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Abstract: We study Empirical Risk Minimizers (ERM) and Regularized
Empirical Risk Minimizers (RERM) for regression problems with convex
and L-Lipschitz loss functions. We consider a setting where |O| malicious
outliers contaminate the labels. In that case, under a local Bernstein condi-
tion, we show that the L2-error rate is bounded by rN +AL|O|/N , where
N is the total number of observations, rN is the L2-error rate in the non-
contaminated setting and A is a parameter coming from the local Bernstein
condition. When rN is minimax-rate-optimal in a non-contaminated set-
ting, the rate rN+AL|O|/N is also minimax-rate-optimal when |O| outliers
contaminate the label. The main results of the paper can be used for many
non-regularized and regularized procedures under weak assumptions on the
noise. We present results for Huber’s M-estimators (without penalization or
regularized by the �1-norm) and for general regularized learning problems
in reproducible kernel Hilbert spaces when the noise can be heavy-tailed.
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1. Introduction

Let (Ω,A, P ) be a probability space where Ω = X×Y . X denotes the measurable
space of the inputs and Y ⊂ R the measurable space of the outputs. Let (X,Y )
be a random variable taking values in Ω with joint distribution P and let μ be the
marginal distribution of X. Let F denote a class of functions f : X �→ Y . A func-
tion f in F is named a predictor. The function � : Y×Y �→ R+ is a loss function
such that �(f(x), y) measures the quality of predicting f(x) while the true answer
is y. For any function f in F we write �f (x, y) := �(f(x), y). For any distribution
Q on Ω and any function f : X × Y �→ R we write Qf = E(X,Y )∼Q[f(X,Y )].
Let f ∈ F , the risk of f is defined as R(f) := P�f = E(X,Y )∼P [�(f(X), Y )].
A prediction function with minimal risk is called an oracle and is defined as
f∗ ∈ argminf∈F P�f . For the sake of simplicity, it is assumed that the oracle f∗

exists and is unique. The joint distribution P of (X,Y ) being unknown, com-
puting f∗ is impossible. Instead one is given a dataset D = (Xi, Yi)

N
i=1 of N

random variables taking values in X × Y .
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Regularized empirical risk minimization is the most widespread strategy in
machine learning to estimate f∗. There exists an extensive literature on its
generalization capabilities [56, 31, 30, 35, 18]. However, in the past few years,
many papers have highlighted its severe limitations. One main drawback is that
a single outlier (Xo, Yo) (in the sense that nothing is assumed on (Xo, Yo)) can
deteriorate the performances of RERM. Consequently, RERM is in general not
robust to outliers. However, the question below naturally follows:

What happens if only the labels (Yi)
N
i=1 are contaminated?

For example, in [19], the authors raised the question whether it is possible to
attain optimal rates of convergence in outlier-robust sparse regression using reg-
ularized empirical risk minimization. They consider the model, Yi =

〈
Xi, t

∗〉+εi,
where Xi is a Gaussian random vector in R

p with a covariance matrix satisfying
the Restricted Eigenvalue condition [55] and t∗ is assumed to be s-sparse. The
non-contaminated noise is εi ∼ N (0, σ2), while it can be anything when mali-
cious outliers contaminate the labels. The authors prove that the �1-penalized
empirical risk minimizer based on the Huber’s loss function has an error rate of
the order

σ

(√
s
log(p/δ)

N
+

|O| log(N/δ)

N

)
, (1)

with probability larger that 1− δ, where |O| is the number of outliers. Up to a
logarithmic factor, the RERM associated with the Huber loss function for the
problem or sparse-linear regression is minimax-rate-optimal when |O| malicious
outliers corrupt the labels.

1.1. Setting

In this paper, we consider a setup where |O| outputs can be contaminated. More
precisely, let I ∪ O denote an unknown partition of {1, · · · , N} where I is the
set of informative data and O is the set of outliers.

Assumption 1. (Xi, Yi)i∈I are i.i.d with a common distribution P . The ran-
dom variables (Xi)

N
i=1 are i.i.d with law μ.

Nothing is assumed on the labels (Yi)i∈O. They can be adversarial outliers
making the learning as hard as possible. Without knowing the partition I ∪ O,
the goal is to construct an estimator f̂N that approximates/estimates the ora-
cle f∗. A way of measuring the quality of an estimator is via the error rate
‖f̂N − f‖L2(μ) or the excess risk PLf̂ := P�f̂N −P�f∗ . We assume the follow-
ing:

Assumption 2. The class F is convex.

A natural idea to construct robust estimators when the labels might be con-
taminated is to consider L-Lipschitz loss functions [27, 26] that is a losses sat-
isfying ∣∣�(f(x), y)− �

(
g(x), y

)∣∣ ≤ L|f(x)− g(x)| ,
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for every x, y ∈ X × Y and f, g ∈ F . Moreover, for computational purposes we
also focus on convex loss functions [53].

Assumption 3. There exists L > 0 such that, for any y ∈ Y, �(·, y) is L-
Lipschitz and convex.

Recall that the Empirical Risk Minimizer (ERM) and the Regularized Em-
pirical Risk Minimizer (RERM) are respectively defined as

f̂N ∈ argmin
f∈F

1

N

N∑
i=1

�(f(Xi), Yi) ,

and

f̂λ
N ∈ argmin

f∈F

1

N

N∑
i=1

�(f(Xi), Yi) + λ‖f‖ ,

where λ > 0 is a tuning parameter and ‖·‖ is a norm. Under Assumptions 2 and 3
the ERM and RERM are computable using tools from convex optimization [8].

1.2. Our contributions

As exposed in [19], in a setting where |O| outliers contaminate only the labels,
RERM with the Huber loss function is (nearly) minimax-rate-optimal for the
sparse-regression problem when the noise and design of non-contaminated data
are both Gaussian. It leads to the following questions:

1. Is the (R)ERM optimal for other loss functions and regression problems
than the sparse-regression when malicious outliers corrupt the labels?

2. Is the Gaussian assumption on the noise necessary?

Based on the previous works [18, 16, 17, 1], we study both ERM and RERM
for regression problems when the penalization is a norm and the loss function
is simultaneously convex and Lipschitz (Assumption 3) and show that:

In a framework where |O| outliers may contaminate the labels, under a
local Bernstein condition, the error rate for both ERM and RERM can
be bounded by

rN +AL
|O|
N

, (2)

where N is the total number of observations, L is the Lipschitz constant
from Assumption 3, rN is the error rate in a non-contaminated setting
and A is a constant coming from the local Bernstein condition.

When the proportion of outliers |O|/N is smaller than the error rate rN/(AL),
both ERM and RERM behave as if there was no contamination. The result
holds for any loss function that is simultaneously convex and Lipschitz and
not only for the Huber loss function. We obtain theorems that can be used
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for many well-known regression problems including structured high-dimensional
regression (see Section 3.3), non-parametric regression (see Section 3.4) and
matrix trace regression (using the results from [1]). As a proof of concept, for
the problem of sparse-linear regression, we improve the rate (1), even when the
noise may be heavy-tailed. The next question one may ask is the following:

2. Is the general bound (2) minimax-rate-optimal when |O| malicious outliers
may corrupt the labels?

To answer question 2, we use the results from [13]. The authors established
a general minimax theory for the ε-contamination model defined as P(ε,θ,Q) =
(1−ε)Pθ+εQ given a general statistical experiment {Pθ, θ ∈ Θ}. A deterministic
proportion ε of outliers with same the distribution Q contaminates Pθ. When
Y = fθ(X) + ε, θ ∈ Θ and following the idea of [13], we show in Section B
that the lower minimax bounds for regression problems in the ε-contamination
model are the same when

1. Both the design X and the response variable Y are contaminated.

2. Only the response variable Y is contaminated.

Since in our setting, outliers do not necessarily have the same distribution Q,
it is clear that a lower bound on the risk in the ε-contamination model implies
a lower bound when |O| = εN arbitrary outliers contaminate the dataset As
a consequence, for regression problems, minimax-rate-optimal bounds in the ε-
contamination model are also optimal when Nε malicious outliers corrupt only
the labels.

When the bound (2) is minimax-rate-optimal for regression problems in
the ε-contamination model with ε = |O|/N , then it is also minimax-rate-
optimal when |O| malicious outliers corrupt the labels.

The results are derived under the local Bernstein condition introduced in [18].
This condition enables to obtain fast rates of convergence, even when the noise
is heavy-tailed. As a proof of concept, we study Huber’s M -estimators in R

p

(non-penalized or regularized by the �1-norm) when the noise is Cauchy. In these
cases, the error rates are respectively

L

(√
Tr(Σ)

N
+

|O|
N

)
and L

(√
s log(p)

N
+

|O|
N

)
,

where Σ is the covariance matrix of the design X. We also study learning prob-
lems in general Reproducible Kernel Hilbert Space (RKHS). We derive error
rates depending on the spectrum of the integral operator as in [46, 43, 10]
without assumption on the design and when the noise is heavy-tailed (see sec-
tion 3.3).

Remark 1. The general results hold for any Lipschitz and convex loss function.
However, for the sake of simplicity, we present applications only for the Huber
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loss function. Using results from [18], it is possible to apply our main results to
other Lipschitz loss functions.

1.3. Related literature

Regression problems with possibly heavy-tailed data or outliers cannot be han-
dled by classical least-squares estimators. This lack of robustness of least-squares
estimators gave birth to the theory of robust statistics developed by Peter Hu-
ber [27, 26, 28], John Tukey [51, 52] and Frank Hampel [23, 24]. The most
classical alternatives to least-squares estimators are M-estimators. They consist
in replacing the quadratic loss function by other loss functions, less sensitive to
outliers [41, 58].

Robust statistics has attracted a lot of attention in the past few years both
in the computer science and the statistical communities. For example, although
estimating the mean of a random vector in R

p is one of the oldest and funda-
mental problems in statistics, it is still a very active research area. Surprisingly,
optimal bounds for heavy-tailed data have been obtained only recently [39].
However, their estimator cannot be computed in practice. Using semi-definite
programming (SDP), [25] obtained optimal bounds achievable in polynomial
time. In a recent works, still using SDP, [32] designed an algorithm computable
in nearly linear time, while [37] developed the first tractable optimal algorithm
not based on the SDP.

In the meantime, another recent trend in robust statistics has been to focus
on finite sample risk bounds that are minimax-rate-optimal when |O| outliers
contaminate the dataset. For example, for the problem of mean estimation, when
|O| malicious outliers contaminate the dataset and the non-contaminated data
are assumed to be sub-Gaussian, the optimal rate (measured in Euclidean norm)
scales as

√
p/N+|O|/N . In [13], the authors developed a general analysis for the

ε-contamination model. In [12], the same authors proposed an optimal estimator
when |O| outliers with the same distribution contaminate the data. In [22], the
authors focused on the problem of high-dimensional linear regression in a robust
model where an ε-fraction of the samples can be adversarially corrupted. Robust
regression problems have also been studied in [15, 21, 38, 6]. Above-mentioned
articles assume corruption both in the design and the label. In such a corruption
setting ERM and RERM are known to be poor estimators.

In [19], the authors raised the question whether it is possible to attain op-
timal rates of convergence in sparse regression using regularized empirical risk
minimization when a proportion of malicious outliers contaminate only the la-
bels. They studied �1 penalized Huber’s M -estimators. This work is the closest
to our setting and reveals that when only the labels are contaminated, simple
procedures, such as penalized Huber’s M estimators, still perform well and are
minimax-rate-optimal. Their proofs rely on the fact that non-contaminated data
are Gaussian. Our approach is different, more general and uses the control of
stochastic processes indexed by the class F .

Other alternatives to be robust both for heavy-tailed data and outliers in re-
gression have been proposed in the literature such as Median Of Means (MOM)



3568 G. Chinot

based methods [33, 34, 18]. However such estimators are difficult to compute
in practice and can lead to sub-optimal rates. For instance, for sparse-linear
regressions in Rp with a sub-Gaussian design, MOM-based estimators have an
error rate of the order L

(√
s log(p)/N +

√
|O|/N

)
(see [18]) while the optimal

dependence with respect to the number of outliers is L
(√

s log(p)/N + |O|/N
)
.

Finally, there was a recent interest in robust iterative algorithms. It was shown
that robustness of stochastic approximation algorithms can be enhanced by
using robust stochastic gradients. For example, based on the geometric me-
dian [44], [14] designed a robust gradient descent scheme. More recently, [45]
showed that a simple truncation of the gradient enhances the robustness of the
stochastic mirror descent algorithm.

The paper is organized as follows. In Section 2, we present general results
for non-regularized procedures with a focus on the example of the Huber’s M -
estimator in R

p. Section 3 gives general results for RERM that we apply to �1-
penalized Huber’s M -estimators with isotropic design and regularized learning
in RKHS. Section A presents simple simulations to illustrate our theoretical
findings. In section B, we show that the minimax lower bounds for regression
problems in the ε-contamination model are the same when 1) both the design X
and the labels are contaminated and 2) when only the labels are contaminated.
Section C shows that we can extend the results for �1-penalized Huber’s M -
estimator when the covariance matrix of the design X satisfies a Restricted
Eigenvalue condition. Finally, the proofs of the main theorems are presented in
Section D.

Notations All along the paper, for any f in F , ‖f‖L2 will be written instead
of ‖f‖L2(μ) =

∫
f2dμ. We also write L2 instead of L2(μ). Let B2 and S2 be

respectively the unit ball and the unit sphere with respect to the metric L2(μ).
The letter c will denote an absolute constant whose value may change from one
line to another. For a set T , its cardinality is denoted |T |. For two real numbers
a, b, a∨b and a∧b denote respectively max(a, b) and min(a, b). For any set H for
which it makes sense, let H + f∗ = {h+ f∗, h ∈ H}, H − f∗ = {h− f∗, h ∈ H}.

2. Non-regularized procedures

In this section, we study the Empirical Risk Minimizer (ERM) where we recall
the definition below:

f̂N = argmin
f∈F

1

N

N∑
i=1

�(f(Xi), Yi) . (3)

We establish bounds on the error rate ‖f̂N −f∗‖L2 and the excess risk PLf̂N
:=

P�f̂N − P�f∗ in two different settings 1) when F − f∗ is sub-Gaussian, and 2)
when F − f∗ is locally bounded. We derive fast rates of convergence under very
weak assumptions.
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2.1. Complexity measures and parameters

The ERM performs well when the empirical excess risk f �→ PNLf uniformly
concentrates around its expectation f �→ PLf . From Assumption 3, such uni-
form deviation results depend on the complexity of the class F . There exist
different measures of complexity. In this section, we introduce the two main
complexity measures we will use throughout this article. Let H ⊆ F ⊆ L2.

1. Let (Gh)h∈H be the centered Gaussian process indexed by H where the
covariance structure of (Gh)h∈H is given by E(Gh1 −Gh2)

2 = E(h1(X)−
h2(X))2 for all h1, h2 ∈ H.
The Gaussian mean-width of H is defined as

w(H) = E sup
h∈H

Gh . (4)

For example, for μ = N (0,Σ), T ⊂ Rp and F = {
〈
t, ·

〉
, t ∈ T}, we have

w(F ) = E supt∈T Σ1/2
〈
t,G

〉
, where G ∼ N (0, Ip).

2. Let S ⊆ {1, · · · , N} and (σi)i∈S be i.i.d Rademacher random variables
(P (σi = 1) = P (σi = −1) = 1/2) independent to (Xi)i∈S .
The Rademacher complexity of H, indexed by S is defined as

RadS(H) = E sup
h∈H

∑
i∈S

σih(Xi) , (5)

where this expectation is taken both with respect to (Xi)i∈S and (σi)i∈S .
The Rademacher complexity has been extensively used in the literature
as a measure of complexity [2, 3, 7].

Depending on the context, we will use either the Gaussian mean-width or the
Rademacher complexity as a measure of complexity. In particular, the Gaussian
mean-width naturally appears when dealing with sub-Gaussian classes of func-
tions (see Definition 1) while the Rademacher complexity is convenient when
dealing with bounded class of functions.

Definition 1. A class H ⊆ F ⊂ L2 is called B-sub-Gaussian if for every
λ > 0 and h ∈ H

E exp(λh(X)/‖h‖L2) ≤ exp(B2λ2/2) .

Now, let us define the two complexity parameters that will drive the rates of
convergence of the ERM.

Definition 2. For any A > 0, let

rSG
I (A) = inf

{
r > 0 : ALw

(
F ∩ (f∗ + rB2)

)
≤ c

√
|I|r2

}
and

rBI (A) = inf

{
r > 0 : ALRadI

(
F ∩ (f∗ + rB2)

)
≤ c|I|r2

}
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where c > 0 denotes an absolute constant and L is the Lipschitz constant from
Assumption 3. Finally, for any A, δ > 0 set

rSG(A, δ) ≥ c

(
rSG
I (A) ∨AL

√
log(1/δ)

N
∨AL

|O|
N

)
, (6)

and

rB(A, δ) ≥ c

(
rBI (A) ∨AL

√
log(1/δ)

N
∨AL

|O|
N

)
, (7)

where c > 0 is an absolute constant.

In Section 2.2 we use rSG(A, δ) when the class F − f∗ is assumed to be
sub-Gaussian while we use rB(A, δ) when the class F − f∗ is (locally) bounded.

2.2. Local Bernstein conditions and main results

To obtain fast rates of convergence, it is necessary to impose assumptions on
the distribution P . For instance, the margin assumptions [40, 50, 54] and the
Bernstein conditions from [4] have been widely used in statistics and learning
theory. A class F is called (1, A) Bernstein [3] if for all f in F , P (Lf )

2 ≤ APLf .
Under Assumption 3, F is (1, AL2) Bernstein if for all f in F , ‖f − f∗‖2L2

≤
APLf . This condition means that the variance of the problem is not too large.
In this paper, we use the second version of the Bernstein condition stated above.
Moreover, in the spirit of [18], we introduce the (much) weaker local Bernstein
assumption. Contrary to the global Bernstein condition, our assumption is
required to hold only locally around the oracle f∗ and not for every f in F .
As we will see in applications, it allows to consider heavy-tailed noise without
deteriorating the convergence rates.

Assumption 4. Let δ > 0 and r(·, δ) ∈ {rSG(·, δ), rB(·, δ)}, where rSG(·, δ) and
rB(·, δ) are respectively defined in Equations (6) and (7). Assume that there
exists a constant A > 0 such that for all f ∈ F ∩

(
f∗ + r(A, δ)S2

)
, we have

‖f − f∗‖2L2
≤ APLf .

Assumption 4 holds locally around the oracle f∗. The bigger r(·, δ) the
stronger Assumption 4. Assumption 4 has been extensively studied in [18, 17]
for different Lipschitz and convex loss functions. For the sake of brevity, in ap-
plications we will only focus on the Huber loss function in this paper. We are
now in position to state the main theorem for the ERM.

Theorem 1. Let I ∪ O be a partition of {1, · · · , N} where |O| ≤ |I|. Grant
Assumptions 1, 2 and 3. Let δ ∈ (0, 1).

1. Let us assume that the class F − f∗ is 1-sub-Gaussian and that Assump-
tion 4 holds for r(·, δ) = rSG(·, δ) and A > 0. With probability larger than

1− δ, the estimator f̂N defined in Equation (3) satisfies

‖f̂N − f∗‖L2 ≤ rSG(A, δ) and PLf̂N
≤ c

(rSG(A, δ))2

A
.
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2. Let us assume that Assumption 4 holds for r(·, δ) = rB(·, δ) and A > 0
and that

∀f ∈ F ∩
(
f∗ + rB(A, δ)B2

)
and x ∈ X |f(x)− f∗(x)| ≤ 1 (8)

Then, with probability larger than 1−δ, the estimator f̂N defined in Equa-
tion (3) satisfies

‖f̂N − f∗‖L2 ≤ rB(A, δ) and PLf̂N
≤ c

(rB(A, δ))2

A

The constant 1 in the sub-Gaussian assumption or in Equation (8) may be
replaced by any other constants.

There are two cases in Theorem 1:

1. When class F − f∗ is 1-sub-Gaussian, the complexity-parameter driving
the convergence rates depends on the Gaussian mean-width.

2. When the class F−f∗ is locally bounded (see Equation 8), the complexity-
parameter driving the convergence rates depends on the Rademacher com-
plexity. Equation (8) requires L∞-boundedness only for functions f in
F ∩ (f∗ + rB(A, δ)B2). For example, let F = {

〈
t, ·

〉
, t ∈ R

p} and X be

an isotropic random variable, that is E
〈
X, t

〉2
= ‖t‖22 for all t ∈ R

p. Let

t∗ be such that f∗(·) =
〈
t∗, ·

〉
and f be in F ∩ (f∗ + rB(A, δ)B2). Then,

|(f − f∗)(x)| = |
〈
t− t∗, x

〉
| ≤ ‖t− t∗‖2‖x‖2 ≤ ‖x‖2rB(A, δ). Simple com-

putations (see [31]) show that when rB(A, δ) = rBI (A), the complexity

parameter rB(A, δ) is of the order
√
p/|I| and Equation (8) holds if

‖x‖2 ≤ c
√
|I|/p

The more informative data we have, the larger the euclidean radius of X
can be.

In the case of equality in Equations (6) or (7), Theorem 1 holds if the local
Bernstein condition 4 is satisfied for all functions f in F such that:

‖f − f∗‖L2 = c

(
rI(A) ∨AL

|O|
N

+AL

√
log(1/δ)

N

)
,

that is on an L2-sphere around f∗ with a radius equal to the rate of conver-
gence. The bound on the error rate can be decomposed as the error rate in
the non-contaminated setting and the proportion of outliers AL|O|/N . As long
as AL|O|/N ≤ rI(A), the error rate remains constant and equal the one in
a non-contaminating setting. On the other hand, if AL|O|/N ≥ rI(A), the
error rate in the contaminated setting becomes linear with respect to the pro-
portion of outliers |O|/N . Theorem 1 shows that when rI(A) is minimax-rate-
optimal in a non-contaminated setting, the ERM remains optimal when less than
NrI(A)/(AL) outliers contaminate the labels. We also show in Section 2.3 that
this dependence with respect to the number of outliers is minimax-rate-optimal
for linear regression in R

p when |O| outliers may corrupt the labels.
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2.3. A concrete example: the class of linear functionals in R
p with

Huber loss function

To put into perspective the results obtained in Sections 2.2, we apply Theorem 1
in the sub-Gaussian framework for linear regression in R

p. Let F = {
〈
t, ·

〉
, t ∈

Rp}, which satisfies assumption 2. Let (Xi, Yi)
N
i=1 be random variables defined

by the following linear model:

Yi =
〈
Xi, t

∗〉+ εi , (9)

where (Xi)
N
i=1 are i.i.d Gaussian random vectors in R

p with zero mean and
covariance matrix Σ. The random variables (εi)i∈I are assumed to be symmetric
and independent to (Xi)

N
i=1. For the moment, nothing more is assumed for

(εi)i∈I . It is clear that assumption 1 holds. The Empirical Risk Minimizer with
the Huber loss function is defined as

t̂γN = argmin
t∈Rp

1

N

N∑
i=1

�γ(
〈
Xi, t

〉
, Yi) (10)

where �γ(·, ·) is the Huber loss function defined for any γ > 0, u, y ∈ Y = R, by

�γ(u, y) =

{
1
2 (y − u)2 if |u− y| ≤ γ

γ|y − u| − γ2

2 if |u− y| > γ
,

which satisfies assumption 3 for L = γ. Let t, v ∈ Rp such that f(·) =
〈
t, ·

〉
and g(·) =

〈
v, ·

〉
. Since μ = N (0,Σ), we have ‖f − g‖2L2

= E
〈
t − v,X1

〉2
=

(t − v)TΣ(t − v) and λ(f(X1) − g(X1))/‖f − g‖L2 =
(
λ/(t − v)TΣ(t − v)

)
(t −

v)TX1 ∼ N (0, λ2). If follows that F − f∗ is 1-sub-Gaussian.
Let us turn to the computation of the complexity parameter rSG(A, δ), for

A, δ > 0. Well-known computations (see [48]) give:

w
(
F ∩ (f∗ + rB2)

)
≤ r

√
Tr(Σ) and rSG

I (A) = cAγ

√
Tr(Σ)

N
,

for c > 0 an absolute constant.
To apply Theorem 1, it remains to study the local Bernstein assumption for

the Huber loss function. We recall the following result from [18].

Proposition 1 ([18], Theorem 7). Let r > 0 and let FY |X=x be the conditional
cumulative function of Y given X = x. Let us assume that the following holds.

a) There exist ε, C ′ > 0 such that, for all f in F , ‖f − f∗‖L2+ε ≤ C ′‖f −
f∗‖L2 .

b) Let ε, C ′ be the constants defined in a). There exists α > 0 such that,
for all x ∈ R

p and all z ∈ R satisfying |z − f∗(x)| ≤ (
√
2(C ′))(2+ε)/εr,

FY |X=x(z + γ)− FY |X=x(z − γ) � α.

Then, for all f ∈ F ∩ (f∗ + rB2), (4/α)PLγ
f ≥ ‖f − f∗‖2L2

, where PLγ
f denotes

the excess risk associated with the Huber loss with parameter γ > 0.
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Since μ = N (0,Σ), the point a) holds with C ′ = 3. Moreover, from the
model (9), the point b) can be rewritten as: ∀x ∈ R

p, ∀z ∈ R : |z−
〈
x, t∗

〉
| ≤ 18r,

P

(
z − γ ≤

〈
x, t∗

〉
+ ε ≤ z + γ

)
= Fε(z + γ −

〈
x, t∗

〉
)− Fε(z − γ −

〈
x, t∗

〉
) ≥ α

which is satisfied if

Fε(γ − 18r)− Fε(18r − γ) ≥ α (11)

where Fε denotes the cumulative distribution of ε distributed as εi, for any i ∈ I.
Condition (11) simply implies that the noise puts enough mass around zero.

We are now in position to apply Theorem 1 for Huber’s M -estimator in R
p.

Theorem 2. Let I ∪ O denote a partition of {1, · · · , N} such that |I| ≥ |O|.
Let (Xi, Yi)

N
i=1 be random variables valued in R

p ×R such that (Xi)
N
i=1 are i.i.d

random variable with X1 ∼ N (0,Σ) and for all i ∈ {1, · · · , N}

Yi =
〈
Xi, t

∗〉+ εi .

Let

r(α, δ) = c
γ

α

(√
Tr(Σ) ∨ log(1/δ)

N
∨ |O|

N

)
.

Let (εi)i∈I be i.i.d symmetric random variables independent to (Xi)i∈I such that
there exists α > 0 such that

Fε

(
γ − 18r(α, δ)

)
− Fε

(
18r(α, δ)− γ

)
≥ α (12)

where Fε denotes the cdf of ε distributed as εi for i in I. With probability larger
than 1− δ the estimator t̂γN defined in Equation (10) satisfies

‖Σ1/2(t̂γN − t∗)‖2 ≤ r(α, δ) and PLt̂γN
≤ cαr2(α, δ)

Theorem 2 holds under no assumption on |O| except |O| ≤ |I|. There are
two situations

1. The number of outliers |O| is smaller than
√

Tr(Σ)N . We obtain the

rate of convergence γ
√
Tr(Σ)/N . When E[ε2i ] = σ2, i ∈ I and γ = σ, it

corresponds to the minimax-optimal rate of convergence.
2. The number of outliers |O| exceeds

√
Tr(Σ)N . In this case, the error rate

and the excess risk are deteriorated and the dependence is linear with
respect to the proportion of outliers.

Let ε = |O|/N . From [13], this rate is minimax-optimal in the ε-Huber contam-
ination model and hence also minimax-optimal when |O| outliers contaminate
only the labels (see Theorem 7). In Section A, we run simple simulations to
illustrate the linear dependence between the error rate and the proportion of
outliers.
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Theorem 2 handles many different distributions for the noise as long as Equa-
tion (12) is satisfied. We illustrate the fact that the local Bernstein condition
is very weak with the following example. Let ε ∼ C(1) be a standard Cauchy
distribution. For all t ∈ R, Fε(t) = 1/2+ arctan(t)/π. From easy computations,
Equation (11) can be rewritten as

arctan(γ − 18r) ≥ πα/2 . (13)

For

r(α, δ) =
γ

α

(√
Tr(Σ) ∨ log(1/δ)

N
∨ |O|

N

)
,

Equation (12) becomes

arctan

(
γ

[
1− c

α

(√
Tr(Σ) ∨ log(1/δ)

N
∨ |O|

N

)])
≥ πα/2 ,

which is satified for α = 1/4 and γ = 2 tan(π/8) if

c

(√
Tr(Σ) ∨ log(1/δ)

N
∨ |O|

N

)
≤ 1 .

Proposition 2. In same framework as in Theorem 2, when εi ∼ C(1), for
i ∈ I, the local Bernstein condition is verified for α = 1/4 and γ = 2 tan(π/8)
if (√

Tr(Σ) ∨ log(1/δ)

N
∨ |O|

N

)
≤ 1

Remark 2. The local Bernstein condition also holds many other noise distri-
butions. In the case of Gaussian noise we can take α as a constant and γ = σ.
In this case we recover the rate σ

√
Tr(Σ)/N .

3. High dimensional setting

In Section 2, we studied non-regularized procedures. If the class of predictors F
is too small there is no hope to approximate Y with f∗(X). It is thus necessary
to consider large classes of functions leading to a large error rate unless some
extra low-dimensional structure is expected on f∗. Adding a regularization term
to the empirical loss is a wide-spread method to induce this low-dimensional
structure. More formally, let F ⊂ E ⊂ L2 and ‖ · ‖ �→ R+ be a norm defined
on the linear space E. For any λ > 0, the regularized empirical risk minimizer
(RERM) is defined as

f̂λ
N = argmin

f∈F

1

N

N∑
i=1

�(f(Xi), Yi) + λ‖f‖ (14)

For example, the use of the �1-norm promotes sparsity [49] for regression and
classification problems in R

p, while the 1-Schatten norm promotes low rank
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solutions for matrix reconstruction. The main result of this section has the
same flavor as the one in Section 2. The error rate can be bounded by

rN +AL
|O|
N

.

where rN denotes the (sparse or low-dimensional) error rate in a non contami-
nated setting, L is the Lipschitz constant from Assumption 3 and A is a param-
eter coming from the local Bernstein condition. When |O| ≤ rNN/(AL), the
RERM behaves as if there was no contamination.

3.1. Complexity parameters and sparsity equation

To analyze regularized procedures, we first need to redefine the complexity pa-
rameter.

Definition 3. Let B be the unit ball induced by the regularization norm ‖ · ‖.
For any A, ρ > 0, let r̃SG

I (A, ρ) and r̃BI (A, ρ) be defined as

r̃SG
I (A, ρ) = inf{r > 0 : cALw

(
F ∩ (f∗ + rB2 ∩ ρB)

)
≤

√
|I|r2} ,

and,

r̃BI (A, ρ) = inf{r > 0 : cALRadI
(
F ∩ (f∗ + rB2 ∩ ρB)

)
≤ |I|r2} ,

where c > 0 denotes an absolute constant and L is the Lipschitz constant from
assumption 3. For any A, δ, ρ > 0 let r̃SG(A, ρ, δ) and r̃B(A, ρ, δ) be such that

r̃SG(A, ρ, δ) ≥ r̃SG
I (A, ρ) ∨AL

√
log(1/δ)

N
∨AL

|O|
N

, (15)

and,

r̃B(A, ρ, δ) ≥ r̃BI (A, ρ) ∨AL

√
log(1/δ)

N
∨AL

|O|
N

. (16)

The main difference between the complexity parameters from Definition 3
and the ones from Definition 2 is the localization ρB. Parameters in Definition 3
measure the local complexity of F around f∗, where the localization is defined
with respect to the metric induced by the regularization norm.

To deal with the regularization part, we use the tools from [35]. The idea is
the following: the �1 norm induces sparsity properties because it has large subd-
ifferentials at sparse vectors. Therefore, to obtain “sparsity dependent bounds”,
i.e bounds depending on the unknown sparsity of the oracle f∗, it seems nat-
ural to look at the size of the subdifferential of ‖ · ‖ in f∗. We recall that the
subdifferential of ‖ · ‖ in f is defined as

(∂‖.‖)f = {z∗ ∈ E∗ : ‖f + h‖ − ‖f‖ ≥ z∗(h) for every h ∈ E} ,



3576 G. Chinot

where E∗ is the dual space of the normed space (E, ‖ · ‖). It can be also written
as

(∂ ‖·‖)f =

{
{z∗ ∈ S

∗ : z∗(f) = ‖f‖} if f �= 0
B
∗ if f = 0

(17)

where B
∗ and S

∗ denote respectively the unit ball and the unit sphere with
respect to the dual norm ‖·‖∗ defined as z∗ ∈ E∗ → ‖z∗‖∗ = sup‖f‖≤1 z

∗(f).
When f �= 0, the subdifferential of ‖·‖ in f is the set of all vectors z∗ in the unit
dual sphere S

∗ which are norming for f . For any ρ > 0, let

Γf∗(ρ) =
⋃

f∈F∩(f∗+(ρ/20)B)

(∂‖ · ‖)f .

Instead of looking at the subdifferential of ‖ · ‖ exactly in f∗ we consider the
collection of subdifferentials for functions f ∈ F “close enough” to the oracle f∗.
It enables to handle oracles f∗ that are not exactly sparse but approximatively
sparse. The main technical tool to analyze regularization procedures is the fol-
lowing sparsity equation [35].

Definition 4. For any A, ρ, δ > 0, let r̃(A, ρ, δ) ∈ {r̃SG(A, ρ, δ), r̃B(A, ρ, δ)}.
Define

HA,ρ,δ = F ∩
(
f∗ + ρB ∩ r̃(A, ρ, δ)B2

)
,

and
Δ(A, ρ, δ) = inf

h∈HA,ρ,δ

sup
z∗∈Γf∗ (ρ)

z∗(h− f∗) . (18)

A real number ρ > 0 satisfies the A, δ-sparsity equation if Δ(A, ρ, δ) ≥ 4ρ/5.

The constant 4/5 in Definition 4 could be replaced by any constant in (0, 1).
The sparsity equation is a very general and powerful tool allowing to derive
“sparsity dependent bounds” when taking ρ∗ function of the unknown sparsity
(see Section 3.3 for a more explicit example or [17, 35] for many other illustra-
tions).

Remark 3. It is also possible to obtain “norm dependent bounds”, i.e bounds
depending on the norm of the oracle ‖f∗‖. By taking ρ∗ = 20‖f∗‖, we get that
0 ∈ F∩(f∗+(ρ∗/20)B) and from Equation (17) it follows that Γf∗(20‖f∗‖) = B∗

and for any A, δ > 0, Δ(A, ρ∗, δ) = ρ∗. In other words, the sparsity equation is
always satisfied for ρ∗ = 20‖f∗‖ (see Section 3.4 for an example)

3.2. Local Bernstein conditions and main results

In this section, we adapt the local Bernstein assumption to regularized frame-
work.

Assumption 5. Let δ > 0 and r̃(·, ·, δ) ∈ {r̃SG(·, ·, δ), r̃B(·, ·, δ)}. Suppose there
exist A > 0 and ρ∗ satisfying the A, δ-sparsity equation from Definition 4 such
that for all f ∈ F ∩

(
f∗ + ρB ∩ r̃(A, ρ∗, δ)S2

)
we have ‖f − f∗‖2L2

≤ APLf .
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We are now in position to state the main theorem of this section.

Theorem 3. Let I ∪ O denote a partition of {1, · · · , N} such that |O| ≤ |I|.
Grant Assumptions 1, 2, 3. Let δ > 0.

1. Let r̃(·, ·, δ) = r̃SG(·, ·, δ).
Assume that the class F − f∗ is 1-sub-Gaussian and that assumption 5
holds with A, ρ∗ > 0. Set:

λ = c
(r̃SG(A, ρ∗, δ))2

Aρ∗
.

With probability larger than 1 − δ, the estimator f̂λ
N defined in Equa-

tion (14) satisfies

‖f̂λ
N − f∗‖L2 ≤ r̃SG(A, ρ∗, δ) , ‖f̂λ

N − f∗‖ ≤ ρ∗

and PLf̂λ
N
≤ c

(r̃SG(A, ρ∗, δ))2

A
.

2. Let r̃(·, ·, δ) = r̃B(·, ·, δ).
Let us assume that Assumption 5 holds with A, ρ∗ > 0 and that

∀f ∈ F ∩
(
f∗+ r̃B(A, ρ∗, δ)S2∩ρ∗B

)
and x ∈ X |f(x)−f∗(x)| ≤ 1 (19)

Set:

λ = c
(r̃B(A, ρ∗, δ))2

Aρ∗
.

With probability larger than 1 − δ, the estimator f̂λ
N defined in Equa-

tion (14) satisfies

‖f̂λ
N − f∗‖L2 ≤ r̃B(A, ρ∗, δ) , ‖f̂λ

N − f∗‖ ≤ ρ∗

and PLf̂λ
N
≤ c

(r̃B(A, ρ∗, δ))2

A
.

When the equality holds in Equations (15) or (16) we have

‖f̂λ
N − f∗‖L2 ≤ r̃I(A, ρ) ∨AL

√
log(1/δ)

N
∨AL

|O|
N

,

with probability larger than 1−δ. The error rate can be decomposed as the error
rate in the non-contaminated setting and the proportion of outliers AL|O|/N .

Equation (19) means that the class F − f∗ is locally bounded. As we will
see in Section 3.4, requiring the local boundedness instead of the global one has
important consequences.

Theorem 3 is a “meta” theorem in the sense that it can used for many prac-
tical problems. We use Theorem 3 for �1-penalized Huber’s M-estimator in Sec-
tion 3.3. It is also possible to use Theorem 3 for many other convex and Lipschitz



3578 G. Chinot

loss functions and regularization norms as it is done in [17]. It can also be used
for matrix reconstruction problems by penalizing with the 1-Schatten norm [35].

Theorem 3 may seem complicated at a first glance because the parameter A
appears in the definition of the complexity parameters, in the sparsity equation
and in Assumption 5. However, there is a simple general routine that we may
use to apply Theorem 3.

General routine to apply Theorem 3 when the class F − f∗ is sub-
Gaussian

1. Verify that the class F −f∗ is sub-Gaussian and take r̃(·, ·, ·) = r̃SG(·, ·, ·).
2. Verify assumptions 1, 2 and 3.
3. Compute the localized Gaussian mean width w

(
F ∩ (f∗ + rB2 ∩ ρB)

)
for

any r, ρ > 0. Deduce the value of r̃SG
I (A, ρ) for any A, ρ > 0.

4. From the computation of r̃SG
I (A, ρ) deduce the closed form of r̃SG(A, ρ, δ).

5. For fixed constants A, δ > 0, find ρ∗ > 0 satisfying the A, δ- sparsity
equation.

6. From the value of ρ∗, compute r̃SG(A, ρ∗, δ) for any A, δ > 0.
7. Find a constant A > 0 verifying Assumption 5.

General routine to apply Theorem 3 when the class F − f∗ is locally
bounded

1. Take r̃(·, ·, ·) = r̃B(·, ·, ·).
2. Verify assumptions 1, 2 and 3.
3. Compute the localized Rademacher complexity RadI

(
F ∩(f∗+rB2∩ρB)

)
for any r, ρ > 0. Deduce the value of r̃BI (A, ρ) for any A, ρ > 0.

4. From the computation of r̃BI (A, ρ) deduce the closed form of r̃G(A, ρ, δ).
5. For fixed constants A, δ > 0, find ρ∗ > 0 satisfying the A, δ- sparsity

equation.
6. From the value of ρ∗, compute r̃B(A, ρ∗, δ) for any A, δ > 0.
7. Find a constant A > 0 verifying Assumption 5.
8. Verify that the class F −f∗ is locally bounded with r̃B(A, ρ∗, δ) computed

previously.

We will apply these two general routines for practical examples in Section 3.3
and 3.4.

3.3. Application to �1-penalized Huber’s M-estimator with Gaussian
design

Let F = {
〈
t, ·

〉
, t ∈ R

p} denote the class of linear functionals in R
p. Let

(Xi, Yi)
N
i=1 be random variables defined by, Yi =

〈
Xi, t

∗〉 + εi, where (Xi)
N
i=1

are i.i.d centered standard Gaussian vectors. The random variables (εi)i∈I are
symmetric independent to (Xi)i∈I . The oracle t∗ is assumed to be s-sparse,
‖t∗‖0 :=

∑p
i=1 I{t∗i �= 0} ≤ s.
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The �1-penalized Huber’s M-estimator is defined as

t̂γ,λN = argmin
t∈Rp

1

N

N∑
i=1

�γ(
〈
Xi, t

〉
, Yi) + λ‖t‖1 (20)

where �γ(·, ·) is the Huber loss function. We use the routine of Theorem 3 when
F − f∗ is sub-Gaussian:

Step 1: As in Section 2.3, the class F − f∗ is 1-sub-Gaussian.

Step 2: It is clear that Assumptions 1, 2, 3 with L = γ are satisfied.

Step 3 and 4: Let us turn to the computation of the local Gaussian-mean
width. Since X ∼ N (0, Ip), for every t ∈ R

p, we have w
(
F ∩ (f∗ + rB2 ∩ ρB)

)
=

w(rBp
2 ∩ ρBp

1) for every r, ρ > 0, where B
p
q denotes the �q ball in R

p for q > 0.
Well-known computations give (see [57] for example)

w(ρBp
1 ∩ rBp

2) ≤ ρw(Bp
1) ≤ cρ

√
log(p) ,

and consequently, (
r̃SG
I (A, ρ)

)2
= cAγρ

√
log(p)

N
,

and let r̃SG(A, ρ, δ) be such that

r̃SG(A, ρ, δ) ≥ c

(√
Aγρ

(
log(p)

N

)1/4

∨Aγ

√
log(1/δ)

N
∨Aγ

|O|
N

)

Step 5 and 6: To verify the A, δ-sparsity equation from Definition 4 for the �1
norm we use the following result from [35].

Lemma 1 ([35, Lemma 4.2]). Let B
p
1 denote the unit ball induced by ‖ · ‖1.

Let us assume that the design X is isotropic. If the oracle t∗ is s-sparse and

100s ≤
(
ρ/

(
r̃SG(A, ρ, δ)

)2
then Δ(A, ρ, δ) ≥ (4/5)ρ.

Lemma 1 implies that the A, δ-sparsity equation is satisfied with ρ∗ > 0 if

the sparsity s is smaller than
(
ρ∗/

(
r̃SG(A, ρ∗, δ)

)2
. From easy computations, it

follows

ρ∗ = Aγ

(
s

√
log(p)

N
∨
√

s log(1/δ)

N
∨
√
s
|O|
N

)
,

and

r̃SG(A, ρ∗, δ) = Aγ

(√
s log(p) ∨ log(1/δ)

N
∨ |O|

N

)
.

Step 7: We use Proposition 1 to show that the local Bernstein condition holds
for f ∈ F ∩

(
f∗ + r̃SG(A, ρ∗, δ)S2 ∩ ρ∗B

)
. Since X ∼ N (0, Ip), the point a) in

Proposition 1 is verified. Moreover, the point b) holds and the local Bernstein
condition is verified with A = 4/α if there exists α > 0 satisfying
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Fε

(
γ − cr̃SG(4/α, ρ∗, δ)

)
− Fε

(
cr̃SG(4/α, ρ∗, δ)− γ

)
≥ α , (21)

where Fε denotes the cdf of ε distributed as εi, for i ∈ I.
We are now in position to state the main result for the �1-penalized Huber

estimator.

Theorem 4. Let I ∪ O denote a partition of {1, · · · , N} such that |I| ≥ |O|
and (Xi, Yi)

N
i=1 be random variables valued in R

p×R such that (Xi)
N
i=1 are i.i.d

random variable with X1 ∼ N (0, Ip) and for all i ∈ {1, · · · , N}

Yi =
〈
Xi, t

∗〉+ εi ,

where t∗ is s-sparse. For any δ, α > 0, let

r̃SG(α, δ) = c
γ

α

(√
s log(p) ∨ log(1/δ)

N
∨ |O|

N

)

Let (εi)i∈I are i.i.symmetric random variables independent to (Xi)i∈I such that
there exists α > 0 such that

Fε

(
γ − r̃SG(α, δ)

)
− Fε

(
r̃SG(α, δ)− γ

)
≥ α (22)

where Fε denotes the cdf of ε, where ε is distributed as εi, for i in I. Set

λ = cγ

(√
log(p)

N
∨
√

log(1/δ)

sN
∨ |O|√

sN

)
.

Then with probability larger than 1 − δ, the estimator t̂γ,λN defined in Equa-
tion (20) satisfies

‖t̂γ,λN − t∗‖2 ≤ r̃SG(α, δ), PLt̂γ,λ
N

≤ cα(r̃SG(α, δ))2

and ‖t̂γ,λN − t∗‖1 ≤ c
γ

α

(
s

√
log(p)

N
∨
√

s log(1/δ)

N
∨
√
s
|O|
N

)

There are two situations:

1. When the number of outliers |O| is smaller than
√

s log(p)N , the regu-
larization parameter λ does not depend on the unknown sparsity and we
obtain the (nearly) minimax-optimal rate in sparse linear regression in
R

p [5, 35, 20]. Using more involved computations and taking a regulariza-
tion parameter λ depending on the unknown sparsity, we could obtain the
exact minimax rate of convergence s log(p/s)/N .

2. When the number of outliers exceeds
√

s log(p)N the value of λ depends
on the unknown quantities |O| and s. The error rate is deteriorated and
becomes linear with respect to the proportion of outliers |O|/N . Using
Theorem 7 and [12], this error rate is minimax optimal (up to a logarithmic
term) when |O| malicious outliers contaminate only the labels.
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As in Section 2.3, we can assume that the noise follows a standard Cauchy distri-
bution. In this case we can take α = 1/4 and γ = 2 tan(π/8) and Equation (22)
holds if √

s log(p) ∨ log(1/δ)

N
∨ |O|

N
≤ c . (23)

When εi ∼ N (0, σ2), the local Bernstein condition is verified with α = 1/4
and γ = cσ if Equation (23) holds. In Section A, we run simple simulations to
illustrate the linear dependence between the error rate and the proportion of
outliers.

Remark 4. In Theorem 4 we assumed that μ = N (0, Ip) to apply Lemma 1
and compute the local Gaussian-mean width. It is possible to generalize the result
to Gaussian random vectors with covariance matrices Σ verifying RE(s, 9) [55],
where s is the sparsity of t∗. Recall that a matrix Σ is said to satisfy the restricted
eigenvalue condition RE(s, c0) with some constant κ > 0, if ‖Σ1/2v‖2 ≥ κ‖vJ‖2
for any vector v in R

p and any set J ⊂ {1, · · · , p} such that |J | ≤ s and
‖vJc‖1 ≤ c0‖vJ‖1. When Σ satisfies the RE(s, 9) condition with κ > 0 we get the
same conclusion as Theorem 4 modulo an extra term 1/κ in front of r̃I(A, ρ

∗, δ)
(see Section C for a precise result).

3.4. Application to RKHS with the huber loss function

We present another example of application of our main results. In particular,
we use the routine associated with Theorem 3 in the locally bounded case,
for the problem of learning in a Reproducible Kernel Hilbert Space (RKHS)
HK [47] associated to a bounded positive definite kernel K. We are given N
pairs (Xi, Yi)

N
i=1 of random variables where the Xi’s take their values in some

measurable space X and Yi ∈ R. We introduce a kernel K : X × X �→ R

measuring a similarity between elements of X i.e K(x1, x2) is small if x1, x2 ∈ X
are “similar”. The kernel K(·, ·) is assumed to be bounded (for all x ∈ X :
|K(x, x)| ≤ 1). The main idea of kernel methods is to transport the design data
Xi’s from the set X to a certain Hilbert space via the application x �→ K(x, ·) :=
Kx(·) and construct a statistical procedure in this “transported” and structured
space. The kernel K is used to generate a Hilbert space known as Reproducing
Kernel Hilbert Space (RKHS). Recall that if K is a positive definite function i.e
for all n ∈ N

∗, x1, · · · , xn ∈ X and c1, · · · , cn ∈ R,
∑n

i=1

∑n
j=1 cicjK(xi, xj) ≥

0. By Mercer’s theorem there exists an orthonormal basis (φi)
∞
i=1 of L2 such

that μ × μ almost surely, K(x, y) =
∑∞

i=1 λiφi(x)φi(y), where (λ)∞i=1 is the
sequence of eigenvalues (arranged in a non-increasing order) of TK and φi is the
eigenvector corresponding to λi where

TK : L2 → L2

(TKf)(x) =

∫
K(x, y)f(y)dμ(y) (24)
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The Reproducing Kernel Hilbert Space HK is the set of all functions of the form∑∞
i=1 aiK(xi, ·) where xi ∈ X and ai ∈ R converging in L2 endowed with the

inner product

〈 ∞∑
i=1

aiK(xi, ·),
∞∑
i=1

biK(yi, ·)
〉
=

∞∑
i,j=1

aibjK(xi, yi)

An alternative way to define a RKHS is via the feature map Φ : X �→ �2 such
that Φ(x) =

(√
λiφi(x)

)∞
i=1

. Since (Φk)
∞
k=1 is an orthogonal basis of HK , it is

easy to see that the unit ball of HK can be expressed as

BHK
= {fβ(·) =

〈
β,Φ(·)

〉

2
, ‖β‖2 ≤ 1} (25)

where
〈
·, ·

〉

2

is the standard inner product in the Hilbert space �2. In other
words, the feature map Φ can the used to define an isometry between the two
Hilbert spaces HK and �2.

The RKHS HK is a convex class of functions from X to R that can be used
as a learning class F . Let us assume that Yi = f∗(Xi) + εi where (Xi)

N
i=1 are

i.i.d random variables taking values in X . The random variables (εi)i∈I are
symmetric i.i.d random variables independent to (Xi)i∈I and f∗ is assumed to
belong to HK . It follows that the oracle f∗ is also defined as

f∗ ∈ argmin
f∈HK

E[�γ(f(X), Y )]

where �γ is the Huber loss function. For the sake of simplicity, we assume that
‖f∗‖HK

≤ 1. Without this assumption, it is possible to obtain error rates de-
pending on ‖f∗‖HK

. However, we do not pursue this analysis here to simplify
the presentation. Let f be in HK . By the reproducing property and the Cauchy-
Schwarz inequality we have for all x, y in X

|f(x)− f(y)| = |
〈
f,Kx −Ky

〉
| ≤ ‖f‖HK

‖Kx −Ky‖HK
(26)

From Equation (26), it is clear that the norm of a function in the RKHS controls
how fast the function varies over X with respect to the geometry defined by
the kernel (Lipschitz with constant ‖f‖HK

). As a consequence the norm of
regularization ‖ · ‖HK

is related with its degree of smoothness w.r.t. the metric
defined by the kernel on X and assuming that ‖f∗‖HK

≤ 1 is equivalent to

assume that the oracle f∗ is smooth enough. The estimators f̂γ,λ
N we study in

this section is defined as

f̂γ,λ
N = argmin

f∈HK

1

N

N∑
i=1

�γ(f(Xi), Yi) + λ‖f‖HK
(27)

We obtain error rates depending on spectrum (λi)
∞
i=1 of the integral operator

TK assumed to satisfy the following assumption.

Assumption 6. The eigenvalues (λi)
∞
i=1 of the integral operator TK satisfy

λn ≤ cn−1/p for some 0 < p < 1 and c > 0 an absolute constant.
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In Assumption 6, the value of p is related with the smoothness of the space
HK . Different kinds of spectra could be analyzed. It would only change the
computation of the complexity fixed-points. For the sake of simplicity we only
focus on this example as it has been also studied in [10, 43] to obtain fast rates
of convergence.

Let us use the routine to apply Theorem 3 in the locally bounded setting.
Indeed, we will see than the localization with respect to the norm induced by
the kernel allows to obtain a locally bounded class of functions.
Step 1: For any A, ρ, δ > 0, let r̃(A, ρ, δ) = r̃B(A, ρ, δ).
Step 2: Since every Reproducible Kernel Hilbert space is convex, it is clear that
assumptions 1, 2 and 3 with L = γ are satisfied.
Step 3: From Theorem 2.1 in [42], for all ρ, r > 0

RadI
(
HK ∩ (f∗ + rB2 ∩ ρBHK

)
≤ c

√
|I|

( ∞∑
k=1

(
ρ2λk ∧ r2

))1/2

.

Under assumption 6, straightforward computations give,( ∞∑
k=1

(
ρ2λk ∧ r2

))1/2

≤ c
ρp

rp−1
,

and thus for any A, ρ > 0

r̃BI (A, ρ) = c(Aγ)1/(p+1) ρp/(p+1)

N1/(2(p+1))

Step 4: It follows that

r̃B(A, ρ, δ) = c

(
(Aγ)1/(p+1) ρp/(p+1)

N1/(2(p+1))
∨Aγ

√
log(1/δ)

N
∨Aγ

|O|
N

)

Step 5: From Remark 3, ρ∗ = 20‖f∗‖HK
≤ 20 satisfies the A, δ-sparsity equa-

tion for any A, δ > 0.
Step 6: From step 5, we easily get

r̃b(A, δ) = c

(
(Aγ)1/(p+1)

N1/(2(p+1))
∨Aγ

√
log(1/δ)

N
∨Aγ

|O|
N

)

Step 7: This step consists in verifying that Assumption 5 holds. To do so, we
use a localized version of Theorem 1.

Proposition 3. Let r, ρ > 0 and let FY |X=x be the conditional cumulative
function of Y given X = x. Let us assume that:

a) There exist ε, C ′ > 0 such that, for all f in F ∩
(
f∗ + ρBHK

∩ rS2
)
, we

have ‖f − f∗‖L2+ε ≤ C ′‖f − f∗‖L2 .
b) Let ε, C ′ be the constants defined in a). There exists α > 0 such that,

for all x ∈ R
p and all z ∈ R satisfying |z − f∗(x)| ≤ (

√
2(C ′))(2+ε)/εr,

FY |X=x(z + γ)− FY |X=x(z − γ) � α.
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Then, for all f ∈ F ∩
(
f∗ + ρBHK

∩ rS2
)
, (4/α)PLγ

f ≥ ‖f − f∗‖2L2
, where PLγ

f

denotes the excess risk associated with the Huber loss function with parameter
γ > 0.

The only difference with Proposition 1, is that the point a) and the conclusion
hold for functions f in F ∩

(
f∗ + ρBHK

∩ rS2
)
. Proposition 3 is a refinement

of Proposition 1 where a localization with respect to the regularization norm is
added.

Let f in HK such that ‖f − f∗‖HK
≤ ρ and ‖f − f∗‖L2 = r. Since |f(x) −

g(x)| = |
〈
f − g,Kx

〉
| for any f, g ∈ HK , x ∈ X we get

‖f − f∗‖2+ε
L2+ε

=

∫
(f(x)− f∗(x))2+εdPX(x) ≤ (ρ)ε‖f − f∗‖2L2

Since ‖f − f∗‖L2 = r, it follows that

‖f − f∗‖L2+ε ≤
(
ρ

r

)ε/(2+ε)

‖f − f∗‖L2 .

Therefore, the point a) holds with C ′ = (ρ/r)ε/(2+ε). Let us turn to the point b).
From the fact that C ′ = (ρ/r)ε/(2+ε), we have (

√
2C ′)(2+ε)/εr = 2(2+ε)/2ερ and

the point b) can be rewritten as, there exists α > 0 such that

Fε(γ − cρ)− Fε(cρ− γ) ≥ α (28)

where Fε denotes the cdf of ε distributed as εi for i ∈ I. Equation (28), simply
means that the noise ε puts enough mass around 0. In this setting we have
ρ = ρ∗ = c and Equation (28) becomes,

Fε(γ − c)− Fε(c− γ) ≥ α

Step 8: Let us turn to the local boundedness assumption. Since |f(x)−f∗(x)| =
|
〈
f−f∗,Kx

〉
| for any f ∈ HK , x ∈ X , if ‖f−f∗‖HK

≤ ρ∗ we get |f(x)−f∗(x)| ≤
ρ∗ = c and the local boundedness assumption is well-satisfied.

The fact that the boundedness assumption is only required to hold locally is
essential. It is obvious that it does not hold here over the whole class F = HK .
We are now in position to state our main theorem for regularized learning in
RKHS with the Huber loss function.

Theorem 5. Let HK be a reproducible kernel Hilbert space associated with
kernel K, where |K(x, x)| ≤ 1, for any x ∈ X . Let I ∪ O denote a partition of
{1, · · · , N} such that |I| ≥ |O| and (Xi, Yi)

N
i=1 be random variables valued in

X × R such that (Xi)
N
i=1 are i.i.d random variable and for all i ∈ {1, · · · , N}

Yi = f∗(Xi) + εi ,

where f∗ belongs to HK and ‖f∗‖HK
≤ 1. Assume that (εi)i∈I are i.i.d symmet-

ric random variables independent to (Xi)i∈I such that there exists α > 0 such
that

Fε

(
γ − c

)
− Fε

(
c− γ

)
≥ α (29)
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where Fε denotes the cdf of ε where ε is distributed as εi, for i in I. Grant
Assumption 6 and let

r̃(α, γ) = c

(
(γ/α)1/(p+1)

N1/(2(p+1))
∨ γ

α

√
log(1/δ)

N
∨ γ

α

|O|
N

)

Set λ = cαr̃(α, γ). Then with probability larger than 1 − δ, the estimator f̂γ,λ
N

defined in Equation (27) satisfies

‖f̂γ,λ
N − f∗‖22 ≤ r̃(α, γ) and PLf̂γ,λ

N
≤ cαr̃(α, γ)

Theorem 5 holds with no assumption on the design X.

1. When
|O| ≤ (α/γ)p/(p+1)N (2p+1)/(2p+2) ,

we recover the same rates as [46, 43] even when the target Y is heavy-
tailed. In [46, 43] the authors assume that Y is bounded while in [10] the
noise is assumed to be light-tailed. We generalize their results to heavy-
tailed noise.

2. When
|O| ≥ (α/γ)p/(p+1)N (2p+1)/(2p+2) ,

the error rate is deteriorated and becomes linear with respect to the pro-
portion of outliers.

When the noise is Cauchy distributed, we can take γ a large enough absolute
constant to verify Equation (29). We obtain an error rate of order N−1/(p+1).
Depending on the value of p we have obtained fast rates of convergence for
regularized Kernel methods. The faster the spectrum of TK decreases the faster
the rates of convergence.

4. Conclusion and perspectives

We have presented general analyses to study ERM and RERM when |O| outliers
contaminate the labels when 1) the class F − f∗ is sub-Gaussian or 2) when the
class F −f∗ is locally bounded. We use these “meta theorems” to study Huber’s
M-estimator with no regularization or penalized with the �1 norm. Under a very
weak assumption on the noise (note that it can even not be integrable), we have
obtained minimax-optimal rate of convergence for these two examples when
|O| malicious outliers corrupt the labels. We also have obtained fast rates for
regularized learning problems in RKHS when the target Y is unbounded and
heavy-tailed.

For the sake of simplicity, we have only presented two examples of appli-
cations. Many procedures can be analyzed as it has be done in [17] such as
Group Lasso, Fused Lasso, SLOPE etc. The results can be easily extented when
the sub-Gaussian assumption over F − f∗ is relaxed. It would only degrade
the confidence in the main theorems (assuming for example that the class is
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sub-exponential). The conclusion would be similar. As long as the proportion of
outliers is smaller than the rate of convergence, both ERM and RERM behave
as if there was to contamination.

Appendix A: Simulations

In this section, we present simple simulations to illustrate our theoretical find-
ings. We consider regression problems in R

p both non-regularized and penalized
with the �1-norm. For i = 1, · · · , N , let us consider the following model:

Yi =
〈
Xi, t

∗〉+ εi

where (Xi)
N
i=1 are i.i.d random variables distributed as N (0, Ip), (εi)i∈I are

symmetric independent to X random variables. Nothing is assumed on (εi)i∈O.
We consider different distributions for the noise (εi)i∈I . We consider

• εi ∼ N (0, σ2) Gaussian distribution.

• εi ∼ T (2) Student distribution with 2-degree of freedom.

• εi ∼ C(1) Cauchy distribution.

We study Huber’s M estimator defined as

t̂γN ∈ argmin
t∈Rp

1

N

N∑
i=1

�γ(f(Xi), Yi)

where �γ : R × R �→ R
+ is the Huber loss function defined as, γ > 0, u, y ∈ R,

by

�γ(u, y) =

{
1
2 (y − u)2 if |u− y| ≤ γ

γ|y − u| − γ2

2 if |u− y| > γ

Note that other loss functions could be considered as the absolute loss function,
or more generally, any quantile loss function. According to Theorem 2, we have

‖t̂γN − t∗‖2 ≤ cγ

(√
p

N
+

|O|
N

)

where c > 0 is an absolute constant. We add malicious outliers following a
uniform distribution over [−10−5, 105]. We expect to obtain an error rate pro-
portional to the proportion of outliers |O|/N . We ran our simulations with
N = 1000 and p = 50. The only hyper-parameter of the problem is γ. For the
sake of simplicity we took γ = 1 for all our simulations. We see on Figure 1 that
no matter the noise, the error rate is proportional to the proportion of outliers
which matches with our theoretical findings.

In a second experiment, we study �1 penalized M -Huber’s estimator defined
as

t̂λ,γN ∈ argmin
t∈Rp

1

N

N∑
i=1

�γ(f(Xi), Yi) + λ‖t‖1
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Fig 1. Error rate for the Huber’s M-estimator (p = 50 and N = 1000)

where �γ : R × R �→ R
+ is the Huber loss function and λ > 0 is a hyper-

parameter. According to Theorem 4 we have

‖t̂γN − t∗‖2 ≤ cγ

(√
s log(p)

N
+

|O|
N

)

where c > 0 is an absolute constant. We ran our simulations with N = 1000
and p = 1000 and s = 50. The hyper-parameters of the problem are γ and λ.
For the sake of simplicity we take γ = 1 and λ = 10−3 for all our simulations.
We see on Figure 2 that no matter the noise, the error rate is proportional to
the proportion of outliers which matches our theoretical findings. The fact that
the error rate may be large comes to the fact that we did not optimize the value
of λ.

Appendix B: Lower bound minimax risk in regression where only
the labels are contaminated

This section is built on the work [13] where the authors establish a general
minimax theory for the ε-contamination model defined as P(ε,θ,Q) = (1−ε)Pθ+
εQ given a general statistical experiment {Pθ, θ ∈ Θ}. A proportion ε of outliers
with same the distribution Q contaminate Pθ. Given a loss function L(θ1, θ2),
the minimax rate for the class {P(ε,θ,Q), θ ∈ Θ, Q} depends on the modulus of
continuity defined as:

w(ε,Θ) = sup

{
L(θ1, θ2) : TV (Pθ1 , Pθ2) ≤

ε

1− ε
, θ1, θ2 ∈ Θ

}
(30)
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Fig 2. Error rate for �1 penalized Huber’s M-estimator (p = 1000 and N = 1000 and s = 50)

where TV (Pθ1 , Pθ2) denotes the total variation distance between Pθ1 and Pθ2

defined as TV (Pθ1 , Pθ2) = supA∈F |Pθ1(A) − Pθ2(A)|, for F the σ-algebra onto
which Pθ1 and Pθ2 are defined.

Theorem 6 (Theorem 5.1 [13]). Suppose there is some M(0) such that for
ε = 0

inf
θ̂

sup
θ∈Θ

sup
Q

P(ε,θ,Q)

(
L(θ, θ̂) ≥ M(ε)

)
≥ c (31)

holds. Then, for any ε ∈ [0, 1] (31) holds for M(ε) = c
(
M(0) ∨ w(ε,Θ)

)
.

w(ε,Θ) is the price to pay in the minimax rate when a proportion ε of the
samples are contaminated. To illustrate Theorem 6, let us consider the linear
regression model:

Yi =
〈
Xi, θ

〉
+ εi

where without contamination Xi ∼ N (0,Σ), εi ∼ N (0, σ2) are independent.
In [12], the authors consider a setting when both the design X and the re-
sponse variable in the model can be contaminated i.e (X1, Y1), · · · , (XN , YN ) ∼
(1 − ε)Pθ + εQ, with Pθ = P (X)P (Y |X), P (X) = N (0,Σ) and P (Y |X) =
N (XT θ, σ2). They establish that the minimax optimal risk over the class of
s-sparse vectors for the metric L(θ1, θ2) = ‖θ1 − θ‖22 is given by

σ2

(
s log(p/s)

N
∨ ε2

)
.

The question of main interest in our setting is the following: does the minimax
risk for regression problem in the ε-contamination model remain the same when
only the labels are contaminated?



RERM with malicious outliers corrupting the labels 3589

The following theorem answers to the above question.

Theorem 7. Let {Pθ = P θ
(X,Y ) with Y = fθ(X) + ε, θ ∈ Θ} be a statistical

regression model. For any θ ∈ Θ, ε ∈ [0, 1] let

Pθ,ε =

{(
(1− ε)Pθ + εQθ

)⊗N
i=1 , Pθ = P θ

(X,Y ) with Y = fθ(X) + ε

Qθ = P θ
(X,Ỹ )

with Ỹ = fθ(X) + ε̃

}

Suppose there is some M(0) such that for ε = 0

inf
θ̂

sup
Rθ,ε∈Pθ,ε,θ∈Θ

Rθ,ε

(
L(θ, θ̂) ≥ M(ε)

)
≥ c (32)

holds. Then For any ε ∈ [0, 1] (32) holds for M(ε) = c
(
M(0) ∨ w(ε,Θ)

)
Theorem 7 states that the minimax optimal rates for regression problems in

the ε-contamination model are the same when

1. Both the design X and the response variable Y are contaminated.
2. Only the response variable Y is contaminated.

The proof is very similar as the one of Theorem 6. We present it here, for the
sake of completeness.

Proof. The case when M(ε) = cM(0) is straightforward. Thus, the goal is to
lower bound with a constant the following quantity

inf
θ̂

sup
Rθ,ε∈Pθ,ε,θ∈Θ

Rθ,ε

(
L(θ, θ̂) ≥ w(ε,Θ)

)

We use Le Cam’s method with two hypotheses. The first goal is to find θ1, θ2
such that L(θ1, θ2) ≥ w(ε,Θ). To do so, let θ1, θ2 be solution of

max
θ1,θ2∈Θ

L(θ1, θ2) s.t TV (Pθ1 , Pθ2) = TV (P θ1
(X,Y ), P

θ2
(X,Y )) ≤

ε

1− ε

Thus there exists ε′ ≤ ε such that TV (Pθ1 , Pθ2) = ε′/(1 − ε′) and L(θ1, θ2) =
w(ε,Θ). To conclude, it is enough to find two distributions Rθ1,ε and Rθ2,ε in
Pθ1,ε and Pθ2,ε such that Rθ1,ε = Rθ2,ε. It would imply that θ1 and θ2 are not
identifiable from the model and the Le Cam’s method would complete the proof.

For i ∈ {1, 2} let pθi be a density function defined for all (x, y) ∈ X × Y as

pθi(x, y) =
dP θi

(X,Y )

d
(
P θ1
(X,Y ) + P θ2

(X,Y )

) (x, y) (33)

By conditioning, it is possible to write pθi(x, y) = pX(x)pθiY |X=x(y). Let Rθ1,ε

and Rθ2,ε defined respectively as

Rθ1,ε = (1− ε′)P θ1
(X,Y ) + ε′P θ1

(X,Ỹ )
and Rθ2,ε = (1− ε′)P θ2

(X,Y ) + ε′P θ2
(X,Ỹ )
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where P θ1
(X,Ỹ )

and P θ2
(X,Ỹ )

are defined by their density functions ∀(x, y) ∈ X ×Y ,

dP θ1
(X,Ỹ )

d
(
P θ1
(X,Y ) + P θ2

(X,Y )

) (x, y) =
(
pθ2(x, y)− pθ1(x, y)

)
I{pθ2(x, y) ≥ pθ1(x, y)}

TV
(
P θ1
(X,Y ), P

θ2
(X,Y )

)
dP θ2

(X,Ỹ )

d
(
P θ2
(X,Y ) + P θ1

(X,Y )

) (x, y) =
(
pθ1(x, y)− pθ2(x, y)

)
I{pθ1(x, y) ≥ pθ2(x, y)}

TV
(
P θ1
(X,Y ), P

θ2
(X,Y )

)
Using Scheffé’s theorem, it is easy to see that P θ1

(X,Ỹ )
and P θ2

(X,Ỹ )
are probability

measures. Moreover, from the facts that pθi(x, y) = pX(x)pθiY |X=x(y), ε
′ ≤ ε and

Lemma 7.2 in [13] we have Rθ1,ε ∈ Pθ1,ε and Rθ2,ε ∈ Pθ2,ε.
For any (x, y) ∈ X × Y . Straightforward computations give

dRθ1,ε

d
(
P θ1
(X,Y ) + P θ2

(X,Y )

) (x, y)
= (1− ε′)pθ1(x, y) + ε′

(
pθ2(x, y)− pθ1(x, y)

)
I{pθ2(x, y) ≥ pθ1(x, y)}

TV
(
P θ1
(X,Y ), P

θ2
(X,Y )

)
= (1− ε′)pθ1(x, y) + ε′

(
pθ2(x, y)− pθ1(x, y)

)
I{pθ2(x, y) ≥ pθ1(x, y)}

ε′/(1− ε′)

= (1− ε′)
(
pθ1(x, y) + (pθ2(x, y)− pθ1(x, y))I{pθ2(x, y) ≥ pθ1(x, y)}

)
= (1− ε′)

(
pθ2(x, y) + (pθ1(x, y)− pθ2(x, y))I{pθ1(x, y) ≥ pθ2(x, y)}

)
=

dRθ2,ε

d
(
P θ1
(X,Y ) + P θ2

(X,Y )

) (x, y)
Appendix C: �1-penalized Huber’s M-estimator with non-isotropic

design

In this section, we relax the isotropic assumption on the design X. Recall that a

random variable X is isotropic if for every t ∈ R
p, E

〈
X, t

〉2
= ‖t‖22. Instead, we

consider covariance matrices satisfying a Restricted Eigenvalue condition (RE).
A matrix Σ is said to satisfy the restricted eigenvalue condition RE(s, c0) with
some constant κ > 0, if ‖Σ1/2v‖2 ≥ κ‖vJ‖2 for any vector v in R

p and any set
J ⊂ {1, · · · , p} such that |J | ≤ s and ‖vJc‖1 ≤ c0‖vJ‖1. We want to derive a
result similar to Theorem 4 when X ∼ N(0,Σ), for Σ satisfying RE(s, c) for c
an absolute constant. With non isotropic design we cannot use Lemma 1 and
the computation of the Gaussian mean-width is more involved.

Lemma 2. Let B
p
1 denote the unit ball induced by ‖ · ‖1. Let us assume that

the design X has a covariance matrix satisfying RE(s, 9) with constant κ > 0.

If the oracle t∗ is s-sparse and 100s ≤
(
κρ/r

)2
then:

Δ(A, ρ, δ) = inf
w∈HA,ρ,δ

sup
z∗∈Γt∗ (ρ)

〈
z∗, w

〉
≥ 4ρ/5 .
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The difference with Lemma 1 is the term κ coming from the RE(s, 9) condi-
tion.

Proof. The goal is to find ρ such that Δ(A, ρ, δ) ≥ (4/5)ρ. Recall that

(∂ ‖·‖)t =
{

{z∗ ∈ S
∗ :

〈
z∗, t

〉
= ‖t‖} if t �= 0

B∗ if t = 0
. (34)

Since F = {
〈
t, ·

〉
, t ∈ R

p}, ‖f‖L2 = ‖
〈
t,X

〉
‖L2 = ‖Σ1/2t‖2. Let w be in R

p such

that ‖w‖1 = ρ and ‖Σ1/2w‖2 ≤ r. Let us denote by I the support of t∗ and PIw
the projection of w on (ei)i∈I . By assumption we have |I| ≤ s. Let z in (∂ ‖·‖)t∗
such that for every i ∈ I, zi = sign(t∗i ), and for every i ∈ Ic, zI = sign(wi). It is
clear that z is norming for t∗ i.e

〈
z, t∗

〉
= ‖t∗‖1, z ∈ S

∗
1 = S∞ and

〈
z, w

〉
=

〈
z, PIw

〉
+ ‖PIc‖1 ≥ −‖PIw‖1 + ‖PIc‖1 = ρ− 2‖PIw‖1

Let us assume that PIw satisfies ‖PIcw‖1 > 9‖PIw‖1 which can be rewritten
as ρ ≥ 10‖PIw‖1. It follows that

〈
z, w

〉
≥ ρ− 2‖PIw‖1 ≥ ρ− 1

5
ρ ≥ 4ρ/5,

and the sparsity equation is satisfied. Now let us turn to the case when ‖PIcw‖ ≤
9‖PIw‖1. From the RE(s, 9) condition we have ‖PIw‖2 ≤ ‖Σ1/2w‖2/κ and it
follows

ρ− 2‖PIw‖1 ≥ ρ− 2
√
s‖PIw‖2 ≥ ρ− 2

κ

√
s‖Σ1/2w‖2 ≥ ρ− 2

κ

√
sr ≥ 4ρ/5

Now, let us turn to the computation of the Gaussian mean-width when the
design X is not isotropic. To do so, we use the following Proposition.

Proposition 4 (Proposition 1 [9]). Let p ≥ 1 and M ≥ 2. Let T be the convex
hull of M points in R

p and assume that T ⊂ B
p
2. Let G ∼ N (0, Ip). Then for

all s > 0,

E sup
t∈sBp

2∩T

〈
t,G

〉
= w(sBp

2 ∩ T ) ≤ 4
√

log+(4eM(s2 ∧ 1)),

where log+(a) = max(1, log(a)).

When F = {
〈
t, ·

〉
, t ∈ R

p} and the covariance matrix of X is Σ, for every
r, ρ > 0 we have

w
(
F ∩ (f∗ + rB2 ∩ ρBp

1

)
= w

(
rBp

2 ∩ ρΣ1/2
B
p
1

)
= w

(
rBp

2 ∩ ρT
)

where T := Σ1/2
B
p
1 is the convex hull of (±Σ1/2ei)

p
i=1. To apply Proposition 4

it is necessary to assume that for every i = 1, · · · , p, Σ1/2ei ∈ B
p
2 which holds

when Σi,i ≤ 1 and we obtain the following result:
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Proposition 5. Let F = {
〈
t, ·

〉
, t ∈ R

p} and assume that Σ, the covariance
matrix of X, satisfies Σi,i ≤ 1 for every i = 1, · · · , p. Then, for every r, ρ > 0

w
(
F ∩ (f∗ + rB2 ∩ ρBp

1

)
≤ 4ρ

√
log+(8ep((r/ρ)

2 ∧ 1))

By taking step by step the computations from Section 3.3 we obtain the
following theorem extending Theorem 4 for a non-isotropic design:

Theorem 8. Let I ∪ O denote a partition of {1, · · · , N} such that |I| ≥ |O|
and (Xi, Yi)

N
i=1 be random variables valued in R

p × R such that (Xi)
N
i=1 are

i.i.d random variable with X1 ∼ N (0,Σ), where Σ satisfies Σi,i ≤ 1 for i =
1, · · · , p and verifies RE(s, 9) for some constant κ > 0. Assume that for all
i ∈ {1, · · · , N}

Yi =
〈
Xi, t

∗〉+ εi ,

where t∗ is s-sparse. Let

r̃(α, δ) = c
γ

α

(√
s log(p)

κ2N
∨
√

log(1/δ)

N
∨ |O|

N

)

Assume that (εi)i∈I are i.i.d random variables independent to (Xi)i∈I such that
there exists α > 0 such that

Fε

(
γ − cr̃(α, δ)

)
− Fε

(
cr̃(α, δ)− γ

)
≥ α (35)

where Fε denotes the cdf of ε where ε is distributed as εi, for i in I. Set

λ = cγ

(√
log(p)

N
∨ κ

√
log(1/δ)

sN
∨ κ|O|√

sN

)
.

Then with probability larger than 1−δ the estimator t̂γ,λN defined in Equation (20)
satisfies

‖t̂γ,λN − t∗‖2 ≤ r̃(α, δ), PLt̂γ,λ
N

≤ cα(r̃(α, δ))2

and ‖t̂δ,λN − t∗‖1 ≤ c
γ

κα

(
s

κ

√
log(p)

N
∨
√

s log(1/δ)

N
∨
√
s
|O|
N

)

When εi ∼ C(1), we can use the same argument as in Section 2.3. Equa-
tion (35) holds with α = 1/4 and γ = 2 tan(π/8) if√

s log(p)

κ2N
∨
√

log(1/δ)

N
∨ |O|

N
≤ c . (36)

Now, for the sake of comparizon with [19], let us consider the case where εi ∼
N (0, σ2). For any t ∈ R, Fε(t) = Φ(t/σ), where Φ denotes the cdf of a standard
gaussian random variable. Thus, Equation (35) can be rewritten as

Φ

(
γ − cr̃(α, δ)

σ

)
≥ 1 + α

2
,

which is verified for γ = cσ and α = 1/4 if Equation (36) holds. We improve
the main result of [19] in two aspects:
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1. We obtain the error rate

σ

(√
s log(p)

κ2N
∨
√

log(1/δ)

N
∨ |O|

N

)
,

while their rate is

σ

(√
s log(p/δ)

κ2N
∨ |O| log(n/δ)

N

)
.

In our rate, the term κ is only in factor with the first term and not the
probability confidence. The extra term log(n/δ) can be problematic in
their bound when one wants to obtain exponentially large confidence.

2. Their bound holds for |O| ≤ cN/ log(N) while ours holds for |O| ≤ cN .

However, note that when |O| ≥
√

s log(p)N/κ, our regularization parameter
depends on the unknown sparsity and the number of outliers, which is not the
case in [19].

Remark 5. It is possible to replace log(p) by log(p/s) and recover the exact
minimax rate of convergence. However, the price to pay is that the regularization
parameter λ would always depend on the sparsity s, even when the number or
outliers in small.

Appendix D: Proofs main theorems

D.1. Proof Theorem 1 in the sub-Gaussian setting

Let r(·, δ) be such that for all A > 0

r(A, δ) ≥ c

(
rSG
I (A) ∨AL

√
log(1/δ)

N
∨AL

|O|
N

)
.

Moreover, let A satisfying assumption 4 with r(·, δ).
The proof is split into two parts. First we identify a stochastic argument

holding with large probability. Then we show on that event that ‖f̂N −f∗‖L2 ≤
r(A, δ). Finally, at the very end of the proof we show that PLf̂N

≤ r2(A, δ)/A.

Stochastic arguments First we identify the stochastic event onto which the
proof easily follows. Let Fr = F ∩

(
f∗ + r(A, δ)B2

)
and define

ΩI =

{
sup
f∈Fr

∣∣(P − PI
)(
�f − �f∗

)∣∣ ≤ c
L√
|I|

(
w(Fr) + r(A, δ)

√
log(1/δ)

)}
(37)

ΩO =

{
sup
f∈Fr

∣∣(P − PO
)
|f − f∗|

∣∣ ≤ c√
|O|

(
w(Fr) + r(A, δ)

√
log(1/δ)

)}
(38)

where for any K ⊂ {1, · · · , N}, g : X × Y �→ R, PKg = 1/(|K|)
∑

i∈K g(Xi, Yi)
and w(Fr) is the Gaussian mean-width of Fr. Finally let us define Ω = ΩI∩ΩO.
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Lemma 3. Grant Assumptions 1, 3, 2 and assume that F − f∗ is 1-sub-
Gaussian. The event Ω holds with probability larger than 1− δ

The proof of Lemma 3 necessitates several tools from sub-Gaussian random
variables that we introduce now.

Let ψ2(u) = exp(u2) − 1. The Orlicz space Lψ2 associated to ψ2 is defined
as the set of all random variables Z on a probability space (Ω,A,P) such that
‖Z‖ψ2 < ∞ where

‖Z‖ψ2 = inf{c > 0,Eψ2

(
Z

c

)
≤ 1}

Let H ⊂ L2 and (Xh)h∈H be a stochastic process indexed by the metric space
(H, ‖ · ‖L2) satisfying the following Lipschitz condition

for all h, g ∈ H, ‖Xg −Xh‖ψ2 ≤ ‖g − h‖L2 . (39)

For such a process it is possible to control the deviation of suph∈H Xh in terms
of the geometry of (H, ‖ · ‖L2) through the Gaussian mean-width of H.

Theorem 9 ([36], Theorem 11.13). Let (Xh)h∈H be a random process indexed
by (H, ‖ · ‖L2) satisfying Equation (39). Then, there exists an absolute constant
c > 0 such that for all u > 0

P

(
sup

h,g∈H
|Xh −Xg| ≥ c(w(H) + uDL2(H)

)
≤ exp(−u2)

where w(H) is the Gaussian mean width of H and DL2(H) is the L2-diameter.

The following Lemma allows to control the ψ2-norm of a sum of independent
centered random variables.

Lemma 4 ([11], Theorem 1.2.1). Let X1, · · · , XN be independent real random
variables such that for all i = 1, · · · , N , EXi = 0. Then

‖
N∑
i=1

Xi‖ψ2 ≤ 16

( N∑
i=1

‖Xi‖2ψ2

)1/2

The following Lemma connects ψ2-bounded random variable with the control
of its Laplace transform.

Lemma 5 ([11], Theorem 1.1.5). Let Z be a real valued random variable. The
following assertions are equivalent

• There exists K > 0 such that ‖Z‖ψ2 ≤ K
• There exist absolute constants c1, c2, c3 > 0 such that for every λ ≥ c1/K

E exp(λ|Z|) ≤ c3 exp(c2λ
2K2) (40)

We are now in position to prove Lemma 3.



RERM with malicious outliers corrupting the labels 3595

Proof. First we prove that ΩI holds with probability larger than 1 − δ/2. Let
us assume that for any f, g in Fr, the following condition holds

‖
(
P − PI

)(
�f − �g

)
‖ψ2 ≤ c(L/

√
|I|)‖f − g‖L2 . (41)

Then, from Theorem 9, there exists an absolute constant c > 0 such that with
probability larger than 1− δ/2

sup
f∈Fr

∣∣∣∣(P − PI
)(
�f − �f∗

)∣∣∣∣ ≤ sup
f,g∈Fr

∣∣∣∣(P − PI
)(
�f − �g

)∣∣∣∣
≤ c

L√
|I|

(
w(Fr) +

√
log(1/δ)DL2(Fr)

)
≤ c

L√
|I|

(
w(Fr) +

√
log(1/δ)r(A, δ)

)
,

concluding the proof for ΩI . Since (Xo)o∈O are i.i.d as μ, with the same rea-
soning if we assume that∥∥(P − PO

)
|f − g|

∥∥
ψ2

≤ (c/
√
|O|)‖f − g‖L2 , (42)

then, with probability larger than 1− δ/2:

sup
f∈Fr

∣∣∣∣(P − PO
)
|f − f∗|

∣∣∣∣ ≤ c√
|O|

(
w(Fr) +

√
log(1/δ)r(A, δ)

)
.

Thus, to finish the proof it remains to show that Equations (41) and (42)
hold. From Lemma 4 we get

‖
(
P − PI

)
(�f − �g)‖ψ2 ≤ c

(∑
i∈I

‖(�f − �g)(Xi, Yi)− E(�f − �g)(Xi, Yi)‖2ψ2

|I|2
)1/2

=
c√
|I|

‖(�f − �g)(X,Y )− E(�f − �g)(X,Y )‖ψ2

Thus, it remains to show that ‖(�f − �g)(X,Y )−E(�f − �g)(X,Y )‖ψ2 ≤ cL‖f −
g‖L2 for c > 0 an absolute constant. To do so, we use Lemma 5. Let λ ≥
cL/(‖f−g‖L2). From the symmetrization principle (Lemma 6.3 in [36]) and the
contraction principle (Theorem 2.2 in [30]) we get

E exp(λ|(�f − �g)(X,Y )− E(�f − �g)(X,Y )|) ≤ E exp(2λσ(�f − �g)(X,Y ))

≤ E exp(4Lλσ(f − g)(X))

≤ E exp(4Lλ|f − g|(X))

where σ is a Rademacher random variable, independent to (X,Y ). From the
sub-Gaussian Assumption we get

E exp(λ|(�f − �g)(X,Y )− E(�f − �g)(X,Y )|) ≤ E exp(162λ2L2‖f − g‖2L2
)

which concludes the proof for ΩI with Lemma 5. For ΩO, we apply the same
reasoning without the contraction step.
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Deterministic argument In this paragraph we place ourselves on the event
Ω = ΩI ∩ ΩO. The main argument uses the convexity of the class F with the
one of the loss function.

From the definition of f̂N , we have PNLf̂N
≤ 0. To show that F ∩ (f∗ +

r(A, δ)B2) it is sufficient to show that for all functions f ∈ F such that F\(f∗+
r(A, δ)B2) we have PNLf > 0. Let f in F\(f∗ + r(A, δ)B2). By convexity of F
there exists a function f1 ∈ f∗ + r(A, δ)S2 for which

f − f∗ = α(f1 − f∗)

where α =
(
‖f − f∗‖L2/r(A, δ)

)
≥ 1. For all i ∈ {1, · · · , N}, let ψi : R → R be

defined for all u ∈ R by

ψi(u) = �(u+ f∗(Xi), Yi)− �(f∗(Xi), Yi).

The functions ψi are such that ψi(0) = 0, they are convex under assumption 3.
In particular αψi(u) ≤ ψi(αu) for all u ∈ R and α ≥ 1 and ψi(f(Xi)−f∗(Xi)) =
�(f(Xi), Yi)− �(f∗(Xi), Yi) so that the following holds:

PNLf =
1

N

N∑
i=1

ψi

(
f(Xi)− f∗(Xi)

)
=

1

N

N∑
i=1

ψi(α(f1(Xi)− f∗(Xi)))

≥ α

N

N∑
i=1

ψi(f1(Xi)− f∗(Xi)) = αPNLf1 .

From the previous argument it follows that PNLf ≥ αPNLf1 . Therefore it is
enough to show that PNLf1 > 0 for every f1 ∈ F ∩ (f∗ + r(A, δ)S2). We have

PNLf1 =
|I|
N

PILf1 +
|O|
N

POLf1

On ΩI (see Equation (37)) it follows that

PILf1 ≥ PLf1 −
cL√
|I|

(
w(Fr) +

√
log(1/δ)r(A, δ)

)

From assumption 4 and the definition r(A, δ) it follows that

PILf1 ≥ r2(A, δ)

A
− cL√

|I|

(√
|I|r2(A, δ)

AL
+

√
log(1/δ)r(A, δ)

)

= c

(
r2(A, δ)

A
− Lr(A, δ)

√
log(1/δ)

N

)
.

From assumption 3, it follows that

POLf1 ≥ −PO|�f1 − �f∗ | ≥ −LPO|f1 − f∗| .
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On ΩO (see Equation (38)), we get

|O|
N

POLf1 ≥ −L
|O|
N

‖f1 − f∗‖L1 −
c
√
|O|
N

(
w(Fr) + r(A, δ)

√
log(1/δ)

)

≥ −L
|O|
N

r(A, δ)− c

(
r2(A, δ)

A
+ Lr(A, δ)

√
log(1/δ)

N

)
.

Finally, from the definition of r(A, δ), we obtain

PNLf1 ≥ c

(
r2(A, δ)

A
− Lr(A, δ)

√
log(1/δ)

N
− Lr(A, δ)

|O|
N

)
> 0 ,

which concludes the proof for the error rate.

We finish the proof by establishing the result for the excess risk. Since ‖f̂N −
f∗‖L2 ≤ r(A, δ), on ΩI we have

PLf̂N
≤ PILf̂N

+ c

(
r2(A, δ)

A
+ Lr(A, δ)

√
log(1/δ)

N

)

=
N

|I|PNLf̂N
− |O|

|I| POLf̂N
+ c

(
r2(A, δ)

A
+ Lr(A, δ)

√
log(1/δ)

N

)

≤ −|O|
|I| POLf̂N

+ c

(
r2(A, δ)

A
+ Lr(A, δ)

√
log(1/δ)

N

)
.

On ΩO we have

L
|O|
|I| PO|f̂N − f∗| ≤ L

|O|
|I| r(A, δ) + c

(
r2(A, δ)

A
+ Lr(A, δ)

√
log(1/δ)

N

)
.

Finally, from the definition of r(A, δ) we obtain

PLf̂N
≤ c

r2(A, δ)

A

D.2. Proof Theorem 1 in the local bounded framework

The deterministic argument is exactly the same as for the sub-Gaussian case.
Recall that rb(A, ·) is defined as

r(A, δ) ≥ c

(
rBI (A) ∨AL

√
log(1/δ)

N
∨AL

|O|
N

)
,

and satisfies Assumption 4 for A > 0. Recall that Fr = F ∩ (f∗ + r(A, δ)B2).
To study the stochastic argument we use the following result:
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Theorem 10 (Theorem 2.6, [29]). Let F be a class of functions bounded by M .
For all t > 0, with probability larger than 1− exp(−t)

sup
f∈F

|(PN − P )f | ≤E sup
f∈F

|(PN − P )f |

+

√
2
t

N

(
sup
f∈F

Pf2 + 2ME sup
f∈F

|(PN − P )f |
)
+

tM

N

Let us define:

ΩI :=

{
sup
f∈Fr

∣∣(P − PI)Lf

∣∣ ≤ c
r2(A, δ)

A

}

ΩO :=

{
sup
f∈Fr

∣∣(P − PO)|f − f∗|
∣∣ ≤ c

|I|
|O|

r2(A, δ)

AL

}

Lemma 6. Grant Assumptions 1, 3 and 2. Assume than for all f ∈ F ∩ (f∗ +
r(A, δ)B2) and x ∈ X : |f(x)− f∗(x)| ≤ 1. Then, the event Ω = ΩI ∪ ΩO holds
with probability larger than 1− δ.

Proof. Let (σi)i∈I be i.i.d Rademacher random variables, assumed to be inde-
pendent to (Xi)i∈I , from the symmetrization and contraction Lemmas (see [36])

E sup
f∈Fr

|(PI − P )Lf | ≤ 4LE sup
f∈F

1

|I|
∑
i∈I

σi(f − f∗)(Xi) ≤ c
r2(A, δ)

A

where we used the of rBI (·) and the fact that rb(A, δ) ≥ rBI (A) for all A > 0.
Under the local bounded assumption, any function f in Fr, |Lf (x, y)| ≤ L for
all (x, y) ∈ X × Y . For any t > 0, it follows from Theorem 10 that for any
function f in Fr

|(PI − P )Lf |

≤ c

[
(rb(A, δ))2

A
+

L log(1/δ)

N
+ L

√
log(1/δ)

|I|

(
(rb(A, δ))2 +

(rb(A, δ))2

AL

)]

≤ c
(rb(A, δ))2

A
.

The proof for ΩO uses exactly the same arguments.

D.3. Proof Theorem 3 in the sub-Gaussian framework

Recall that r̃(A, ρ∗, δ) is such that:

r̃(A, ρ∗, δ) ≥ r̃SG
I (A, ρ∗) ∨AL

√
log(1/δ)

N
∨AL

|O|
N

,

where ρ∗ satisfying the A, δ-sparsity equation with A verifying assumption 5.
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The proof is split into two parts and is very similar as the one of Theorem 1.
First we identify a stochastic argument holding with large probability. Then,
we show on that event that f̂λ

N ∈ F ∩
(
f∗ + ρ∗B ∩ r̃(A, ρ∗, δ)B2

)
. Then, at the

very end of the proof we will control the excess risk PLf̂λ
N where f̂λ

N is defined
in equation (14).

Stochastic arguments The stochastic part is the same as the one in the
proof of Theorem 1 where a localization with respect to the regularization norm
is added. First we identifiate the stochastic event onto which the proof easily
follows. Let Fr,ρ = F ∩

(
f∗ + ρ∗B ∩ r̃(A, ρ∗, δ)B2

)
and define

ΩI = sup
f∈Fr,ρ

∣∣∣∣(P − PI
)(
�f − �f∗

)∣∣∣∣ ≤ c
L√
|I|

(
w(Fr,ρ) + r̃(A, ρ∗, δ)

√
log(1/δ)

)

ΩO = sup
f∈Fr,ρ

∣∣∣∣(P − PO
)
|f − f∗|

∣∣∣∣ ≤ c√
|O|

(
w(Fr,ρ) + r̃(A, ρ∗, δ)

√
log(1/δ)

)

Finally, set Ω = ΩI ∩ ΩO

Lemma 7. Grant Assumptions 1, 2, 3 and assume that F − f∗ is 1-sub-
Gaussian. Then the event Ω holds with probability larger than 1− δ

Proof. The proof is exactly the same as the one in the non-regularized setup
where a localization with respect to the regularization norm is added. It is
enough to adapt the proof with the definition of r̃(A, ρ∗, δ) from
Equation (3).

Deterministic argument In this paragraph we place ourselves on the event
Ω. Let us recall that for any function f in F

PNLλ
f = PN (�f − �f∗) + λ(‖f‖ − ‖f∗‖) (43)

From the definition of f̂λ
N , we have PNLλ

f̂λ
N

≤ 0. To show that f̂λ
N ∈ Fr,ρ it is

sufficient to show that for all functions f ∈ F\Fr,ρ we have PNLλ
f > 0. Let f

in f ∈ F\Fr,ρ. By convexity of F there exist a function f1 in F and α ≥ 1
such that α(f1 − f∗) = f − f∗ and f1 ∈ ∂Fr,ρ where ∂Fr,ρ denotes the border
of Fr,ρ. Using the same convex argument as the one in the proof of Theorem 1
we obtain:

PNLf ≥ αPNLf1 ,

for f1 ∈ ∂Fr,ρ. Moreover, by the triangular inequality we obtain

‖f‖ − ‖f∗‖ ≥ α(‖f1‖ − ‖f∗‖),

and thus,
PNLλ

f ≥ αPNLλ
f1

Therefore it is enough to show that PNLλ
f1

> 0 for f1 ∈ ∂Fr,ρ. By definition of

∂Fr,ρ, there are two different cases 1) f1 ∈ F ∩
(
f∗ + ρ∗S ∩ r̃(A, ρ∗, δ)B2

)
and
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2) f1 ∈ F ∩
(
f∗ + ρ∗B ∩ r̃(A, ρ∗, δ)S2

)
. In 1) the sparsity equation will help us

to show that PNLλ
f1

> 0 while in 2), it will be the local Bernstein condition.

Let us begin by the case 1). Let f1 ∈ F ∩
(
f∗ + ρ∗S ∩ r̃(A, ρ∗, δ)B2

)
.

PNLf1 =
|I|
N

PILf1 +
|O|
N

POLf1 ≥ |I|
N

PILf1 − L
|O|
N

PO|f1 − f∗|

On ΩI if holds that

PILf1 ≥ |I|
N

[
− c

L√
|I|

(
w
(
Fr,ρ

)
+ r̃(A, ρ∗, δ)

√
log(1/δ)

)]
≥ −c

r̃2(A, ρ∗, δ)

A
,

(44)

where we used the definitions of r̃BI (A, ρ∗) and r̃(A, ρ∗, δ).
On ΩO, it holds that

− L
|O|
N

PO|f1 − f∗|

≥ −L
|O|
N

[
‖f1 − f∗‖L1(μ) −

c√
|O|

(
w
(
Fr,ρ

)
+ r̃(A, ρ∗, δ)

√
log(1/δ)

)]

≥ −L
|O|
N

r̃(A, ρ, δ)− c
r̃2(A, ρ, δ)

A

≥ −c
r̃2(A, ρ, δ)

A
,

where we also used the definitions of r̃BI (A, ρ∗) and r̃(A, ρ∗, δ) and the fact that
|O| ≤ |I|. Consequently, we get

PNLf1 ≥ −c
r̃2(A, ρ, δ)

A
,

where the constant c > 0 is chosen such that c < 7/17.
Let us turn to the control of λ(‖f1‖ − ‖f∗‖). Recall that we are in the case

where ‖f1 − f∗‖ = ρ∗ and ‖f1 − f∗‖L2
≤ r̃(A, ρ∗, δ). Let v ∈ E be such that

‖f∗ − v‖ ≤ ρ∗/20 and g ∈ ∂(‖·‖)v. We have

‖f1‖ − ‖f∗‖ ≥ ‖f1‖ − ‖v‖ − ‖f∗ − v‖ ≥
〈
g, f1 − v

〉
− ‖f∗ − v‖

�
〈
g, f1 − f∗〉− 2 ‖f∗ − v‖ �

〈
g, f1 − f∗〉− ρ∗/10 .

As the latter result holds for all v ∈ f∗ + (ρ∗/20)B and g ∈ ∂ ‖·‖ (v), since
f1 ∈ Fr,ρ, we get

‖f1‖ − ‖f∗‖ ≥ Δ(ρ∗)− ρ∗/10 ≥ 7ρ∗/10 ,

where the last inequality holds because ρ∗ satisfies the sparsity equation. Finally
we obtain
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PNLλ
f1 ≥ −c

r̃2(A, ρ, δ)

A
− 7

10
λρ∗ > 0 , (45)

when λ ≥ (10c/7)(r̃2(A, ρ, δ)/(Aρ∗)).

Let us turn to the second case 2). Let f1 ∈ F ∩
(
f∗ + ρ∗B ∩ r̃(A, ρ∗, δ)S2

)
.

With the same analysis as 1), on Ω, from Assumption 5 it follows that

PNLf1 ≥ r̃2(A, ρ∗, δ)

A
− c

r̃2(A, ρ∗, δ)

A
,

where the constant c is the same as the one appearing in Equation (45). As
‖f1‖ − ‖f∗‖ ≥ −‖f1 − f∗‖ ≥ −ρ∗, it follows that

PNLλ
f1 ≥ (1− c)

r̃2(A, ρ∗, δ)

A
− λρ∗ > 0 ,

when λ ≤ (1− c)(r̃2(A, ρ∗, δ)/(Aρ∗)). Note that the condition c < 7/17 implies
that such a λ > 0 exists.

We finish the proof by establishing the result for the excess risk. Since f̂λ
N ∈

F ∩
(
f∗ + ρ∗B ∩ r̃(A, ρ∗, δ)B2

)
, on Ω

PLf̂λ
N
≤ PILf̂λ

N
+ c

r̃2(A, ρ∗, δ)

A

Moreover we have

PILf̂λ
N
=

N

|I|PNLf̂λ
N
− |O|

|I| POLf̂λ
N

=
N

|I|PNLλ
f̂λ
N

+ λ
N

|I| (‖f
∗‖ − ‖f̂λ

N‖)− |O|
|I| POLf̂λ

N

≤ 2λρ∗ + L
|O|
|I| PO|f̂λ

N − f∗|

≤ 2λρ∗ + c
r̃2(A, ρ∗, δ)

A

= c
r̃2(A, ρ∗, δ)

A
,

which concludes the proof for the excess risk.

D.4. Proof Theorem 3 in the local bounded setting

The proof consists in taking the stochastic argument from the proof of Theo-
rem 1 (and adding the localization with respect to the regularization norm) and
the deterministic argument from the proof of Theorem 3.



3602 G. Chinot

References

[1] Pierre Alquier, Vincent Cottet, Guillaume Lecué, et al. Estimation bounds
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[55] Sara A. Van De Geer, Peter Bühlmann, et al. On the conditions used to
prove oracle results for the lasso. Electronic Journal of Statistics, 3:1360–
1392, 2009. MR2576316

[56] Vladimir Naumovich Vapnik. Statistical Learning Theory, volume 1. Wiley
New York, 1998. MR1641250

[57] Roman Vershynin. High-Dimensional Probability: An Introduction with
Applications in Data Science. Cambridge Series in Statistical and Proba-
bilistic Mathematics, 2018. MR3837109

[58] Victor J. Yohai and Ricardo A. Maronna. Asymptotic behavior of m-
estimators for the linear model. The Annals of Statistics, pages 258–268,
1979. MR0520237

http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=2051002
http://www.ams.org/mathscinet-getitem?mr=0120720
http://www.ams.org/mathscinet-getitem?mr=0133937
http://www.ams.org/mathscinet-getitem?mr=3526202
http://www.ams.org/mathscinet-getitem?mr=3526202
http://www.ams.org/mathscinet-getitem?mr=2576316
http://www.ams.org/mathscinet-getitem?mr=1641250
http://www.ams.org/mathscinet-getitem?mr=3837109
http://www.ams.org/mathscinet-getitem?mr=0520237

	Introduction
	Setting
	Our contributions
	Related literature

	Non-regularized procedures
	Complexity measures and parameters
	Local Bernstein conditions and main results
	A concrete example: the class of linear functionals in Rp with Huber loss function

	High dimensional setting
	Complexity parameters and sparsity equation
	Local Bernstein conditions and main results
	Application to 1-penalized Huber's M-estimator with Gaussian design
	Application to RKHS with the huber loss function

	Conclusion and perspectives
	Simulations
	Lower bound minimax risk in regression where only the labels are contaminated
	1-penalized Huber's M-estimator with non-isotropic design
	Proofs main theorems
	Proof Theorem 1 in the sub-Gaussian setting
	Proof Theorem 1 in the local bounded framework
	Proof Theorem 3 in the sub-Gaussian framework
	Proof Theorem 3 in the local bounded setting

	References

