0

‖∇ΘL(Θ(t))‖22 ≤
2

ηT
log(2). (12)

Especially, we get ‖Θ(T ) − Θ(0)‖2 ≤
√

2ηT log(2). As a result, gradient descent can be performed for
⌊

mρ2

32ηK2
2 log(2)

⌋

-iterations within {Θ | ‖Θ−Θ(0)‖2 ≤
√
mρ

4K2
} ⊂ {Θ | ‖Θ−Θ(0)‖2,1 ≤ mρ

4K2
}.

This proposition provides a bound on the distance ‖Θ(T ) − Θ(0)‖2, but we note that this bound
will be further sharpened after showing the convergence of the loss function (see Proposition 2). From
Proposition 5, 6, and 7, we notice that the gradient descent for L(Θ) performs like a pure functional

gradient descent up to O
(

mρ2

η

)

-iterations, resulting in significant decrease of loss functions. We next

provide the proof of Theorem 2 based on this idea.

Proof of Theorem 2. From Proposition 7, the assumption in Proposition 6 regarding Θ is satisfied.
Thus, Proposition 5 and 6 state that for t ∈ {0, . . . , T − 1},

L(fΘ(t+1)) ≤ L(fΘ(t))− ηρ2

16m2β−1
‖∇fL(fΘ(t))‖2L1(νX

n ) +
η2K

2m2β−1
‖∇ΘL(Θ(t))‖22.

Summing this inequality over t ∈ {0, . . . , T − 1} and multiplying by 4m2β−1

ηρ2T , we have

1

T

T−1
∑

t=0

‖∇fL(fΘ(t))‖2L1(νX
n ) ≤

16m2β−1

ηρ2T
L(fΘ(0)) +

8ηK

ρ2T

T−1
∑

t=0

‖∇ΘL(Θ(t))‖22.

Applying L(Θ(0)) = log(2) and inequality (12), we complete the proof.

Proof of Theorem 3. We set τ∗ =
(

αarv(θ
(0)
r )
)m

r=1
and Θ∗ = Θ(0) + τ∗. Clearly, we have

‖Θ∗ −Θ(0)‖2 ≤ α
√
m. (13)

As shown in Proposition 5, we get

∣

∣

∣fΘ∗(x)−∇ΘfΘ(0)(x)⊤(Θ∗ −Θ(0))
∣

∣

∣ ≤ K2

mβ
‖τ∗‖22 ≤ α2K2m

1−β.

In addition, as shown in Proposition 6, sincem ≥ 16K2
1

ρ2 log 2n
δ , the inequality (21) holds with probability

at least 1− δ. Hence, we have for ∀i ∈ {1, . . . , n},

yifΘ∗(xi) ≥ yi∇ΘfΘ(0)(x)⊤(Θ∗ −Θ(0))− α2K2m
1−β

=
yiα

mβ

m
∑

r=1

∂θσ(θ
(0)⊤
r xi)

⊤v(θ(0)r )− α2K2m
1−β

≥ αρm1−β

2
− α2K2m

1−β ≥ αρm1−β

4
.

Thus, the loss at a reference point Θ∗ can be bounded as follows:

L(Θ∗) ≤ 1

n

n
∑

i=1

log (1 + exp(−yifΘ∗(xi)) ≤ exp (−yifΘ∗(xi)) ≤ exp

(

−αρm
1−β

4

)

. (14)
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From Theorem 2, Proposition 5-(ii), Proposition 7 and inequalities (13), (14), it follows that
∃C1, ∃C2 > 0, ∀T ≤ T ,

1

T

T−1
∑

t=0

(

L(Θ(t)) +∇ΘL(Θ(t))⊤(Θ∗ −Θ(t))
)

≤ L(Θ∗) +
K2

mβT

T−1
∑

t=0

‖∇fL(fΘ(t))‖L1(νX
n )‖Θ∗ −Θ(t)‖22

≤ L(Θ∗) +
K2

mβT

T−1
∑

t=0

‖∇fL(fΘ(t))‖L1(νX
n ) max

t∈{0,...,T−1}
‖Θ∗ − Θ(t)‖22

≤ L(Θ∗) +
2K2

mβ
√
T

√

√

√

√

T−1
∑

t=0

‖∇fL(fΘ(t))‖2L1(νX
n )

max
t∈{0,...,T−1}

(

‖Θ∗ −Θ(0)‖22 + ‖Θ(0) −Θ(t)‖22
)

≤ L(Θ∗) +
C2

ρ
√
ηTm

(α2m+ ηT )

≤ exp

(

−αρm
1−β

4

)

+
C2

ρ

(

α2

√

m

ηT
+

√

ηT

m

)

. (15)

Finally, we bound the average of ∇ΘL(Θ(t))⊤(Θ(t)−Θ∗). Because −2a⊤b = ‖a‖22+ ‖b‖22−‖a+ b‖22
for real vectors a, b, we get by setting a = −η∇ΘL(Θ(t)) and b = Θ(t) − Θ∗,

1

T

T−1
∑

t=0

∇ΘL(Θ(t))⊤(Θ(t) −Θ∗) =
1

2ηT

T−1
∑

t=0

(η2‖∇ΘL(Θ(t))‖22 + ‖Θ(t) −Θ∗‖22 − ‖Θ(t+1) −Θ∗‖22)

=
η

2T

T−1
∑

t=0

‖∇ΘL(Θ(t))‖22 +
1

2ηT
‖Θ(0) −Θ∗‖22

≤ log(2)

T
+
α2m

2ηT
.

Thus, we get that ∃C > 0,

1

T

T−1
∑

t=0

L(Θ(t)) ≤ C
(

1

T
+
α2m

ηT
+ exp

(

−αρm
1−β

4

)

+
α2

ρ

√

m

ηT
+

1

ρ

√

ηT

m

)

.

We next prove Proposition 2 that gives a sharper bound on ‖Θ(T ) −Θ(0)‖.

Proof of Proposition 2. Let L ∈ Z+ be a positive integer such that for T = O(ρ−2ǫ−1 log2(1/ǫ)),
2L ≤ T < 2L+1. Clearly, L ≤ log2 T . From Corollary 2, we get for l ∈ {1, . . . , L}

1

2l−1

2l−1
∑

t=2l−1

L(Θ(t)) ≤ 2

2l

2l−1
∑

t=0

L(Θ(t)) ≤ 2C
(

ǫ+ 2−lρ−2 log2(1/ǫ)
)

.

Therefore, there exist 2l−1 ≤ ∃sl < 2l for l ∈ {1, . . . , L} such that

L(Θ(sl)) ≤ 2C
(

ǫ+ 2−lρ−2 log2(1/ǫ)
)

.

From the similar argument to the proof of Proposition 7, we get for a < b ∈ Z+,
∑b

t=a ‖∇ΘL(Θ(t))‖2 ≤
√

2(b− a+ 1)η−1L(Θ(t)).
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Thus, it follows that since s1 = 1, ‖∇ΘL(Θ(0))‖2 ≤
√
mK1 by (19), and 2l+1 − 2l−1 + 1 ≤ 2l+1,

T−1
∑

t=0

‖∇ΘL(Θ(t))‖2 ≤ ‖∇ΘL(Θ(0))‖2 +
L−1
∑

l=1

sl+1
∑

t=sl

‖∇ΘL(Θ(t))‖2 +
T−1
∑

t=sL

‖∇ΘL(Θ(t))‖2

≤ √mK1 +

L
∑

l=1

√

23Cη−1(2lǫ+ ρ−2 log2(1/ǫ))

≤ √mK1 + log2(T )

√

23Cη−1(T ǫ+ ρ−2 log2(1/ǫ)).

Hence, by setting specific values of η, T, and m in Corollary 2, we get that ∃C′ > 0,

‖Θ(t) −Θ(0)‖2 ≤ η
T−1
∑

t=0

‖∇ΘL(Θ(t))‖2 ≤ η
√
mK1 + log2(T )

√

23Cη(T ǫ+ ρ−2 log2(1/ǫ))

≤ C′ǫ3/4 log2(ρ−2ǫ−1).

Generalization bound. A generalization bound can be derived by utilizing the standard analysis
of the Rademacher complexity (Koltchinskii & Panchenko, 2002). We here introduce a function class
to be measured by the Rademacher complexity. Let lγ(v) (γ > 0) be the ramp loss:

lγ(v)
def
=







1 (v < 0),
1− v/γ (0 ≤ v ≤ γ),
0 (v > γ).

Then, a class of all possible ramp losses over X × Y attained by the gradient descent (6) up to T -

iterations is defined as follows: Ωη,m,T
def
=
{

Θ | ‖Θ−Θ(0)‖2 ≤ Dη,T,m

}

,

Fγ
η,m,T

def
= {lγ(yfΘ(x)) : X × Y → [0, 1] | Θ ∈ Ωη,m,T } .

Here, Dη,T,m is set to be
√

2ηT log(2) when considering a general hyperparameter setting in Theorem

2 and is set to be a sharper bound in Proposition 2: Θ(ǫ3/4 log2(ρ−2ǫ−1)) when considering a specific
hyperparameter setting in that proposition.

For a given dataset S = (xi, yi)
n
i=1, the Rademacher complexity is defined by ℜ(Fγ

η,m,T |S)
def
=

n−1
E[suph∈Fγ

η,m,T

∑n
i=1 ǫih(xi, yi)], where the expectation is taken over the Rademacher random vari-

ables (ǫi)
n
i=1 which are i.i.d. with probabilities P[ǫi = 1] = P[ǫi = −1] = 0.5. The following well-known

result (Koltchinskii & Panchenko, 2002; Mohri et al., 2012; Shalev-Shwartz & Ben-David, 2014) pro-
vides a bound on the expected classification error based on the empirical margin distribution and the
Rademacher complexity. The empirical margin distribution for S is defined as the ratio of examples
satisfying yifΘ(xi) ≤ γ in S.

Lemma 3 (Koltchinskii & Panchenko (2002); Mohri et al. (2012); Shalev-Shwartz & Ben-David (2014)).
Let ∀n ∈ Z+, ∀γ > 0, ∀η > 0, ∀m ∈ Z+, ∀T ∈ Z+, and ∀δ ∈ (0, 1). Then, with probability at least
1− δ over the random choice of S of size n, every Θ ∈ Ωη,m,T satisfies

P(X,Y )∼ν [Y fΘ(X) ≤ 0] ≤ P(X,Y )∼νn [Y fΘ(X) ≤ γ] + 2ℜ(Fγ
η,m,T |S) + 3

√

(2n)−1 log(2/δ). (16)

To instantiate this bound, we have to provide upper bounds on the empirical margin distribution
and the Rademacher complexity. We first give a bound on the Rademacher complexity.
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Proposition 8. Suppose Assumption (A1) and (A2) hold. Let ∀γ > 0, ∀η > 0, ∀m ∈ Z+, ∀T ∈ Z+,
∀δ ∈ (0, 1), and ∀S be examples of size n. Then, there exists a uniform constant C > 0 such that with
probability at least 1− δ with respect to the initialization of Θ(0),

ℜ(Fγ
η,m,T |S) ≤ Cγ−1m

1
2−βDη,m,T (1 +K1 +K2)

√

d

n
log
(

n(1 +K1 +K2)(log(m/δ) +D2
η,m,T )

)

.

Moreover, when σ is convex and σ(0) = 0, we can avoid the dependence with respect to the dimension
d. With probability at least 1− δ over a random initialization of Θ(0),

ℜ(Fγ
η,m,T |S) ≤

8K1m
1
2−β

γ
√
n

(

Dη,m,T +

√

log(Am/δ)

b

)

.

Proof of Theorem 4. We prove this theorem by instantiating inequality (16). Let (Θ(t))T−1
t=0 be a se-

quence obtained by the gradient descent (6). Because (Θ(t))T−1
t=0 is contained in Ωη,m,T , as indicated

in Proposition 7, inequality (16) holds for this sequence. As for the Rademacher complexity in (16),
we can utilize Proposition 8. Thus, the resulting problem is to prove the convergence of the empirical
margin distribution: P(X,Y )∼νn [Y fΘ(t)(X) ≤ γ]. We here give its upper-bound below.

0.5 |yi − 2pΘ(Y = 1|xi) + 1| ≥ (1 + exp(γ))−1 ⇐⇒ yifΘ(xi) ≤ γ.

Therefore, from Markov’s inequality,

P(X,Y )∼νn [Y fΘ(t)(X) ≤ γ] = P(X′,Y ′)∼νn

[

1

2
|Y ′ − 2pΘ(Y = 1|X ′) + 1| ≥ 1

1 + exp(γ)

]

≤ (1 + exp(γ))‖∇fL(fΘ)‖L1(νX
n ).

Combining this inequality with Lemma 3, then for ∀t ∈ {0, . . . , T − 1},

P(X,Y )∼ν [Y fΘ(t)(X) ≤ 0] ≤ (1 + exp(γ))‖∇fL(fΘ(t))‖L1(νX
n ) + 2ℜ(Fγ

η,m,T |S) + 3

√

log(2/δ)

2n
.

Noting that η,m, and T satisfy the conditions in Theorem 2, we can complete the proof by taking the
average over t ∈ {0, . . . , T − 1} and applying Proposition 8 and Theorem 2.

D Proofs for Global Convergence

D.1 Proof of Proposition 5

Proof of Proposition 5. We first show the smoothness of fΘ(x) with respect to Θ for ∀x ∈ X , (‖x‖2 ≤
1). Noting that∇2

ΘfΘ(x) = diag
(

1
mβ arσ

′′(θ⊤r x)xx
⊤)m

r=1
, we get for τ = (τr)

m
r=1 such that

∑m
r=1 ‖τr‖22 =

1 (τr ∈ R
d),

∣

∣τ⊤∇2
ΘfΘ(x)τ

∣

∣ =

∣

∣

∣

∣

∣

m
∑

r=1

τ⊤r ∂
2
θrfΘ(x)τr

∣

∣

∣

∣

∣

≤ 1

mβ

m
∑

r=1

∣

∣σ′′(θ⊤r x)
∣

∣

∣

∣τ⊤r x
∣

∣

2

≤ K2

mβ

m
∑

r=1

‖τr‖22

=
K2

mβ
.
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This means that for τ = (τr)
m
r=1, (τr ∈ R

d),

∣

∣fΘ+τ (x) − (fΘ(x) +∇ΘfΘ(x)
⊤τ)

∣

∣ ≤ K2

mβ
‖τ‖22 =

K2

mβ

m
∑

r=1

‖τr‖22. (17)

Let us define gx(τ) as the second-order term of Taylor’s expansion of fΘ(x) with respect to Θ:

fΘ+τ (x) = fΘ(x) +∇ΘfΘ(x)
⊤τ + gx(τ).

From the inequality (17), we have |gx(τ)| ≤ K2‖τ‖2
2

mβ . Then, by the smoothness of l(ζ, y) with respect
to ζ and |∂2ζ l(ζ, y)| ≤ 1/4, we get

∣

∣

∣l(fΘ+τ(x), y) − (l(fΘ(x), y)+∂ζ l(fΘ(x), y)(∇ΘfΘ(x)
⊤τ + gx(τ)))

∣

∣

∣

≤ 1

4

∣

∣∇ΘfΘ(x)
⊤τ + gx(τ)

∣

∣

2

≤ 1

2

(

‖∇ΘfΘ(x)‖22 +
K2

2‖τ‖22
m2β

)

‖τ‖22.

By the triangle inequality, we get

|l(fΘ+τ(x), y) −
(

l(fΘ(x), y) + ∂ζ l(fΘ(x), y)∇ΘfΘ(x)
⊤τ
)

|

≤ |∂ζ l(fΘ(x), y)gx(τ)| +
1

2

(

‖∇ΘfΘ(x)‖22 +
K2

2‖τ‖22
m2β

)

‖τ‖22

≤ 1

2

(

‖∇ΘfΘ(x)‖22 +
2K2

mβ
+
K2

2‖τ‖22
m2β

)

‖τ‖22

≤ 1

2

(

K2
1

m2β−1
+

2K2

mβ
+
K2

2‖τ‖22
m2β

)

‖τ‖22, (18)

where for the second inequality, we used |∂ζ l(ζ, y)| ≤ 1 and for the last inequality, we used

‖∇ΘfΘ(x)‖22 =

m
∑

r=1

∥

∥

∥

∥

1

mβ
σ′(θ⊤r x)x

∥

∥

∥

∥

2

2

≤
m
∑

r=1

1

m2β
|σ′(θ⊤r x)|22 ≤

K2
1

m2β−1
.

We here set τ = −η∇ΘL(Θ). The right hand side of (18) is upper bounded by

1

2

(

K2
1

m2β−1
+

2K2

mβ
+
η2K2

1K
2
2

m4β−1

)

‖τ‖22.
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because

‖∇ΘL(Θ)‖22 =

m
∑

r=1

‖∂θrL(Θ)‖22

=

m
∑

r=1

∥

∥

∥

∥

∥

1

n

n
∑

i=1

∂ζ l(fΘ(xi), yi)∂θrfΘ(xi)

∥

∥

∥

∥

∥

2

2

≤
m
∑

r=1

(

1

n

n
∑

i=1

|∂ζ l(fΘ(xi), yi)|‖∂θrfΘ(xi)‖2
)2

≤
(

1

n

n
∑

i=1

|∂ζ l(fΘ(xi), yi)|
)2 m
∑

r=1

(

max
j∈{1,...,n}

‖∂θrfΘ(xj)‖2
)2

= ‖∇fL(fΘ)‖2L1(νX
n )

m
∑

r=1

(

max
j∈{1,...,n}

1

mβ
|σ′(θ⊤r xj)|‖xj‖2

)2

≤ ‖∇fL(fΘ)‖2L1(νX
n )m

1−2βK2
1

≤ m1−2βK2
1 . (19)

Therefore, we get

|l(fΘ+τ (x), y)−
(

l(fΘ(x), y) − η∂ζ l(fΘ(x), y)∇ΘfΘ(x)
⊤∇ΘL(Θ)

)

|

≤ 1

2

(

K2
1

m2β−1
+

2K2

mβ
+
η2K2

1K
2
2

m4β−1

)

η2‖∇ΘL(Θ)‖22

≤ 1

2m2β−1

(

K2
1 + 2K2 +K2

1K
2
2

)

η2‖∇ΘL(Θ)‖22, (20)

where we used β ∈ [0, 1) and η ≤ mβ for the last inequality.
Noting that from the definition of kernel smoothing of functional gradients (3), we see

∇ΘfΘ(x)
⊤∇ΘL(Θ) = ∇ΘfΘ(x)

⊤
(

1

n

n
∑

i=1

∂ζ l(fΘ(xi), yi)∇ΘfΘ(xi)

)

= TkΘ∇fL(fΘ)(x).
Therefore, by taking the expectation of (20) according to the empirical distribution νn, we get

∣

∣

∣
L(fΘ+τ )−

(

L(fΘ)− η 〈∇fL(fΘ), TkΘ∇fL(fΘ)〉L2(νX
n )

)∣

∣

∣

≤ η2

2m2β−1

(

K2
1 + 2K2 +K2

1K
2
2

)

‖∇ΘL(Θ)‖22.

This completes the proof of the statement (i).
From the convexity of l(ζ, y) with respect to ζ, we have

l(fΘ∗(X), Y ) = l
(

fΘ(X) +∇ΘfΘ(X)⊤(Θ∗ −Θ) + gX(Θ∗ −Θ), Y
)

≥ l(fΘ(X), Y ) + ∂ζ l(fΘ(X), Y )
(

∇ΘfΘ(X)⊤(Θ∗ −Θ) + gX(Θ∗ −Θ)
)

≥ l(fΘ(X), Y ) +∇Θl(fΘ(X), Y )⊤(Θ∗ −Θ)− |∂ζ l(fΘ(X), Y )| K2‖Θ∗ −Θ‖22
mβ

,

where we used |gX(Θ∗−Θ)| ≤ K2‖Θ∗−Θ‖2
2

mβ . Thus, by taking the expectation with respect to (X,Y ) ∼ νn,
we get

L(Θ∗) ≥ L(Θ) +∇ΘL(Θ)⊤(Θ∗ −Θ)− K2

mβ
‖∇fL(fΘ)‖L1(νX

n )‖Θ∗ −Θ‖22.
This finishes the proof of the statement (ii).
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D.2 Proof of Proposition 6

Proof of Proposition 6. Set Zr,i
def
= yi∂θσ(θ

(0)
r xi)

⊤v(θ
(0)
r ). We find clearly |Zr,i| ≤ K1 from Assump-

tion 1. By applying Hoeffding’s inequality to Zr,i for each i ∈ {1, . . . , n} and taking an union bound,
we have

PΘ(0)



 max
i∈{1,...,n}

∣

∣

∣

∣

∣

∣

2

m

m/2
∑

r=1

Zr,i − E
θ
(0)
r
[Zr,i]

∣

∣

∣

∣

∣

∣

>
ρ

2



 ≤ 2n exp

(

− ρ2m

16K2
1

)

.

In other words, since m ≥ 16K2
1

ρ2 log 2n
δ , we have with probability 1− δ,

max
i∈{1,...,n}

∣

∣

∣

∣

∣

∣

2

m

m/2
∑

r=1

Zr,i − E
θ
(0)
r
[Zr,i]

∣

∣

∣

∣

∣

∣

≤ ρ

2
.

Therefore, using Assumption 1 (A4) and noting Θ(0) = (θr)
m
r=1 is symmetrically initialized, we get

with probability 1− δ for ∀i ∈ {1, . . . , n},

1

m

m
∑

r=1

yi∂θσ(θ
(0)
r xi)

⊤v(θ(0)r ) ≥ ρ

2
. (21)

In the following proof, we assume Θ(0) = (θ
(0)
r )mr=1 satisfies this inequality. We get from the

K2-Lipschitz continuity of σ′ that for Θ = (θr)
m
r=1 satisfying ‖Θ−Θ(0)‖2,1 ≤ mρ

4K2
,

∣

∣

∣

∣

∣

1

m

m
∑

r=1

yiσ
′(θ⊤r xi)x

⊤
i v(θ

(0)
r )− 1

m

m
∑

r=1

yiσ
′(θ(0)⊤r xi)x

⊤
i v(θ

(0)
r )

∣

∣

∣

∣

∣

≤ 1

m

m
∑

r=1

∣

∣

∣yix
⊤
i vr(θ

(0)
r )(σ′(θ⊤r xi)− σ′(θ(0)⊤r xi))

∣

∣

∣

≤ 1

m

m
∑

r=1

K2|(θr − θ(0)r )⊤xi|

≤ K2

m
‖Θ−Θ(0)‖2,1

≤ ρ

4
.

This means that there exists (vr)
m
r=1 such that ‖vr‖2 ≤ 1 (∀r ∈ {1, . . . ,m}) and for ∀Θ = (θr)

m
r=1

satisfying ‖Θ−Θ(0)‖2,1 ≤ mρ
4K2

,

1

m

m
∑

r=1

yi∂θσ(θ
⊤
r xi)

⊤vr ≥
ρ

4
, ∀i ∈ {1, . . . , n}.

Then, we get the following bound: for ∀(αi)
n
i=1 (αi ∈ (0, 1)),

1

m

n
∑

i=1

m
∑

r=1

yiαi∂θσ(θ
⊤
r xi)

⊤vr =
1

m

n
∑

i=1

αi

m
∑

r=1

yi∂θσ(θ
⊤
r xi)

⊤vr ≥
ρ

4

n
∑

i=1

αi > 0. (22)
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Noting that ∇fL(fΘ)(xi) = −yi

1+exp(yifΘ(xi))
, we get

〈∇fL(fΘ), TkΘ∇fL(fΘ)〉L2(νX
n ) =

1

n2

n
∑

i,j=1

kΘ(xi, xj)∇fL(fΘ)(xi)∇fL(fΘ)(xj)

=
1

n2

∥

∥

∥

∥

∥

n
∑

i=1

∇fL(fΘ)(xi)∇ΘfΘ(xi)

∥

∥

∥

∥

∥

2

2

=
1

n2

m
∑

r=1

∥

∥

∥

∥

∥

n
∑

i=1

∇fL(fΘ)(xi)∂θrfΘ(xi)
∥

∥

∥

∥

∥

2

2

=
1

n2

m
∑

r=1

∥

∥

∥

∥

∥

1

mβ

n
∑

i=1

∇fL(fΘ)(xi)∂θσ(θ⊤r xi)
∥

∥

∥

∥

∥

2

2

≥ 1

n2

m
∑

r=1

(

1

mβ

n
∑

i=1

∇fL(fΘ)(xi)∂θσ(θ⊤r xi)⊤vr
)2

≥ m

n2

(

1

m1+β

n
∑

i=1

m
∑

r=1

∇fL(fΘ)(xi)∂θσ(θ⊤r xi)⊤vr
)2

≥ m1−2βρ2

16n2

(

n
∑

i=1

1

1 + exp(yifΘ(xi))

)2

,

where we used ‖vr‖2 ≤ 1 for the first inequality, the convexity of ‖ · ‖22 for the second inequality, and
(22) for the last inequality. We can find that this inequality finishes the proof because

1

1 + exp(fΘ(xi)yi)
=

1

2
|yi − 2pΘ(Y = 1 | xi) + 1| .

D.3 Proof of Proposition 7

The proof of Proposition 7 is based on the traditional convergence analysis of gradient descent for
smooth objective functions in finite-dimensional space.

Proof of Proposition 7. We first specify the smoothness of the logistic loss function. We set φ(v) =
log(1 + exp(−v)) and l(y, fΘ(x)) = φ(yfΘ(x)). By the simple calculation, we get that for r, s ∈
{1, . . . ,m},

∂2

∂θr∂θs
l(y, fΘ(x)) = φ′′(yfΘ(x))

aras
m2β

σ′(θ⊤r x)σ
′(θ⊤s x)xx

⊤

+ 1[r = s]
y

mβ
φ′(yfΘ(x))arσ

′′(θ⊤r x)xx
⊤.

Noting that ‖φ′‖∞ ≤ 1 and ‖φ′′‖∞ ≤ 1
4 , we can see that the maximum eigen-value of (∂2l(y, fΘ(x))/∂θr∂θs)

m
r,s=1

is upper bounded by

M
def
=

1

4m2β−1
(K2

1 +K2).
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Indeed, for v = (vr)
m
r=1 such that

∑m
r=1 ‖vr‖22 ≤ 1, (vr ∈ R

d), we have

m
∑

r,s=1

v⊤r
∂2l(y, fΘ(x))

∂θr∂θs
vs =

φ′′(yfΘ(x))

m2β

(

m
∑

r=1

arσ
′(θ⊤r x)v

⊤
r x

)2

+
y

mβ
φ′(yfΘ(x))

m
∑

r=1

arσ
′′(θ⊤r x)(v

⊤
r x)

2

≤ K2
1

4m2β

(

m
∑

r=1

‖vr‖2
)2

+
K2

mβ

m
∑

r=1

‖vr‖22

≤ K2
1

4m2β

(√
m‖v‖2

)2
+
K2

mβ

≤ K2
1

4m2β−1
+
K2

mβ

≤ 1

4m2β−1
(K2

1 +K2).

Therefore, the loss function L(Θ) is M -Lipschitz smooth with respect to Θ, that is, for

L(Θ′) ≤ L(Θ) + 〈∇L(Θ),Θ′ −Θ〉2 +
M

2
‖Θ′ −Θ‖22.

Plugging Θ = Θ(t) and Θ′ = Θ(t+1) = Θ− η∇ΘL(Θ(t)) into this inequality, we get

L(Θ(t+1)) ≤ L(Θ(t))− η
(

1− ηM

2

)

‖∇L(Θ(t))‖22

≤ L(Θ(t))− η

2
‖∇L(Θ(t))‖22,

where we used η ≤ 1/M for the last inequality. By summing this inequality over t ∈ {0, . . . , T − 1}
and multiplying by 2

ηT , we get

1

T

T−1
∑

t=0

‖∇L(Θ(t))‖22 ≤
2

ηT
L(Θ(0)) =

2

ηT
log(2), (23)

where we used L(Θ(0)) = log(2). Therefore, we have that from equation (23),

‖Θ(t) −Θ(0)‖2 ≤ η
T−1
∑

t=0

∥

∥

∥
∇ΘL(Θ(t))

∥

∥

∥

2

≤ η
√
T

√

√

√

√

T−1
∑

t=0

∥

∥∇ΘL(Θ(t))
∥

∥

2

2

≤
√

2ηT log(2).

The last statement of Proposition 7 immediately follows from this and the following inequality.

‖Θ(t) −Θ(0)‖2,1 =

m
∑

r=1

‖θ(t)r − θ(0)r ‖2

≤ √m

√

√

√

√

m
∑

r=1

‖θ(t)r − θ(0)r ‖22

=
√
m‖Θ(t) −Θ(0)‖2.
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E Proofs for Generalization Bounds

Proof of Proposition 8. In this proof, we denote F = Fγ
η,m,T and Ω = Ωη,m,T for simplicity. We define

Fy
def
= {h(·, y) : X → [0, 1] | h ∈ F}. Then, for a given dataset S = (xi, yi)

n
i=1, we notice that

ℜ(F|S) ≤ ℜ(F1|X) +ℜ(F−1|X), where X = (xi)
n
i=1. Thus, it is enough to provide an upper bound on

ℜ(F1|X) because a bound on the other complexity can be also derived in the same way.

We first give a uniform high probability bound on the initialization ‖θ(0)r ‖2 for ∀r ∈ {1, . . . ,m}.
We get from (A2), for t > 0,

P

[

max
r∈{1,...,m}

‖θ(0)r ‖2 ≥ t
]

≤
m
∑

r=1

P

[

‖θ(0)r ‖2 ≥ t
]

≤ mA exp(−bt2).

Thus, by choosing t so that δ = mA exp(−bt2), we confirm that with probability at least 1− δ,

max
r∈{1,...,m}

‖θ(0)r ‖2 ≤ R
def
=

√

1

b
log

(

mA

δ

)

.

We introduce several notations. Fix R0 > 0. We denote θ = (θ, θ′) ∈ R
2d, (θ, θ′ ∈ R

d) and, define
for θ,

gθ(x)
def
=

σ(θ⊤x)− σ(θ′⊤x)

‖θ − θ′‖2
.

When θ = θ′, we define gθ(x) = 0. From the Lipschitz continuity of σ, the range of gθ is [−K1,K1].
Moreover, we define

Ω
def
= {θ ∈ R

2d | ‖θ‖2, ‖θ′‖2 ≤ R+Dη,m,T , ‖θ − θ′‖2 ≤ Dη,m,T},

Ω+
def
= {θ ∈ Ω | R0 < ‖θ − θ′‖2 ≤ Dη,m,T},

Ω−
def
= {θ ∈ Ω | ‖θ − θ′‖2 ≤ R0},

G+ def
=
{

gθ : X → [−K1,K1] | θ ∈ Ω+

}

,

G− def
=
{

gθ : X → [−K1,K1] | θ ∈ Ω−
}

,

H def
= {fΘ : X → R | Θ ∈ Ω}.

Clearly, we see
Ω = Ω− ∪ Ω+ and

{

gθ | θ ∈ Ω
}

= G− ∪ G+.
From the Lipschitz continuity of lγ , we find ℜ(F1|X) ≤ γ−1ℜ(H|X).

We now derive an upper bound on the Rademacher complexity. Set CM
def
= m

1
2−βDη,m,T .

ℜ(H|X) =
1

n
E

[

sup
Θ∈Ω

n
∑

i=1

ǫifΘ(xi)

]

=
1

n
E

[

sup
Θ∈Ω

n
∑

i=1

ǫi(fΘ(xi)− fΘ(0)(xi))

]

=
1

n
E

[

sup
Θ∈Ω

n
∑

i=1

ǫi
1

mβ

m
∑

r=1

ar

(

σ(θ⊤r xi)− σ(θ(0)⊤r xi)
)

]

=
CM

n
E

[

sup
Θ∈Ω

n
∑

i=1

ǫi

m
∑

r=1

‖θr − θ(0)r ‖2
CMmβ

ar
σ(θ⊤r xi)− σ(θ(0)⊤r xi)

‖θr − θ(0)r ‖2

]

, (24)
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where we used the fact that fΘ(0)(xi) is a constant in the expectation for the second equality.
Since, for Θ ∈ Ω,

m
∑

r=1

‖θr − θ(0)r ‖2
CMmβ

≤ m
1
2−β‖Θ−Θ(0)‖2

CM
≤ 1,

equation (24) can be upper-bounded by the Rademacher complexity of the convex hull. Hence,

ℜ(H|X) ≤ CM

n
E






sup
Θ∈Ω∑m

r=1 br≤1,br∈[0,1]

n
∑

i=1

ǫi

m
∑

r=1

brar
σ(θ⊤r xi)− σ(θ(0)⊤r xi)

‖θr − θ(0)r ‖2







≤ CM

n
E









sup
(θr,θ

′

r)
m
r=1∈Ω

m

∑m
r=1 br≤1,br∈[0,1]

n
∑

i=1

ǫi

m
∑

r=1

br
σ(θ⊤r xi)− σ(θ

′⊤
r xi)

‖θr − θ′

r‖2









=
CM

n
E

[

sup
(θ,θ′)∈Ω

n
∑

i=1

ǫi
σ(θ⊤xi)− σ(θ

′⊤xi)

‖θ − θ′‖2

]

=
CM

n
E

[

sup
θ∈Ω

n
∑

i=1

ǫigθ(xi)

]

≤ CM

n
E

[

sup
g∈G−

n
∑

i=1

ǫig(xi) + sup
g∈G+

n
∑

i=1

ǫig(xi)

]

= CM (ℜ(G−|X) + ℜ(G+|X)) . (25)

We used that for Θ ∈ Ω, (θr , θ
(0)
r ) ∈ Ω (∀r ∈ {1, . . . ,m}) because ‖Θ − Θ(0)‖2 ≤ Dη,m,T . Moreover,

the term ar disappeared by the symmetry. We used the fact that the convex hull of a hypothesis class
does not increase the Rademacher complexity for the first equality.

We next derive an upper bound on the Rademacher complexity ℜ(G+|X) through the covering
number N (G+|X , ǫ, ‖ · ‖∞) and Lemma 2. To this end, we investigate the sensitivity of ‖gθ‖∞ with

respect to θ as follows.
Let θ1 = (θ1, θ

′
1) ∈ Ω+ and θ2 = (θ2, θ

′
2) ∈ Ω+ be parameters such that

‖θ1 − θ2‖2 =
√

‖θ1 − θ2‖22 + ‖θ′1 − θ′2‖22 ≤ ǫ.

This leads to
‖θ1 − θ2‖2, ‖θ′1 − θ′2‖2 ≤ ǫ and |‖θ1 − θ′1‖2 − ‖θ2 − θ′2‖2| ≤ 2ǫ.

We get from these inequalities that for ‖x‖2 ≤ 1,

|gθ1(x) − gθ2(x)| =

∣

∣

∣‖θ2 − θ′2‖2(σ(θ⊤1 x)− σ(θ
′⊤
1 x))− ‖θ1 − θ′1‖2(σ(θ⊤2 x)− σ(θ

′⊤
2 x))

∣

∣

∣

‖θ1 − θ′1‖2‖θ2 − θ′2‖2

≤

∣

∣

∣(‖θ2 − θ′2‖2 − ‖θ1 − θ′1‖2)(σ(θ⊤1 x)− σ(θ
′⊤
1 x))

∣

∣

∣

‖θ1 − θ′1‖2‖θ2 − θ′2‖2

+

∣

∣

∣‖θ1 − θ′1‖2(σ(θ⊤1 x)− σ(θ
′⊤
1 x)− σ(θ⊤2 x) + σ(θ

′⊤
2 x))

∣

∣

∣

‖θ1 − θ′1‖2‖θ2 − θ′2‖2
≤ 4Dη,m,T ǫK1

R2
0

.

Thus, if ‖θ1 − θ2‖2 ≤ ǫ for θ1, θ2 ∈ Ω+, then ‖gθ1 − gθ2‖∞ ≤ 4Dη,m,T ǫK1/R
2
0. Since,

G+ ⊂ {gθ | ‖θ‖2 ≤ 2R+ 2Dη,m,T , θ ∈ R
2d},
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we get for the unit-ball B1 ⊂ R
2d with respect to ‖ · ‖2,

N (G+|X , ǫ, ‖ · ‖∞) ≤ Cd
1N

(

B1,
R2

0ǫ

K1(RDη,m,T +D2
η,m,T )

, ‖ · ‖2
)

,

where C1 > 0 is a uniform constant. Hence,

logN (G+|X , ǫ, ‖ · ‖∞) ≤ O
(

d log

(

1 +
K1(RDη,m,T +D2

η,m,T )

R2
0ǫ

))

.

Applying Lemma 2 with α = K1/
√
n, we obtain

ℜ(G+|X) = O



K1

√

√

√

√

d

n
log

(

1 +

√
n(RDη,m,T +D2

η,m,T )

R2
0

)



 . (26)

We next evaluate ℜ(G−|X) by using a linear approximation. Since |σ′′(·)| ≤ K2, we get

|σ(θ′⊤x)− σ(θ⊤x) − σ′(θ⊤x)(θ′ − θ)⊤x| ≤ K2‖θ′ − θ‖22.

Therefore, we get for θ = (θ, θ′) ∈ Ω−,

∣

∣

∣

∣

gθ(x)−
σ′(θ⊤x)(θ′ − θ)⊤x
‖θ − θ′‖2

∣

∣

∣

∣

≤ K2‖θ − θ′‖2 ≤ K2R0.

From this approximation, the Rademacher complexity can be bounded as follows.

ℜ(G−|X) ≤ K2R0 +
1

n
E

[

sup
θ∈Ω−

n
∑

i=1

ǫi
σ′(θ⊤xi)(θ′ − θ)⊤xi

‖θ − θ′‖2

]

≤ K2R0 +
1

n
E






sup

‖θ‖2≤R+Dη,m,T ,
‖w‖2≤1

n
∑

i=1

ǫiσ
′(θ⊤xi)w

⊤xi






.

When
√

‖θ1 − θ2‖22 + ‖w1 − w2‖22 ≤ ǫ for ‖θi‖2 ≤ R+Dη,m,T and ‖wi‖2 ≤ 1, we get for ‖x‖2 ≤ 1,

|σ′(θ⊤1 x)w
⊤
1 x− σ′(θ⊤2 x)w

⊤
2 x| ≤ |(σ′(θ⊤1 x)− σ′(θ⊤2 x))w

⊤
1 x|+ |σ′(θ⊤2 x)(w1 − w2)

⊤x|
≤ (K1 +K2)ǫ.

We set

G′−
def
= {x→ σ′(θ⊤x)w⊤x | ‖θ‖2 ≤ R+Dη,m,T , ‖w‖2 ≤ 1}.

Therefore, by the same argument as the case of G+, the following bound holds.

N (G′−|X , ǫ, ‖ · ‖∞) ≤ Cd
2N

(

B1,
ǫ

(K1 +K2)(R +Dη,m,T )
, ‖ · ‖2

)

,

where C2 > 0 is a uniform constant. Hence,

logN (G′−|X , ǫ, ‖ · ‖∞) ≤ O
(

d log

(

1 +
(K1 +K2)(R +Dη,m,T )

ǫ

))

.

By Lemma 2 with α = 1/
√
n, we get

ℜ(G−|X) ≤ O
(

K2R0 +

√

d

n
log
(

1 +
√
n(K1 +K2)(R +Dη,m,T )

)

)

. (27)
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Combining (25), (26), (27) with R0 =
√

d/n, and Lipschiz continuity of lγ , we obtain

ℜ(F1|X) ≤ O
(

m
1
2−βDη,m,T

γ
(1 +K1 +K2)

√

d

n
log (n(1 +K1 +K2)(R +Dη,m,T ))

)

.

Now, let us turn to the second part of Proposition 8. Let us assume that the function σ is convex and
satisfies σ(0) = 0. The main argument uses the convexity of activation function in the same spirit as
Chinot et al. (2019). As for the first part, with probability larger than 1− δ over the initialization

max
r∈{1,...,m}

‖θ(0)r ‖2 ≤ R
def
=

√

1

b
log

(

mA

δ

)

.

We only focus on the control of ℜ(H|X).

ℜ(H|X) =
1

n
E

[

sup
Θ∈Ω

n
∑

i=1

ǫifΘ(xi)

]

=
1

n
E

[

sup
Θ∈Ω

n
∑

i=1

ǫi
(

fΘ(xi)− fΘ(0)(xi)
)

]

=
1

n
E

[

sup
Θ∈Ω

n
∑

i=1

ǫi

m
∑

r=1

ar
mβ

(

σ(θTr xi)− σ(θ(0)Tr xi)
)

]

=
1

n
E



sup
Θ∈Ω

∑

(i,r)∈A
ǫi
ar
mβ

(

σ(θTr xi)− σ(θ(0)Tr xi)
)





+
1

n
E



sup
Θ∈Ω

∑

(i,r)∈Ac

ǫi
ar
mβ

(

σ(θ(0)Tr xi)− σ(θTr xi)
)





where A = {(i, r) ∈ {1, · · · , n} × {1, · · · ,m} : σ(θTr xi)− σ(θ(0)Tr xi) ≥ 0}.

Let us control the first term (i.e for (i, r) ∈ A). For any i, r in A let ψi,r : R 7→ R defined for all
u ∈ R as:

ψi,r(u) = σ(u+ θ(0)
T

r xi)− σ(θ(0)
T

r xi)

The functions ψi,r are such that ψi,r(0) = 0. There are convex because σ is. In particular for any

α ≥ 1 and u ∈ R, ψi,r(αu) ≥ αψi,r(u). We also have ψi,r

(

(θr − θ(0)r )Txi
)

= σ(θTr xi) − σ(θ(0)Tr xi).

Since Θ ∈ Ω we have ‖Θ−Θ(0)‖2 ≤ Dη,m,T and for any r ∈ {1, · · · ,m}, ‖θr − θ(0)r ‖2 ≤ Dη,m,T . As a
consequence, for any (i, r) ∈ A, there exists βi,r ∈ [0, 1] such that

Dη,m,T

‖θr − θ(0)r ‖2
ψi,r

(

(θr − θ(0)r )Txi
)

= βi,rψi,r

(

Dη,m,T

‖θr − θ(0)r ‖2
(θr − θ(0)r )Txi

)
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Since for any i ∈ {1, · · · , n}, ∑m
r=1

‖θr−θ(0)
r ‖2

CMmβ βi,r ≤ 1, we get

1

n
E sup

Θ∈Ω

∑

(i,r)∈A
ǫi
ar
mβ

(

σ(θTr xi)− σ(θ(0)Tr xi)
)

≤ 1

n

CM

Dη,m,T
E



 sup
Θ=(θr)mr=1:‖θr−θ

(0)
r ‖2≤Dη,m,T

∑

(i,j)∈A
ǫiar
‖θr − θ(0)r ‖2
CMmβ

βi,rψi,r

(

Dη,m,T (θr − θ(0)r )Txi

‖θr − θ(0)r ‖2

)





≤ 1

n

CM

Dη,m,T
E






sup

Θ=(θr)
m
r=1:‖θr‖2≤Dη,m,T

b=(br)
m
r=1,br∈[0,1],

∑m
r=1 br≤1

n
∑

i=1

ǫi

m
∑

r=1

arbrψi,r

(

θTr xi
)







=
1

n

CM

Dη,m,T
E






sup

Θ=(θr)
m
r=1:‖θr‖2≤Dη,m,T

b=(br)
m
r=1,br∈[0,1],

∑m
r=1 br≤1

n
∑

i=1

ǫi

m
∑

r=1

arbr
(

σ((θr + θ(0)r )Txi)− σ(θ(0)Tr xi)
)






.

Therefore, with probability larger than 1− δ,
1

n
E sup

Θ∈Ω

∑

(i,r)∈A
ǫi
ar
mβ

(

σ(θTr xi)− σ(θ(0)Tr xi)
)

≤ 1

n

CM

Dη,m,T
E









sup
‖θr‖2≤Dη,m,T ;‖θ̃r‖2≤R
b=(br)

m
r=1,br∈[0,1],

∑m
r=1 br≤1

n
∑

i=1

ǫi

m
∑

r=1

arbr
(

σ((θr + θ̃r)
Txi)− σ(θ̃Tr xi)

)









≤ 1

n

CM

Dη,m,T
E

[

sup
θ:‖θ‖2≤Dη,m,T ;‖θ̃r‖2≤R

n
∑

i=1

ǫi
(

σ((θ + θ̃)Txi) + sup
‖θ̃r‖≤R

n
∑

i=1

ǫiσ(θ̃
Txi)

)

]

≤ K1

n

CM

Dη,m,T
E

[

sup
θ:‖θ‖2≤Dη,m,T ;‖θ̃r‖2≤R

n
∑

i=1

ǫi(θ + θ̃)Txi + sup
‖θ̃r‖2≤R

n
∑

i=1

ǫiθ̃
Txi

]

≤ K1√
n

CM

Dη,m,T
(Dη,m,T + 2R) =

K1m
1/2−β(Dη,m,T + 2R)√

n
.

Let us turn to the second term. For any (i, r) in Ac let ψ̃i,r : R 7→ R defined for all u ∈ R as:

ψ̃i,r(u) = σ(u+ θTr xi)− σ(θTr xi)

We have ψ̃i,r

(

(θ
(0)
r − θr)Txi

)

= σ(θ
(0)T
r xi) − σ(θTr xi). Using the same path as for (i, j) ∈ A, with

probability larger than 1− δ, we obtain,

1

n
E sup

Θ∈Ω

∑

(i,r)∈Ac

ǫi
ar
mβ

(

σ(θ(0)Tr xi)− σ(θTr xi)
)

≤ 1

n

CM

Dη,m,T
E









sup
‖θr‖2≤Dη,m,T ,‖θ̃r‖2≤R+Dη,m,T

b=(br)
m
r=1,br∈[0,1],

∑m
r=1 br≤1

n
∑

i=1

ǫi

m
∑

r=1

arbr
(

σ((θr + θ̃r)
Txi)− σ(θ̃Tr xi)

)









.

≤ K1√
n

CM

Dη,m,T
(3Dη,m,T + 2R) .
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