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Computational methodologies are increasingly addressing modeling of the whole cell at
the molecular level. Proteins and their interactions are the key component of cellular
processes. Techniques for modeling protein interactions, thus far, have included protein
docking and molecular simulation. The latter approaches account for the dynamics of
the interactions but are relatively slow, if carried out at all-atom resolution, or are sig-
nificantly coarse grained. Protein docking algorithms are far more efficient in sampling
spatial coordinates. However, they do not account for the kinetics of the association
(i.e., they do not involve the time coordinate). Our proof-of-concept study bridges the
two modeling approaches, developing an approach that can reach unprecedented simu-
lation timescales at all-atom resolution. The global intermolecular energy landscape of a
large system of proteins was mapped by the pairwise fast Fourier transform docking
and sampled in space and time by Monte Carlo simulations. The simulation protocol
was parametrized on existing data and validated on a number of observations from
experiments and molecular dynamics simulations. The simulation protocol performed
consistently across very different systems of proteins at different protein concentrations.
It recapitulated data on the previously observed protein diffusion rates and aggregation.
The speed of calculation allows reaching second-long trajectories of protein systems
that approach the size of the cells, at atomic resolution.

protein recognition j protein crowding j energy landscape j protein interaction

Rapid progress in experimental and computational techniques is redrawing the map of
molecular and cellular biology, eliminating old boundaries between research fields, and
creating opportunities for breakthroughs. In structural biology, AlphaFold has achieved
unprecedented near-experimental accuracy in predicting the structure of individual
proteins (1) and, at the same time, a similar approach is successfully used in a different
research field—protein docking—to predict the structure of protein complexes (2, 3).
Techniques for modeling protein interactions (4) thus far have consisted of two major
categories: (1) protein docking (5), such as the fast Fourier transform (FFT) algorithm
(which, in short computing times, performs full systematic searches through transla-
tional and rotational degrees of freedom) (6), which can be combined with approaches
modeling large conformational changes (7–9); and (2) molecular simulations, such as
molecular dynamics (MD) or Brownian dynamics (BD) (10). Borrowing from the
4-dimensional (4D) space-time continuum terminology, protein docking has been
restricted to sampling of the intermolecular energy landscape at atomic resolution in
the 3D space component only, whereas atomic resolution molecular simulation proto-
cols sample the entire 4D landscape, albeit, due to the high computational cost, for
short timescales only. Simulation approaches have been applied before, across the fields,
to the protein docking problem, broadly for the refinement of the docking global
search predictions (9, 11), with more advanced approaches addressing the global dock-
ing search itself (12–14). Our study puts forward the reverse across-the-fields applica-
tion of the docking techniques to the dynamics of the protein interactions.
The great accomplishments in structure prediction based on deep learning do not

solve the protein docking problem. This problem, traditionally thought of as a 3D
problem, simply requires adding the missing time coordinate from the docking space-
time continuum. Refocusing docking from the problem of finding the unique global
minimum solution to sampling the enormous multitude of transient interactions
(15, 16) dominating the crowded cellular environment allows propagating protein
interactions in time. Such propagation can take full advantage of the vast amount of
powerful and efficient methodologies accumulated in the protein docking field (5).
Thus, it opens extraordinary new opportunities in structural modeling of the biomolec-
ular mechanisms, allowing modeling of larger systems, at longer timescales, all based
on the inherent-to-docking atomic resolution.

Significance

Advances in computational
modeling have led to an
increasing focus on larger
biomolecular systems, up to the
level of a cell. Protein interactions
are a central component of
cellular processes. Techniques for
modeling protein interactions
have been divided between two
fields: protein docking (predicting
the static structures of protein
complexes) and molecular
simulation (modeling the
dynamics of protein association,
for relatively short simulation
times at atomic resolution). Our
study combined the two
approaches to reach very long
simulation times. The study makes
the model more adequate to the
real cells, to explore cellular
processes at atomic resolution to
better understand molecular
mechanisms of life, and to use this
knowledge to improve our ability
to treat diseases.

Author affiliations: aComputational Biology Program,
The University of Kansas, Lawrence, KS; bDepartment
of Molecular Biosciences, The University of Kansas,
Lawrence, KS; cUniversity of Grenoble Alpes, CNRS,
Grenoble INP, LJK, Grenoble, France; and dDepartment of
Integrative Biology and Physiology, Institute for Quantitative
and Computational Biosciences, University of California, Los
Angeles, CA

Author contributions: I.A.V., S.G., N.W.J., P.J.K., and
E.J.D. designed research; I.A.V., S.G., and N.W.J.
performed research; I.A.V., S.G., N.W.J., P.J.K., and E.J.D.
analyzed data; and I.A.V., S.G., N.W.J., P.J.K., and E.J.D.
wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2022 the Author(s). Published by PNAS.
This open access article is distributed under Creative
Commons Attribution License 4.0 (CC BY).
1To whom correspondence may be addressed. Email:
vakser@ku.edu.

This article contains supporting information online at
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2210249119/-/DCSupplemental.

Published October 3, 2022.

PNAS 2022 Vol. 119 No. 41 e2210249119 https://doi.org/10.1073/pnas.2210249119 1 of 8

RESEARCH ARTICLE | BIOPHYSICS AND COMPUTATIONAL BIOLOGY OPEN ACCESS

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
ni

v 
Jo

se
ph

 F
ou

ri
er

/I
N

PG
 o

n 
N

ov
em

be
r 

28
, 2

02
2 

fr
om

 I
P 

ad
dr

es
s 

12
9.

88
.3

7.
13

7.

https://orcid.org/0000-0002-1903-7220
https://orcid.org/0000-0001-6817-1568
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:vakser@ku.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2210249119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2210249119/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2210249119&domain=pdf&date_stamp=2022-10-01


In the context of the spectacular advances in experimental and
computational structural biology, structure-based modeling of
protein interactions in the living cell is becoming more central
than ever before (17–19). Traditional simulation protocols (e.g.,
MD, BD) are either relatively slow, if carried out at the all-atom
representation (20), or significantly coarse grained, with one par-
ticle representing a protein (21). Thus, there are only a few exam-
ples of structure-based simulations at the scale of the whole cell
(18, 20, 22). Cell modeling is important for a variety of reasons,
including integration of data into a unified representation of
knowledge about an organism, prediction of multinetwork phe-
notypes, filling the gaps in our knowledge of cellular processes,
and development of our ability to modulate them (17, 23–25).
Early approaches to cell modeling represented proteins by hard
spheres (21, 26). BD simulations of a part of the Escherichia coli
cytoplasm were run for 20 μs in rigid-body all-atom representa-
tion (27), coarse grained in a subsequent study (28). All-atom
MD simulations of bacterial cytoplasm were run for 100 ns (29).
Since then, the all-atom MD simulations of cellular environment
have reached the microsecond timescales (20, 30–32). Modeling
also has been used to study the confinement effect and hydrody-
namic properties of the crowded environment (33), the physical
limits of cells (34), and packing of the cellular environment
(35, 36). The FFT approach was used to study protein folding
and binding in the crowded environment (37, 38) and in the
free-energy calculations (39).
It has been commonly accepted that mesoscopic particles,

such as proteins, in simple solvents can be described with
Brownian diffusion. However, this description fails dramatically
with molecules in complex biological media, such as the cellular
environment (40, 41). While theoretical models can, in princi-
ple, explain some of these effects, their applicability requires a
priori knowledge of the molecular organization of crowding
particles in time and space (42). Thus, simulation techniques,
such as MD or BD, are currently the only computational way
to access dynamical characteristics of cellular environments.
MD simulations are usually restricted to very short timescales.
BD simulations allow access to much longer times, but require
careful mesoscopic parameterization, for example, with diffu-
sion constants. An alternative to these simulation methods is
Monte Carlo (MC) protocols, which allow computing kinetic
parameters, such as diffusion coefficients. It requires only com-
putation of the potential energy of the system at each time
step. The MC estimate of the self-diffusion coefficient in
the continuous move case is in good agreement with the BD
simulations (43).
Rigorous experimental tests of the predictions from cell simula-

tions have remained elusive. They have focused almost exclusively
on validating predictions of the diffusion coefficient of a protein
in a crowded cellular environment by measurements of fluores-
cent protein diffusion in cells (17, 29). These results showed that
effects such as transient interactions and excluded volume signifi-
cantly decrease the rate of diffusion of proteins in cells (17). Rap-
idly evolving experimental techniques, such as cryoelectron
tomography (44) and high-resolution cryoelectron microscopy
(45), time-resolved macromolecular crystallography (46), X-ray
photon correlation spectroscopy (47), in-cell NMR spectroscopy
(48), and cross-linking mass spectrometry (49, 50) will provide
new data on protein diffusion and dynamics of protein associa-
tion in the crowded cellular environment, including intermediate
states and assembly patterns of the protein systems, which can be
used for experimental validation of the modeling.
Our proof-of-concept study linked FFT-accelerated systematic

docking with the MC simulations, allowing the propagation of

large protein systems in time with great computational effi-
ciency. The approach was validated on experimental and com-
putational observations from prior studies and is capable of
reaching second-long simulations of the cellular environment at
all-atom resolution.

Materials and Methods

Modeling Paradigm. Our approach was to dramatically speed up the sampling
of the intermolecular energy landscape by skipping the low-probability (high-
energy) states, focusing only on the set of high-probability (low-energy) states
corresponding to the energy minima. The “minima hopping” paradigm has
been widely used since the early days of molecular modeling for the sampling
of the energy landscapes of biomolecules, such as conformational analysis of
biopolymers (51), rotamer libraries (52), and refinement of protein–protein inter-
faces (53), providing extraordinary savings of computing time by avoiding travel
in low-probability areas of the landscape. Markov state models have been used
to study protein folding, dynamics (54), and association (55) by representing the
energy landscape by a set of the energy minima and the probabilities of transi-
tion between them. In this study we use a similar idea, namely a Markov state
MC approach to sampling transitions between low-energy states, to perform very
long trajectory simulations of large systems of proteins at atomic resolution.

Molecular Systems. Simulations were performed on three different sets of pro-
teins. To determine the volume fraction of the system, for each protein, the vol-
ume was calculated by the 3V server (3vee.molmovdb.org) (56).

Set 1. Five arbitrarily selected globular proteins of average size to represent a
“typical” crowded cellular environment (hereafter called “5 mix” set; Fig. 1A
and SI Appendix, Table S1).
Set 2. Set 1 plus green fluorescent protein (“GFP + 5 mix” set; Fig. 1B and SI
Appendix, Table S1) for comparison with the experimental data on GFP
diffusion.
Set 3. Three small proteins (“3 mix” set; Fig. 1C and SI Appendix, Table S1)
from Feig and coworkers (22) representing the nonmembrane part of that
study: ubiquitin, G protein B subunit, and villin.

Generation of the Initial State. For the starting point of the simulation, the
proteins were placed on a cubical grid of a preset size, with the step of the grid cal-
culated according to the desired protein volume fraction. In this study, we used a
500 × 500 × 500-Å3 grid (the linear dimension approximately half of that of the
smallest cell—Mycoplasma genitalium) with periodic boundary conditions. Each
protein had an equal share of copies (e.g., in the 5 mix set of the 5-proteins mix-
ture, each protein had a 1 in 5 share of copies). The total number of protein copies
and the step of the grid were calculated according to the preset protein volume
fraction V. In this study, we used a range of volume fraction values, from V = 0.10
to close to physiological V = 0.30. SI Appendix, Table S2 shows the total number
of molecular copies corresponding to each volume fraction.

The proteins were placed in a random order. They were randomly rotated and
translated within half of the grid step interval. No collision check was applied at
this stage since the collisions were eliminated at the start of the simulation. SI
Appendix, Fig. S1 shows a fragment of the initial state of the system before the
start of the simulation.

Simulation Protocol. An MC procedure was developed to simulate the cellular
environment with proteins in rigid-body approximation, using an all-atom repre-
sentation. The procedure by design is based on proteins transitioning between
different protein–protein associations. Thus, our approach applies to crowded
protein environments only, in which proteins encounter each other in close prox-
imity and monomeric states (the absence of all protein–protein interactions,
including transient) are uncommon. The energy landscape of the system is rep-
resented by our GRAMM FFT docking (6) scores/energies, based on the step
function approximation of the Lennard-Jones potential (57). In this representa-
tion, the docking poses (including the multiplicity of transient encounters) corre-
spond to negative energy values, and the monomeric states (i.e., the barriers
between the minima) have energy zero.

The position of each protein is described with the 3 × 3 rotation matrix and the
translation vector relative to the origin of the coordinate system. Protein–protein
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docking poses are systematically precomputed for all of the rotations and transla-
tions of each protein, relative to all of the other proteins in the system by GRAMM
docking, unscored and unrefined, at intermediate resolution, previously optimized
for the docking of unbound proteins (58) (grid step 3.5 Å, repulsion 9.0, and rota-
tion interval 10°). For proteins A and B, both docking combinations A-B (A is the
ligand and B is the receptor) and B-A (B, ligand; A, receptor) are precalculated.
Thus, for example, for the 5 mix set the number of precalculated docking outputs is
25 (5 × 5). If A is the moving molecule (ligand), its new putative energy is taken
from the A-B docking (and vice versa).

The docking results are stored on 6D grids (3 translations and 3 rotations),
accessed during the MC runs. The MC move is initiated by a random selection of
a protein (“ligand”) considered for a move to proteins (“receptors”) within a cer-
tain neighborhood (described below) from the current position of the ligand.
The receptor to move to is selected randomly among all of the neighborhood
proteins. Our minima-hopping paradigm, based on the approximation of the
Lennard-Jones potential (see above), assumes only the short-distance interac-
tions between the immediate docking partners. The presence of the neighboring
proteins not selected for this move is accounted for by the detailed balance con-
dition in the Metropolis acceptance criterion (described below). Once the ligand
and the receptor are selected, the move is chosen randomly among the precalcu-
lated 30,000 lowest energy-docking matches for that ligand-receptor pair.

The simulation step is completed when all of the proteins have attempted to
move. Once the ligand moves, the energy (GRAMM docking score) of the new
match is added to the energy of the ligand and the energy of the old match it
detaches from is subtracted. Correspondingly, the energy of the new receptor adds
the energy of that new match, and the energy from the old receptor (the one the
ligand is detaching from) subtracts the energy of the detaching docking match.

The move is accepted or rejected based on the Metropolis acceptance crite-
rion (detailed balance condition). Ligands (L) are allowed to move to the neigh-
boring receptors (R) only (randomly selected among all neighboring proteins),
defined as those within the distance between R and L geometric centers less
than the sum of the R and L radii, plus 50 Å, to accommodate binding to the first
layer of receptors in the crowded environment. Collision check is performed for
each attempted move according to the Cα-Cα minimal distance of 8 Å. The
moves resulting in collision are rejected. Fig. 2 illustrates the general principle
of the move set. Periodic boundary conditions are introduced. Temperature is a
parameter to be adjusted for an adequate acceptance rate.

The detailed balance condition for the system was implemented. The proba-
bility Pij of move from step i to step j had to be the same as Pji from j to i. Accord-
ingly, the Metropolis criterion was normalized (59) as

Pij = minf1, exp½�ðEj � EiÞ=T� × Ni=Njg, [1]

where Nm is the numbers of possible moves (receptors to move to; SI Appendix,
Fig. S2) from state m with probability to be selected 1/Nm; Em is the energy of
state m; and T is the temperature (a scaling factor).

As noted above, in our system, the monomeric states have energy zero, and
all of the minima have negative energy values. Our model assumes no addi-
tional barriers between states i and j. We also assume the same curvature of the
potential wells of each state. Thus, in the Kramers’ (or Arrhenius) rate equation,
which for our system can be written as

k = A � Pij, [2]

where k is the rate constant and Pij is the energy and temperature-based proba-
bility of move from step i to step j (Eq. 1), the prefactor A is the same for all tran-
sitions. Thus, our scheme differs from the kinetic MC, because the transition
rates are computed on the fly at each step and are proportional (with the cons-
tant A) to the acceptance probability of a new state.

The observed parameters of the simulation (per simulation step) were potential
energy E, the average energy of a molecule (the sum of all molecules’ energies—
GRAMM docking scores—divided by the number of molecules); the shift (the aver-
age length of a molecule’s move per simulation step); the MSD (the average
mean square deviation of a molecule’s geometric center after unwrapping coordi-
nates from the periodic boundary conditions); acceptance rate (percentage of
accepted moves); and the aggregation number Nc (the average number of pro-
teins in an aggregate/oligomer formed by docked proteins). To allow off-the-grid

Fig. 2. The simulation move set. Docking results are precalculated and
stored on 6D grids, accessed during the MC runs. The move set includes a
move of one protein (L, ligand) at a time to a putative docking match with
another protein (R, receptor) in the vicinity of the ligand. The energies of
the states are set according to the docking scores. The move is accepted or
rejected based on the Metropolis criterion (detailed balance condition).

Fig. 1. Molecular systems used in the study. (A) Five arbitrarily selected globular proteins of average size to represent a typical crowded cellular environment
(PDB: 1mat, 1g81, 3chy, 1jxb, and 1cm2). (B) GFP (1ema). (C) Three small proteins: ubiquitin (1ubq), G protein B subunit (1pga), and villin (1vii). Molecular images
were obtained using PyMOL version 2.5 (Schr€odinger).
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relaxation of the system, the reference position for MSD calculation was set at step
100. Diffusion rates Dt were calculated from the slope of MSD according to the
Einstein relationship Dt = MSD(t)/6t, where t is the lag time.

Results and Discussion

Temperature. The results of the simulation on the 5 mix set at
the physiological volume fraction (Fig. 3) and lower volume frac-
tions (SI Appendix, Fig. S3) showed that at low temperatures, the
system is frozen (little to no movement of the proteins). At high
temperatures, the system is overheated (moves accepted regardless
of the energy). The melting curves (Fig. 3 and SI Appendix, Fig.
S3) had a clear inflection point at T = 100, consistently at all vol-
ume fractions, at which the system melts (breaks from the freeze)
but is not overheated yet, and thus is likely most representative of
the physiological conditions. The value of T corresponding to the
melting phase transition reflects the docking energy landscape
(mapped in GRAMM energy units), as follows from Eq. 1,
namely the energy gap between a few deep minima (frozen system
states) and multiple high-energy/transient states (melted system).
Simulation on the 3 mix set, which is a very different system

from the 5 mix set (the 3 mix proteins are much smaller than
the ones in the 5 mix), yielded virtually identical melting
behavior, at all volume fractions, with the same optimal tem-
perature T = 100 (SI Appendix, Fig. S4). This confirms the
robustness of our approach and adds evidence to the validity of
our approximation. Accordingly, for the rest of this study, we
used T = 100 as the temperature of the systems.

Calibration. We calibrated the time units of the simulation pro-
tocol on the available data from MD simulation of villin at the
physiological volume fraction in the nonmembrane system (22).
Here, the diffusion coefficient Dt value was determined to be
3.5 Å2/ns, which, according to the authors, is three times greater
than in the experiment. Our simulation of the villin within the
3 mix protein set at the physiological volume fraction (SI
Appendix, Fig. S5) allowed us to calibrate the time variable t of
our system by matching the Dt values calculated as Dt = MSD/
6t (see Materials and Methods) with the MD results, corrected by
the above-mentioned factor of 3. Accordingly, one step of our
simulation protocol was determined to be 20 ns.

Validation and Quantitative Characterization of Protein Systems.
The simulation protocol was validated on a number of observ-
able parameters, testing for consistency of the results and corre-
spondence to experimental and modeling studies. Our minima
hopping paradigm, which by design allows no intermediate
states between the minima (the minima correspond to the pro-
tein bound to another protein), assumes close proximity of the
minima to one another (i.e., a crowded environment). Thus,
our approximation would not hold for dilute systems. How-
ever, it allows for an observation of quantitative characteristics
at a range of volume fractions. In our study, this range was set
from 0.1 to close to physiological 0.3.
Melting temperature. As described above, the melting tempera-
ture for very different protein systems—the 5 mix set of average
size proteins and the 3 mix set of much smaller proteins—at
the full range of volume fractions, from 0.1 to 0.3, is the

Fig. 3. Simulations of the 5 mix set at physiological volume fraction and a range of temperatures. The volume fraction V was set to close to physiological
0.3 value. The top panels show the energy E, shift, and MSD versus simulation steps. MSD was calculated as the average for 1mat proteins. The tempera-
tures T = 1 to 10,000 are shown by different colors. The data on the plots were smoothed by a 100-step averaging sliding window. At low temperatures,
the system is frozen (little or no movement of the proteins). At high temperatures, the system is overheated (moves accepted regardless of the energy).
The melting curves (the bottom panels in log scale) have a clear inflection point at T = 100, indicating the optimal temperature at which the system melts
(breaks from the freeze) but is not overheated yet.
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same. This supports the validity of our approximation and its
consistency across different concentrations and size scales
of proteins.
Diffusion rate in different systems. Experimental data on the dif-
fusion of GFP in the cytoplasm of E. coli (60) puts the GFP
diffusion coefficient Dt in the 0.2 to 0.9 Å2/ns range. We ran
simulations of the GFP with the 5 mix protein set at a physio-
logical volume fraction. The results (SI Appendix, Fig. S6)
showed that the GFP diffusion rate was 0.3 Å2/ns, in excellent
agreement with the experiment. It provides another confirma-
tion of the approach validity and consistency across very dispa-
rate systems of proteins.
Diffusion rate dependence on concentration. Simulation in the
5 mix set at different volume fractions showed a pronounced
slowdown of the diffusion Dt with the increase in the protein
volume fraction V in accordance with long-established evidence
(20, 22). The data (Fig. 4) are an excellent fit to the Cohen-
Turnbull expression (61) Dt = D0 exp [�γ V/(1 � V)], where
D0 is the dilute diffusion rate and γ is a constant characterizing
the slowdown of the diffusion with the increase in the volume
fraction (D0 = 4.9 Å2/ns and γ = 7.7 in our simulation). The
quantitative scope of this slowdown according to the ratio of
the diffusion rates, for our range of volume fractions, is avail-
able from the MD simulation for villin as 5.4, from V = 0.1 to
0.3 (22). In our simulation of the 3 mix set, that slowdown for
villin was 3.4, in good agreement with the MD data.
Diffusion rate dependence on size. It is well established by experi-
ment and simulation that larger proteins diffuse at a slower rate
(22, 60). Due to the complexity and heterogeneity of the systems,
the quantitative estimates of the size versus diffusion correlation
vary significantly. Our simulation of sets of small proteins versus
those of much larger proteins (see above) showed that the smaller
ones diffuse significantly faster. Diffusion of proteins in the same
5 mix set simulation showed clear size versus diffusion rate corre-
lation, at all volume fractions (Fig. 5). A similar trend was
observed in the simulation of the 3 mix set (SI Appendix, Fig.
S7). The rate of the slowdown scales exponentially with the size
of the protein defined by the number of residues N (SI Appendix,
Table S3 includes the parameters).

The Einstein-Stokes equation for diffusion of spherical particles
predicts that the diffusion rate is inversely proportional to the par-
ticle radius. Thus, the slowdown of the diffusion relative to the
fastest diffusion rate (Dt max/Dt) would have linear dependence on
the radius. Our data (SI Appendix, Fig. S8), based on the protein
size defined by the radius-related metric R = N1/3, show that this
dependence is close to linear at lower volume fractions. However,
the slowdown rate becomes more pronounced for larger proteins,
deviating to exponential at closer to physiological concentrations
(60), possibly reflecting the complexity and heterogeneity of the
dense protein solutions. Modifying the move set based on the
moves acceptance probability (43), which we plan to use in a
future study, may provide further insights into the diffusion
dependence on protein size at higher volume fractions.
Aggregation. Experimental data on the aggregation of proteins
(cluster formation) at close to physiological concentrations
point to the aggregation number Nc (the average number of
proteins in protein assemblies) for lysozyme Nc ≅ 5 (62), and
monoclonal antibodies Nc = 4 to 6 (63). Our data obtained on
the 5 mix set (Fig. 6A), at the physiological volume fraction
0.3, yielded the aggregation number (cluster size) Nc = 3.9, in
excellent agreement with these estimates. The results show that
the aggregation number does not change much across the
whole range of the volume fractions (Fig. 6A). This explains
the similarity of the energy values E per molecule at different
volume fractions (Fig. 3 and SI Appendix, Fig. S3), since
according to our move set, this energy is determined by the
number of the protein’s interfaces with other proteins.

The distribution of the cluster sizes (Fig. 6B) is in qualitative
agreement with the results of the MD simulation in the Nc = 1
to 10 range (22). On average, at each step of the simulation, a
small percentage of proteins in our system (4% for V = 0.3 and
7% for V = 0.1) are monomers (proteins whose partners have
moved away and who have not acquired another partner yet,
according to our move set).
Residence time. The existing estimates of the proteins’ residence
time (the lifetime of a protein pair) vary dramatically among

Fig. 4. The slowdown of protein diffusion with the increase in protein vol-
ume fraction. The diffusion rate Dt was calculated for 1mat proteins in the
5 mix set. The solid line is the data fit by the Cohen-Turnbull expression
(61) Dt = D0 exp [�γ V/(1 � V)], where D0 is the dilute diffusion rate, and γ is
a constant characterizing the slowdown of the diffusion with the increase
of the volume fraction V (D0 = 4.9 Å2/ns and γ = 7.7 in our simulation).

Fig. 5. Diffusion rates versus size of proteins. Results obtained on the
5 mix set for the range of volume fractions. The vertical axis shows
the slowdown of the diffusion rate relative to the fastest diffusion rate. The
slowdown correlates with the size of the protein at all volume fractions.
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the studies. An experimental study of lysozyme protein solution
determined that the protein clusters (complexes) have a lifetime
longer than the time required to diffuse over a distance of a
monomer diameter (64). Such a distance would correspond
to ∼50 steps in our simulation protocol (1 μs). The MD simu-
lation, however, predicted far shorter lifetimes, with most times
<20 ns (20). In our simulation, at volume fractions comparable
to the ones in the above studies, the protein residence time
is ∼570 ns. Thus, our results are between the above experimen-
tal and MD estimates.

Trajectory Length. Running the 5 mix protein set in a 500 ×
500 × 500-Å3 box (the smallest cell is ∼1,000 Å in linear
dimension) for 10,000 steps (200 μs) at volume fraction 0.3

(Fig. 7) takes ∼5 h on a 3.1-GHz Intel Core i7 processor
(one core). The same calculation at volume fraction 0.1 takes
∼30 min. That puts a 0.3- to 3-s simulation of such system in
about 1 year 1 central processing unit-core time frame. Given the
all-atom resolution of our approach, this is an extraordinarily
long simulation trajectory, which provides an opportunity to
explicitly recreate in silico the physiological mechanisms that now
are beyond the reach of atomic-resolution simulations.

Conclusions and Future Directions

Spectacular achievements of the deep learning approaches to
protein structure prediction open opportunities for protein
docking to refocus from the unique lowest energy states to the
enormous multitude of the transient protein interactions that
dominate the crowded cellular environment. Taking account
of the transient interactions makes it possible to propagate in
time the results of static protein docking, thus taking advantage
of the powerful and efficient methodologies accumulated in the
protein docking field. It opens exciting opportunities in struc-
tural modeling of the protein interactions, allowing modeling
of larger systems at longer timescales, based on the atomic reso-
lution, which is integral to docking approaches.

Rapid progress in experiment and modeling is leading to the
merger of molecular and cellular biology fields. Computational
methodologies increasingly address modeling of the whole cell
at the molecular level. Whole-cell modeling can provide better
understanding of cellular mechanisms and increase our ability
to modulate them. The overarching goal, however, is the intel-
lectual challenge of modeling life in silico.

Proteins and their interactions are the key component of cellu-
lar processes. Techniques for modeling protein interactions
include protein docking and molecular simulation. The latter
approaches account for the dynamics of the interactions. How-
ever, they are relatively slow, if carried out at the all-atom resolu-
tion, or significantly coarse grained (e.g., one particle representing
a protein). Protein docking algorithms (e.g., systematic docking
by FFT) are far more efficient in sampling the spatial coordinates.

Fig. 6. Cluster formation. (A) The aggregation number Nc (the average size
of protein clusters) across volume fractions V. (B) Distribution of cluster
sizes at different volume fractions. The total number of proteins in the
simulation box grows with the increase in the volume fraction (SI Appendix,
Table S2). Thus, the absolute numbers of clusters at higher volume
fractions are larger than those at the lower volume fractions.

Fig. 7. The simulation box. Protein volume fraction is the physiological
0.3. The image was obtained using PyMOL version 2.5 (Schr€odinger).
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However, they do not account for the kinetics of the association
(i.e., do not involve the time coordinate). The approach put for-
ward in this study bridges the two modeling techniques. The
global intermolecular energy landscape of a large system of pro-
teins was mapped by the pairwise FFT docking and sampled in
space and time using MC simulations. The approach is capable
of reaching unprecedented simulation timescales at all-atom
resolution.
The simulation protocol was parametrized on existing MD

data and validated on observations from experiments and MD
simulations. The simulation performed consistently across very
different systems of proteins at a broad range of concentrations.
It recapitulated data on the previously observed protein diffu-
sion rates and aggregation. The speed of calculation allows
reaching second-long trajectories of protein systems that
approach the size of the cells at atomic resolution.
The long timescale atomic resolution simulations will provide

the tool to explore the dynamics of cellular processes in struc-
tural detail and address important biological questions based on
the molecular mechanisms involving protein association, such
as cell signaling pathways and cellular metabolism. These simu-
lations can provide important insights into fundamental biologi-
cal problems of the specificity of protein interactions, facilitate

studies of multinetwork phenotypes, emergent behavior in cellu-
lar protein systems, and advance our ability to modulate interac-
tion networks.

This proof-of concept study is obviously just the very begin-
ning of an expansive task of incorporating other types of mac-
romolecules, using more sophisticated force fields that include
electrostatics and solvent effects, more accurately accounting
for energy barriers, optimizing the move set based on the moves
acceptance probability, introducing structural flexibility, adding
membrane environment and other cellular components, multi-
scale modeling, and improving computational efficiency. None-
theless, our study shows that approaches grounded in protein
docking can produce unprecedented dynamic simulations of
protein systems at the cellular scale.

Data, Materials, and Software Availability. All of the study data are
included in the article and/or supporting information.
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