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We analyse the interpolator with minimal `2-norm β̂ in a general high dimensional linear regres-
sion framework where Y = Xβ∗ + ξ with X a random n × p matrix with independent N (0,Σ)
rows. We prove that, with high probability, without assumption on the noise vector ξ ∈ Rn, the
ellipsoid risk ‖β̂−β∗‖2Σ = (β̂−β∗)T Σ(β̂−β∗) is bounded from above by (‖β∗‖22rcn(Σ)∨‖ξ‖2)/n,
where c is an absolute constant and, for any k > 1, rk(Σ) =

∑
i≥k λi(Σ) is the tail sum of the

eigenvalues of Σ. These bounds show a transition in the rates. For high signal to noise ratios,
the rates ‖β∗‖22rcn(Σ)/n broadly improve the existing ones. For low signal to noise ratio, we
also provide lower bound holding with large probability. General lower bounds are proved under
minor restrictions on the noise ξ (see Theorem 1). Under assumptions on the sprectrum of Σ,
this lower bound is of order ‖ξ‖22/n, matching the upper bound. Consequently, in the large noise
regime, we are able to precisely track the ellipsoid risk with large probability. These results give
new insight when the interpolation can be harmless in high dimensions.

Keywords: Interpolation problems, statistical learning, robustness.

1. Introduction

In this paper, we consider the problem of estimating a high dimensional vector β∗ ∈ Rp
from a few possibly noisy observations of random projections of it. Let X ∈ Rn×p denote
a random matrix with rows XT

i . The observations can therefore equivalently be written

yi =
〈
Xi, β

∗〉+ ξi, i ∈ {1, . . . , n} ,

or, in the matrix form
Y = Xβ∗ + ξ .

The vector ξ = (ξ1, . . . , ξn)T is called the noise. This problem is classical in signal pro-
cessing and in statistics where it is known as the linear regression problem. In particular,
the Gaussian linear regression problem is the problem of recovering β∗ when ξ is inde-
pendent from X and Gaussian. The arguably most famous estimator is the least-squares
estimator defined as

β̂ ∈ argmin
β∈Rp

‖Y− Xβ‖22 ,
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where ‖ · ‖2 denotes the usual Euclidean norm in Rd, whatever d > 2. The quality of

β̂ can be assessed through upper and lower bounds on the estimation error ‖β̂ − β∗‖2.
When the rows XT

i of X are i.i.d. with second moment matrix Σ = E[X1X
T
1 ], another

popular quality measure is the ellispoid risk

‖Σ1/2(β̂ − β∗)‖2 =

√
E[
〈
X, β̂ − β∗

〉2|X,Y] .

In this formulation, X denote an independent copy of X1, independent from X,Y. The
ellipsoid risk therefore measures how far are the predictions at a typical point X by β̂:〈
X, β̂

〉
and by the actual signal β∗:

〈
X,β∗

〉
. Both risks are random variables and upper

and lower bounds for these risks, in expectation and with high probability are now well
known in the small dimensional Gaussian linear problem where p < n.

These bounds deteriorate as the dimension grows and the least-squares estimator
behaves poorly when p � n. This can be understood as follows: In high dimension
where p > n, the set of least-squares estimators is typically infinite. Actually, when
the matrix X has full rank n, its null space is non trivial and any solution in the set
{XgY}, where Xg describes all pseudo-inverses of X satisfies XXgY = Y. In other words,
in large dimension, least-squares estimators interpolate data. This kind of behavior is
typically undesirable in statistics, as the estimators clearly overfit the observed dataset,
and have usually poor generalization abilities. The least-squares estimators are not the
only estimators suffering this kind of limitation, actually, this feature is shared with any
estimator without further assumptions on the model, a phenomenon known as the curse
of dimensionality in statistics.

The classical trick in high dimensional statistics to bypass this issue is to assume
structural assumptions on β∗, such as sparsity or regularity assumptions. This has given
rise to an impressive literature these last decades. We cannot review here this massive
literature. The interested reader can find comprehensive introductions to these topics
in the textbooks [11, 21, 37, 38, 19] and the references therein. Let us just mention
that this approach was proved efficient, for example in the high dimensional Gaussian
regression problem. Among popular such algorithms, one can mention basis pursuit [16],
ridge regression [22, 14], the LASSO [34, 35, 9] and the elastic net [44, 17].

We do not pursue this path in this paper: We want to tackle the problem in high
dimension, that is when p > n, without any assumption on β∗. As we said, bounding the
estimation error ‖β̂−β∗‖2 in this context remains impossible in general [36]. However, and
perhaps counter-intuitively, [4] discovered that, when the dimension p is large in front

of n, the prediction risk ‖Σ1/2(β̂ − β∗)‖22 can be small for the least-squares estimator

β̂ = X†Y, where X† is the Moore-Penrose pseudo-inverse of X. They proved that this
holds in the Gaussian regression problem, when the lines XT

i of X are i.i.d. with Gaussian
distribution N (0,Σ), under some conditions on the spectrum of Σ. An important take
home message of [4] is therefore the following

In high dimension, even without structural assumptions on β∗, it is still
possible to predict well.

This interesting phenomenon has given rise to a rapidly growing literature these last
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months, see [5, 6, 7, 8, 12, 20, 27, 28]. This success is not surprising as many algorithms
in machine learning require to fit a huge number of parameters with a smaller number of
data. The most famous examples are neural networks for which it has been repeatedly
observed empirically that enlarging the network, hence, the number of parameters, may
help to improve prediction performance [1, 5, 42]. Of course, the linear prediction prob-
lem here is much simpler than understanding the predictions of neural networks, but it
is interesting to understand when and how high dimension helps prediction. Moreover,
several recent works have shown that the analysis of linear models can be relevant for
over-parametrized neural networks, see for example [15]. A reason is that, when neural
networks are trained by gradient descent properly initialized, they are well approximated
by a linear model in a Hilbert space. This method is known as neural tangent kernel
approach [23, 10, 3, 26]. Understanding the generalization of over-parametrized linear
models could therefore be seen as a first step in the direction of understanding deep
learning.

In this paper, as in [4], we analyse the least-squares estimator X†Y, where X† denotes
the Penrose Moore inverse of X, which is the least-squares estimator with minimal Eu-
clidean norm. We also assume that X has i.i.d. Gaussian N (0,Σ) lines. We will assume
all along the paper that we are in the high dimensional regime where p ≥ n and that Σ
has rank larger than n, which implies in particular that X has a.s. full rank n. In this
setting, the estimator can be equivalently defined as the minimum norm interpolator

β̂ = argmin
β∈Rp

‖β‖2 subject to Xβ = Y . (1)

The main difference with [4] is that all upper bounds are proved without assumption on

the noise ξ. This shows the robustness of β̂ to various contaminations of the response
data Y, as the noise, for example, can be deterministic (and hence null), random with
any distributions (hence allowing heavy tailed perturbations), or even adversarial. Sim-
ilar assumptions have been considered in the compressed sensing community [39], in a
different problem and with the Euclidean norm replaced by the `1-norm.

This setting can be used to compare the predictions of any linear predictor, based
on how well the predictions agree on the training set: For any vector β∗, it holds that
Y = Xβ∗+ξ with ξ simply defined as the associated vector of residuals Y−Xβ∗. Although
we usually think of β∗ as playing a key role in the data-generating process, here it works
to be simply arbitrary. Nevertheless, the most interesting choice of β∗ in our bounds
would of course be the one from the true data-generating process.

Our main results give upper and lower bounds on the ellipsoid risk of β̂, ‖Σ1/2(β̂ −
β∗)‖22. The bounds are typically dependent on the noise ‖ξ‖2 and are therefore random
in general. To deduce deterministic bounds, an independent analysis of this term should
be performed in each situation. As in [4], the bounds are interesting under assumptions
on the spectrum of the covariance matrix Σ. These assumptions involve the tail sum
of singular values of the matrix Σ defined for any k > 1 by rk(Σ) =

∑p
i=k λi(Σ). Our

bounds exhibit a phase transition when the signal to noise ratio SNR = ‖β∗‖22/‖ξ‖22
becomes larger than a threshold t = 1/rcn(Σ), where c is an absolute constant.
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• For high signal to noise ratios: SNR > t, the prediction risk of the estimator
satisfies, ‖Σ1/2(β̂ − β∗)‖22 . ‖β∗‖2rcn(Σ)/n, with large probability. This result
improves the one presented in [4] in two ways: First they only reached in this regime

the more pessimistic upper bound ‖Σ1/2(β̂ − β∗)‖22 . ‖β∗‖2
√

Tr(Σ)/n. Notice

that, in a different framework the improvement on the rate from
√

1/n to 1/n for
interpolators already appeared in [12]. Second, we prove that, for interpolators,
these fast rates of convergence hold with probability 1− ce−n/c, for some absolute
constant c, while in [4] the results where established with probability 1− ce−cTr(Σ).

• When the SNR is low, SNR ≤ t, we show that with probability 1− ce−n/c,

‖Σ1/2(β̂ − β∗)‖22 ≤ c
‖ξ‖22
n

.

In Gaussian linear regression with ξ ∼ N (0, σ2I) ∈ Rn, this rates becomes σ2 with
probability 1 − ce−n/c, which matches the minimax rate of convergence for this
confidence level [25, Theorem A’ ]. Besides, we prove that this bound cannot be
improved in general. Indeed, when the noise is independent from X (whatever its
distribution), for a well chosen k̄ 6 p (see Section 2 for a precise definition),

‖Σ1/2(β̂ − β∗)‖22 > c
‖ξ‖22
n ∧ k̄

.

Therefore, in the particular case where p = cn for example, this yields ‖Σ1/2(β̂ −
β∗)‖22 � ‖ξ‖22/n. More generally, for any spectrum of Σ, such that k̄ ≤ cn (we
provide an example at the end of Section 2 where this holds while n = o(p)), upper

and lower bounds match ‖Σ1/2(β̂−β∗)‖22 � ‖ξ‖22/n. Interestingly, the lower bounds
are also obtained with probability 1− ce−n/c. In this regime, the comparison with
[4] is less clear. On one hand, our results are more general as they allow any kind
of noise and, when the noise is Gaussian, improve the bounds of [4] at confidence
levels 1−ce−n/c. On the other hand, when the noise is Gaussian ξ ∼ N (0, σ2I), our
bounds do not shrink to 0 as n→∞ while those in [4] might at smaller confidence
levels.
Our lower bound depends on a new parameter k̄ that was not present in the previous
work of [4]. It gives new insights when the overfitting can be harmless.

Our extension to general noise is based on the following observation: As β̂ interpolates,
we have

‖Σ1/2(β̂ − β∗)‖22 +
1

n

n∑
i=1

〈Xi, β̂ − β∗〉2 − ‖Σ1/2(β̂ − β∗)‖22︸ ︷︷ ︸
deviation

=
‖ξ‖22
n

. (2)

The main technical contribution of the paper is then an upper bound on the deviation
term that holds independently to the form of the noise ξ. The control of the deviation
term is possible using a preliminary result showing that dimension may help to localize
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this estimator with respect to the estimation norm ‖β̂ − β‖2. Heuristically, since the
dimension of the set of interpolators increases with the dimension p, it is expected that
‖β̂‖2 also decreases with the dimension. We show that ‖β̂−β∗‖2 ≤ ‖β∗‖2 + ∆(Σ), where
∆(Σ) is a remainder term controlling the improvement with the dimension p.

The paper is divided in two parts: Section 2 presents the assumptions and main results,
and discuss the general case in particular situations of interest. The main proofs are
gathered in Section 3.

Notations For any symmetric matrix A ∈ Rn×n, we denote by λ1(A) ≥ · · · ≥ λn(A)
its eigenvalues in the non-increasing order and, for any k > 1, by rk(A) =

∑n
i=k λi(A).

More generally, for any matrix B ∈ Rn×p, we denote by σ1(B) ≥ · · · ≥ σmin(B) > 0, its
positive singular values in the non-increasing order. The operator norm of B is denoted by
‖B‖ = σ1(B). For any symmetric positive semi-definite matrix A, let ‖β‖A =

√
βTAβ.

Let S(r) (resp. SA(r)) denote the sphere in Rp with radius r with respect to the Euclidean
norm ‖ · ‖2 (resp. with respect to the semi-norm ‖ · ‖A). Define similarly B(r) and BA(r)
to be the balls with radius r. All along the paper, c, c1, c2 · · · denote absolute positive
constants whose values may change from one instance to another.

2. Main results

This section provides our main contributions. Before stating our main result, let us
introduce quantities that will drive the prediction risk of β̂. Let c0 denote an absolute
constant that should be large enough and let

ρ = ‖β∗‖2 +
4‖ξ‖2√
rk∗(Σ)

, where k∗ = inf

{
k ∈ {1, · · · , p} :

rk(Σ)

λk(Σ)
≥ c0n

}
, (3)

with the convention that inf ∅ = +∞. Also, for constants η, γ > 0, let us define the
following two complexity parameters:

r∗(η) = inf

{
r > 0 :

p∑
i=1

λi(Σ) ∧ r2 ≤ ηnr2

}
(4)

r̄(γ) = sup

{
r > 0 :

p∑
i=1

λi(Σ)ρ2 ∧ r2 ≤ γ‖ξ‖22
}
. (5)

We are now in position to state our main theorem.

Theorem 1. Assume k∗ ≤ cn, where c > 0 is a small enough absolute constant.
For η small enough, there exist absolute constants c1, c2, c3 such that with probability
larger than 1− c1e−c2n, the estimator β̂ defined in Equation (1) satisfies

‖β̂ − β∗‖2 ≤ ρ and ‖Σ1/2(β̂ − β∗)‖2 ≤ ρr∗(η) ∨ c3
‖ξ‖2√
n

.
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Moreover, let us assume that Xi|ξ are i.i.d. N (0,Σ) (recall that XT
i is the i-th row of

X). There exist absolute constants γ > 0, c1, c2, c3 such that with probability larger than

1− c1e−c2n, the estimator β̂ defined in Equation (1) satisfies

‖Σ1/2(β̂ − β∗)‖2 ≥ r̄(γ) ∧ c3
‖ξ‖2√
n

.

Theorem 1 is proved in Section 3.2. This proof is split into two parts. First, we use the
structure of β̂ (solution with minimal norm interpolating the data) and a spectral anal-

ysis of X to control the estimation error ‖β̂ − β∗‖2. Then, using uniform concentration

arguments, we bound from above its ellipsoid risk ‖Σ1/2(β̂−β∗)‖2 with high probability.
In this sense, our results naturally fit in the recent literature that shows generalization
bounds for overparametrized models using uniform convergence arguments [43, 32, 41].

The estimation bound ρ does not converge to 0. This is not surprising in high dimension
without sparsity assumption. However, it is interesting to see that it may decrease, up
to a certain threshold, with the dimension p. In particular, when the signal to noise ratio
‖β∗‖2/‖ξ‖22 is larger than the threshold 1/rk∗(Σ), ‖β̂ − β∗‖2 is at most of order ‖β∗‖2.

As stressed before, the upper bound in Theorem 1 holds without assumption on
the ξi’s. The noise can be deterministic or depend on X. This is a major difference
with previous results in the literature such as [4, 12] where this noise was always sub-
Gaussian and independent from X. Here, the results can be applied to the follow-
ing example, where Y is itself the output of a prediction algorithm, that is, when
Y = f(X) = (f1(X1), . . . , fn(Xn))T . In this case, the upper bounds becomes

‖ξ‖22
n

=
‖f(X)− Xβ∗‖22

n
=

1

n

n∑
i=1

(
〈Xi, β∗〉 − fi(Xi)

)2
.

This error measures how far the initial prediction is from the linear model.
While results without assumptions on the noise have not been proved for interpolators

before, they are on the other hand classical in the compressed sensing literature [13,
40]. In compressed sensing, the goal is to recover a low dimensional signal from noisy

observations, so the natural risk is the estimation risk ‖β̂−β∗‖2 and the signal β∗ satisfies
some sparsity assumption. For example, in [40], the author shows that a s-sparse vector
β∗ (with s small enough) can be recovered from n noisy observations yi = 〈Xi, β

∗〉+ ξi,
Xi ∼ N (0, Ip), without assumption on the noise ξ ∈ Rn and with optimal rate ‖ξ‖2/

√
n

(see [13] for optimality). As the covariance Σ in this example is Ip, it turns out that
estimation and ellipsoid risks are the same in their framework. In the same spirit, our
result holds without assumption on the error vector ξ ∈ Rn. Our results complement the
compressed sensing literature in this setting as we replace the sparsity assumption by
assumptions on the covariance matrix Σ. In this new setting, the estimation and ellipsoid
risk do not match any more. The vector β∗ itself cannot be recovered (‖β̂−β∗‖2 does not
converged to 0), but an estimator with converging ellipsoid risk can be built. Actually,
this estimator can even be obtained without regularization and yet reach the optimal
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rate ‖ξ‖2/
√
n (in ellipsoid risk). However, in this new setting, an extra bias term appears

in the risk bound in addition to the variance term ‖ξ‖2/
√
n. Theorem 1 shows that this

bias can be bounded from above by ρr∗(η).
To discuss further this upper bound on the ellipsoid risk, it is useful to give the

following corollary. It shows a phase transition in the ellipsoid risk when the signal to
noise ratio SNR = ‖β∗‖2/‖ξ‖2 becomes larger than the threshold t = 1/rcn(Σ).

Corollary 1. Grant the assumptions and notations of Theorem 1. The estimator β̂
defined in Equation (1) satisfies, with probability larger than 1− c1e−c2n,

‖Σ1/2(β̂ − β∗)‖22 . ‖β∗‖22
rcn(Σ)

n
∨ ‖ξ‖

2
2

n
.

Corollary 1 is proved in Section 3.3. It can be used to compare our results with [4].

1. If the signal to noise ratio is large enough, ‖β∗‖22/‖ξ‖22 ≥ 1/rcn(Σ) the bounds in
[4] are always larger than ours. Indeed, for large SNR, our bounds are of order
‖β∗‖22rcn(Σ)/n while theirs are of order ‖β∗‖22

√
Tr(Σ)/n. The improvement can

even be exponential as shown in the example below.

2. For small signal to noise ratios, SNR < t, our prediction rates are of order ‖ξ‖2√
n

. This

bound holds without any assumption on the noise ξ. Contrary to [4], this rate does
not converge to 0 as n→∞ when ξ ∼ N (0, σ2I) is independent from X. However,
in this case, ‖ξ‖22/n � σ2 matches the optimal rate holding with probability larger
than 1− c1 exp(−c2n) (see [25, Theorem A’ ]).

Moreover, when the noise is null (‖ξ‖2 = 0), the condition on k∗ is no longer required

(because β̂ = X†Xβ∗ and Lemma 2 is not longer needed). In this case, Corollary 1 gives
the upper bound ‖β∗‖22rcn/n. For isotropic design (Σ = Ip), our upper bound becomes
‖β∗‖22 and matches the lower bound obtain in Theorem 1 in [6]. As a consequence, with-
out further assumption, our bias term cannot be improved.

To illustrate their upper bounds, [4] provide several examples of “benign matrices”
where the different quantities of interest in Theorem 1 can easily be computed. We
compute the quantities appearing in one of these examples now.
Assume that there exist ε, τ > 0 such that p = C̄n, τ log(1/ε) ≤ c̄n for c̄ > 0 (resp.
C̄ > 0) small enough (resp. large enough) and

∀k ≥ 1, λk(Σ) = e−k/τ + ε .

Let c1 > 0 be an absolute constant. Its value may change from one line to another. In
this case, for any k,

rk
λk
≥ c1

(p− k + 1)ε+ τ exp(−k/τ)

e−k/τ + ε
,
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Therefore, for k = τ log(1/ε),

rk
λk
≥ c1

pε+ τε

ε
≥ c1C̄n, so k∗ ≤ τ log(1/ε) ≤ c̄n .

Moreover, rcn(Σ) ≤ c1 (pε+ τ exp(−cn/τ)) and Corollary 1 shows in this example that
with probability larger than 1− c1e−n,

‖Σ1/2(β̂ − β∗)‖22 ≤ c1
(
‖β∗‖22

pε+ τ exp(−cn/τ)

n
∨ ‖ξ‖

2
2

n

)
.

Our rates of convergence in this example can therefore be as fast as ε∨ τ exp(−cn/τ)/n,
while [4, Theorem 6] gives in this setting a rate

√
ε ∨ τ exp(−1/τ)/n leading to a poten-

tial exponential improvement (a multiplication by e−cn of the rates) for small ε.

Let us turn to the study of lower bound in the large noise regime.

Corollary 2. Grant the assumptions and notations of Theorem 1, with γ chosen such
that the conclusion of the Theorem holds. Assume that Xi|ξ ∼ N (0,Σ) and are indepen-
dent conditionally on ξ. If the signal to noise ratio is small, ‖β∗‖22/‖ξ‖22 ≤ 1/rk∗(Σ), then,

the estimator β̂ defined in Equation (1) satisfies, with probability larger than 1−c1e−c2n,

‖Σ1/2(β̂ − β∗)‖22 ≥ c3
‖ξ‖22
n ∨ k̄

,

where

k̄ = inf

{
k ≥ k∗ :

p∑
i=k

λi(Σ) ≤ γ

2

p∑
i=k∗

λi(Σ)

}
, (6)

with the convention that k̄ = p+ 1 if the set is empty.

Corollary 2 is proved in Section 3.3. Note that when p = cn, we have k̄ ≤ cn. In this
case, in the large noise regime,

‖Σ1/2(β̂ − β∗)‖22 &
‖ξ‖22
n

,

with probability larger than 1− c1 exp(−c2n), which matches the upper bound.

Let us give an example of spectrum where p might be much larger than n while k̄
remains smaller than n. Let k1, c, k2 = k1 + cn+ 1, ε1, ε2 real numbers and assume that

λi =

 1 if i 6 k1 − 1 ,
ε1 if i ∈ {k1, · · · , k2 − 1} ,
ε2 if i > k2 .
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In this case,

rk1

λk1

> cn+ (p− k1 − cn)
ε2

ε1
≥ cn ,

It follows that k∗ 6 k1. Finally∑p
i=k2

λi∑p
i=k1

λi
6

(p− k2 + 1)ε2

cnε1 + (p− k2 + 1)ε2
.

This ratio is smaller than γ/2 if

ε2 ≤
γ

2− γ
cn

p− k2 + 1
ε1 .

This proves that k̄ 6 k1+cn. If k1 ≤ n, we have therefore, in this example, if ‖β∗‖22/‖ξ‖22 ≤
rcn(Σ)

‖Σ1/2(β̂ − β∗)‖22 &
‖ξ‖22
n

.

3. Proofs of the main results

The remaining of the paper is devoted to the proofs of the main results. Section 3.1
(resp. 3.2) shows the estimation bound (resp. the prediction bounds) in Theorem 1.

3.1. Proof of the estimation bound of Theorem 1

The following theorem establishes the bound on the estimation error in Theorem 1. In
the following section, this preliminary estimate will be used to “localize” the interpolator
which will lead to a more precise analysis of the ellipsoid risk of β̂. This approach is now
classical in statistical learning, it has been applied successfully, for example, in [24, 29,
30, 31]. This first step of our analysis is derived using the exact formula defining the
interpolator and a spectral analysis of the matrix X, similar bounds cannot be derived
for any interpolator.

Theorem 2. There exists c > 0 such that, if c0 ≥ c in the definition of k∗, the estimator
β̂ defined in Equation (1) satisfies

P

(
‖β̂ − β∗‖2 ≤ ‖β∗‖2 +

4‖ξ‖2√
rk∗(Σ)

)
≥ 1− 2 exp

(
− n

)
. (7)

Proof of Theorem 2. The proof starts with the following lemma.
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Lemma 1. The estimator β̂ verifies

‖β̂ − β∗‖2 ≤ ‖β∗‖2 +
‖ξ‖2
σn(X)

. (8)

Proof of Lemma 1. Recall that

β̂ = X†Y = X†Xβ∗ + X†ξ ,

where X† denotes the Moore-Penrose pseudo-inverse of X. Therefore,

‖β̂ − β∗‖2 = ‖(X†X− Ip)β∗ − X†ξ‖2 ≤ ‖β∗‖2 + ‖X†ξ‖2 , (9)

where the last inequality follows from the triangular inequality and the fact that X†X−Ip
is the projection matrix onto the null-space of X. Since ‖X†ξ‖2 ≤ ‖X†‖‖ξ‖2 it follows
that

‖β̂ − β∗‖2 ≤ ‖β∗‖2 + ‖ξ‖2‖X†‖ = ‖β∗‖2 +
‖ξ‖2
σn(X)

,

where the last identity holds because rank(X) = n a.s. and thus ‖X†‖ = σ−1
n (X).

Lemma 1 provides a random bound on the estimation error of β̂. To prove Theorem 2,
it remains to bound from below, with high probability, the n-th singular value σn(X) of
X. This control is obtained in the following lemma.

Lemma 2. With probability larger than 1− 2 exp(−n), if c0 in the definition (3) of k∗

is large enough, we have

σn(X) ≥
√
rk∗(Σ)

4
.

Proof. The matrix XT is distributed as Σ1/2G, where G ∈ Rp×n is a random matrix with
i.i.d standard Gaussian variables, hence σn(X) = σn(XT ) is distributed as σn(Σ1/2G). Let
Sn−1 denote the unit sphere in Rn. From the Courant-Fischer-Weyl min-max principle,
we have

σn(Σ1/2G) = min
x∈Sn−1

‖Σ1/2Gx‖2 .

Let Λ = diag(λ1(Σ), · · · , λp(Σ)). By the spectral theorem, there exists an orthogonal ma-
trix P such that Σ1/2 = PΛ1/2PT , so, for any x ∈ Sn−1, ‖Σ1/2Gx‖22 = ‖PΛ1/2PTGx‖22 =
‖Λ1/2PTGx‖22. Hence, by rotation invariance of Gaussian random vectors, ‖Σ1/2Gx‖22 =∑p
i=1 λi(Σ)g2

i , where g1, · · · , gp are i.i.d standard Gaussian random variables. It follows
that

‖Σ1/2Gx‖22 =

p∑
i=1

λi(Σ)g2
i ≥

p∑
i=k∗

λi(Σ)g2
i = ‖Λ1/2

k∗ Gx‖
2
2 , (10)

where k∗ is defined in Theorem 1 and Λk∗ = diag(0, · · · , 0, λk∗(Σ), · · · , λp(Σ)).
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Let ε ∈ (0, 1) and Nε be an ε-net of Sn−1. A classical volume argument (see for
example [37, Corollary 4.2.13]) shows that we can choose Nε with |Nε| ≤ (3/ε)n. For any
x ∈ Sn−1, there exists y ∈ Nε such that ‖x− y‖2 ≤ ε, so

‖Σ1/2Gx‖2 ≥ ‖Λ1/2
k∗ Gx‖2 ≥ ‖Λ

1/2
k∗ Gy‖2 − ε‖Λ

1/2
k∗ G‖ .

Hence,

σn(Σ1/2G) ≥ σn(Λ
1/2
k∗ G) > min

y∈Nε

‖Λ1/2
k∗ Gy‖2 − ε‖Λ

1/2
k∗ G‖ .

Besides (see for example [37, Lemma 4.4.1])

‖Λ1/2
k∗ G‖ ≤

1

1− ε
max
y∈Nε

‖Λ1/2
k∗ Gy‖2 ,

so
σn(Σ1/2G) ≥ min

y∈Nε

‖Λ1/2
k∗ Gy‖2 −

ε

1− ε
max
y∈Nε

‖Λ1/2
k∗ Gy‖2 . (11)

Elementary computations show that, for any i, λi(Σ)g2
i is sub-exponential (see Defini-

tion 1 ) with parameters (2λi(Σ), 4λi(Σ)). As these variables are independent, by Proposi-

tion 1,
∑p
i=k∗ λi(Σ)g2

i is sub-exponential with parameters
(
2
(∑p

i=k∗ λ
2
i (Σ)

)1/2
, 4λk∗(Σ)

)
.

Therefore, by Proposition 2, with probability 1− 2 exp(−t),

∣∣ p∑
i=k∗

λi(Σ)g2
i − rk∗(Σ)

∣∣ ≤ max

(√√√√8t

p∑
i=k∗

λ2
i (Σ), 8tλk∗(Σ)

)

≤ max

(√√√√8λk∗(Σ)

p∑
i=k∗

λi(Σ), 8tλk∗(Σ)

)

≤ r∗k(Σ)

2
+ 12tλk∗(Σ) , (12)

where we used the inequality
√
ab ≤ a/2+ b/2, for any a, b > 0 to get the last expression.

A union bound shows therefore that, with probability 1− 2 exp(−t+ n log(3/ε)),

r∗k(Σ)

2
− 12tλk∗(Σ) ≤ min

y∈Nε

‖Λ1/2
k∗ Gy‖2 ≤ max

y∈Nε

‖Λ1/2
k∗ Gy‖2 ≤

3r∗k(Σ)

2
− 12tλk∗(Σ) .

Plugging this bound into (11) yields

σn(Σ1/2Gx) ≥
(

1−
√

3ε

1− ε

)√
rk∗(Σ)

2
− 2

(
1 +

√
3ε

1− ε

)√
3tλk∗(Σ) .

For ε = 1/4, t = n(1 + log(3/ε)), this yields the result if c0 in the definition (3) of k∗ is
large enough.

Theorem 2 then follows directly from Lemmas 1 and 2.
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3.2. Proof of the upper bounds on the ellipsoid risk in
Theorem 1

We start this section with two Lemmas. Lemma 3 enables to control the deviation of a
quadratic process uniformly over a subset of BΣ(r), r > 0. The main quantity driving
this deviation is the Gaussian mean width that we introduce now. For any set B ⊂ Rp
we define the Gaussian mean width of B as

w(B) = E sup
β∈B
〈β, g〉, g ∼ N (0, Ip) . (13)

The Gaussian mean width serves as a measure of effective dimension of the set B (see [2]
for equivalent formulations).

Lemma 3. Let r, ρ > 0 and δ ≥ exp(−n). Define Hr,ρ = B(r) ∩ BΣ−1/2(ρ), where we

recall that BΣ−1/2(ρ) = {β ∈ Rp :
√
βTΣ−1β ≤ ρ} and B(r) = {β ∈ Rp :

√
βTβ ≤ r}.

There exists an absolute constant c > 0 such that with probability larger than 1− δ

sup
‖β−β∗‖2≤ρ

‖Σ1/2(β−β∗)‖2≤r

∣∣∣∣ 1n
n∑
i=1

〈Xi, β − β∗〉2 − E〈Xi, β − β∗〉2
∣∣∣∣ (14)

≤ c

w2
(
Hr,ρ

)
n

+ r

√
w2
(
Hr,ρ

)
n

+ r2

√
log(1/δ)

n

 ,

(15)

Proof. Let δ ≥ exp(−n), B ⊂ Rp and r > 0. Let (gi)
n
i=1 be n i.i.d centered standard

Gaussian vectors in Rp. From [18, Theorem 5.5], there exists an absolute constant c > 0
such that with probability larger than 1− δ

sup
β∈B(r)∩B

∣∣∣∣ 1n
n∑
i=1

〈gi, β〉2 − E〈gi, β〉2
∣∣∣∣

≤ c

(
w2(B(r) ∩ B)

n
+ r

√
w2(B(r) ∩ B)

n
+ r2

√
log(1/δ)

n

)
. (16)

The rest of the proof simply consists in rewritting the empirical process (14). Since Xi

is distributed as Σ1/2gi, where gi ∼ N (0, Ip) it follows that

sup
‖β−β∗‖2≤ρ

‖Σ1/2(β−β∗)‖2=r

∣∣∣∣ 1n
n∑
i=1

〈Xi, β − β∗〉2 − E〈Xi, β − β∗〉2
∣∣∣∣

= sup
‖Σ−1/2β‖2≤ρ
‖β‖2=r

∣∣∣∣ 1n
n∑
i=1

〈gi, β〉2 − E〈gi, β〉2
∣∣∣∣ .
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Applying (16) to the right-hand term concludes the proof.

Lemma 4. Let r, ρ > 0. The following holds

w
(
B(r) ∩BΣ−1/2(ρ)

)
≤
√

2
( p∑
i=1

λi(Σ)ρ2 ∧ r2
)1/2

. (17)

Proof. From Equation (13), we have, for g ∼ N (0, Ip)

w
(
B(r) ∩BΣ−1/2(ρ)

)
= E sup

β∈B(r)∩B
Σ−1/2 (ρ)

〈
g, t
〉
.

Moreover

B(r) ∩BΣ−1/2(ρ) = {β ∈ Rp : ‖β‖2 ≤ r, ‖Σ−1/2β‖2 ≤ ρ}

=

{
β ∈ Rp :

p∑
i=1

β2
i

λi(Σ)ρ2
≤ 1,

p∑
i=1

β2
i

r2
≤ 1

}

⊂
{
β ∈ Rp :

p∑
i=1

β2
i

λi(Σ)ρ2 ∧ r2
≤ 2

}
.

The Gaussian mean-width of an ellipsoid is given by [33, Proposition 2.5.1] and it follows
that

w
(
B(r) ∩BΣ−1/2(ρ)

)
≤
√

2
( p∑
i=1

λi(Σ)ρ2 ∧ r2
)1/2

. (18)

Theorem 3. For γ > 0, let us define

r̄(γ) = sup

{
r > 0 :

p∑
i=1

λi(Σ)ρ2 ∧ r2 ≤ γ‖ξ‖22
}
.

Assume that Xi|ξ ∼ N (0,Σ). There exist c1, c2, c3 > 0 such that if γ is small enough,
then with probability larger than 1− c1 exp(−cn2)

r̄2(γ) ∧ c3
‖ξ‖22
n
≤ ‖Σ1/2(β̂ − β∗)‖22 .

Proof. Let r = r̄2(γ) ∧ c3 ‖ξ‖
2
2

n and define

Ω1 = {‖β̂ − β∗‖2 ≤ ρ}, ρ = ‖β∗‖2 +
4‖ξ‖2√
rk∗(Σ)

. (19)
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From Theorem 2, the event Ω1 holds with probability larger than 1 − 2 exp(−n). Until

the end of the proof, we place ourselves on the event Ω1. Since β̂ is an interpolator, we
have X(β̂ − β∗) = ξ and it follows that

1

n

n∑
i=1

〈Xi, β̂ − β∗〉2 =
‖ξ‖22
n

. (20)

Assume that ‖Σ1/2(β̂ − β∗)‖2 ≤ r. On Ω1, conditionally on ξ, we have

‖ξ‖22
n
≤ sup

‖β−β∗‖2≤ρ
‖Σ1/2(β−β∗)‖2≤r

1

n

n∑
i=1

〈Xi, β − β∗〉2

≤ r2 + sup
‖β−β∗‖2≤ρ

‖Σ1/2(β−β∗)‖2≤r

∣∣∣∣ 1n
n∑
i=1

〈Xi, β − β∗〉2 − E〈Xi, β − β∗〉2
∣∣∣∣

≤ r2 + c

w2
(
Hr,ρ

)
n

+ r

√
w2
(
Hr,ρ

)
n

+ r2

√
log(1/δ)

n

 ,

where the last inequality holds with probabiliy larger than 1 − δ, for δ ≥ exp(−n),
according to Lemma 3. Now, from Lemma 4 and using the inequality

√
ab ≤ a/2 + b/2

for a, b > 0 we obtain

‖ξ‖22
n
≤ c
[
r2

(
1 +

log(1/δ)

n

))
+
w2
(
Hr,ρ

)
n

]
≤ c
[
r2

(
1 +

log(1/δ)

n

)
+ 2

∑p
i=1 λi(Σ)ρ2 ∧ r2

n

]
≤ cc3

‖ξ‖22
n

(
1 +

log(1/δ)

n

)
+ 2cγ

‖ξ‖22
n

,

where the last inequality holds because of the definition of r̄(γ). Taking δ = exp(−n)
and γ = 1/(4c) leads to a contradiction for c3 small enough.

Theorem 4. For η > 0, let us define

r∗(η) = inf

{
r > 0 :

p∑
i=1

λi(Σ) ∧ r2 ≤ ηnr2

}
.

There exists c1, c2, c3 > 0 such that if η is small enough, then with probability larger than
1− c1 exp(−cn2),

‖Σ1/2(β̂ − β∗)‖22 ≤
(
ρr∗(η)

)2 ∨ c3 ‖ξ‖22
n

.
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Proof. Until the end of the proof, we place ourselves on the event Ω1, defined in (19).
The proof is splitted in two parts.

1) Consider first the case where ‖Σ1/2(β̂ − β∗)‖2 ≤ r∗(η)‖β̂ − β∗‖2.

Then, on Ω1, it follows that ‖Σ1/2(β̂ − β∗)‖2 ≤ r∗(η)ρ so the conclusion of Theorem 4
holds.

2) Now, consider the case where ‖Σ1/2(β̂ − β∗)‖2 ≥ r∗(η)‖β̂ − β∗‖2.
From (20), we have

‖ξ‖22
n

=
‖Σ1/2(β̂ − β∗)‖22

nr∗(η)2

n∑
i=1

〈
Xi, r

∗(η)
β̂ − β∗

‖Σ1/2(β̂ − β∗)‖2

〉2

.

Let us define β̃−β∗ = r∗(η)(β̂−β∗)/‖Σ1/2(β̂−β∗)‖2. Since, ‖Σ1/2(β̂−β∗)‖2 ≥ r∗(η)‖β̂−
β∗‖2, we have ‖β̃ − β∗‖2 ≤ 1 and ‖Σ1/2(β̃ − β∗)‖2 = r∗(η) and it follows that

‖ξ‖22
n

=
‖Σ1/2(β̂ − β∗)‖22

nr∗(η)2

n∑
i=1

〈Xi, β̃ − β∗〉2

≥ ‖Σ
1/2(β̂ − β∗)‖22
r∗(η)2

inf
‖β−β∗‖2≤1

‖Σ1/2(β−β∗)‖2=r∗(η)

1

n

n∑
i=1

〈Xi, β − β∗〉2 . (21)

Morover, we have

inf
‖β−β∗‖2≤1

‖Σ1/2(β−β∗)‖2=r∗(η)

1

n

n∑
i=1

〈Xi, β − β∗〉2

≥ r∗(η)2 − sup
‖β−β∗‖2≤1

‖Σ1/2(β−β∗)‖2=r∗(η)

∣∣∣∣ 1n
n∑
i=1

〈Xi, β − β∗〉2 − E〈Xi, β − β∗〉2
∣∣∣∣

︸ ︷︷ ︸
?

.

(22)

Finally, from Lemmas 3 and 4 and the definition of r∗(η), we have

? ≤ c

(∑p
i=1 λi(Σ) ∧ r∗(η)2

n
+ r∗(η)

√∑p
i=1 λi(Σ) ∧ r∗(η)2

n
+ r∗(η)2

√
log(1/δ)

n

)

≤ cηr∗(η)2 + c
√
ηr∗(η)2 + cr∗(η)2

√
log(1/δ)

n
≤ r∗(η)2

2
.

The last inequality holds if η is small enough and δ = exp(−c1n) with c1 > 0 small
enough. Putting this bound into (22) yields

inf
‖β−β∗‖2≤1

‖Σ1/2(β−β∗)‖2=r∗(η)

1

n

n∑
i=1

〈Xi, β − β∗〉2 >
r∗(η)2

2
.
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Together with (21), this finally leads to

‖Σ1/2(β̂ − β∗)‖22 ≤ 2
‖ξ‖22
n

.

3.3. Proof of Corollaries 1 and 2

Proof of Corollary 1 For any r > 0 and k = bηn/2c := cn ,

p∑
i=1

λi(Σ) ∧ r2 ≤ rk(Σ) +
(
bηn/2c

)
r2 ≤ rk(Σ) +

(
ηn/2

)
r2 ,

and it follows that

p∑
i=1

λi(Σ) ∧ r2 ≤ ηnr2, if r2 ≥ 2

η

rk(Σ)

n
.

Hence,

r∗(η)2 .
rcn(Σ)

n
.

Thus,

ρ2r∗(η)2 ≤
(
‖β∗‖22rcn(Σ)

n

)
∨
(
‖ξ‖22rcn(Σ)

nrk∗(Σ)

)
≤
(
‖β∗‖22rcn(Σ)

n

)
∨
(
‖ξ‖22
n

)
.

Therefore the result follows from Theorem 1

Prood Corollary 2 Assume that ‖β∗‖22/‖ξ‖22 ≤ 1/rk∗(Σ). Thus, we have ρ . ‖ξ‖2/
√
rk∗(Σ).

For any r > 0, from the definition of k̄ given in (6)

p∑
i=1

λi(Σ)ρ2 ∧ r2 . ‖ξ‖22
rk̄(Σ)

rk∗(Σ)
+ k̄r2 ≤ γ

2
‖ξ‖22 + k̄r2 ,

and it follows that r̄2(γ) & ‖ξ‖22/(γk̄) and therefore the result follows from Theorem 1.

Appendix A: Supplementary material

A.1. Sub-exponential random variables: definitions and
properties

The following definition and propositions can be found in [38].
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Definition 1. A random variable X with mean E[X] = µ is called sub-exponential with
non-negative parameters (ν, b) if

E
[
eλ(X−µ)

]
≤ eν

2λ2/2 for all |λ| ≤ 1/b . (23)

Proposition 1. Let X1, · · · , Xn be independent random variables such that Xi is sub-
exponential with parameters (νi, bi). Then Y =

∑n
i=1Xi is sub-exponential with param-

eters
(
(
∑n
i=1 ν

2
i )1/2,maxi=1,··· ,n bi

)
.

Proposition 2 (Sub-exponential tail bound). Suppose that X is sub-exponential with
parameters (ν, b). Then

P
(
|X − µ| ≥ t

)
≤
{

2e−t
2/(2ν2) if 0 < t ≤ ν2/b ,

2e−t/(2b) if t ≥ ν2/b .
(24)
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