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Abstract: The Maritime Continent is one of the most challenging regions for atmospheric models.
Processes that modulate deep convection are poorly represented in models, which
affects their ability to simulate precipitation features accurately. Thus, future projections
of precipitation over the region are prone to large uncertainties. One of the key players
in modelling tropical precipitation is the convective representation, and hence
convection-permitting experiments have contributed to improve aspects of precipitation
in models. This improvement creates opportunities to explore the physical processes
that govern rainfall in the Maritime Continent, as well as their role in a warming climate.
Here, we examine the response to climate change of models with explicit and
parameterized convection and how that reflects in precipitation changes. We focus on
the intensification of spatial contrasts as precursors of changes in mean and extreme
precipitation in the tropical archipelago. Our results show that the broad picture is
similar in both model setups, where islands will undergo an increase in mean and
extreme precipitation in a warmer climate and the ocean will see less rain. However,
the magnitude and spatial structure of such changes, as well as the projection of
rainfall percentiles, are different across model experiments. We suggest that while the
primary effect of climate change is thermodynamical and it is similarly reproduced by
both model configurations, dynamical effects are represented quite differently in explicit
and parameterized convection experiments. In this study, we link such differences to
horizontal and vertical spatial contrasts and how convective representations translate
them into precipitation changes.
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 23 

Abstract 24 

The Maritime Continent is one of the most challenging regions for atmospheric models. 25 

Processes that modulate deep convection are poorly represented in models, which affects their 26 

ability to simulate precipitation features accurately. Thus, future projections of precipitation over 27 

the region are prone to large uncertainties. One of the key players in modelling tropical 28 

precipitation is the convective representation, and hence convection-permitting experiments have 29 

contributed to improve aspects of precipitation in models. This improvement creates opportunities 30 

to explore the physical processes that govern rainfall in the Maritime Continent, as well as their 31 

role in a warming climate. Here, we examine the response to climate change of models with 32 

explicit and parameterized convection and how that reflects in precipitation changes. We focus on 33 

the intensification of spatial contrasts as precursors of changes in mean and extreme precipitation 34 

in the tropical archipelago. Our results show that the broad picture is similar in both model setups, 35 

where islands will undergo an increase in mean and extreme precipitation in a warmer climate and 36 

the ocean will see less rain. However, the magnitude and spatial structure of such changes, as well 37 

as the projection of rainfall percentiles, are different across model experiments. We suggest that 38 

while the primary effect of climate change is thermodynamical and it is similarly reproduced by 39 

both model configurations, dynamical effects are represented quite differently in explicit and 40 

parameterized convection experiments. In this study, we link such differences to horizontal and 41 

vertical spatial contrasts and how convective representations translate them into precipitation 42 

changes. 43 

 44 
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1 Introduction 47 

The Maritime Continent (Fig. 1) is the largest archipelago on Earth and one of the most active 48 

centers of deep moist convection on the planet. This tropical archipelago comprises thousands of 49 

islands of varied sizes and steep topography surrounded by the Indo-Pacific Warm Pool, a region 50 

with very high sea surface temperatures. Intense convective processes in the Maritime Continent 51 

(MC) shape its precipitation regimes and thus have direct implications locally. However, the scale 52 

and magnitude of convection is such that it helps transport large amounts of energy and moisture, 53 

modulating global circulation patterns [Neale and Slingo, 2003; Yamanaka et al., 2018]. Their 54 

intrinsic relationship with phenomena such as the Madden-Julian Oscillation (MJO) [Birch et al., 55 

2016] and the Walker Circulation-ENSO [Qian et al., 2010] are key examples of the interaction 56 

across-scales that occur in the Maritime Continent.  57 

The region has proven very challenging in terms of understanding and modelling precipitation 58 

characteristics and the associated physical processes. Despite the importance of the region at 59 

multiple scales, Global Climate Models fail to capture key features of the Maritime Continent such 60 

as the MJO propagation [Peatman et al., 2014; Ling et al., 2019] and the diurnal cycle of rainfall 61 

[Baranowski et al., 2019], largely due to their coarse resolution. In fact, even the most recent 62 

generation of GCMs (CMIP6) still show substantial biases in tropical precipitation [Fiedler et al., 63 

2020]. As a result, even though the CMIPs multi-model means suggest increases in rainfall over 64 

the region (CMIP5: Jourdain et al. [2013] and Supplementary Figure S1; CMIP6: Wang et al. 65 

[2020]), individual GCMs strongly disagree in the sign of rainfall changes [Jourdain et al., 2013; 66 

Narsey et al., 2020]. 67 
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Regional Climate Models (RCMs), which operate at higher spatial resolution, have contributed 68 

to improve our understanding and simulation of the mechanisms underlying rainfall in the 69 

Maritime Continent [Vincent and Lane, 2018; Ruppert and Zhang, 2019; Li et al., 2020] through 70 

better representation of fine-scale processes (i.e., sea-breeze, gravity waves, interaction across 71 

scales, air-ocean fine-scale interactions). However, RCMs are still prone to substantial errors, 72 

partly originated from the interaction between the convective representation and the land-sea 73 

contrasts [Birch et al., 2015; Vincent and Lane, 2017; Im and Elthair, 2018]. Models that explicitly 74 

represent convection bring improvements in the simulation of the precipitation diurnal cycle but 75 

produce unrealistic precipitation over steep topography [Argüeso et al., 2016; 2020], misrepresent 76 

the amplitude of the diurnal cycle [Hassim et al., 2016, Argüeso et al. 2020] or introduce errors in 77 

the rainfall modulation by the MJO phase [Vincent and Lane, 2017; Wei et al., 2020]. The 78 

challenges posed to models by convective processes in the MC have attracted much attention in 79 

the recent years because of their central role in the climate at multiple scales. A perfect example 80 

of this interest is the international initiative “Years of the Maritime Continent” (YMC Phase 1 81 

2017-2020, Yoneyama and Zhang [2020]), aimed at coordinating international modelling and 82 

observational efforts to advance our understanding of the MC weather-climate systems, and to 83 

improve the representation of convective processes and precipitation in models. 84 

Precipitation in the Maritime Continent tends to concentrate over the islands [Qian, 2008], 85 

where rainfall is characterized by a strong diurnal cycle that most models struggle to capture. As 86 

described by Ruppert and Chen [2020], the “island rainfall enhancement” effect and the land 87 

precipitation diurnal cycle are ultimately linked to differences between land and ocean in surface 88 

heat capacity and surface energy fluxes. They also show that the diurnal cycle of solar radiation 89 

governs mesoscale circulations (i.e., land-sea and mountain-valley breezes), which in turn fuel the 90 
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convective development, help organize deep convection into mesoscale convective systems and 91 

recharge the convective instability required for intense rainfall rates. Local steep topography 92 

further contributes to organize convection by exciting and coupling with gravity waves and, in 93 

certain situations, to reinforce it by inducing orographic lifting. These convective systems then 94 

propagate offshore, assisted by gravity waves, reversed breezes (land breeze) and cold pools 95 

[Ruppert and Zhang, 2019; Yang et al., 2020], which together produce a diurnal cycle over water 96 

that peaks between night and early morning, albeit generally weaker than over land. Therefore, 97 

rainfall features in the MC strongly depend on local factors such as land-ocean contrasts, 98 

mesoscale circulations, moisture convergence, intense convective instability, and topography. 99 

In the context of climate change, we expect horizontal and vertical warming contrasts that may 100 

induce changes in the intensity and spatial distribution of precipitation. For example, differences 101 

in warming rates between continents and ocean can alter mesoscale circulations [Joshi et al., 2007] 102 

and vertical warming contrasts can modify atmospheric stability [Wang et al., 2020], which will 103 

likely affect rainfall in the Maritime Continent. At the ocean basin scale, thermal contrasts will 104 

also play a key role in defining future changes of the Walker Circulation [Yim et al., 2017] –and 105 

hence in the El Niño-Southern Oscillation–, which ascending branch is anchored to the Maritime 106 

Continent and likely modulated by the “island rainfall enhancement” effect [Ruppert and Chen, 107 

2020]. At continental and seasonal scales, monsoons will be also intensified due to enhanced 108 

thermal contrasts [Seth et al., 2019], which may redistribute precipitation. 109 

In the Maritime Continent, Lambert et al. [2017] did not find a consistent shift of rainfall from 110 

ocean to land due to warming, as opposed to other tropical regions (i.e., Amazonia).  Bony et al. 111 

[2013] also identified land-sea thermal contrasts as having an important role in modifying tropical 112 

rainfall patterns over land, although they deemed the dominant factor in tropical overturning 113 
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circulation to be the higher CO2 concentrations and the resulting radiative imbalance in the 114 

atmosphere. However, all these changes were established using Global Climate Models (GCMs), 115 

which have serious difficulties in representing crucial features of the Maritime Continent rainfall 116 

[Jourdain et al., 2013; Schiemann et al., 2013; Baranowski et al., 2019; Yang et al., 2020]. Recent 117 

studies have generated future climate projections using RCMs [Supari et al.,2020; Tangang et al., 118 

2020] and found that both increases and decreases in land precipitation over areas of the MC were 119 

plausible, depending on the region and the season examined. Yet, the physical mechanisms driving 120 

such changes have not been explored.  121 

Therefore, the use of higher-resolution models to better understand the mechanisms driving 122 

future changes in precipitation over the region is still necessary. Despite some errors that persist 123 

in high-resolution models, experiments that explicitly resolve convection are especially beneficial 124 

in coastal areas, regions of complex topography and locations with frequent and intense deep 125 

convection [Prein et al., 2015; Lucas-Picher et al. 2021], all of which apply to the Maritime 126 

Continent. In this study, we use a model at convection-permitting scales to investigate the response 127 

of rainfall to a warming climate. For the first time, we examine future climate information at 128 

convection-permitting scales in the entire Maritime Continent and determine the different response 129 

of rainfall extremes to climate change in parameterized and explicit convection experiments. We 130 

also conducted a novel analysis of the role of warming spatial contrasts, land-sea breeze 131 

circulations and modified atmospheric stability in modulating this response. We expect that land-132 

sea thermal contrast changes will affect breeze circulations, and vertical differences in the response 133 

to global warming will modify vertical profiles and stability. In combination, they will have 134 

implications for future climate precipitation regimes in the region. Since the interactions between 135 

convection and the environment are represented differently in explicit and parameterized 136 
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convection models, precipitation responses to climate change will likely differ between these 137 

models too. In view of this possibility and the expectations around convection-permitting models 138 

for future projections [Fosser et al., 2020; Prein et al., 2020; Lucas-Picher et al. 2021], we explore 139 

the rainfall response to increased temperature in both explicit and parameterized convection 140 

experiments at very high resolution.  141 

The rate at which precipitation responds to surface temperature changes is known as 142 

precipitation scaling [Trenberth, 1999; Held and Soden, 2006] and has two main components: 143 

dynamical and thermodynamical (see Box 11.1 in Seneviratne et al. [2021]). In the past, also the 144 

co-variational term was explored [Bony et al. 2004]. The thermodynamical component is linked 145 

the Clausius-Clapeyron relationship –increased atmospheric water-holding capacity with 146 

temperature– and is a primary mechanism for climate-scale precipitation changes. Under climate 147 

change conditions, this should contribute to more intense precipitation rates, particularly for 148 

extremes [Dobrinski et al. 2018]. The dynamical component includes changes in large-scale 149 

circulation patterns that determine the supply of moisture and in local circulations that contribute 150 

to vertical motions. The intensification of sea-breeze, atmospheric instability and convective 151 

processes is framed in the latter group (i.e., local circulations). Here, we focus on the role of local 152 

circulations to explain the spatial patterns of precipitation changes, which is related to the 153 

dynamical part. However, we also explore the contribution of thermodynamical changes to provide 154 

a comprehensive picture. We examine the separate contribution of thermodynamical and 155 

dynamical mechanisms to intense precipitation changes in the region and we identify differences 156 

between parameterized and explicit convection models in this context. 157 
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2 Methods 158 

2.1 Model and present-climate experiments 159 

In this study, we use the Weather Research and Forecasting (WRF) Model v3.9.1 [Skamarock 160 

et al., 2008] to simulate the atmosphere over the Maritime Continent and investigate rainfall 161 

patterns under climate change conditions. The model was run at 4-km spatial resolution over a 162 

domain covering 5916 km by 2556 km (1479 by 639 grid points) in the Maritime Continent and 163 

resolving the vertical with 50 hybrid coordinate levels. The experiments span three consecutive 164 

austral summers (1st November to 1st March; 2013-2014, 2014-2015 and 2015-2016), each 165 

preceded by a 10-day spin-up period (22nd October – 31st October) that was discarded in the 166 

analysis. The analysis period covers the wet season for most of the Maritime Continent and the 167 

selected years span both positive and negative phases of the El Niño/Southern Oscillation. 168 

The physical parameterization schemes are among the most widely used options and were 169 

chosen according to previous studies over the region [Li et al., 2016; Argüeso et al., 2016; Vincent 170 

and Lane, 2017]. The setup consists in the WRF single moment 6-class microphysics scheme 171 

[WSM6; Hong and Lim, 2006], the Yonsei University (YSU) scheme for Planetary Boundary 172 

Layer turbulence, the Rapid Radiative Transfer Model scheme for longwave radiation (RRTM), 173 

the Goddard scheme for shortwave radiation, the Noah land surface model and the MM5 similarity 174 

scheme for the surface layer. In the parameterized convection experiment, the Betts-Miller-Janjic 175 

[BMJ; Betts and Miller, 1986, 1993; Janjic, 1994] scheme was chosen to represent both deep and 176 

shallow convection, while it was turned off for the explicit convection experiment (see Argüeso et 177 

al. [2020] for additional details on the model configuration). In this framework, clouds are driven 178 

by the microphysics parameterization regardless of the convective representation. However, the 179 

environmental conditions in the model will depend on the convective representation and thus the 180 
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microphysics scheme will likely generate different clouds. In the explicit simulations, it is the 181 

model equations (dynamical core) that represent convection and its effects on the atmosphere 182 

vertical profile. In the parameterized runs, the BMJ scheme does not directly inhibit explicit 183 

convection, but it reduces the potential for explicit convection because it removes energy from the 184 

atmosphere through the adjustment towards a stable vertical profile. Explicit convection at scales 185 

resolved by the model grid is still possible though, especially in environments that favor strong 186 

convective processes. 187 

Present climate experiments are directly initialized and driven by ERA5 reanalysis [Hersbach 188 

et al. 2020] at circa 0.3° spatial resolution and updated every 6 hours. Argüeso et al. [2020] already 189 

analyzed these simulations and compared them against satellite-derived products to examine the 190 

role of different convective representations and the spatial resolution in representing realistic 191 

rainfall features. They concluded that, as opposed to higher resolution experiments, 4-km provides 192 

the best estimates of precipitation while maintaining computational and storage costs affordable. 193 

This is the upper boundary of the convective grey zone [Prein et al., 2015], a range of spatial 194 

resolutions (~4-10km) where explicit and parameterized convection may compete. It is yet unclear 195 

whether convection should be parameterized in this range. Thus, it further justifies the analysis of 196 

both parameterized and explicit convection setups. 197 

2.2 Pseudo Global Warming experiments 198 

This study expands the existing set of runs in Argüeso et al. [2020] by incorporating Pseudo 199 

Global Warming (PGW, [Schär et al. 1996]) experiments to examine the response of rainfall to a 200 

particular climate change signal. These experiments were built adding the climate change signal 201 

obtained from a global climate multi-model ensemble from the Coupled Inter-comparison Model 202 

Project Phase 5 (CMIP5). We calculated the seasonal cycle of all variables ingested by the model 203 
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(i.e., wind components, humidity, geopotential height and temperature at pressure levels; and 2-m 204 

dew-point temperature, 2-m temperature, 10-m wind components, surface pressure, mean sea level 205 

pressure, and sea surface temperature) for historical (1989-2009) and future (2080-2100) climate 206 

experiments from 33 GCMs (Supplementary material). We computed the climate change signal 207 

for each calendar month, each variable, and each model, and interpolate them to a common 0.72° 208 

grid to calculate a multi-model mean climate change signal. These monthly changes are linearly 209 

interpolated in time to 6-hourly intervals and nearest-neighbor interpolated to the ERA5 grid. Then 210 

they are added to ERA5 to create the initial and boundary conditions to drive WRF under a 211 

synthetic future climate scenario. The PGW method has been previously evaluated in a “perfect 212 

model approach” with satisfactory results [Yoshikane et al., 2012; Donat-Magnin et al., 2021] and 213 

was applied in a wide range of studies from tropical cyclones [Chen et al., 2020] to ice sheets 214 

[Donat-Magnin et al., 2021]. 215 

The future climate change signal is here represented by the Representative Concentration 216 

Pathway 8.5 (RCP8.5 scenario). We chose this high-emission scenario to examine the impact of a 217 

marked climate change signal on the Maritime Continent, but this choice does not imply any 218 

assumptions on its likeliness. 219 

Even though this experiment set up does not constitute a rigorous future climate projection and 220 

thus has limitations, it offers numerous advantages. While runs are not long enough to be 221 

completely representative of the climate, their duration is a very good reason to force future climate 222 

runs with climatological anomalies from the GCMs multi-model ensemble (MMM). This way, our 223 

results are less dependent on the interannual variability produced by individual models for specific 224 

years. Furthermore, it is often argued that changes projected by the MMM are in general more 225 

credible than projections produced by individual models [Knutti et al., 2010]. In addition, CMIP5 226 
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models’ biases are stationary even under strong climate changes [Krinner and Flanner, 2018], 227 

hence this method partly overcomes the biases in the climate states produced by individual models. 228 

The MMM estimates are still subjected to biases, such as the Sea Surface Temperature warming 229 

patterns that require complex bias-correction methods [Dutheil et al., 2020], but the same applies 230 

to direct downscaling of individual highly biased GCMs. The PGW method includes the 231 

thermodynamical effects produced by a given climate change signal and some dynamical features.  232 

For example, it considers the mean change in the large-scale dynamics because the geostrophic 233 

balance is linear. However, it misses changes in the structure and variability of circulation patterns, 234 

as well as some non-linear large-scale dynamics and variability. These include phenomena such 235 

as MJO or ENSO, some of which may undergo frequency changes in the future [Cai et al., 2018]. 236 

Another potential limitation is that non-stationary biases that may be shared by CMIP5 models are 237 

not removed with the multi-model mean. It is important to note that these features can affect the 238 

spatial patterns of precipitation changes in our experiments. 239 

Overall, the method constitutes an interesting, efficient, and solid approach to quantify the 240 

response of the climate change system to plausible future conditions. It also brings the analysis 241 

down to the physical-process level at feasible computational costs, especially considering the 242 

demands of convection-permitting experiments at continental scales. In this study, we refer to the 243 

PGW simulations as “future” experiments for clarity reasons. Changes projected by the selected 244 

multi-model ensemble over the Maritime Continent are shown in the supplementary material 245 

(Supplementary Figure S1) for temperature, wind, precipitation, and integrated water vapor. 246 

2.3 Scaling calculation 247 

We first calculate the scaling of extreme precipitation with temperature directly from the model 248 

outputs. To further understand the underlying mechanisms, we also calculate changes in 249 
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precipitation extremes using the physical scaling diagnostic described in O’Gorman and 250 

Scheneider [2009b], which estimates precipitation rates from vertical profiles of vertical pressure 251 

velocity, temperature, and pressure. This methodology is usually applied to high-percentile 252 

precipitation events by selecting times when they occur. It expresses the precipitation rate during 253 

an extreme event at each grid point as: 254 

 
𝑃𝑒 ~ − {𝜔𝑒

𝑑𝑞𝑠

𝑑𝑝
|

𝜃∗,𝑇𝑒

} Eq. 1 

   

Where Pe is the precipitation amount during an extreme event, ωe is the corresponding vertical 255 

pressure velocity, {·} is a mass-weighted integral over the troposphere, and the remainder is the 256 

vertical derivative of the saturation specific humidity qs at constant saturation equivalent potential 257 

temperature θ* (i.e., moist adiabatic) and evaluated at the mean temperature Te during the intense 258 

rainfall event (See O’Gorman and Scheneider [2009b] for additional details). By comparing 259 

estimates from present- and future-climate experiments, it is possible to approximate the full 260 

precipitation scaling for extremes, which aggregates the effects of thermodynamic and dynamic 261 

processes.  262 

Following Pfahl et al. [2017], we can decompose changes in heavy rainfall into thermodynamic 263 

and dynamic contributions. To calculate the separate effect of thermodynamic processes, we 264 

ignore changes in the vertical profile of ωe and we use instead the time-average from present 265 

climate experiments calculated only for extreme precipitation hours (𝜔𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). The new heavy 266 

rainfall estimates (Pe_thermo, Eq. 2) will be due to changes in the vertical derivative of qs only. The 267 

dynamic contribution (Pe_dyn, Eq.3) is calculated by subtracting the thermodynamic scaling (Eq 2) 268 

from the full scaling (Eq. 1). 269 
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𝑃𝑒_𝑡ℎ𝑒𝑟𝑚𝑜 ~ − {𝜔𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑑𝑞𝑠

𝑑𝑝
|

𝜃∗,𝑇𝑒

} Eq. 2 

𝑃𝑒_𝑑𝑦𝑛 =  𝑃𝑒 − 𝑃𝑒_𝑡ℎ𝑒𝑟𝑚𝑜 Eq. 3 

 270 

In this study, we apply for the first time this diagnostic to convection-permitting experiments 271 

and hourly model outputs to disentangle the contribution of thermodynamic and dynamic 272 

processes and explain possible deviations from the Clausius-Clapeyron relationship at very high 273 

spatiotemporal scales. Prior to applying the scaling, we horizontally smoothed the vertical pressure 274 

velocity (ωe) – not the vertical derivative of qs – using a gaussian filter with a standard deviation 275 

of 20 km. Reasons for this include: 1) to reduce the effect of downdrafts produced by intense 276 

rainfall within the convective cell and characterize the environment producing the extreme 277 

episode, 2) to filter out the influence of single-cell storms that models may generate at these scales 278 

[Murata et al., 2017a] and 3) to better match the scales previously used with this method (~100 279 

km) [Pfahl et al., 2017]. Scaling was also calculated without any prior spatial smoothing. 280 

3 Results 281 

3.1 Precipitation changes in explicit and parameterized convection models. 282 

In this section, we analyze changes in mean precipitation as simulated by the parameterized 283 

(PA) and explicit (EX) convection experiments. We compare present and future experiments over 284 

three consecutive austral summers (NDJF) and calculate changes relative to present-climate values 285 

([future-present]*100/present).  Mean precipitation changes show a prominent contrast between a 286 

net increase over land and a decrease over the ocean (Fig. 2). Both model configurations simulate 287 

a domain-average decrease in mean precipitation (-13.3% for PA and -6.2% for EX), probably 288 
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because they are driven by the same boundary conditions, which exert control over the large-scale 289 

dynamics. The MMM of the CMIP5 ensemble used here to create the PGW scenario project a 290 

slight increase in the domain-average rainfall (4.9%), but precipitation is a model prognostic 291 

variable and is not used to generate the boundary conditions. While this difference in the sign of 292 

changes may seem contradictory, the link between the large-scale conditions and precipitation in 293 

models is complex. Factors that contribute to this disparity include differences in the spatial scale 294 

(grid-averaging effects), in the efficiency of convective schemes, in the response of convective 295 

schemes to environmental changes and in surface evapotranspiration. Furthermore, the CMIP5 296 

ensemble projects a wide range of possible changes over the domain (between -16.6% and 19.8%). 297 

Despite these differences and the divergence across CMIP5 models [IPCC, 2013; and 298 

Supplementary Figure S1], the ensemble consistently projects larger increases over land than over 299 

the ocean, which is coherent with our results (Fig. 2). 300 

Both our experiments produce an increase in rainfall over land (4.3% PA; 5.0% EX) and a 301 

decrease over the ocean (-20.2% PA; -12.7% EX). Narrow waters in between islands and coastal 302 

areas are notable exceptions to this general response. Thus, according to our experiments, a warmer 303 

atmosphere would generate more rainfall over land in the Maritime Continent, although the spatial 304 

variability is large over both land and ocean (Fig. 2e). Changes are similar across all three austral 305 

summers in the PA runs and results from one year deviate from the other two in the EX run (Fig. 306 

2e and Supplementary Figure S2). Altogether, this provides confidence on the robustness of the 307 

results. 308 

The spatial pattern of precipitation changes is broadly similar in both experiments, but there are 309 

features in the response that differ between the two. Firstly, the magnitude of changes: PA 310 

produces larger decreases of rainfall over the ocean. Secondly, EX experiments are spatially 311 
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noisier and so is the response to warming. This is partly explained by the length of the simulations, 312 

but PA is spatially much smoother, which suggests that the noise is inherent to how convective 313 

processes are represented. In fact, changes in EX shows a larger year-to-year variability than PA 314 

under the same large-scale conditions (Fig. 2e). This contrast is relevant because the next 315 

generation of climate projections will shift towards convection-permitting models [Prein et al., 316 

2015, 2020], which may produce less spatially homogeneous projections if they behave like our 317 

model. None of the two model projections can be deemed more likely than the other because their 318 

relative performance varies depending on the metric analyzed [Argüeso et al., 2020]. However, 319 

explicit convection brings increased realism of precipitation features often misrepresented in 320 

models such as the diurnal cycle and its coupling with the land-sea breeze [Birch et al., 2015; 321 

Argüeso et al., 2020].  322 

In addition to mean precipitation, we analyze the model extreme precipitation response to a 323 

climate change signal and quantify the role of convective representation in that response (Fig. 3). 324 

We characterize changes in precipitation events through a range of percentiles (50th to 99.9th) and 325 

focus on the upper tail of the distribution (95th, 98th, 99th and 99.9th percentiles). The statistical 326 

significance of changes was tested at the 90% confidence level using a bootstrapping approach 327 

based on resampling with replacement following Contractor et al. [2018, 2021]. For each grid 328 

point, we concatenated present and future, and resampled the resulting timeseries with replacement 329 

under the null hypothesis that there is no change. The same permutation is used for all grid points 330 

to preserve spatial dependence in the resampled data.  The resampling was done using 12-hour 331 

blocks to preserve temporal dependence of events. This assumes independence of rainfall from 332 

one 12-hour period to the next, which is supported by the distinct diurnal cycle of rainfall in the 333 

region. The diurnal cycle was considered when defining the blocks (06-18UTC and 18-06UTC) 334 
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so that the rainfall peak at around 5pm LST is not split across two blocks. This approach neglects 335 

correlation in rainfall on daily or longer timescales, which could lead to some overestimation in 336 

the number of independent samples. 337 

We split the resampled timeseries in two equal parts and calculate the change in the percentiles 338 

between the two. The process was repeated 1000 times to build a distribution of quantile change 339 

ratios between the two, which is normally distributed around 0, and estimate the p-values of the 340 

original quantile change ratios. Percentiles were calculated for each grid point and each period 341 

(present and future) separately. Percentiles can be calculated using all hourly values [Schär et al., 342 

2016] or wet-only values [Chan et al., 2016] depending on the purpose of the analyses. While both 343 

may have advantages, we chose the all-hourly values approach because having a fix population of 344 

events ensures that: a) changes in each percentile univocally means that events exceeding that 345 

percentile (extreme) must change, b) upper percentiles are not affected by changes in light rain 346 

frequency, and c) percentiles represent a fixed number of events at all locations, runs and periods. 347 

For instance, the upper percentiles we focus on represent circa 433, 173, 87, and 9 hourly events 348 

in all grid cells and all experiments. These advantages make our results easier to interpret in the 349 

context of this study. Present climate values of these percentiles are provided in the supplementary 350 

material (Supplementary Figure S3). Changes in percentiles using wet-only values (>0.1 mm hr-1) 351 

are shown in Supplementary Figure S4 for comparison with the all-hourly values approach. 352 

Changes in wet-only percentiles are comparable to higher percentile changes using all-hourly 353 

values. This is because wet-only percentiles characterize a higher section of the rainfall distribution 354 

tail.  Although changes in wet-only percentiles are affected by changes in the entire distribution of 355 

rainfall, the spatial patterns between the two approaches are very similar for very intense 356 
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precipitation events. They both show a land-sea contrast. Differences between PA and EX are also 357 

similar using one approach or another.  358 

Domain-average changes of precipitation percentiles are summarized in Table 1 along with 359 

separate changes over land and ocean.  These changes were computed using the mean of 360 

percentiles each region (domain, land, and ocean) for both present and future runs, and then the 361 

relative changes with respect to present climate were calculated. PA suggests a decrease in all 362 

selected percentiles when aggregating over the entire domain and ocean grid points. It also 363 

suggests an increase in all but the 95th percentile over land. EX projects a similar behavior, except 364 

for the highest one (99.9th), which increases both over land and ocean. On average, EX produces 365 

larger decreases for the 95th and 98th percentiles compared to PA. This difference is strongly 366 

dominated by decreases over water in EX, since changes over land are very similar between the 367 

two experiments. As we move to more intense precipitation events (99th), the contrast between 368 

land and ocean is further enhanced, especially for PA, which suggests substantial changes both 369 

over land and ocean but with opposite signs (9.6% vs. -32.6% respectively). Indeed, some large 370 

islands such as New Guinea show a strong and statistically significant response of the upper tail 371 

to warming in the PA experiment (Fig. 3i).  372 

The highest end of the distribution (99.9th percentile) represents events above 10 mm hr-1 in 373 

most cases and well above 25 mm hr-1 in many land grid points (Supplementary Figure S3). In EX, 374 

the 99.9th increases over land (14.9%) under climate change conditions, but there is no clear signal 375 

over the ocean. In fact, significant changes are mostly located over land. PA shows an increase in 376 

extreme precipitation (99.9th) over land (22.4%) too, but it produces significant decreases over the 377 

ocean (-10.9%). As a result, PA exhibits a domain-average decrease of high-end extremes (-3.2%), 378 

while EX produces an increase (4.0%). 379 
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Figure 3 provides a more detailed and visual description of the precipitation response to 380 

warming. As opposed to the summary discussed above (Table 1), Figure 3 includes aggregated 381 

information on other percentiles (50th to 100th) and shows the spatial variability of changes. Rates 382 

below the 90th percentiles are usually light rainfall events (<0.1 mm hr-1) in EX (Supplementary 383 

Figure S3), and their contribution to total precipitation is limited. The contribution of events below 384 

the 90th percentile to total precipitation may be larger in PA, because the 0.1 mm hr-1 rate is reached 385 

at a much lower percentile (70th). This is likely due to the drizzle effect that typically affect models 386 

with convective schemes [Gutowski et al., 2003; Sun et al., 2006; Dai, 2006; Stephens et al., 2010; 387 

Pendergrass and Hartmann, 2014].  388 

Moderate rainfall events (95th percentile) decrease with warming in most locations according 389 

to both experiments (Fig. 3c-d). Very few grid-points show an increase of moderate precipitation 390 

and they are mostly located over or near the islands. The land-sea contrast becomes increasingly 391 

clear in the upper percentiles for both experiments (Fig. 3c-j). However, EX already concentrates 392 

rainfall over land much more than PA under present climate conditions, thus the contrast will 393 

become even sharper in EX under warming. Therefore, the spatial pattern of mean precipitation 394 

changes (Fig. 2) is largely explained by changes in the high-end of the distribution, according to 395 

Figure 3. 396 

Overall, explicit and parameterized convection produce different precipitation distributions and 397 

different precipitation changes under the same large-scale climate change signal, especially in the 398 

upper tail of the distribution. Although the spatial pattern of changes is broadly similar (land-sea 399 

contrast), their fine spatial detail, their magnitude, and the response of each percentile to climate 400 

change is different between the two convective representations. 401 
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3.2 Thermodynamical and dynamical contributions to precipitation changes. 402 

Our experiments suggest that the islands of the Maritime Continent will undergo higher 403 

precipitation rates and more intense rainfall extremes in a warmer climate. Mechanisms that 404 

produce rainfall changes are often interlaced and their contributions may act in opposite directions.  405 

We quantified their combined effect by calculating changes in high percentiles of precipitation 406 

and express them as a ratio with respect to the domain-average near-surface warming (Direct 407 

method). Using near-surface temperature to estimate rainfall scaling imposes important limitations 408 

because it does not consider changes in moisture availability, which often play a primary role in 409 

defining precipitation extremes [Lenderink et al., 2017]. Also, it assumes homogeneous warming 410 

in the vertical and thus does not allow for different changes in the atmospheric water-holding 411 

capacity at different vertical levels. However, it is a standard way of measuring the precipitation 412 

scaling [Westra et al., 2014; Bao et al., 2017; Lenderink et al., 2017; Dobrinski et al., 2019; Allan 413 

et al., 2020] because it relies on widely available observations and model outputs. We also 414 

estimated the aggregated contribution of the thermodynamical and dynamical terms of rainfall 415 

scaling with temperature using the theoretical approach described in section 2.3 [O'Gorman and 416 

Schneider, 2009a], and we refer to this method as Full scaling. The precipitation scaling was 417 

decomposed into thermodynamical and dynamical terms following Pfahl et al. [2017]. The direct 418 

method serves as a backdrop to test the adequacy of the theoretical approach (full scaling).  419 

We focus on the scaling of the 99th percentile. For all methods we quantified the scaling by 420 

calculating the mean of all events above the percentile for each period and each grid-point, and 421 

compute the change relative to present climate values, as we have done with other precipitation 422 

changes. Then, we divide it by the domain-average near-surface temperature change and estimate 423 

the scaling of intense rainfall with temperature for both experiments (Fig. 4 a-d). The direct scaling 424 
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calculation shows a strong land-sea contrast of the scaling in PA. Most islands undergo increases 425 

in the range 10-20% K-1, while much of the ocean experience decreases, sometimes as large as -426 

20% K-1. The spatial pattern of scaling is similar in EX, but the rates are not as pronounced.  427 

The full scaling estimates (Fig. 4 c-d) yields results that compare very well with the direct 428 

scaling calculation, including both the pattern and the magnitude of changes. Figure 4 a-d supports 429 

the idea that warming leads to processes favoring more intense precipitation over land, while 430 

changes of any sign are plausible over water. Ignoring changes in vertical velocities in Eq. 1 (see 431 

details in section 2.3), we can estimate the separate contribution of thermodynamic (Thermo) 432 

processes to the scaling (Fig. 4 e-f). The thermodynamic contribution to extreme precipitation 433 

changes is spatially much more homogeneous than the full scaling, although it still presents some 434 

land-sea contrast in EX. In both experiments, the thermodynamic processes contribute to increases 435 

in the range 4.2-8.2% K-1 over virtually the entire domain (95% of grid-points), with slightly higher 436 

values for EX (4.3-8.2% K-1) than for PA (4.2-7.5% K-1). This is roughly consistent with the 437 

Clausius-Clapeyron relationship, which establishes an approximate increase in rainfall rates of 7% 438 

per degree of near-surface warming [Trenberth et al., 2003]. The scaling methods produce similar 439 

results when using different percentiles (95th and 99.9th, see Supplementary Figures S5 and S6, 440 

respectively).  441 

In the results above, the vertical pressure velocity (ωe) was smoothed using a 20-km gaussian 442 

filter prior to calculating the scaling. We have also calculated the scaling without the smoothing 443 

to determine the impact of this choice (Supplementary Figure S7) and found that the smoothing 444 

considerably reduces the noise in both model configurations, particularly in EX. While the overall 445 

pattern is similar between the two approaches, the spatial details and magnitude of the full 446 

(theoretical) scaling is closer to the direct scaling when smoothing ωe.  447 
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Large spatial variations in direct and full scaling estimates can only be explained by dynamic 448 

processes, because the thermo term is spatially homogeneous. The contribution of dynamic 449 

processes is calculated as the difference between the full scaling and the thermo term [Pfahl et al., 450 

2017].  The dynamical term enhances or opposes the effect of the thermodynamic mechanisms 451 

through changes in vertical motions during extreme precipitation events. Therefore, 452 

heterogeneities in vertical motions are responsible for the spatial noise in the dynamical term 453 

(Supplementary Figure S8), which modulates the homogeneous thermodynamic contribution. This 454 

explains the existence of positive and negative values of direct and full scaling close together. 455 

Although this may be alleviated with longer runs and strengthening the gaussian spatial filter 456 

applied to the vertical velocity, differences between the two experiments suggest that the nature of 457 

the convective scheme may also play a role in smoothing out spatial heterogeneities of vertical 458 

motions. In fact, explicit convection experiments running at few-kilometer resolutions are prone 459 

to generate single-grid-cell precipitating systems [Murata et al., 2017a] that may reflect into this 460 

spatial noise.  461 

In general, our results indicate that the dynamic term counteracts the thermodynamic effect over 462 

the ocean. Over land, dynamical processes tend to enhance precipitation scaling in PA. In EX, the 463 

dynamic contribution also presents a land-sea contrast, but both positive and negative contributions 464 

were obtained over land. This land-sea contrast is consistent with results in Pfahl et al. [2017] 465 

using GCMs, which suggested that dynamic processes enhanced changes in daily precipitation 466 

extremes over large islands in the Maritime Continent. Differences between our two model 467 

configurations are further discussed in the next section, where the vertical structure of the 468 

atmosphere is analyzed. 469 
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3.3 Land-sea thermal contrasts, stability, and precipitation changes.  470 

Our hypothesis is that warming contrasts play a key role in the spatial pattern of the 471 

archipelago’s rainfall response to a changing climate. Changes in moisture availability due to 472 

increased atmospheric water-holding capacity and changes in the large-scale dynamics are 473 

spatially too uniform to explain the fine spatial structure of precipitation changes. In the horizontal, 474 

land warms faster than the ocean due to their different heat capacity, which intensifies current 475 

land-sea thermal contrasts. In the vertical, changes in temperature and humidity profiles may be 476 

different at each location, which affects atmospheric stability at different rates. These spatial 477 

contrasts create more favorable conditions for mesoscale circulations and increased potential for 478 

convective initiation. Whether this potential is realized depends on the convective representation. 479 

For example, future climate change increases the land-sea thermal contrast (Fig. 5a-b) and the 480 

domain-average increase is very similar in both experiments. Air over land warms faster (3.30°C 481 

in both cases) than the air above the ocean (2.90°C in EX; 2.94°C in PA). Changes in thermal 482 

contrast help explain precipitation changes to some extent, as we described in the previous section, 483 

but differences between parameterized and explicit runs indicate that the convective representation 484 

is crucial to define the rainfall response to this thermal forcing. 485 

Here, we investigate the mechanism that links changes in thermal land-sea contrast and rainfall. 486 

The primary source of convective potential over the islands is the moisture flux convergence at 487 

the lower levels. Moisture flux convergence was calculated using:  488 

 𝑀𝐹𝐶 = −∇ ∙ (𝑞𝑽ℎ) Eq. 4 

Where MFC is the moisture flux convergence, q is water vapor mixing ratio at 2m and Vh is the 489 

horizontal wind vector at 10 m. The approach described by Bluestein [1992] was applied to deal 490 

with discrete variables. 491 
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Because of the enhanced land-sea thermal contrast, the model produces an increase in near-492 

surface MFC along the coastlines (Fig. 5 c-d). This agrees with results in Tangang et al. [2020], 493 

which also found an increase in low-level moisture flux convergence over the islands using 494 

multiple regional climate simulations. This MFC increase on the coastline is accompanied by a 495 

decrease far outside over the ocean, where negative values are observed almost everywhere. MFC 496 

was decomposed into two terms (horizontal advection of specific humidity and horizontal mass 497 

convergence; Eq. 5) following Banacos and Schultz [2005]: 498 

𝑀𝐹𝐶 =  − 𝑽ℎ ∙ ∇𝑞 −  𝑞∇ ∙ 𝑽ℎ Eq. 5 

 and then changes were calculated for each of them to estimate their relative contribution to 499 

MFC changes. This decomposition reveals that MFC changes where largely driven by horizontal 500 

convergence changes, while advection changes play a negligible role on average (Fig. 5 e-h).  501 

Therefore, a higher MFC –along the coast and mostly driven by convergence changes– points 502 

in the same direction as our hypothesis that mesoscale circulations (sea breeze type) intensify 503 

under warmer conditions. This effect is even more marked during the time of the day when sea-504 

breeze usually builds up in the region (10-16 LST, Supplementary Figure S9). Hence, our results 505 

are coherent with the idea that land-sea thermal contrasts and the resulting MFC changes are 506 

drivers of rainfall redistribution and more intense precipitation over land. 507 

This mechanism may be partly responsible for the intensification of rainfall over land, but there 508 

must be other factors (e.g., stability) causing differences in precipitation changes between the two 509 

experiments despite their very similar changes in thermal contrasts and MFC.  510 

Under global warming, the upper troposphere warms faster than the lower troposphere in the 511 

tropics, which increases dry static stability [Schneider et al., 2010; Chou et al., 2013]. We 512 

estimated dry static stability in the lower troposphere from both our experiments using the 513 
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difference in potential temperature (θ) between the lower (850 hPa) and the middle (500 hPa) 514 

troposphere. In both simulations, this difference is reduced in the future, thus indicating increased 515 

dry static stability under climate change, especially for the explicit convection run (Supplementary 516 

Figure S10). However, these changes in temperature are also accompanied by changes in humidity, 517 

which directly affect moist adiabatic processes that govern deep convection. To incorporate this 518 

factor, we analyzed changes in potential stability (also called moist static stability or convective 519 

stability). Herein, we speak in terms of instability to make the interpretation of results more 520 

intuitive, but it is conceptually the same. We examined the equivalent potential temperature (θe) 521 

and its vertical profiles, which accounts for changes in both temperature and humidity. The 522 

difference in θe between 900-800 hPa and 600-400 hPa layers provides a measure of potential 523 

instability.  524 

This choice is motivated by the fact that atmospheric models (e.g., CMIP5 ensemble, 525 

Supplementary Figure S11) often show a discontinuity in the vertical derivative of θe, which is 526 

likely linked to how convective processes are parameterized. The discontinuity is linked to how 527 

the schemes work around the freezing level, their interaction with microphysics schemes and the 528 

quasi-equilibrium profile used in certain parameterizations such as the Betts-Miller Janjic, which 529 

is used in the parameterized simulations here. Indeed, this behavior is also detected in PA around 530 

the 500 hPa level. This reflects on changes of the vertical profiles simply because the discontinuity 531 

is shifted upwards. To reduce the dependence of our results on this issue, which we assume is a 532 

model artifact, we computed potential instability using the above reference layers. 533 

Vertical profiles of equivalent potential temperature (θe) reveal that time-mean potential 534 

instability will increase everywhere under the prescribed climate change signal according to both 535 

experiments (Fig. 6c). This is shown by steeper vertical profiles of θe under future climate 536 
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conditions with the largest increases in θe near the surface (~14-15 K). Changes over land are on 537 

average very similar between PA and EX, and both show an intensification of instability in the 538 

early afternoon (Fig. 6d). On the other hand, changes over the ocean are slightly larger in PA and 539 

are flat throughout the day in both model runs. This spatial distribution of potential instability 540 

changes is further illustrated in Figure 6 e-f, which suggest that instability will increase the most 541 

over large land masses. These changes were tested for statistical significance using a Mann-542 

Whitney U test at the 99% confidence level and they are significant everywhere in the domain. 543 

The land-sea contrast of potential instability changes is more pronounced in EX, mostly because 544 

EX produces more moderate changes over water. If we select only days when precipitation exceeds 545 

the 99.9th percentile in each grid cell and calculate the changes in potential instability, EX produces 546 

much stronger changes than PA during such events (Supplementary Figure S12). Therefore, 547 

despite similar time-mean changes in potential stability and mean precipitation changes, EX 548 

suggest more intense extreme precipitation in a warming climate accompanied by higher potential 549 

instability.  550 

To understand the link between this increase in potential instability and precipitation extremes, 551 

we focus on potential instability preceding events above the 99.9th percentile.  To that purpose, we 552 

selected 0.5° by 0.5° areas in the four largest islands (squares in Fig. 1) and calculated the area-553 

averaged potential instability (θe
850hPa-θe

500hPa) over the 12 hours before any grid cell exceeds its 554 

99.9th percentile of hourly precipitation. Figure 7 shows the relationship between the intensity of 555 

heavy rainfall events versus the preceding potential instability for present and future simulations, 556 

both model configurations and over the four selected representative areas. Retaining only dry hours 557 

to calculate convective instability as opposed to all preceding hours was tested with no substantial 558 

differences (not shown) and we decided to keep the all-hour approach so that all instability values 559 
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were calculated using the same number of preceding hours. Different accumulation periods (6, 18, 560 

24 hours) and area sizes (0.2°, 1.0°) were also tested with very similar results (not shown).  561 

Different locations within each island were also examined to ensure our results were robust and 562 

the outputs were qualitatively the same (Supplementary Figures S14 and S15). 563 

In all cases, the atmosphere reaches a clearly different state where both potential instability and 564 

extreme rainfall intensity are higher under a warmer climate. While potential instability alone is 565 

not enough to determine the intensity of extreme events for each of the periods separately, this is 566 

not surprising since many other factors are involved in the generation of heavy rainfall events, thus 567 

the dispersion of the point clouds. However, it indicates that the model response to climate change 568 

in terms of precipitation extremes and potential instability are related to each other.  569 

This relationship also reveals an interesting contrast between model runs. The fully explicit 570 

convection is much more dispersed in the rainfall-instability space depicted in Fig. 7. Some of the 571 

differences between experiments noted before can be interpreted through this feature. For instance, 572 

it shows that the convective parameterization restricts the atmospheric conditions to a given range 573 

because it continuously adjusts the vertical profile towards an equilibrium state. The explicit run, 574 

on the contrary, is more flexible in this sense, and it allows for higher precipitation rates 575 

(Supplementary Figure S14 and S15). In fact, it also produces situations with substantially larger 576 

potential instability when the extremes occur (Fig. 7). As a result, the response to climate change 577 

in PA is spatially more homogeneous than in EX, which produces a noisier signal because of the 578 

higher degrees of freedom explicit convection provides. Precipitation rates above the 99.9th 579 

percentile were also compared to other variables such as potential temperature (θ), Convective 580 

Available Potential Energy (CAPE) and precipitable water (PW) to illustrate their links in a 581 

changing climate (Supplementary Figure S16). In agreement with our previous findings, changes 582 
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in the intensity of extreme rainfall are related to an increase in dry static stability (θ850hPa-θ500hPa) 583 

and an increase in latent conditional instability (CAPE). It also shows that this contrast between 584 

changes in dry static stability (temperature dependent) and convective stability (temperature and 585 

moisture dependent) when extremes occur is mostly due to a higher availability of precipitable 586 

water, which significantly increases in the future.   587 

Present and future bivariate distributions of rainfall and the various instability metrics (Fig. 7 588 

and Supplementary Figures S14-S16) were tested statistically to determine if they are significantly 589 

different. All present and future bivariate distributions were statistically different to each other at 590 

the 0.01 significance level using a multi-dimensional version of the Kolgomorov-Smirnov (KS) 591 

test [Fassano and Franceschini, 1987]. A classical 1-D KS test was also applied to present and 592 

future precipitation distributions and were found different at the 0.01 significance level too. 593 

Increased instability only produces precipitation changes if convective circulation is intensified. 594 

Thus, changes in vertical motions must be considered to explain the spatial contrasts of rainfall 595 

changes (see section 3.2).  Here, we relate changes in vertical pressure velocity (ωe) that precede 596 

precipitation extremes with changes in the extremes themselves (Fig. 8). We binned grid points by 597 

changes in extreme rainfall (total accumulated above the 99th percentile). For each bin, we 598 

computed the average change in the vertical profile of ωe over the six hours preceding each extreme 599 

event.  We chose a six-hour period because vertical motions due to convection start approximately 600 

six hours before the peak of the precipitation diurnal cycle in the region [Argüeso et al. 2020].  601 

On average, the atmospheric environment preceding intense rainfall is characterized by 602 

ascending motions almost through the entire troposphere in both experiments and climate periods 603 

(Supplementary Figures S17 and S18). Only the bottom and the top levels show small positive 604 

values (descending motions). Thus, positive changes ωe can be generally interpreted as a 605 
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weakening of ascending vertical motions.  Both experiments concentrate stronger vertical motions 606 

and rainfall extremes over land, which is consistent with the picture described in section 3.2. The 607 

average ωe preceding rainfall extremes and its changes are spatially more homogeneous in the 608 

parameterized case (not shown), which is also consistent with the results above (Fig. 7 and 609 

Supplementary Figures S14-S16). 610 

Not only rainfall extremes are collocated with more intense upward motions, but also their 611 

changes. Areas where rainfall extremes will increase the most coincide with stronger upward 612 

motions, particularly above 800hPa (red in Fig.8). Likewise, extreme rainfall decreases are 613 

accompanied by weakened ascending winds (blue in Fig. 8). Weakened vertical motions (blue) 614 

extend across the zero-change line, hence small increases (<20%) in extreme precipitation occur 615 

with decreases in vertical rising motions, especially over land and when convection is explicit (Fig. 616 

8f). It is likely that changes in ωe partly offset the effect of warming, but the latter still dominates 617 

in this range. These results are consistent with the decomposition of scaling in dynamical and 618 

thermodynamical terms, where vertical motions help explain spatial contrasts in extreme rainfall 619 

changes. Similar results were obtained for other percentiles too (95th and 99.9th; not shown). 620 

Most ocean areas show a decrease in precipitation extremes (99th percentile; Fig. 3g-h and Fig 621 

8c-d) and weakening of vertical motions preceding such intense rainfall events (Fig. 8c-d). On the 622 

other hand, upward vertical velocity before extreme events tend to intensify where heavy rainfall 623 

increases over the ocean. 624 

This aggregated view reveals some similarities and differences between the two convective 625 

representations. Both runs expand the range of possible extremes to higher values, especially EX 626 

(Supplementary Figures S17-S18).  They also tend to increase the land-sea contrast of ωe under a 627 

warmer climate, particularly PA, as shown the intensification of blue areas in Fig 8c and read areas 628 
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in Fig 8e. As for the differences, PA tends to produce larger changes in vertical motions (Fig. 8), 629 

and they are spatially more organized and uniform in the vertical (not shown). In the explicit 630 

convection run, most changes of extreme precipitation over land lie around 20% (Fig. 8f, top) and 631 

vertical motions are weakened in the lower-to-middle troposphere for this range of precipitation 632 

and intensified in the atmosphere above. This feature can be interpreted as a deepening of the 633 

convective circulation and expansion of the convective cell upwards. Argüeso et al. [2020] also 634 

found that EX produces deeper convective circulations than PA under present climate condition, 635 

a difference that could be enhanced with warming. 636 

Therefore, the importance of land masses in the convective development and their role as 637 

rainfall attractor in the two model experiments is different. The concentration of rainfall over land 638 

seems to strengthen under future climate conditions as the land-sea thermal contrast intensifies and 639 

the potential instability increases, because they favor moisture convergence and convective 640 

circulations over the islands. However, the model responds differently to these changes depending 641 

on how convection is represented, especially in terms of vertical pressure velocity. The need for 642 

triggering factors in the explicit case and the constrains imposed by the deep parameterization 643 

scheme may help explain these differences in vertical motions and precipitation intensities.  644 

4 Conclusions 645 

We studied the role of horizontal and vertical warming contrasts on precipitation changes in the 646 

Maritime Continent for the late 21st century under a RCP8.5 scenario using a Pseudo-Global 647 

Warming approach. We analyzed results from a regional climate model operating at convection-648 

permitting scales with two different representations of deep convection: parameterized and 649 

explicit.  650 
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We found that the model produces a domain-averaged decrease of rainfall during the Maritime 651 

Continent wet season (NDJF) for both convective representations, although there is a marked land-652 

ocean contrast. Both model configurations tend to produce a decrease over the ocean and an 653 

increase over land. Even though GCMs do not agree on the sign of rainfall changes for the region, 654 

their spatial pattern of changes is consistent with the land-ocean contrast we obtained [Jourdain et 655 

al., 2013; Wang et al., 2020].  The ensemble mean of GCMs selected in this study projects a 656 

domain-average increase in rainfall and in the vertically integrated water vapor. Thus, the decline 657 

of domain-average precipitation suggested by our model experiments cannot be explained by 658 

changes in the large-scale water vapor supply (i.e., advection). Instead, it must be explained by 659 

processes that transform the available water vapor into precipitation and how they are represented 660 

in models. 661 

Our experiments suggest that the islands of the Maritime Continent will undergo more intense 662 

mean and extreme precipitation in a warmer climate. However, extremes behave differently under 663 

the same large-scale climate change signal depending on how convection is represented. This 664 

includes their magnitude, spatial pattern, and the relative changes of the various percentiles. The 665 

most prominent difference is that the land-sea contrast of changes is more pronounced in the 666 

parameterized runs. The upper percentiles of rainfall undergo larger increases relative to present 667 

climate extremes when convection is parameterized. However, explicit convection expands the 668 

range of possible future extremes to higher values. This is partly because present climate extremes 669 

in EX are already more intense than in PA, but also because the convective scheme constrains the 670 

response to warming. Therefore, future generations of climate projections at convection-permitting 671 

resolutions may project different outlooks for rainfall extremes to those currently available. 672 
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We determined the contribution of thermodynamical and dynamical processes to changes in 673 

rainfall extremes under a warmer climate. Thermodynamic effects account for changes in 674 

precipitation extremes that are consistent with the Clausius-Clapeyron relationship, and their 675 

contribution is relatively homogeneous across the domain. Thus, we need to invoke dynamical 676 

processes to explain features of extreme rainfall changes, such as their magnitude range (-20% K-677 

1 to 20% K-1), their spatial contrasts and the divergences between the two model runs. 678 

According to our simulations, the primary driver of changes in the spatial distribution of rainfall 679 

is the land-sea thermal contrast and its enhancement under climate change. Land warms faster than 680 

the ocean, which favors local sea-breeze type circulations. These circulations increase low-level 681 

moisture flux convergence over land and contribute to create conditions for deep convection 682 

development over land. They are also responsible for suppressing rainfall generation over the 683 

ocean to some extent.  684 

Deep convection and heavy rainfall require atmospheric instability to occur. Climate change 685 

modifies the vertical profile of the atmosphere and thus alters the overall stability. Although dry 686 

static stability increases under future climate conditions because the upper half of the troposphere 687 

warms faster, the combined effect of temperature and humidity changes in the vertical makes the 688 

atmosphere more unstable in terms of moist static stability. While both model experiments show 689 

this response to climate change, the convective scheme constrains potential instability and extreme 690 

precipitation values within a narrower range. Under future climate conditions, this means the 691 

model with explicit convection allows heavier rainfall events to occur. Yet, changes relative to 692 

present climate values are higher in the parameterized case. Also, the convective scheme produces 693 

a response to climate change that is spatially more uniform, while explicit convection generates 694 

noisier patterns of extreme precipitation changes. 695 
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Deep convection entails intense upward vertical motions. Thus, extreme precipitation is linked 696 

to high vertical pressure velocity. We found that the model tends to concentrate strong vertical 697 

motions and rainfall extremes over land, especially when convection is explicitly resolved. In some 698 

land areas, this is enhanced in future climate simulations, which explains departures from the 699 

thermodynamic contribution to extreme rainfall changes. Changes in vertical winds also indicate 700 

a possible expansion of the convective cell over the islands and a slight weakening of upward 701 

motions in the mid troposphere. Even though explicit convection produces more extreme rainfall 702 

events over land in the future —due to further concentration of upward motions over large islands 703 

and the lack of convective scheme constrains—, the parameterized case suggests stronger changes 704 

relative to present climate values. In fact, the model produces stronger changes in vertical motions 705 

preceding extreme events with climate change when convection is parameterized. This refers not 706 

only to the strengthening of vertical winds over land, but also to their weakening over the ocean. 707 

In both model configurations, areas of stronger upward vertical pressure velocity are collocated 708 

with positive changes in extreme precipitation, and vice versa. This spatial coincidence, together 709 

with the scaling decomposition into thermodynamical and dynamical terms, evidences the role of 710 

vertical motions in modulating the intensity of future climate rainfall events. 711 

In summary, we showed that the way convection is represented is crucial in defining the model 712 

response to warming, because it defines dynamical processes that shape the future distribution of 713 

precipitation and the intensity of extremes. 714 
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Table 1: Domain-average changes in mean precipitation and the upper percentiles of hourly 962 

rainfall for the parameterized (PA) and explicit (EX) convection experiments. Changes for all 963 

grid points, land-only grid points and ocean-only grid points. Changes are in percentage with 964 

respect to present climate and positive changes are in bold typeface.  965 

  Mean 95th 98th 99th 99.9th 

PA 

Total -13.3 -9.8 -14.4 -19.2 -3.2 

Ocean -20.2 -11.8 -22.0 -32.6 -10.9 

Land 4.3 -5.3 1.5 9.6 22.4 

EX 

Total -6.2 -18.9 -17.3 -12.8 4.0 

Ocean -12.7 -47.1 -33.4 -23.7 0.6 

Land 5.0 -5.3 0.6 5.4 14.9 

 966 

 967 



 45 

 968 

Figure 1:  The Maritime Continent archipelago. The region shown corresponds to the model 969 

domain and the black squares are sampling areas. 970 

 971 

 972 

Figure 2: Present mean precipitation rates in the parameterized (a) and the explicit convection 973 

runs (c). Relative mean precipitation changes using PGW approach (future minus present) for 974 

parameterized (b) and explicit (d) convection runs. Areas with no statistically significant changes 975 
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according to a Mann-Whitney U test at the 99% confidence level are masked out in (b) and (d). 976 

These areas are 7.9% and 14.7% of the domain, respectively. Boxplots show changes for all (gray), 977 

ocean-only (blue) and land-only (red) grid cells for parameterized (hatched) and explicit (solid) 978 

experiments. The boxes represent the interquartile range, whiskers are the 10th-90th percentile 979 

range, horizontal lines are the median changes over all grid points in each category, and markers 980 

show the median for each of the 4-month periods individually. 981 

 982 
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Figure 3: Changes in rainfall percentiles. Statistics of changes over the entire domain (gray), 984 

ocean-only (blue) and land-only (red) grid points for the parameterized (a) and the explicit case 985 

(b). Boxes represent the interquartile range; whiskers are the 10th-90th percentile range and 986 

horizontal lines are the medians. Spatial patterns of relative changes in rainfall for the 95th (c, d), 987 

98th (e, f), 99th (g, h) and 99.9th (i, j) percentiles for the parameterized (left column) and explicit 988 

(right column) model setups. Statistical significance was tested using a bootstrap approach based 989 

on 12-hour blocks resampling with replacement repeated 1000 times. According to the test, 43.2%, 990 

46.7%, 42.1% and 19.5% of all the grid-points show significant changes for the corresponding 991 

percentiles in the parameterized runs, and 52,2%, 35.3%, 25.8% and 13.1% for the explicit case. 992 

Non-significant changes were masked out. 993 

 994 
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 995 

Figure 4: Scaling of the 99th percentile of precipitation with respect to the domain-average 2-m 996 

temperature change using hourly precipitation outputs from the model (direct scaling; a, b), the 997 

full scaling as estimated by the theoretical diagnostic from O’Gorman and Schenider [2009b] (c, 998 

d) and the thermodynamic scaling as approximated by Pfahl et al. [2017] (e, f). Left column is for 999 

the parameterized experiment and right column is for the explicit simulation. 1000 

 1001 
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 1002 

Figure 5: Near-surface temperature (2 m) changes with respect to the domain average warming 1003 

(top-left numbers in panels a and b) over the entire period (NDJF 2013-2016) for parameterized 1004 

(a) and fully explicit (b) convection runs. Changes in near-surface moisture flux convergence 1005 

(spatially smoothed using a gaussian filter with standard deviation of 3 grid points) for 1006 

parameterized (c) and fully explicit (d) experiments. Changes in MFC due to advection changes 1007 

(e, f) and convergence changes (g, h) following decomposition in Banacos and Schulzt [2005]. 1008 

 1009 

 1010 
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 1011 

Figure 6: Atmospheric potential instability changes in parameterized and explicit convection runs. 1012 

Time-averaged mean vertical profiles of θe over land grid points (a) and ocean grid points (b) and 1013 

their changes (future minus present) (c). Black is for present climate and gray for future climate. 1014 

Blue lines are changes over water only and red lines are changes over land only. Solid lines show 1015 

parameterized convection experiments and dashed lines are for explicit convection runs. Diurnal 1016 

cycle (d) of potential instability changes (θe
850hPa- θe

500hPa) for ocean (blue) and land (red) grid-1017 

points, and parameterized (solid) and explicit (dashed) convection experiments. Spatial 1018 

distribution of potential instability changes for the parameterized (e) and explicit (f) convection 1019 

simulations. Changes were statistically significant at the 99% confidence level in all grid points 1020 

according to a two-sided Mann-Whitney U test. 1021 

 1022 

 1023 
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 1024 

Figure 7: Extreme precipitation events (>99.9th percentile) versus convective instability in 1025 

different locations for present (blue) and future (red) experiments using convective 1026 

parameterization (PA, top row) and explicit convection (EX, bottom row). Convective instability 1027 

is measured as the difference in equivalent potential temperature between the 900-800 hPa and 1028 

600-400 hPa layers and averaged over the 12 hours preceding the intense rainfall event. Each dot 1029 

represents an event in the areas delimited by squares in Fig. 1 and the contours represents the 1030 

probability estimated using a gaussian Kernel Density Estimator. All present and future point 1031 

clouds are statistically different from each other using a Fasano-Franceschini test at the 0.01 1032 

significance level.  1033 
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 1034 

Figure 8: Changes in vertical pressure velocity (ωe) versus changes in mean precipitation rates of 1035 
events above the 99th percentile of hourly rainfall averaged over all (a, b), ocean-only (c, d) and 1036 
land-only (e, f) grid points for the parameterized (left column) and the explicit (right column) 1037 
convection experiments. Each panel includes a probability distribution of extreme precipitation 1038 
changes at the top to indicate the most frequent values of changes in the domain. 1039 

 1040 
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