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ABSTRACT: Biaryls have widespread applications in organic synthesis. However, sequentially polysubstituted biaryls are 
underdeveloped due to their challenging preparation. Herein, we report the synthesis of unsymmetric   3    3   -substituted 
biaryls via pericyclic reactions of cyclic diaryl 3-bromanes. The functional groups tolerance and atom economy allow access 
to molecular complexity in a single reaction step. Continuous flow protocol has been designed for the scale-up of the reac-
tion, while post-functionalizations have been developed taking advantage of the residual bromide. 

 

The direct access to molecular complexity under sus-
tainable, simple, and mild reaction conditions is a critical 
challenge of modern organic chemistry. Biaryl compounds 
are ubiquitous motifs in many fields of chemistry, includ-
ing medicinal chemistry, agrochemistry, material science, 
and ligand design. A straightforward synthesis of highly 
decorated biaryls thus remains an important challenge. 1 In 
particular, dissymmetrical   3    3   -substituted biaryls 
are poorly explored motifs due to the arduous synthesis 
via standard cross-coupling reactions which require 
densely decorated precursors. Albeit scarcely investigated, 
a general and straightforward alternative approach based 
on a modular functionalization via pericyclic reactions of a 
finely designed biaryl benzyne precursor represents an 
attractive solution to this synthetic issue (Scheme 1a). 2 
However, multiple drawbacks hamper the state-of-the-art 
of the aryne-based approach (Scheme 1b): 1) lengthy syn-
thetic routes for the preparation of aryne precursors; 2) 
the limited atom economy resulting from the aryne gener-
ation with the removal of leaving groups (-OTf and -TMS; -
X and -OR; Aux-I) which translate into significant waste 
formation and 3) the limited functional group tolerance as 
the base- and fluorine-sensitive moieties are generally 
incompatible. 3-5 Accordingly, the implementation of the 
pericyclic reactions to rapidly access dissymmetrical 
  3    3    -substituted biaryls diversity requests design of 
original biaryl aryne precursors, activated under mild 
reaction conditions and in presence of a weak base. 

Despite being known since the 19th century and albeit 
their unique reactivity, hypervalent bromane (III) reagents 

have received much less attention compared to the corre-
sponding iodine compounds. 6 

The lack of general and simple synthetic routes deliver-

Scheme 1: a) Common aryne precursors; b) Aryne strat-
egy to ortho-, ortho-, meta- substituted biaryls, c) Cyclic 
diaryl 3-bromanes as aryne precursors in pericyclic 
approach towards ortho-, ortho-, meta- substituted 
biaryls (this work). 

 



 

ing these unique scaffolds has drastically hampered the 
development of bromane (III) chemistry, 7 and thus the 
rare advances in this field have been reported only recent-
ly. 8 Our group has latterly established a simple, safe, and 
scalable protocol for the preparation of cyclic diaryl 3-
bromanes in good to excellent yields. 9 The superior elec-
tron-withdrawing effect and the nucleofugality of 
hypervalent bromane (III) compared to the iodine (III) 
counterpart (approximately 106 times higher), confer them 
a complementary reactivity. 10 Encouraged by the dis-
closed reactivity of cyclic diaryl 3-bromanes towards the 
construction of carbon-oxygen and carbon-nitrogen bonds, 
we speculate that they could represent a new family of 
biaryl coupling partners for pericyclic reactions (Scheme 
1c). Moreover, cyclic hypervalent 3-bromane products 
carry a residual functional bromine atom which opens 
additional perspectives for further post-functionalizations, 
while warranting excellent atom economy of the overall 
process. Thus unique reactivity provides a new strategy for 
the synthesis of valuable and unprecedented highly deco-
          ymm        3    3    -substituted biaryls, 
helicenes 11 and four consequently substituted aromatic 
units. 4e,12 

Our investigation begun by studying the reaction be-
tween the well-known cyclic diaryl 3-iodanes and furan 
2a (Table 1, entry 2), but no product formation was ob-
served neither by GC-MS nor 1HNMR (see Supporting 
Information). Remarkably, while using cyclic diaryl 3-
bromane 1a-OTf and 2a, in a presence of cesium carbonate 
and DCM, the desired product 3aa was afforded in 92% 
yield after 16 hours at room temperature (entry 1), unam-
biguously illustrating the unique reactivity of these rea-

gents. 

No reactivity was observed in the absence of Cs2CO3 (en-
try 3). Further investigation showed that the nature of the 
base holds a key role. Despite being a stronger base, 
tBuONa provided 3aa in lower yield, while K2CO3 per-
formed poorly (entry 4). Finally, the role of a chlorinated 
polar solvent, namely CH2Cl2, was confirmed (entry 5). 
Surprising, albeit in low yield, the reaction occurred in 

water media. 13 With the optimal reaction conditions in 
hand, the scope of this cycloaddition was explored, focus-
ing on various cyclic diaryl 3-bromanes 1a-l and aromatic 
cyclic Diels-Alder partners 2b-2d (Scheme 2). The sym-
metric bromane 1b, presenting inductive electron-
donating methyl groups provided the desired product 3ba 
in good yield (69%). Regioselective functionalizations took 
place in presence of asymmetric substrates, such as 1c, 1d, 
and 1e, where the enhanced reactivity of one aryl moieties 
translated into the formation of a unique products in good 
yields. The introduction of the methyl group in ortho-
position directs the desired transformation onto one aro-
matic ring, thus promoting the formation of 3fa in moder-
ate yield (51%). Bifunctional dissymmetric 3-bromanes 
bearing methyl ester and chlorine afforded 3ga and 3ha in 
59% and 98% yields respectively. Finally, mono-
substituted cyclic diaryl 3-bromanes were tested. A weak 
electron-donating methyl group, 1i, unsurprisingly leads to 
a 1:1 mixture of products 3ia and 3ia’, while the enhanced 
electron-withdrawing character of methyl ester 1j, chloro 
1k and trifluoromethyl 1l enabled the preferential for-
mation of one regioisomer with good selectivity. Moreover, 
substituted furans, 2b and 2c and N-protected pyrrole 2d 
were well tolerated under our reaction conditions, afford-
ing the desired products in good yields. Moreover, the 
dissymmetric bromane 1h reacted smoothly with 2d offer-
ing the highly functionalized bromo, chloro cycloadduct 
3hd in 84% yield. Targeting a rapid generation of a broad 
range of diverse molecules, we have challenged the 3-
bromanes with other arynophiles. Various azides have 
been successfully coupled with 1a-OTf, furnishing highly 
decorated bromo benzotriazole derivatives. Simple benzyl 
azides 2e and substituted 2f – 2i supplied the desired 
regioisomeric 3 and 3’ in moderate to good yields, which 
were straightforwardly separated via column providing 
the pure products. The single-crystal X-ray analysis of 3af’ 
confirmed the triazole structure and the regioselectivity. 
Remarkably, thanks to the fluorine-free conditions, the 
silyl-protected phenols 3ai and 3ai’ could be obtained in 
excellent yields, highlighting the complementarity of this 
protocol. The cholesterol-de derived 2j and the cyclohexyl 
azide 2k react smoothly under the standard reaction con-
ditions. Diazomethane 2l (TMSCHN2) also proved to be an 
excellent arynophile, yielding 3al and 3cl in 92% and 50% 
yields respectively, albeit as a mixture of two cycloadducts. 
In accordance with the aryne distorted and steric models, a 
moderate regiocontrol has been observed in the 1,3-
dipolar cycloaddition where the nucleophilic nitrogen 
reacts with the more distorted alkyne terminus position 
furnishing the less steric demanding product as major 
isomer. 14 While Diels-Alder reactions involving aryne have 
been largely investigated, 15 the [2+2] reactions have re-
ceived much less attention despite the interest of the re-
sulting peculiar structures. 16 Rewardingly, the reaction of 
1a-OTf with 2,3-dihydrofuran 2m and 2,3-dihydropyran 
2n conducted to the selective formation of 3am and 3an in 
excellent yields, furnishing a single regioisomer with a 
ratio up to 14.3:1. Moreover, strained cycloalkenes, namely 
norbornene 2o and norbornadiene 2p, provided the de-
sired cyclobutene products 3ao and 3ap with good yields. 
Interestingly, an elusive [2+2+2] mechanism has been 
observed within 1a-OTf and 2p yielding the uncommon 

Table 1. Optimization of the Diels-Alder Reaction with 
cyclic diaryl hypervalent bromanesa 

 

entry deviation from standard conditions yield (%)b 

1 none 92%c 

2 
3-I-OTf/-OMs instead of 1a-OTf -d 

3 no Cs2CO3 - d 

4 tBuONa / K2CO3 instead to Cs2CO3 59% / 
23% 

5 CH3CN / H2O instead to CH2Cl2 69% / 
13% 

a Reaction conditions: 3-X-Y (0.1 mmol), furan (1.2 equiv), 
r.t. 16h; b 1HNMR yields using CH2Br2 as internal standard; c 
Isolated yield; d 5 equiv furan. 



 

3ap’ in 17% yield. The acrylate 2q showed sufficient reac-
tivity under our reaction conditions. Asymmetric 3-
bromanes 1h, 1c and 1g provided the highly decorated 
biaryls 3hm, 3cn and 3go in excellent yields. Finally, struc-
turally condensed polycyclic aromatic compounds, valua-
ble motifs in material science, were targeted. We investi-
gated the reaction of 1a-OTf with the -bromostyrenes 2r. 
After a minor reoptimization of the reaction conditions, a 
cascade [4+2] cycloaddition/base-mediated aromatization 
occurred smoothly, at room temperature, in dioxane yield-
ing the endo-product 3ar as a single regioisomer. Electron-
rich bromo styryls showed higher reactivity, delivering 
3as and 3ay respectively in 85% and 58% yields. The 
single-crystal X-ray analysis of 3as confirmed the for-
mation of the endo-product. Electron withdrawing groups, 
such as trifluoromethyl, impact the reaction outcome, 
delivering 3at in a decreased yield. 

On the other hand, halogenated aromatic rings 2u, 2v, 
2w and 2x, offered synthetically useful bifunctional prod-
ucts in moderate to high yields. The electron-rich, protect-
ed bromo caffeic acid derivative 2z turned out to be suita-
ble for the synthesis of highly decorated phenyl 

phenanthrene 3az, providing a functional dibromo com-
pound. Sterically demanding substrate 2A furnished the 
conformationally stable atropoisomers 3aA. Finally, when 
dissymmetric 3-bromane 1f was tested, a selective 
functionalization occurred, yielding 3fs. Remarkably, the 
excellent regioselectivity reached in all of these cases, 
providing the sterically hindered endo-regioisomers as 
unique product, outcompetes the literature precedents. 17 

Encouraged by the high versatility observed using cyclic 
diaryl 3-bromanes, we endeavored on developing a flow 
protocol for this reaction (Scheme 3). Despite clear advan-
tageous of flow chemistry approach as scalability, safety 
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Scheme 2: Synthesis of 3aa via flow-chemistry approach 

Scheme 3: Scope of the reaction 
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and reduction of the reaction time, implementation of this 
process into the aryne chemistry remains rare and the 
chemically difficult. 18 The difficulty in our case lays in the 
use of insoluble Cs2CO3, however, attempts to replace it 
with organic bases failed. (see Supporting Information). 
Accordingly, the flow-reaction was performed in a biphasic 
system, which involved a water solution of Cs2CO3 and a 
solution of 1a-OTf and 2a in CH3CN. The optimal flow-
reaction conditions enabled the synthesis of 516 mg of 3aa 
(66% yield) within 22 min of residence time at 60 °C. In-
teresting, the substrate 1a-OTf is stable under these reac-
tion conditions and the unreacted portion was recovered 
via precipitation with Et2O from the reaction steam. The 
conspicuous reduction of the reaction time and the use of 
green solvents make this approach a suitable alternative to 
the batch protocol, especially for further reaction scale-up. 

Beyond the mild reaction conditions for the aryne gen-
eration and the high functional group tolerance demon-
strated, the cycloadduct products feature a bromine atom 
which can serve as an additional handle for the incorpora-
tion of molecular complexity (Scheme 4). Initially, the 
robustness of our procedures was confirmed by perform-
ing the reactions on 1 or 2 mmol scales, furnishing 3aa, 
3ar, 3as and 3au in multi milligram scale. The functionali-
zation of the 3aa through lithium-mediated bromine ex-
change provided the corresponding carboxylic acid 4, 
aldehyde 5, and the new phosphine 6 in 64%, 93% and 
76% yields respectively. Moreover, a standard 
deoxygenation protocol generated 7 in 74% yield. Also, 
bromo-biphenyl phenanthrenes 3ar, 3as and 3au are 
synthetically interesting scaffolds and the residual bro-
mine enables access to highly adorned structures. Pd-
catalyzed cross-couplings, such as Sonogashira and Suzuki 
reactions granted the introduction of alkyne 8 and aryl 9 
moieties with useful yields. Furthermore, a Buchwald-
Hartwig Pd-catalyzed couplings delivered 10 and the 
sterically challenging 11 diaryl amines, in good yields. A 
lithium exchange protocol using 3ar, 3as and 3au, led to 
the versatile aldehydes 12, 13 and 14. A subsequent Wittig 

reaction involving the aldehyde 13 provided the stereoi-
somers E-15 and Z-15 in good yield (70% + 17% respec-
tively), which were easily separated by flash chromatog-
raphy. To further illustrate the utility of the bromine moie-
ty, the synthesis of screw-shaped helicene was envisioned. 
A standard Corey-Fuchs alkyne synthesis using the alde-
hyde 14 furnished 17. Then, a Pt-catalyzed cyclization 
afforded the desired [5]-helicene 18 in 12% overall yield. 

In conclusion, we demonstrated herein the peculiar ver-
satility, chemoselectivity and atom economy of cyclic 
diaryl 3-bromanes as biaryl aryne precursors in 
cycloaddition reactions for the synthesis of highly decorat-
       ymm        3    3    -substituted biaryl motifs. The 
mild aryne generation conditions, namely carbonate base 
and room temperature, allowed a wide arynophiles com-
patibility, together with great functional group tolerance. 
Robustness of these aryne precursors guaranteed an effi-
cient biphasic flow protocol for the pericyclic reaction 
further improving the sustainability. High molecular com-
plexity via multiple C-C and C-N bonds formation was at-
tained in a single reaction step, while subsequent 
functionalizations further expand access to a plethora of 
complex functional compounds.  
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Scheme 4: Synthesis of functional biaryl compounds from 3aa, 3ar, 3as and 3au 
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