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In this paper, we present an unsupervised state representation learning of spatio-temporally evolving sequences of autonomous agents' observations. Our method uses contrastive learning through mutual information (MI) maximization between a sample and the views derived through selection of pixels from the sample and other randomly selected negative samples. Our method employs balancing MI by finding the optimal ratios of positive-to-negative pixels in these derived (constructed) views. We performed several experiments and determined the optimal ratios of positive-to-negative signals to balance the MI between a given sample and the constructed views. The newly introduced method is named as Balanced View Spatial Deep InfoMax (BVS-DIM). We evaluated our method on Atari games and performed comparisons with the state-of-the-art unsupervised state representation learning baseline method. We show that our solution enables to successfully learn state representations from sparsely sampled or randomly shuffled observations. Our BVS-DIM method also marginally enhances the representation powers of encoders to capture high-level latent factors of the agents' observations when compared with the baseline method.

INTRODUCTION

Self learning of sensory data are considered as a fundamental cognitive capability of animals and specially humans [START_REF] Marr | Vision: A computational investigation into the human representation and processing of visual information[END_REF][START_REF] Gordon | What's in an object file? evidence from priming studies[END_REF]. Therefore, it is important to endow autonomous artificial agents with such cognitive capability [START_REF] Nair | Visual reinforcement learning with imagined goals[END_REF][START_REF] Lake | Building machines that learn and think like people[END_REF]. Currently, it is possible to train a model through supervised learning, from raw sensory data with machine learning architectures [START_REF] Khan | A survey of the recent architectures of deep convolutional neural networks[END_REF]. However, this raises some difficulties: the need of huge databases that must be labelled [START_REF] Russakovsky | Ima-geNet Large Scale Visual Recognition Challenge[END_REF], the time required to train the model but more fundamentally, the difference with the way living beings are able to learn by themselves to recognize shapes, without the need of million of annotated samples. Consequently, some researchers have adopted another way, closer to natural or psychological observations. For instance [START_REF] Forestier | Intrinsically motivated goal exploration processes with automatic curriculum learning[END_REF][START_REF] Péré | Unsupervised learning of goal spaces for intrinsically motivated goal exploration[END_REF] used intrinsically motivated exploration and unsupervised learning principles to give an agent the capability to acquire new knowledge and skills. The key principle of unsupervised learning is to compare different perceptions of a same context and to find out what distinguishes them [START_REF] Bachman | Learning representations by maximizing mutual infor-mation across views[END_REF][START_REF] Oord | Representation learning with contrastive predictive coding[END_REF]. However, modeling high-level representation from raw sensory data through unsupervised learning remains challenging and is far to be as efficient as supervised learning.

To compare algorithms, benchmark based on Atari 2600 games [START_REF] Bellemare | The arcade learning environment: An evaluation platform for general agents[END_REF] are generally used because they endow state variables (location of the player, location of different items, etc.) which are generative factors of the images. This state variables are representations accessible from the source code of the game and can be learned. Moreover, there are several Atari games of diverse natures and number of state variables with varied conditions of the environment. Thus it allows to collect enough samples for each game and to carry out evaluations across several games to assess the generalization capability of the learning method. For this task, and to our knowledge, the Spatio-Temporal Deep InfoMax (ST-DIM) [START_REF] Anand | Unsupervised state representation learning in atari[END_REF] is the state-of-the-art baseline.

In this work, we have introduced a new approach for unsupervised state representation learning of spatio-temporally evolving data sequences based on maximizing contrastive Mutual Information (MI).

Our method is known as Balanced View Spatial Deep-InfoMax (BVS-DIM). The learning of BVS-DIM depends on maximizing MI between the whole features of an image and the features of the patches of its views; and maximizing MI between the features of the patches of the image and the corresponding patches of its views. Since these MI maximization correspondences of the global and local features is in spatial axes, we used the term "Spatial". We balance the ratio of pixels taken from the sample itself and from other samples in the constructed views and hence, we used the term "Balanced View".

Our method is proposed to enable autonomous agents' unsupervised learning from sparsely or irregularly sampled observations or observations with no time stamp at all. As discussed in section 3, these scenarios of learning are unaddressed by ST-DIM, which success strongly depends on consecutive time step samples with high sampling rates.

In section 2, we discussed the related works and in section 3 we presented the motivation of this research work. Then in section 4, we detailed our method, BVS-DIM. In section 5, we described the experimental settings. Then in section 6, it is our results and discussion section. We compared our results with the state-of-the-art ST-DIM method and other methods with different ways to create positive views. In conclusion (section 7), we show how BVS-DIM achieved the objectives we set in section 3 with performances exceeding the baseline.

RELATED WORKS

In state representation learning, current unsupervised methods use three approaches: generative decoding of the data using Variational Auto Encoders (VAEs), generative decoding of the data using prediction in pixel-space (prediction of future frames in videos and video games [START_REF] Oh | Action-conditional video prediction using deep networks in atari games[END_REF]) and scalable estimation of mutual information (MI) between the input and the output. The scalability of the MI based representation is both in dimensions, sample size and with a characteristic of achieving good performance in different settings [START_REF] Belghazi | Mine: mutual information neural estimation[END_REF]. However, the generative models using VAEs or predictive pixels tend to capture pixel level details rather than abstract latent factors. The generative decoding aims in reconstructing the input image with pixel level reconstruction accuracy [START_REF] Kingma | Auto-encoding variational bayes[END_REF][START_REF] Sønderby | Ladder variational autoencoders[END_REF]. On the other hand, representation learning based on maximizing MI focuses on enhancing MI either between representations of different views of the same sample or between an input and its repre-sentation. This objective of maximizing MI helps to learn semantically meaningful and interpretable (disentangled) representations [START_REF] Chen | Infogan: Interpretable representation learning by information maximizing generative adversarial nets[END_REF] and enables to have better representation of a given sample's overall feature rather than local and low-level details.

Unsupervised Representation Learning: Recent works on unsupervised representation learning extract latent representations by maximizing a lower bound on the mutual information between the representation and the input. DIM [START_REF] Hjelm | Learning deep representations by mutual information estimation and maximization[END_REF] performs unsupervised learning of representations by maximizing the Jensen-Shannon (JD) divergence between the joint and product of marginals of an image and its patches. DIM's representation learning also works well with loss based on Noise Contrastive Estimation (InfoNCE) [START_REF] Oord | Representation learning with contrastive predictive coding[END_REF] and Mutual Information Neural Estimation (MINE) [START_REF] Belghazi | Mine: mutual information neural estimation[END_REF] in addition to JD. Another similar work with DIM [START_REF] Bachman | Learning representations by maximizing mutual infor-mation across views[END_REF] uses representations learned through maximizing the MI between a given image and its augmented views. See [START_REF] Poole | On variational bounds of mutual information[END_REF] and [START_REF] Anand | Unsupervised state representation learning in atari[END_REF] for more details on representation learning through MI maximization between inputs and outputs.

State Representation Learning: Learning state representations is an active area of research within robotics and reinforcement learning [START_REF] Nair | Visual reinforcement learning with imagined goals[END_REF][START_REF] Péré | Unsupervised learning of goal spaces for intrinsically motivated goal exploration[END_REF]. Most existing state representation learning methods are based on handcrafted features and/or through supervised training using labelled data [START_REF] Jonschkowski | Learning state representations with robotic priors[END_REF][START_REF] Jonschkowski | Pves: Position-velocity encoders for unsupervised learning of structured state representations[END_REF][START_REF] Lesort | State representation learning for control: An overview[END_REF]. However, agents and robots can't learn from new observations when they are exposed to new and unseen environments. Therefore, most recent unsupervised state representations were introduced like TCN [START_REF] Sermanet | Timecontrastive networks: Self-supervised learning from video[END_REF], TDC [START_REF] Ma | Noise contrastive estimation and negative sampling for conditional models: Consistency and statistical efficiency[END_REF] and more recently, ST-DIM [START_REF] Anand | Unsupervised state representation learning in atari[END_REF], which is the state-of-the-art baseline to our BVS-DIM method. Our BVS-DIM is also based on DIM [START_REF] Hjelm | Learning deep representations by mutual information estimation and maximization[END_REF]. ST-DIM used Atari games for evaluating their learning of state representations. The state variables of the Atari games are the controllers of the game dynamics and the details of these state variables are provided in [START_REF] Anand | Unsupervised state representation learning in atari[END_REF].

Our work is closely related to DIM [START_REF] Hjelm | Learning deep representations by mutual information estimation and maximization[END_REF], AMDIM [START_REF] Bachman | Learning representations by maximizing mutual infor-mation across views[END_REF] and ST-DIM [START_REF] Anand | Unsupervised state representation learning in atari[END_REF] even though the first two are general purpose representation learning methods tested on real-world data-sets such as ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF].

An autonomous agent should be capable of learning in an unsupervised way. ST-DIM is an unsupervised state representation learning from visual observations. However, the learning method of ST-DIM depends on the consecutive time step visual observations [START_REF] Anand | Unsupervised state representation learning in atari[END_REF]. Hence ST-DIM has the following limitations.

1. Sampling rate: The learning of ST-DIM only depends on the consecutive time samples. These consecutive samples are similar with each-other due to high sampling rates and one can be considered as the view of the other. Agents may have sparse sampling rates and may not collect samples frequently. In this case, consecutive time samples wouldn't be similar and hence, the ST-DIM approach can't be appropriate enough to capture the latent generative factors of the environment.

2. Selective sample collection: Autonomous learning from a one time collected dataset makes the autonomous agent limited to the environment from which the samples are collected. To extend the learning across longer time and diverse environments, agents may learn while they are collecting samples and make replacements of samples with new relevant experiences using some selection criteria when their memory is full. In this case, the collected datasets won't be consecutive time step; the sampling frequency won't be uniform, or it may not have a time-stamp at all. In such types of scenarios, ST-DIM approach can't be employed for the learning as it depends on the similarity of consecutive samples.

To overcome these limitations, we proposed BVS-DIM in which autonomous agents can learn from data samples with randomly shuffled order, sparsely sampled from the environment or time-consecutive as well. Our BVS-DIM method is inspired by different biological and computational research findings and combined them to create a better state representation learning method. We adopted the concept of hardmixture of features from [START_REF] Kalantidis | Hard negative mixing for contrastive learning[END_REF], the concept of both positive and negative samples for better learning from [START_REF] Carlson | The emergence of semantic meaning in the ventral temporal pathway[END_REF] and [START_REF] Visani | Hierarchical classification of enzyme promiscuity using positive, unlabeled, and hard negative examples[END_REF], the concept of contrastive relations of a pixel in a given image to the pixels of the entire images in the data-set from [START_REF] Wang | Exploring cross-image pixel contrast for semantic segmentation[END_REF] and the concept of data augmentation from [START_REF] Bachman | Learning representations by maximizing mutual infor-mation across views[END_REF]. We created constructed views of a given sample by selecting pixels from itself (positive signals) and pixels from another sample randomly selected from the same mini-batch (negative signals). We used MI maximization between learned representations of a sample and its constructed views.

The objective of our BVS-DIM method is to learn features with latent factors of the agents' observation even under the absence of significant similarity between time consecutive samples or randomly shuffled samples of autonomous agents. It enables the autonomous agent to capture every spatially evolving factor including controllable ones and the environment such as state variables. We have made the following contributions.

1. We devised a new unsupervised state representation learning method that can learn from samples collected by autonomous agents regardless of their chronological order and sampling rate.

2. We achieved marginally better result when compared to ST-DIM, the state of the art baseline method, both for time-consecutive and randomly shuffled collected samples.

BALANCED VIEW SPATIAL DEEP INFOMAX

The core idea of our BVS-DIM method is in creating balanced views of a given sample using selection methods of pixels from itself and pixels from other randomly selected sample of the same minibatch. Balanced view is created through selection of the ratio of positive-to-negative signals in the constructed view. Our method extends the state representation power of spatio-temporally evolving sequences of data by letting the encoder capture the discriminative features from the mixed positive and negative signals exploiting both similarity and contrast in a single constructed view of a given sample. Here after we used "positive sample" to refer to a given anchor sample itself, "negative sample" to refer to any other sample randomly drawn from the same mini-batch. We assumed a setting where an agent interacts with its environment and observes high-dimensional observations across several episodes and we formed two sample sets from these episodes. The first set of observations preserving their temporal ordering is given as χ = {x 1 , x 2 , x 3 , ..., x N }. The second set of observations being randomly shuffled is given as

χ = {x 1 , x 2 , x 3 , ..., x M }.
Taking the advantage of the success of ST-DIM, where the frames of consecutive time-steps x t and x t+1 are similar with each other, these consecutive frames are taken as the view of one another. However, learning in ST-DIM is limited to time sequenced samples, and we hypothesize the success of state rep-resentation learning in ST-DIM depends on the similarity factor of consecutive observations. When the sampling rates of the observations are more frequent, the consecutive frames will have high similarity and vice-versa. Let us assume that we have a positive anchor sample x p and two other randomly selected negative samples x * 1 and x * 2 uniformly sampled from χ or χ . We shall construct two positive views x min and x max from (x p , x * 1 ) and (x p , x * 2 ) pairs using the following simple min and max pixel-wise operations, respectively.

x min (i, j) := min(x p (i, j), x * 1 (i, j))

(1)

x max (i, j) := max(x p (i, j), x * 2 (i, j))

(2) The positive sample probably has 50% signal contribution in x min and x max constructed views. However, the balancing ratios in the newly constructed views affect the representation learning performance. Our prime purpose is to balance the ratio of positiveto-negative signals in these constructed views. Let p represent the probability of assigning the pixel of x bmn and x bmx from pixels of x p modifying constructed views of x min and x max . To increase the ratio of positive-to-negative signals from 0.5 to some r where r > 0.5, we shall assign the value of p as p = 2 * (r -0.5). Then the new finally modified constructed views x bmn and x bmx is given by equations 4 and 5, respectively. Let R be an array of normal (Gaussian) distribution with center p in range [0, 1] and C be a Boolean array. Both R and C have the same dimension as x p and equation 3 initializes the Boolean array C.

C i, j := true if R i, j < p f alse otherwise (3) x bmn (i, j) := x p (i, j) if C i, j = true x min (i, j) otherwise (4) x bmx (i, j) := x p (i, j) if C i, j = true x max (i, j) otherwise (5)

Maximizing Mutual Information across Balanced Views

Similar to ST-DIM, we used two types of MI estimations. The first is global-to-local (GL) where the MI between the global (whole) features of a sample and the features of local patches of its views are computed. The second one is local-to-local (LL) where the MI between the features of local patches of the sample and its corresponding views are estimated. The combination of these two MI estimations is denoted as GL-LL. Therefore, our BVS-DIM is used with either the GL-LL or GL-only MI objective for both time-sequenced and randomly selected tuples of samples. Then we used MI maximization function between a sample and its constructed views to enhance representation learning. We hypothesize that such enhancement of representation learning is possible through balancing the ratio of positive-to-negative signals in the constructed views.

For a given MI estimator, we used the GL objective in equation 7 to maximize the MI between global features of x p and features of small patches of x bmn and x bmx . The Local-Local (LL) objective in equation 8 maximizes MI between the local feature of x p with the corresponding local feature of x bmn and x bmx . The LL MI objective is used in combination with GL MI objective as GL-LL. The views, x bmn and x bmx , are constructed as mixed pixels from the positive sample x p and two negative samples, (x * 1 or x * 2 which are selected in a uniformly random way as given in equations 1 through 5). We have used the GL MI objective alone as well as the combined GL-LL MI objective in our tests. Figure 1 represents a visual depiction of our model, BVS-DIM.

We used InfoNCE [START_REF] Oord | Representation learning with contrastive predictive coding[END_REF] as MI estimator, a multi-sample variant of noise-contrastive estimation (NCE) [START_REF] Gutmann | Noise-contrastive estimation: A new estimation principle for unnormalized statistical models[END_REF]. This MI estimator worked well with DIM and ST-DIM along with GL and GL-LL objectives, respectively. Let {(x i , y i )} N i=1 be a paired dataset of N samples from some joint distribution p(x, y). We consider any sample i of (x i , y i ) from this joint p(x, y) are the positive sample pairs and any i = j of (x i , y j ) are negative sample pairs. InfoNCE objective uses a score function f (x, y) which assigns larger values to positive sample pairs and smaller values to negative sample pairs by maximizing equation 6 as discussed in details on [START_REF] Oord | Representation learning with contrastive predictive coding[END_REF] and [START_REF] Poole | On variational bounds of mutual information[END_REF].

I NCE ({(x i , y i )} N i=1 ) = N ∑ i=1 log exp( f (x i , y i )) ∑ N j=1 exp( f (x i , y j )) (6) 
The MI objective function given in equation 6 has also been referred to as multi-class n-pair loss [START_REF] Sohn | Improved deep metric learning with multiclass n-pair loss objective[END_REF], [START_REF] Sermanet | Timecontrastive networks: Self-supervised learning from video[END_REF], ranking-based NCE [START_REF] Ma | Noise contrastive estimation and negative sampling for conditional models: Consistency and statistical efficiency[END_REF] and is similar to MINE (Belghazi et al., 2018) and the JSD-variant of DIM [START_REF] Hjelm | Learning deep representations by mutual information estimation and maximization[END_REF].

For fair comparison of our model with ST-DIM, we have used a bilinear model W for the score function f (x, y) = ψ(x) T W ψ(y), where ψ is our representation encoder. The bi-linear model in combination with InfoNCE enables the encoder to learn linearly predictable representations and helps in learning representations at the semantic level [START_REF] Anand | Unsupervised state representation learning in atari[END_REF].

Let X b = {(x p , x * 1 , x * 2 } B i=1 be a mini-batch of randomly selected tuples of samples from χ . We con- 

where the score function for the GL MI objective, g m,n (x 1 , x 2 ) = ψ(x 1 ) T W g ψ m,n (x 2 ) and ψ m,n is the local feature vector produced by an intermediate layer in ψ at the (m, n) spatial location.

L LL = M ∑ m=1 N ∑ n=1 -log exp( f m,n (x p , x bmn )) + exp( f m,n (x p , x bmx )) 2(∑ x * ∈Xandx * =x p exp( f m,n (x p , x * ))) (8) 
where the score function for the LL MI objective, f m,n (x 1 , x 2 ) = ψ m,n (x 1 ) T W l ψ m,n (x 2 ).

EXPERIMENTAL SETUP

Even though unsupervised learning of state representations are developed, evaluating the usefulness of a representation is still an open problem because the objectives and core utilities of these features during training are different when used in their downstream tasks. For example, measuring classification performance will only show the goodness of the representation for class relevant features. Devising a generic way of measurement of the general goodness of the representation is essential [START_REF] Anand | Unsupervised state representation learning in atari[END_REF].

Video games, like Atari games, are useful candidate for evaluating visual representation learning algorithms and they provide ready access to the underlying ground truth states which are required to evaluate performance of different techniques. In ST-DIM, the ground truth state information (a state label for every example frame generated from the game) has been annotated for each frame of 22 Atari games to make evaluation of the goodness of the representation (See [START_REF] Anand | Unsupervised state representation learning in atari[END_REF]). We have used this ST-DIM benchmark on Atari games using the Arcade Learning Environment (ALE) [START_REF] Bellemare | The arcade learning environment: An evaluation platform for general agents[END_REF] and modified it to incorporate theBVS-DIM method for evaluating the goodness of the learned representations. Therefore, the goodness of the representations is evaluated against the performance of bi-linear classifiers for state variables taking the features learned as an input. There are categories of state variables, and the classification performances are averaged for each category in each game. Then final average of the game across categories is reported as F1 classification score of the game. For the sake of comparison, we have used the same data collection methods and the same randomly-initialized CNN encoder (RANDOM-CNN) architecture taken from [START_REF] Mnih | Playing atari with deep reinforcement learning[END_REF] and adapted for the full 160x210 Atari frame size with the feature representation space of 256.

In probing stage, we trained the 256-way linear classifier models with the learned representation of the encoder as input. Only state variables with high entropy are considered, and duplicates are removed. We used the same probing conditions, number of training, validation and testing samples as well as early stopping and a learning rate scheduler as used in ST-DIM.

We made two categories of tests. The first category, for consecutive time step tuples of (x t-1 , x t , x t+1 ) from χ. For this category, we have used equations 1 and 2 to construct the views x min and x max from (x t-1 , x t ) and (x t , x t+1 ), respectively. We have used GL-only MI objective. For the second category of tests, we have used randomly selected tuples of (x p , x * 1 , x * 2 ) from χ . We have followed the operations specified in equations 1 through 5 to construct the views x bmn and x bmx from (x p , x * 1 ) and (x p , x * 2 ), respectively. We tested several balancing ratios ranging from 0.65 to 0.85 with the interval of significant change, i.e. 0.05. We also tested both for the GL-only and the combined GL-LL MI objectives.

Since number of tests were in the order of hundreds for the second category, we limited the number of epochs and for fair comparison, the benchmark tests are also re-executed. To balance the ratio of positive-to-negative signals in the constructed views, we performed the tests on five Atari games with ratios of {0.65, 0.70, 0.75, 0.80, 0.85} for both GL-only and GL-LL MI objectives. From these five game experiments, we found 0.70 and 0.75 for GLonly and 0.80 for GL-LL MI objectives to work well in the goodness of the learned state representations. Based on the results, we performed tests for all 22 Atari games for GL-only-0.70, GL-only-0.75 and GL-LL-0.80 along with the benchmark, ST-DIM, method and made comparisons. To show how ST-DIM also works for randomly selected pairs, we made two sets of tests for ST-DIM; ST-DIM (C) stands for ST-DIM with consecutive (t and t + 1) observations while ST-DIM (R) stands for ST-DIM with randomly selected pairs of observations selected from the mini-batch with uniform probability distribution. To make comparisons with contrastive learning based on other augmented views, we made tests using views created as in AMDIM [START_REF] Bachman | Learning representations by maximizing mutual infor-mation across views[END_REF]. We also made tests replacing random noise instead of taking pixels from negative samples for constructed views in the mini-batch (BVS-DIM with noise).

Additionally, we have made ablation analysis by making a breakdown of the results with respect to each category of state variables. We have also made a test on the presence of an easy to exploit features, bounding boxes on each display variables, and made comparison with the baseline method.

RESULTS AND DISCUSSION

As presented in section 4, the goodness of the representation is its capability in capturing the underlying generative factors of the environment. In Atari games, the crucial underlying generative factors of the environment are state variables which can be directly used to control the game dynamics or query the game information [START_REF] Bellemare | The arcade learning environment: An evaluation platform for general agents[END_REF], [START_REF] Anand | Unsupervised state representation learning in atari[END_REF].

Using Consecutive Time-step Tuples

As presented in section 5, consecutive time step frames are used to create the constructed views (only using equations 1 and 2) and used GL-only MI objective. We performed tests for the 22 Atari games with NoFrameskip and 16 Atari Games with Framesskip setting as well as the benchmark ST-DIM as shown in Table 1. We have used GL-only MI objective and achieved comparable results without applying balancing the positive-to-negative signal ratio as the frames are consecutive.

With the 22 NoFrameskip Atari games, BVS-DIM method outperformed ST-DIM in 12 games and it has achieved almost comparable results with ST-DIM in seven games. To show the robustness of the BVS-DIM method under the absence of similarity of consecutive observations, we tested the BVS-DIM method and the benchmark with 16 Frameskip type Atari games. The mean F1 classification score difference of the BVS-DIM method with ST-DIM widened from 3% (with NoFrameskip games) to 5% (with Frameskip games).

In the Frameskip setting, the BVS-DIM method exceeded ST-DIM in 15 games while it has leveled with ST-DIM in one game. The widened gap observed between ST-DIM and BVS-DIM with Frameskip games shows that the BVS-DIM method is robust to the sampling rates of the observations while ST-DIM is affected with the sampling rates of the observations. Table 1: Probe F1 classification scores averaged across categories for each game (data collected by random agents) with 2 nd and 3 rd columns for NoFrameskip and 4 th and 5 th columns for Frameskip = 4 setting. The GL-only MI objective with ratio of 0.50 is used with BVS-DIM. Consecutive (t and t + 1) frames are used in both BVS-DIM and ST-DIM. 

Using Randomly Selected Tuples

After constructing positive views x bmn and x bmx from (x * 1 , x p ) and (x p , x * 2 ), respectively using equations 1 through 5, we carry out tests for all 22 Atari games for GL-0.70, GL-0.75 and GL-LL-0.80 and made comparison of BVS-DIM with ST-DIM.

The ST-DIM tests were re-executed as we changed the number of epochs in this comparison and we used 30 epochs for all tests of this category. Table 2 shows the test results of the ST-DIM, GL-only MI objective with 0.70 and 0.75 balancing ratios and GL-LL MI objective with 0.80 balancing ratio. The BVS-DIM with GL-LL MI objective and with 0.80 balancing ratio outperformed the benchmark ST-DIM in 14 games while the baseline has exceeded in only one game. To see the effect of negative sample pixels versus arbitrary noise in the constructed views, we have modified the constructed views to take arbitrary noise than taking pixels from negative samples. We tested BVS-DIM with GL-LL-0.80 MI objective for the noise (i.e. the noise constitutes about 20% in each view) and we designate BVS-DIM-N (GL-LL-0.80) in Table 2. The corresponding BVS-DIM (GL-LL-0.80) with 20% pixels from other image samples has a mean of 3% better performance than BVS-DIM-N (GL-LL-0.80). This experiment shows that taking pixels from other samples enhances the discriminating power of the encoders.

We have also made standard image augmentation operation used as in AMDIM [START_REF] Bachman | Learning representations by maximizing mutual infor-mation across views[END_REF] and evaluated usign the same GL-LL MI objective for fair comparison. The result of augmented views contrastive learning using similar operators as used in AMDIM for Atari games performs very low compared to both BVS-DIM and ST-DIM. Even though further analysis is required, we hypothesize that standard augmentation operators provided in AMDIM [START_REF] Bachman | Learning representations by maximizing mutual infor-mation across views[END_REF] aren't optimal for state representation learning of Atari games since the screen images of Atari games contain smaller objects relevant to the game outcome which may become much distorted or lost in these augmentation operations.

The BVS-DIM method maintained the same performance with randomly selected tuples and careful selection of balancing ratio even with a training of Table 2: Probe F1 classification scores averaged across categories for each game (data collected by random agents). The tuples used in BVS-DIM methods are randomly selected from each mini-batch to construct two balanced views. The pairs used in ST-DIM (R) are randomly selected pairs while the pairs used in ST-DIM (C) are time consecutive frames selected from each mini-batch. We have included the results of the experimental results using the same image augmentation techniques as used in AMDIM and the fully supervised learning for comparison. As shown in Table 2, the performance of ST-DIM (R) (ST-DIM with random pairs of frames) is much lower and it shows that agents having low sampling rate of their observations can't use ST-DIM in their unsupervised representation learning. In contrast to ST-DIM, BVS-DIM's performance for both consecutive frames (as shown in Table 1) and randomly selected frames (as given in Table 2) is better than ST-DIM and enables agents to learn representations even from their sparse and uneven observations.

GAME

Ablation Analysis

We provide a breakdown of probe results averaged for all 22 Atari games in each category of state variables in Table 3 for the random agent. The BVS-DIM method outperformed or at least leveled with ST-DIM in all the five categories of state information. The BVS-DIM method has shown better or similar stability in comparison with ST-DIM in its small object localization capability and all other category of state variables as shown in Table 3 and robustness to presence of easy-to-exploit features as shown in Table 4.

The results shown in Table 3 are supporting the stability and robustness of the BVS-DIM method in its capability of small object localization, agent localization and all other categories of state variables as it exceeded or leveled with the baseline. The BVS-DIM with GL-LL MI objective function and 0.80 balancing ratio outperformed other variants of the BVS-DIM settings. The results shown in Table 4 are supporting the stability and robustness of the BVS-DIM method in the presence of an easy to exploit feature, namely the boxing of the state variables in the screen images. The state variables are only changing in the spatiotemporal sequences while the boxing remains static. As shown in Table 4, the BVS method with GL MI objective and 0.70 and 0.75 balancing ratios as well as the GL-LL MI objective with 0.80 balancing ratio achieved better results in almost all state variables. The BVS-DIM outperformed ST-DIM in capturing the most relevant spatio-temporally evolving factors of state variables even in the presence of easy to exploit features as shown in Table 4.

CONCLUSION

We presented a new unsupervised state representation learning technique, named BVS-DIM. The method uses MI maximization between representations of a given sample with its balanced constructed view across spatial axes. The constructed views are created through balancing ratio of pixel selection from the sample itself and other randomly selected samples (positive-to-negative signal ratio). On the Atari Games suite, BVS-DIM achieved a marginal better performance than the state-of-the-art baseline method, ST-DIM, with 4% average F1 classification score improvement.

Results showed that the method does not require consecutive observations with high sampling rates. Therefore, BVS-DIM enables agents with temporally sparse observations to successfully learn the representation of their observations in unsupervised manner even under the absence of similarity between their successive observations. These interesting properties make it possible to consider the application of the proposed learning method to longer episodes and under more varied environmental conditions than current methods.

Figure 1 :

 1 Figure 1: A schematic overview of Balanced View Spatial Deep InfoMax (BVS-DIM). Left: The two different mutual information objectives i.e. Local-Local (LL) infomax and Global-Local (GL) infomax. Right: A simplified version of the GL contrastive task. The two negative samples x *1 and x * 2 represent negative samples selected from the mini-batch randomly with uniform probability distributions. These two negative samples are used along x p to construct the x bmn and x bmx balanced views. x * represents all negative samples in the mini-batch including x * 1 and x * 2 , and other than x p . In practice, we used only two positive samples and multiple negative samples.

Table 3 :

 3 Probe F1 classification scores for different methods averaged across all games for each category

	CATEGORY	ST-	BVS-DIM	BVS-DIM	BVS-DIM	BVS-DIM
		DIM(C)	(GL-LL-80-N)	(GL-0.7)	(GL-0.75)	(GL-LL-0.8)
	Small Object Localization	0.48	0.50	0.46	0.47	0.48
	Agent Localization	0.54	0.57	0.61	0.60	0.61
	Other Localization	0.69	0.69	0.71	0.70	0.74
	Score/Clock/Lives Display	0.89	0.86	0.89	0.89	0.90
	Misc Keys	0.71	0.72	0.73	0.74	0.75

Table 4 :

 4 Breakdown of Accuracy Scores for every state variable which is displayed boxed in the screen for ST-DIM, BVS-DIM-GL-0.70, BVS-DIM-GL-0.75 and BVS-DIM-GL-LL-0.80. It is an ablation that removes the spatial contrastive constraint, for the Boxing, an easy to exploit features but not relevant to the state variables.

	METHOD	ST-DIM BVS-DIM BVS-DIM	BVS-DIM
			(GL-0.70) (GL-0.75) (GL-LL-0.8)
	CLOCK	0.95	0.97	0.94	0.97
	ENEMY SCORE	0.98	0.99	0.96	1.00
	ENEMY X	0.56	0.62	0.63	0.64
	ENEMY Y	0.64	0.68	0.68	0.69
	PLAYER SCORE	0.93	0.95	0.95	0.97
	PLAYER X	0.49	0.53	0.54	0.55
	PLAYER Y	0.60	0.65	0.65	0.66
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