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Unannounced Meal Detection for Artificial Pancreas Systems
Using Extended Isolation Forest

Fei Zheng!2, Stéphane Bonnet?, Emma Villeneuve?, Maeva Doron?, Aurore Lepecq? and Florence Forbes!

Abstract— This study aims at developing an unannounced
meal detection method for artificial pancreas, based on a recent
extension of Isolation Forest. The proposed method makes
use of features accounting for individual Continuous Glucose
Monitoring (CGM) profiles and benefits from a two-threshold
decision rule detection. The advantage of using Extended
Isolation Forest (EIF) instead of the standard one is supported
by experiments on data from virtual diabetic patients, showing
good detection accuracy with acceptable detection delays.

I. INTRODUCTION

Currently, the most used Artificial Pancreas (AP) system
implements an hybrid closed-loop requiring patients with
Type 1 Diabetes (T1D) to declare both the time and the
amount of their carbohydrates (CHO) intakes. Consequently,
such systems are prone to CHO underestimations due to
missing declarations and may lead to inadequate insulin
dosing, and expose the subjects to hyperglycemia risk [1].
Unannounced meal detection and quantification is thus an
essential task to reduce such risk as well as to achieve an
accurate fully automated closed-loop AP system.

Studies have been devoted to unannounced meal detection
with a majority of them implementing physical model-based
detection methods. The minimal model [2] or Medtronic
Virtual Patient (MVP) model [3], [4] are modified for the
application of different prediction algorithms, for example
Unscented Kalman Filter [5], [6], Moving Horizon Estima-
tion [7] or Sliding Mode Observer [8] to estimate the states
(specifically glycemia and meal appearance rate). Some
linear state-space models are adjusted also for describing the
pharmacodynamic response of insulin and glucose appear-
ance, so that Kalman Filter [9] or Variable State Dimension
[10] can be applied for the states estimation. Then, detections
are made by comparing the residuals between the estimated
and observed states to a threshold [8], by calculating their
cross-covariance [6], or by applying further decisions rules,
for example hypothesis testing [9] or statistical analysis [7].

Besides the model-based detection approaches, data-driven
methods have the advantage that their performance is much
less dependent on the identification accuracy of the applied
physical model. Three data-driven methods are studied in
[11] for insulin pump fault detection, showing that Isolation
Forest (IF) [12] outperforms the other two density-based
outlier detection methods. Inspired by [11], our work adapts
the application of IF to unannounced meal detection. We
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propose suitable features for individual Continuous Glucose
Monitoring (CGM) profiles, and a two-threshold-based rule
for risk evaluation and detection. More importantly, the
replacement of the standard IF by its recent generalization
named Extended Isolation Forest (EIF) [13] is explored and
shows promising performance on a virtual data set for this
specific unannounced meal detection task.

The remaining of the paper is organized as follows:
Section II presents the proposed EIF based detection method,
Section III shows the superiority of EIF compared to standard
IF and evaluates the performance of the method on a virtual
data set; finally, Section IV concludes the work and draws
some perspectives.

II. METHODS
A. Isolation Forest & Extended Isolation Forest

Isolation forest (IF) is an approach to detect anomalies
that explicitly isolates anomalies rather than profiles normal
instances [12]. Let X = {x1,---,xy} denote the training
set, where x,, € R%. X, [m] denotes a randomly sampled
subset of size ¢ from X with m € {1,---, M} represents
the subset size. An isolation tree (iTree) recursively divides
X,y [m] by randomly selecting at each node an attribute
among d features and a split value. The process is stopped
for a node when it contains only one instance or when the
instances are with the same value.

We denote by h (x) the so-called “path length” of x which
is the number of edges that x traverses from the root node
to the external node of an iTree. In practice, the path length
is limited to the depth [ = ceil(log, ¥). Then, the Anomaly
Score (AS) is defined by:

E[h(x)]

s(x) =27 "™, (1

¢(N) is the theoretical average path length which is only
related to the training set size N [12]. E[h (x)] represents
the expectation of path length of instance x, which can
be approached by averaging over M iTrees. The AS takes
its value in (0,1]. A score close to one indicates that the
corresponding instance x is easy to isolate and could then
be considered as an outlier.

As a variant of IF, Extended Isolation Forest (EIF) creates
nodes by randomly selecting an hyper-plane in the feature
space. It can thus provide relatively more consistent anomaly
scores, as well as more accurate detection of the feature
structure [13]. When applying EIF, different extension levels
can be chosen related to the number of feature axes that
hyper-planes intersect, ranging from 1 (intersect 1 feature,
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Fig. 1: Feature time waveform. Green area in top figure
shows the ideal glycemia range. Gray stems in middle figure
show unannounced meal and orange stems are announced
ones. Insulin doses (basal + bolus) are displayed by blue
stems in bottom figure.

leads to the standard IF) to d (intersect d features, fully
extended).

B. Features for Unannounced Meal Detection

Considering the unannounced meal detection problem,
inspired by [11], d = 3 features are chosen such that
x = [G), (t) ,DCOB (t) , DIOB (¢)]. G, (t) represents plasma
glucose which is approximated by CGM measurement, while
DCOB, DIOB are defined as follows:

a exp (VGp (t))

PEOBI) =~ coB () + 1 -

vIOB (¢) + 1
(2)

G, (t) represents the time derivative of G, (t) [mmol/L],
COB (t) [mmol] and IOB (¢) [mU] are CHO on board and
insulin on board respectively. COB and IOB are calculated
using declared CHO (if any) and injected insulin through a
modified MVP model (see Section V for details) identified on
a training set. Doing so, the MVP model parameters as well
as the features can adapt to specific profile. The description
of the virtual patient simulator is in Section III. The hyper
parameters are manually tuned and set as: @ = § = 15,
y=5w=8x10"%and v =10"%.

An example of features from a virtual patient is illustrated
in Fig. 1. It is worth noticing that the computation of G, (t)
requires tke knowledge of G, (¢ + 1), if 2nd order accurate
central difference is applied as in this work, which leads to
a minimum detection delay of one sample interval, = 5 min.

C. Risk levels & Detection Decision

Outlier detection is usually performed using a single
threshold. We propose a more reliable decision rule using
two thresholds related to two unannounced meal risk levels,
low and high, respectively. They are defined as:

thr(n) = { 7o) v=n=l

1—@=p(-F) 1<g<2 0

b B exp (VGp (t)) |

thr
1

F7H(D)

===

n
Fig. 2: Anomaly Score (AS) threshold.
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Fig. 3: Example of anomaly detection and evaluation (yellow
curve shows the glycemia). TP: True Positive, TN: True
Negative, FP: False Positive, FN: False Negative.

where F~! () represents the empirical quantile function of
AS values from a training set (with all meals announced), €
[0,2] is the parameter of the threshold. When 7 < 1, thr(n)
is the empirical quantile of order 7 of the training set AS
values. While the threshold is linear with respect to n when
n > 1, As seen on Fig. 2. We then define the low risk and
high risk thresholds using parameters n = {n;, 7 }. An alarm
of unannounced meal is then raised when either: 1) one high
risk appears (AS > thr(n,)); 2) or three successive low risks
are observed (AS > thr(n;)). See Fig. 3 for an illustration. To
summarize, the meal detection process for individual subject
consists of a training and testing step as follows:

o Training: 1) a MVP model is first identified using a
training dataset. 2) EIF is trained on the training feature
set and AS thresholds are defined.

o Testing: 1) The MVP initial state of the tested scenario
is estimated; 2) for each coming sample, its AS is
computed and the announced meal risk is evaluated with
the following appropriate detection decision.

For evaluation, the regular detection window is set to 3h
(maximum detection delay) except when two meals are less
than 3h apart (see irregular window in Fig. 3).

III. EXPERIMENTAL RESULTS
A. Virtual Patient Data Set

The proposed method is tested on four virtual patients sim-
ulated from SIM-HOV' based on Hovorka model [14]. The
data includes CGM measures, insulin doses and announced
meals with a sample rate of 5 min. In addition, SIM-HOV

'SIM-HOV is a Python simulator developed by Diabeloop S.A.
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Fig. 4: ROC surfaces for different IF extension levels with
respect to different thresholds (annotation shows the value
of i which gives the best f; score).

considers that the data is contaminated by a Gaussian noise
with a standard deviation (sd) of 0.012 x G}, (0) mmol/L,
where G}, (0) is the initial glycemia value. The patients have
various physiologies, such as different insulin sensitivity
and digestion speed. Simulated scenarios correspond to an
average of 3.4 meals per day, with time and size of the
meals randomly sampled from the Diabeloop WP7 data
set’ (median meal size: 40g CHO and interquartile 35g).
Thus the virtual patients have similar eating behaviour to
the real patients. Their glycemia was continuously regulated
in closed-loop by an AP Controller for Simulation (APCS)
designed by Algorithms Teams from Diabeloop S.A and
CEA. APCS adjusts in real-time the insulin bolus and basal
infusions according to a certain strategy in order to maintain
glycemia in a healthy range. As we can see in Fig. 1,
some compensation insulin doses are delivered after meals.
However, APCS does not realise any meal detection.

In the experiment, for each virtual patient, a 5-day scenario
(with all meals announced) of data is simulated for training,
and two scenarios of 20 days are available for testing. One
scenario includes 50% of declared meals, to mimick the case
where meals are irregularly announced by patients. Another
scenario has 0% meal declared to mimick a fully automatic
meal detection case.

B. Performance

The procedure described in Section II-C is applied for
unannounced meal detection to each virtual subject. The
MVP model is identified through a non-linear least-square
method. Then, EIF with a certain extension level is trained
on the 5-day scenario training set. The parameters of EIF are
set empirically to ¢ = 256 and M = 100. Various thresholds
are tried with 7; in [0.6,1.2] and 7, in [r;,1.2] with a
0.05 step. When 1; = nj, the decision is degraded to the
commonly used single threshold case. Testing is conducted
on the two scenarios with 50% and 0% declared meal. The
initial state of the MVP model is estimated using the initial
5-hour data. The detection is then processed “real-time” like,

2Diabeloop WP7 study [15] is a 12-weeks nationwide (France) random-
ized crossover trial study concerning 63 T1D patients.
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Fig. 5: An example of detection result. Risks are shown
on glycemia (bottom), with corresponding meal [g] and
insulin (5 x original value) [U/min] information, AS and AS
thresholds (top).

sample by sample, calculating the AS value through trained
EIF, measuring the risk and taking a subsequent decision, as
illustrated in Fig. 3.

ROC surfaces of the detection performance for different
choices of 7 are illustrated in Fig. 4. From it we can conclude
that under the proposed detection framework, EIF with the
highest extension level outperforms the other extension levels
as expected. The thresholds chosen by f; score [16] in the
test of 50% and 0% meal declaration are close to each other
and both with n; < 7. This shows the interest of the two
threshold decision.

To further assess the detection performance, we detail
the fully extended IF case (extension level 2) with n =
[0.950, 1.000]. Table I reports the performance matrix, which
shows for both 50% and 0% meal declaration cases, that
EIF reaches a high true positive detection rate around 90%.
The false alarm rate of the all unannounced meal case is
11.47% while it is 6.2% for the 50% declaration case. This
is probably due to the continuous abnormal behavior af-
fected by dense unannounced meals. Around 39% announced
meals are detected as unannounced, which may mean that,
measured by the trained EIF, the delivered insulin regulated
by APCS is not adequate to compensate the effect of the
announced meal. Indeed, the proposed method is tested

TABLE I: Performance (detection rate average (sd)) for the
fully extended IF with n = [0.95,1.00].

Event Unannounced meal | Announced meal No event
50% declared 90.8% (8.0%) 38.9% (17.5%) 6.2% (4.1%)
0% declared 90.0% (2.1%) - 11.47% (6.8%)

TABLE II: Detection delay (average (sd) min)

Unannounced meal

Delay 50% declared | 0% declared | Announced meal
Detection 390 (22.8) | 35.1(16) 311 (16.6)
Tisk notification || 302 (22.3) | 263 (15) 224 (15.4)
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under a harder condition than the pure open-loop case, since
less evidence is observed thanks to the compensation from
APCS. The standard deviations shown in brackets confirm
an acceptable performance variance in between subjects.

Table II reports the delays of detection which are within
40 min on average, and risk notification are within 31 min
for all cases. It happens for the virtual patients that some
unannounced meals raise risks that maintain longer than their
irregular detection windows, and are detected as an alarm
of the following announced meal. This phenomena leads to
a shorter detection delay concerning announced meals as
observed in Table II.

The detection result from a virtual patient with 50%
declared meals is illustrated on its glycemia record in the
bottom figure of Fig. 5. The corresponding meal and insulin
intake, estimated AS values and risk thresholds are depicted
in the figure above. The good performance of the proposed
detection method can be visualized. Running on a 3.6 GHz
CPU, the MVP identification and EIF training take 197 s,
then the risk evaluation of each sample takes only 0.005 s.

IV. CONCLUSIONS & PERSPECTIVES

An Extended Isolation Forest (EIF) based method is
proposed to detect unannounced meals for artificial pancreas.
The method captures differences in individual profiles, with
real-time applicability. The detection performance is illus-
trated on virtual patients data simulated from SIM-HOV. It
shows the superiority of using EIF over the standard Isolation
Forest (IF) and the interest brought by the introduced two
threshold decision rule.

Future work includes: 1) MVP update for adapting the
physiological dynamics of a subject; 2) safe thresholds
decision strategy for real patients individually; 3) meal size
estimation and compensation bolus calculation for fully
closed-loop AP, possibly using the estimated AS from EIF.

V. APPENDIX

A. Modified Medtronic Virtual Patient Model

The modified MVP model [3], [4] with a complexity trades
off between minimal models and maximal ones is defined by:

CHO { Di(t) = AgUn(t) — Di(t)/Tp
absorption | Ds(t) = Dy(t)/7p — D2(t)/mD
insulin Sl Et; =U; (t)/— S1 (t)/TS/
Soroti Sa(t) = 81(t)/1s — Sa2(t)/7s
AbSOIPLON | ) Sy (1)/(Virs) — kelp(t)

Tepp(t) = —paless(t) + p2Sily(t)
Gp(t) = = [p1 + Less ()] Gp(t) + p1Gy + Da(t)/(VaTp)

The model considers 2 inputs, CHO intake U,,(t)
[mmol/min], insulin delivery U;(¢) [mU/min], and 7 states,
amount of glucose in remote compartments D1 (t), Da(t)
[mmol], amount of insulin in remote compartments
Si(t), S2(t) [mU], plasma insulin concentration I,(t)
[mU/L], insulin effect I.¢s(¢) [1/min] and plasma glucose
Gp(t) [mmol/L]. The 10 parameters are: CHO utilization
Ag, CHO and insulin absorption delay 7, 7g [min], insulin

elimination rate k. [1/min], insulin and glucose distribution
volume V7, Vg [L], insulin sensitivity S; [L/mU/min],
glucose effectiveness at zero insulin p; [1/min], rate of
disappearance of insulin effect ps [1/min], and basal glucose
Gy [mmol/L].

Based on the MVP model, COB(t) = D1 (t) + Dy(t) and
IOB(t) = S1(t) + Sa(t) for features in (2).

The estimated parameters of the subject in Fig. 5 are:
Ag = 0.86, 7p = 51.7 min, 7¢ = 97.6 min, k., = 0.09 /min,
Vi =123L, Vg =6.5L, St = 3.96 x 10~* L/mU/min,
p1 = 0.026 /min, ps = 0.01 /min, G = 8.62 mmol/L.
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