Unannounced Meal Detection for Artificial Pancreas Systems Using Extended Isolation Forest
Fei Zheng, Stéphane Bonnet, Emma Villeneuve, Maeva Doron, Aurore Lepecq, Florence Forbes

▶ To cite this version:
Fei Zheng, Stéphane Bonnet, Emma Villeneuve, Maeva Doron, Aurore Lepecq, et al.. Unannounced Meal Detection for Artificial Pancreas Systems Using Extended Isolation Forest. 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jul 2020, Montreal, Canada. 10.1109/EMBC44109.2020.9176856 . hal-03874078

HAL Id: hal-03874078
https://hal.science/hal-03874078
Submitted on 27 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Unannounced Meal Detection for Artificial Pancreas Systems Using Extended Isolation Forest

Fei Zheng1,2, Stéphane Bonnet2, Emma Villeneuve2, Maeva Doron2, Aurore Lepecq2 and Florence Forbes1

Abstract—This study aims at developing an unannounced meal detection method for artificial pancreas, based on a recent extension of Isolation Forest. The proposed method makes use of features accounting for individual Continuous Glucose Monitoring (CGM) profiles and benefits from a two-threshold decision rule detection. The advantage of using Extended Isolation Forest (EIF) instead of the standard one is supported by experiments on data from virtual diabetic patients, showing good detection accuracy with acceptable detection delays.

I. INTRODUCTION

Currently, the most used Artificial Pancreas (AP) system implements an hybrid closed-loop requiring patients with Type 1 Diabetes (T1D) to declare both the time and the amount of their carbohydrates (CHO) intakes. Consequently, such systems are prone to CHO underestimations due to missing declarations and may lead to inadequate insulin dosing, and expose the subjects to hyperglycemia risk [1]. Unannounced meal detection and quantification is thus an essential task to reduce such risk as well as to achieve an accurate fully automated closed-loop AP system.

Studies have been devoted to unannounced meal detection with a majority of them implementing physical model-based detection methods. The minimal model [2] or Medtronic Virtual Patient (MVP) model [3], [4] are modified for the application of different prediction algorithms, for example Unscented Kalman Filter [5], [6], Moving Horizon Estimation [7] or Sliding Mode Observer [8] to estimate the states (specifically glycemia and meal appearance rate). Some linear state-space models are adjusted also for describing the pharmacodynamic response of insulin and glucose appearance, so that Kalman Filter [9] or Variable State Dimension [10] can be applied for the states estimation. Then, detections are made by comparing the residuals between the estimated and observed states to a threshold [8], by calculating their cross-covariance [6], or by applying further decisions rules, for example hypothesis testing [9] or statistical analysis [7].

Besides the model-based detection approaches, data-driven methods have the advantage that their performance is much less dependent on the identification accuracy of the applied physical model. Three data-driven methods are studied in [11] for insulin pump fault detection, showing that Isolation Forest (IF) [12] outperforms the other two density-based outlier detection methods. Inspired by [11], our work adapts the application of IF to unannounced meal detection. We propose suitable features for individual Continuous Glucose Monitoring (CGM) profiles, and a two-threshold-based rule for risk evaluation and detection. More importantly, the replacement of the standard IF by its recent generalization named Extended Isolation Forest (EIF) [13] is explored and shows promising performance on a virtual data set for this specific unannounced meal detection task.

The remaining of the paper is organized as follows: Section II presents the proposed EIF based detection method, Section III shows the superiority of EIF compared to standard IF and evaluates the performance of the method on a virtual data set; finally, Section IV concludes the work and draws some perspectives.

II. METHODS

A. Isolation Forest & Extended Isolation Forest

Isolation forest (IF) is an approach to detect anomalies that explicitly isolates anomalies rather than profiles normal instances [12]. Let $\mathbf{X} = \{x_1, \ldots, x_N\}$ denote the training set, where $x_n \in \mathbb{R}^d$. $\mathbf{X}_\psi[m]$ denotes a randomly sampled subset of size ψ from \mathbf{X} with $m \in \{1, \ldots, M\}$ represents the subset size. An isolation tree (iTree) recursively divides $\mathbf{X}_\psi[m]$ by randomly selecting at each node an attribute among d features and a split value. The process is stopped for a node when it contains only one instance or when the instances are with the same value.

We denote by $h(x)$ the so-called “path length” of x which is the number of edges that x traverses from the root node to the external node of an iTree. In practice, the path length is limited to the depth $l = \lceil \log_2 \psi \rceil$. Then, the Anomaly Score (AS) is defined by:

$$s(x) = 2^{-\frac{E[h(x)]}{c(N)}},$$ \hspace{1cm} (1)$$

$c(N)$ is the theoretical average path length which is only related to the training set size N [12]. $E[h(x)]$ represents the expectation of path length of instance x, which can be approached by averaging over M iTrees. The AS takes its value in $(0, 1]$. A score close to one indicates that the corresponding instance x is easy to isolate and could then be considered as an outlier.

As a variant of IF, Extended Isolation Forest (EIF) creates nodes by randomly selecting an hyper-plane in the feature space. It can thus provide relatively more consistent anomaly scores, as well as more accurate detection of the feature structure [13]. When applying EIF, different extension levels can be chosen related to the number of feature axes that hyper-planes intersect, ranging from 1 (intersect 1 feature,
leads to the standard IF) to \(d \) (intersect \(d \) features, fully extended).

B. Features for Unannounced Meal Detection

Considering the unannounced meal detection problem, inspired by [11], \(d = 3 \) features are chosen such that \(x = [G_p(t), DCOB(t), DIOB(t)] \). \(G_p(t) \) represents plasma glucose which is approximated by CGM measurement, while DCOB, DIOB are defined as follows:

\[
DCOB(t) = \frac{\alpha \exp \left(\gamma \dot{G}_p(t) \right)}{\omega \text{COB}(t) + 1}, \quad DIOB(t) = \frac{\beta \exp \left(\gamma \dot{G}_p(t) \right)}{\nu \text{IOB}(t) + 1}.
\]

\(\dot{G}_p(t) \) represents the time derivative of \(G_p(t) \) [mmol/L], COB \((t) \) [mmol] and IOB \((t) \) [mU] are CHO on board and insulin on board respectively. COB and IOB are calculated using declared CHO (if any) and injected insulin through a modified MVP model (see Section V for details) identified on a training set. Doing so, the MVP model parameters as well as the features can adapt to specific profile. The description of the virtual patient simulator is in Section III. The hyper parameters are manually tuned and set as: \(\alpha = \beta = 15 \), \(\gamma = 5 \), \(\omega = 8 \times 10^{-4} \) and \(\nu = 10^{-4} \).

An example of features from a virtual patient is illustrated in Fig. 1. It is worth noticing that the computation of \(\dot{G}_p(t) \) requires the knowledge of \(G_p(t+1) \), if 2nd order accurate central difference is applied as in this work, which leads to a minimum detection delay of one sample interval, \(= 5 \) min.

C. Risk Levels & Detection Decision

Outlier detection is usually performed using a single threshold. We propose a more reliable decision rule using two thresholds related to two unannounced meal risk levels, low and high, respectively. They are defined as:

\[
\text{thr}(\eta) = \begin{cases} F^{-1}(\eta) & 0 \leq \eta \leq 1 \\ 1 - (2 - \eta) \left(1 - F^{-1}(1)\right) & 1 < \eta \leq 2 \end{cases},
\]

where \(F^{-1} (\cdot) \) represents the empirical quantile function of AS values from a training set (with all meals announced), \(\eta \in [0, 2] \) is the parameter of the threshold. When \(\eta \leq 1 \), \(\text{thr}(\eta) \) is the empirical quantile of order \(\eta \) of the training set AS values. While the threshold is linear with respect to \(\eta \) when \(\eta > 1 \), As seen on Fig. 2. We then define the low risk and high risk thresholds using parameters \(\eta = \{\eta_l, \eta_h\} \). An alarm of unannounced meal is then raised when either: 1) one high risk appears (\(AS > \text{thr}(\eta_h) \)); 2) or three successive low risks are observed (\(AS > \text{thr}(\eta_l) \)). See Fig. 3 for an illustration. To summarize, the meal detection process for individual subject consists of a training and testing step as follows:

- Training: 1) a MVP model is first identified using a training dataset. 2) EIF is trained on the training feature set and AS thresholds are defined.
- Testing: 1) The MVP initial state of the tested scenario is estimated; 2) for each coming sample, its AS is computed and the announced meal risk is evaluated with the following appropriate detection decision.

For evaluation, the regular detection window is set to 3h (maximum detection delay) except when two meals are less than 3h apart (see irregular window in Fig. 3).

III. EXPERIMENTAL RESULTS

A. Virtual Patient Data Set

The proposed method is tested on four virtual patients simulated from SIM-HOV\(^1\) based on Hovorka model [14]. The data includes CGM measures, insulin doses and announced meals with a sample rate of 5 min. In addition, SIM-HOV

\(^1\)SIM-HOV is a Python simulator developed by Diabeloop S.A.
Fig. 4: ROC surfaces for different IF extension levels with respect to different thresholds (annotation shows the value of η which gives the best f_1 score).

![ROC surfaces](image1)

(a) 50% declared.
(b) 0% declared.

Fig. 5: An example of detection result. Risks are shown on glycemia (bottom), with corresponding meal [g] and insulin (5x original value) [U/min] information, AS and AS thresholds (top).

![Detection result](image2)

B. Performance

The procedure described in Section II-C is applied for unannounced meal detection to each virtual subject. The MVP model is identified through a non-linear least-square method. Then, EIF with a certain extension level is trained on the 5-day scenario training set. The parameters of EIF are set empirically to $\psi = 256$ and $M = 100$. Various thresholds are tried with η_l in [0.6, 1.2] and η_h in [1.2, 1.4] with a 0.05 step. When $\eta_l = \eta_h$, the decision is degraded to the commonly used single threshold case. Testing is conducted on the two scenarios with 50% and 0% declared meal. The initial state of the MVP model is estimated using the initial day scenario has 0% meal declared to mimic a fully automatic meal detection case.

<table>
<thead>
<tr>
<th>Event</th>
<th>Unannounced meal</th>
<th>Announced meal</th>
<th>No event</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% declared</td>
<td>90.8% (8.9%)</td>
<td>38.9% (17.5%)</td>
<td>6.2% (4.1%)</td>
</tr>
<tr>
<td>0% declared</td>
<td>90.0% (2.1%)</td>
<td>-</td>
<td>11.47% (6.8%)</td>
</tr>
</tbody>
</table>

TABLE I: Performance (detection rate average (sd)) for the fully extended IF with $\eta = [0.95, 1.00]$.

![Detection delay](image3)

![Detection delay table](image4)

TABLE II: Detection delay (average (sd) min)

- Diabeloop WP7 study [15] is a 12-weeks nationwide (France) randomized crossover trial study concerning 63 T1D patients.

- considers that the data is contaminated by a Gaussian noise with a standard deviation (sd) of $0.012 \times G_p(0)$ mmol/L, where $G_p(0)$ is the initial glycemia value. The patients have various physiologies, such as different insulin sensitivity and digestion speed. Simulated scenarios correspond to an average of 3.4 meals per day, with time and size of the meals randomly sampled from the Diabeloop WP7 data set\(^2\) (median meal size: 40g CHO and interquartile 35g).

Thus the virtual patients have similar eating behaviour to the real patients. Their glycemia was continuously regulated in closed-loop by an AP Controller for Simulation (APCS) designed by Algorithms Teams from Diabeloop S.A and CEA. APCS adjusts in real-time the insulin bolus and basal infusions according to a certain strategy in order to maintain glycemia in a healthy range. As we can see in Fig. 1, some compensation insulin doses are delivered after meals. However, APCS does not realize any meal detection.

In the experiment, for each virtual patient, a 5-day scenario (with all meals announced) of data is simulated for training, and two scenarios of 20 days are available for testing. One scenario includes 50% of declared meals, to mimic the case where meals are irregularly announced by patients. Another scenario has 0% meal declared to mimic a fully automatic meal detection case.

2Diabeloop WP7 study [15] is a 12-weeks nationwide (France) randomized crossover trial study concerning 63 T1D patients.
under a harder condition than the pure open-loop case, since less evidence is observed thanks to the compensation ... the F-measure for evaluating record linkage algorithms,” Statistics and Computing, vol. 28, no. 3, pp. 539–547, 2018.

The detection result from a virtual patient with 50% declared meals is illustrated on its glycemia record in the bottom figure of Fig. 5. The corresponding meal and insulin intake, estimated AS values and risk thresholds are depicted in the figure above. The good performance of the proposed detection method can be visualized. Running on a 3.6 GHz CPU, the MVP identification and EIF training take 197 s, then the risk evaluation of each sample takes only 0.005 s.

IV. CONCLUSIONS & PERSPECTIVES

An Extended Isolation Forest (EIF) based method is proposed to detect unannounced meals for artificial pancreas. The method captures differences in individual profiles, with real-time applicability. The detection performance is illustrated on virtual patients data simulated from SIM-HOV. It shows the superiority of using EIF over the standard Isolation Forest (IF) and the interest brought by the introduced two threshold decision rule.

Future work includes: 1) MVP update for adapting the physiological dynamics of a subject; 2) safe thresholds decision strategy for real patients individually; 3) meal size estimation and compensation bolus calculation for fully closed-loop AP, possibly using the estimated AS from EIF.

V. APPENDIX

A. Modified Medtronic Virtual Patient Model

The modified MVP model [3], [4] with a complexity trades off between minimal models and maximal ones is defined by:

\[
\begin{align*}
\text{CHO} & : \begin{cases}
D_1(t) = A_G U_m(t) - D_1(t)/\tau_D \\
D_2(t) = D_1(t)/\tau_D - D_2(t)/\tau_D
\end{cases} \\
\text{insulin} & : \begin{cases}
S_1(t) = U_i(t) - S_1(t)/\tau_S \\
S_2(t) = S_1(t)/\tau_S - S_2(t)/\tau_S
\end{cases} \\
\text{absorption} & : \begin{cases}
I_p(t) = S_2(t)/(V_{\tau_S}) - k_e I_p(t)
\end{cases} \\
\dot{e}_{eff}(t) & = -p_2 e_{eff}(t) + p_2 S_1 I_p(t) \\
\dot{G}_p(t) & = -[p_1 + I_{eff}(t)] G_p(t) + p_1 G_b + D_2(t)/(V_{\tau_D})
\end{align*}
\]

The model considers 2 inputs, CHO intake \(U_m(t) \) [mmol/min], insulin delivery \(U_i(t) \) [mU/min], and 7 states, amount of glucose in remote compartments \(D_1(t), D_2(t) \) [mmol], amount of insulin in remote compartments \(S_1(t), S_2(t) \) [mU], plasma glucose concentration \(I_p(t) \) [mU/L], insulin effect \(e_{eff}(t) \) [1/min] and plasma glucose \(G_p(t) \) [mmol/L]. The 10 parameters are: CHO utilization \(A_G \), CHO and insulin absorption delay \(\tau_D, \tau_S \) [min], insulin elimination rate \(k_e \) [1/min], insulin and glucose distribution volume \(V_I, V_G \) [L], insulin sensitivity \(S_I \) [L/mU/min], glucose effectiveness at zero insulin \(p_1 \) [1/min], rate of disappearance of insulin effect \(p_2 \) [1/min], and basal glucose \(G_b \) [mmol/L].

Based on the MVP model, \(COB(t) = D_1(t) + D_2(t) \) and \(IOB(t) = S_1(t) + S_2(t) \) for features in (2).

The estimated parameters of the subject in Fig. 5 are: \(A_G = 0.86, \tau_D = 51.7 \text{ min}, \tau_S = 97.6 \text{ min}, k_e = 0.09 \text{ /min}, V_I = 12.3 \text{ L}, V_G = 6.5 \text{ L}, S_I = 3.96 \times 10^{-4} \text{ L/mU/min}, p_1 = 0.026 \text{ /min}, p_2 = 0.01 \text{ /min}, G_b = 8.62 \text{ mmol/L}.

ACKNOWLEDGMENT

The authors would like to thank Diabeloop S.A for providing the virtual patient data set.

REFERENCES

