Machine learning prediction of the mass and the velocity of controlled single-block rockfalls from the seismic waves they generate - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Machine learning prediction of the mass and the velocity of controlled single-block rockfalls from the seismic waves they generate

Résumé

Understanding the dynamics of slope instabilities is critical to mitigate the associated hazards but their direct observation is often difficult due to their remote locations and their spontaneous nature. Seismology allows us to get unique information on these events, including on their dynamics. However, the link between the properties of these events (mass and kinematics) and the seismic signals generated are still poorly understood. We conducted a controlled rockfall experiment in the Riou-Bourdoux torrent (south French Alps) to try to better decipher those links. We deployed a dense seismic network and inferred the dynamics of the block from the reconstruction of the 3D trajectory from terrestrial and airborne high-resolution stereo-photogrammetry. We propose a new approach based on machine learning to predict the mass and the velocity of each block. Our results show that we can predict those quantities with average errors of approximately 10% for the velocity and 25% for the mass. These accuracies are as good as or better than those obtained by other approaches, but our approach has the advantage of not requiring to localize the source and an a priori knowledge of the environment, nor of making a strong assumption on the seismic wave attenuation model. Finally, the machine learning approach allows us to explore more widely the correlations between the features of the seismic signal generated by the rockfalls and their physical properties, and might eventually lead to better constrain the physical models in the future.
Fichier principal
Vignette du fichier
2022-Hibertetal-egusphere-2022-522.pdf (17.53 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-03874080 , version 1 (27-11-2022)

Licence

Identifiants

Citer

Clément Hibert, François Noël, David Toe, Miloud Talib, Mathilde Desrues, et al.. Machine learning prediction of the mass and the velocity of controlled single-block rockfalls from the seismic waves they generate. 2022. ⟨hal-03874080⟩
218 Consultations
63 Téléchargements

Altmetric

Partager

More