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THE DYNAMICS OF RIEMANNIAN ROBBINS-MONRO ALGORITHMS

MOHAMMAD REZA KARIMI⋆,∗, YA-PING HSIEH⋆,∗,
PANAYOTIS MERTIKOPOULOS§, AND ANDREAS KRAUSE∗

Abstract. Many important learning algorithms, such as stochastic gradient methods,
are often deployed to solve nonlinear problems on Riemannian manifolds. Motivated
by these applications, we propose a family of Riemannian algorithms generalizing and
extending the seminal stochastic approximation framework of Robbins and Monro [60].
Compared to their Euclidean counterparts, Riemannian iterative algorithms are much
less understood due to the lack of a global linear structure on the manifold. We overcome
this difficulty by introducing an extended Fermi coordinate frame which allows us to
map the asymptotic behavior of the proposed Riemannian Robbins–Monro (RRM) class
of algorithms to that of an associated deterministic dynamical system under very mild
assumptions on the underlying manifold. In so doing, we provide a general template of
almost sure convergence results that mirrors and extends the existing theory for Euclidean
Robbins-Monro schemes, albeit with a significantly more involved analysis that requires a
number of new geometric ingredients. We showcase the flexibility of the proposed RRM
framework by using it to establish the convergence of a retraction-based analogue of
the popular optimistic / extra-gradient methods for solving minimization problems and
games, and we provide a unified treatment for their convergence.

1. Introduction

Background and motivation. Consider a nonlinear system of equations of the general form

Find z∗ ∈ M such that V (z∗) = 0 (NLS)

where M is a smooth manifold and V is a vector field on M. Root-finding problems of this
type play a critical role in many areas of mathematical programming and learning theory,
from Riemannian optimization and game theory to reinforcement learning and optimal
control – e.g., when designing the optimal path of a robotic arm or employing natural
gradient methods [30] over smooth statistical manifolds.

In this paper, we are interested in the case where V is stochastic, i.e., V (z) = E[V(z;ω)]
for some random variable ω with unknown distribution. In this case, when M = Rd, the
method of choice for solving (NLS) is the Robbins–Monro (RM) algorithm

Zn+1 = Zn + γnV(Zn;ωn) (RM)

where γn > 0 is a variable step-size sequence and ωn is an i.i.d. sequence of samples
(equivalently, this could be thought of as accessing V via a stochastic black-box oracle). This
method was introduced in the seminal papers of Robbins and Monro [60] and Kiefer and
Wolfowitz [32], and the first general convergence results were obtained by Ljung [45, 46]
for gradient problems, i.e., V = −∇f for some potential function f on M. This led to
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substantial activity on the topic, with major contributions by Kushner and co-authors
[5, 7, 9, 36, 37, 39], and many others. However, the linear structure of Rd is deeply ingrained
in all these works – as well as the method’s very definition – preventing its use to solve
many important stochastic approximation (SA) problems on manifolds: the d-dimensional
torus for a robotic arm with d joints, the Grassman or Stiefel manifolds for robust principal
component analysis, the hyperbolic spaces for text and graph embedding, etc.

Our contributions in the context of related work. Our paper seeks to lift this limitation
by replacing the “+” operation in (RM) with the Riemannian exponential map expZn

(·) on
M – or, more generally (and often more tractably), a retraction on M based at Zn. In
Riemannian optimization, this approach was pioneered by Bonnabel [10] who examined the
case where V is the Riemannian gradient of some objective function f . Subsequent works
[13, 16, 42, 67, 69, 73] expanded on the results of [10] for Riemannian stochastic gradient
descent, while similar results were obtained in [8, 22, 27, 43] for Riemannian proximal point
methods.

All these works focus exclusively on the case where V is a gradient field, so they do not
apply to general, non-gradient instances of (NLS) which are crucial for min-max problems,
games and multi-agent learning problems. A partial extension to the non-gradient case was
provided by a line of works [15, 21, 23, 31, 53, 66], which examined the use of Riemannian
extra-gradient methods under the assumption of (geodesic) monotonicity. This is a strong,
convexity-type assumption which posits that V globally points towards its (necessarily
connected) root system in a suitable, geodesic sense; convergence is then obtained following
a similar line of reasoning as in the case of monotone operator theory in Euclidean spaces
[4, 20].

Our paper does not make any such assumptions and directly examines the dynamics of
Riemannian Robbins–Monro methods for general vector fields V , gradient and non-gradient,
monotone and non-monotone alike. In this regard, our main contributions can be summarized
as follows:

(1) We introduce a generalized Riemannian Robbins–Monro template which includes as
special cases all methods mentioned above (Riemmanian stochastic gradient descent,
extra-gradient, proximal point methods, etc.), as well as a number of new SA schemes
for (NLS).

(2) We show that, under mild technical conditions on M, the sequence of generated
points forms an “approximate solution” – an asymptotic pseudotrajectory (APT)
to be exact – of an associated deterministic dynamical system (Theorem 1), and
converges with probability 1 to the so-called internally chain-transitive (ICT) sets
thereof (Theorem 2).

In gradient and strictly monotone problems, these ICT sets are precisely the roots of V [63],
so we immediately recover many of the asymptotic convergence results mentioned above
(often under much weaker assumptions). In addition, our framework applies to several
interesting settings beyond gradient or monotone systems – such as ordinal potential games,
supermodular games, and cooperative dynamics – and covers a significantly wider class of
SA schemes.

Tools and techniques. In the absence of a linear structure on M, the major challenge we
have to overcome is the lack of a suitable coordinate frame with which to analyze the
trajectories of Riemannian SA algorithms. This reflects the dichotomy that, unlike the
case of Rd, points and vectors on manifolds obey fundamentally different rules and have
to be compared using different moving frames. To circumvent this obstacle, we introduce
an extended Fermi coordinate frame inspired by Manasse and Misner [48], and we use it to
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prove that Riemannian SA schemes enjoy similar error bounds as in Euclidean spaces, up
to some high-order terms that vanish in the long run. The aggregation and propagation
of these errors can then be controlled using arguments from martingale limit theory which
ultimately yield the convergence properties mentioned above.

A concurrent approach to establish the APT property in Riemannian SA schemes is
due to Shah [61], who assumes the existence of a local diffeomorphism mapping geodesic
interpolations to linear interpolations in a Euclidean space. However, the existence of such a
diffeomorphism on every point of M implies that the manifold is globally flat, i.e., essentially
Euclidean [28]; this assumption is far too restrictive for bona fide Riemannian applications,
so the analysis of [61] is not relevant for our purposes. An additional issue is that the error
bounds employed by Shah [61, p. 1131] rule out vector fields with a rotational component –
such as V (x, y) = (−y, x) on R2 – further limiting the applicability of their techniques to
our setting.

Finally, the recent papers by Durmus et al. [18, 19] also consider a generic version of
Robbins–Monro schemes, with both vanishing and constant step-sizes. The analysis of the
latter type of schemes cannot lead to convergence with probability 1, so the results of [19]
are necessarily ergodic in nature and hence out of our paper’s scope. The setting of [18] is
closer in spirit to our own, and it also accounts for the effects of bias in the queries to V ;
however, the results obtained therein concern dynamics that admit a Lyapunov function –
the so-called “gradient-like” case [5] – so there is no overlap with our analysis.

2. Notation and preliminaries

Throughout our paper, M will denote a d-dimensional, geodesically complete, smooth
manifold equipped with a Riemannian metric ⟨·, ·⟩z with its induced norm ∥·∥z; we refer the
reader to [40] for standard definitions and notations (such as tangent spaces TzM). The
Riemannian gradient will be simply denoted by ∇, and the Euclidean 2-norm is denoted by
∥·∥2.

For any curve γ, the notation γ̇ will always denote the derivative with respect to time.
Given any points z, z′ ∈ M and a vector v ∈ TzM, we denote by Γz→z′ (v) ∈ Tz′M the
vector obtained by parallel transporting v along the minimizing geodesic connecting z and
z′; if the minimizing geodesics are not unique, then Γz→z′ (v) is understood as the parallel
transport along any of them.

We also say that a vector field V on M is (geodesically) L-Lipschitz if, for all z, z′ ∈ M,

∥Γz→z′ (V (z))− V (z′)∥z′ = ∥V (z)− Γz′→z (V (z′))∥z ≤ Ldist(z, z′),

where dist denotes the Riemannian distance induced by ⟨·, ·⟩z. All vector fields in this paper
are assumed to be L-Lipschitz and bounded, i.e., G := supz∈M∥V (z)∥z < ∞.

3. Riemannian Robbins–Monro schemes: Definition, dynamics, and convergence

We begin our analysis by introducing the core algorithmic template of Riemannian
Robbins–Monro schemes. The material related to asymptotic pseudotrajectories is introduced
in Section 3.2; Section 3.3 states all the assumptions and discusses their generality, and our
main results are presented in Sections 3.4–3.5.

3.1. The Riemannian Robbins–Monro template. As we stated before, the main idea behind
the Riemannian Robbins–Monro (RRM) template is to replace addition along “straight lines”
in Euclidean SA schemes with the Riemannian exponential mapping. This leads to the
recursive update

Zn+1 = expZn
(γn(V (Zn) +Wn)) (RRM)

where
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(1) Zn ∈ M denotes the state of the algorithm at each iteration counter n = 1, 2, . . .

(2) Wn ∈ TZnM is an abstract error term (described in detail below).
(3) γn > 0 is the method’s step-size.

In the above, the error term Wn is generated after Zn so Wn is not adapted to the natural
filtration Fn := σ(Z1, . . . , Zn) of Zn (i.e., Wn is random relative to Fn). We will also write

V̂n = V (Zn) +Wn (1)

so V̂n can be seen as a noisy estimator of V (Zn). To differentiate between “random” (zero-
mean) and “systematic” (non-zero-mean) errors, it will be convenient to further decompose
Wn as

Wn = Un + bn (2)

where bn = E[Wn | Fn] represents the systematic component and Un = Wn − bn captures the
random, zero-mean part. To quantify all this, we will consider the following descriptors for
Wn:

a) Bias: Bn = E[∥bn∥Zn | Fn] (3a)

b) Variance: σ2
n = E[∥Un∥2Zn

|Fn] (3b)

Below, when Bn = σn = 0, we refer to the model as deterministic.

3.2. Mean dynamics and asymptotic pseudotrajectories. In analogy to the ODE method
of stochastic approximation for ordinary, Euclidean Robbins–Monro schemes [5, 9], we will
view (RRM) as a noisy Euler discretization of the Riemannian mean dynamics

θ̇(t) = V (θ(t)). (RMD)

To make this analogy precise, we will require a measure of “closeness” between the iterates of
(RRM) and the integral curves of (RMD). To this end, let τn =

∑n−1
k=1 γk denote the “effective

time” that has elapsed till the n-th iteration of (RRM), and define the (continuous-time)
geodesic interpolation Z(t) of Zn as

Z(t) = expZn

(
t− τn

τn+1 − τn
(γn[V (Zn) +Wn])

)
(Int)

for all t ∈ [τn, τn+1], n ≥ 1 (so Z(τn) = Zn for all n). To compare Z(t) to the solution orbits
of (RMD), we will further consider the flow Θ: R+ ×M → M of (RMD), where Θh(z) is
simply the orbit of (RMD) at time h ∈ R+ with initial condition z(0) = z ∈ M. We then
have the following notion of “asymptotic closeness” due to Benaïm and Hirsch [7]:

Definition 1 (Asymptotic pseudotrajectories). We say that Z(t) is ((a.s.)) an asymptotic
pseudotrajectory (APT) of (RMD) if, for all T > 0, we have

lim
t→∞

sup
0≤h≤T

dist(Z(t+ h),Θh(Z(t))) = 0 almost surely. (4)

Intuitively, (4) states that, as t → ∞, one cannot distinguish between the interpolation
Z(t+ h) and the Riemannian mean dynamics with initial condition Z(t). The rigorous con-
nection between (RMD) and (RRM) provided by this notion will become clear in Section 3.4.

3.3. Technical assumptions and requirements. We now introduce the basic assumptions of
our model and discuss their generality.
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Step-size, noise and bias assumptions. Following the literature on stochastic approximation
[5, 36], we will make the following standard assumptions for the step-size of (RRM):

Assumption 1. The step-size sequence γn, n = 1, 2, . . . of (RRM) satisfies the Robbins–Monro
summability conditions

∑
n γn = ∞ and

∑
n γ

2
n < ∞.

Our second assumption concerns the error terms that appear in (RRM):

Assumption 2. The bounds on the noise and bias in (3a)-(3b) satisfy

Bn → 0 and supn σ
2
n < ∞ ((a.s.) ) (5)

Of the above, Assumption 1 is explicit and is controlled by the algorithm designer.
By contrast, Assumption 2 depends on the primitives of the problem (the law providing
measurements of V , the specific setup of (RRM), etc.), so it is more delicate; we discuss it in
detail in Section 4, where we show that it is satisfied for a range of important instantiations
of (RRM).
Boundedness and stability assumptions. To exclude problems where the iterates of stochastic
approximation (SA) methods may escape to infinity, a standard practice in the literature
is to make this into an explicit assumption. In our manifold setting, this can be stated as
follows:

Assumption 3. For some (and hence, all) p ∈ M, the sequence Zn generated by (RRM)
satisfies

supn dist(p, Zn) < ∞ with probability 1. (6)

Instead of simply imposing Assumption 3 as is commonly done in the literature [5, 11, 39],
we propose below a weaker condition that ensures (6), and which is general enough to cover
most of the envisioned applications. To state it, we observe first that M typically falls under
one of the following two categories:

(1) The manifold M is compact: This is the case for problems with simple manifold
constraints such as spheres, balls, simplices, hypercubes, etc. Another important
example is the Grassmannian manifold endowed with certain natural metrics; see
[71, 72].

(2) The sectional curvatures of M are non-positive: The most important such instances
are matrix manifolds [44, 62] and hyperbolic spaces [54]; additional examples can be
found in [14].

In the first case, Assumption 3 is trivially satisfied. For the second case, we propose the
following explicit structural replacement:

Assumption 3′. The sectional curvatures of M are non-positive and uniformly bounded from
below by −Kmin > −∞, and the vector field V is weakly asymptotically coercive, i.e.,〈

V (z),∇ dist2(p, z)
〉
≤ 0 (WAC)

for some (and hence all) p ∈ M and for all z with sufficiently large dist(p, z). In addition,
we assume that the noise and bias bounds in (3a)-(3b) satisfy∑∞

n=1 E[γnBn] < ∞ and
∑∞

n=1 E
[
γ2
n

(
B2

n + σ2
n

)]
< ∞. (7)

Remark 1. We shall see later in the proof of Proposition 2 that, for most algorithms, (7)
is weaker than (5) and hence can be discarded; for completeness, we also note that the
differentiability of the radial function r2(z) = dist2(p, z) follows from Cartan’s theorem [40].
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The inspiration for (WAC) comes from the Euclidean case where a standard criterion
to ensure stability is the coercivity requirement limz→∞⟨V (z), z⟩/∥z∥2 = −∞ [4, 20, 55].
This imposes a stringent growth condition on V which, mutatis mutandis, (WAC) relaxes
significantly: under (WAC), it suffices if V does not have a persistent “outward-pointing”
component.

In view of all this, our first result shows that, in simply connected manifolds, Assumption 3
can be replaced by Assumption 3′ (which, as we discussed, is much weaker in general):

Proposition 1. If M is simply connected, Assumption 3′ implies Assumption 3.

The most important step in the proof of Proposition 1 is to construct a suitable energy
function which remains bounded under (WAC). However, due to the nonlinear structure
of Riemannian manifolds, the resulting construction is fairly involved, so we defer it to
Appendix A.
Conjugacy assumptions. A key notion in the analysis to follow is the so-called Picard flow
λ : R+ → M associated with the interpolation Z(t), defined here as the solution of the
following system of ODEs:

λ̇(h) = ΓZ(t+h)→λ(h) (V (Z(t+ h))) (PFlow)

with initial condition λ(0) = Z(t). The term “Picard flow” stems from the fact that, in
Euclidean spaces, the integral

∫ h

0
V (Z(t+ s)) ds is the basic iteration in Picard’s method of

successive approximations for solving ODEs. In the case of (PFlow), the parallel transport
is the extra ingredient required to express the idea of “integrating V along Z(t)”, so (PFlow)
can be seen as a natural generalization of the Picard iteration to Riemannian manifolds.

Now, recall that two points z ∈ M and z′ := expz(v) are said to be conjugate along a
minimizing geodesic if expz(·) is minimizing but fails to be a locally diffeomorphism in a
neighborhood of v [40]. Define

Cλ(t, T ) := {h ∈ [0, T ] | Z(t+ h) is conjugate to λ(h)},
Cθ(t, T ) := {h ∈ [0, T ] | Z(t+ h) is conjugate to θ(h)},

and let C(t, T ) = Cλ(t, T )
⋃
Cθ(t, T ). We then make the following technical assumption:

Assumption 4. For all t and T , C(t, T ) is a nowhere dense subset of [0, T ] with probability 1.

At first sight, Assumption 4 may appear somewhat opaque but, in practice, it is very
mild and is satisfied by most applications. Indeed, since the set of points conjugate to
Z(t+h) is at most one-dimensional [70], the only way to violate Assumption 4 is if the curves
Z(t+ ·) and θ(·) (or λ(·)) simultaneously traverse the same one-dimensional submanifold,
which happens with probability 0 if the distribution of the noise Un is non-singular. It is
also worth noting that Assumption 4 is trivially true on negatively curved spaces by the
Cartan–Hadamard theorem [40] and, finally, it is straightforward to verify Assumption 4
manually on the manifolds that arise most often in practical applications (such as spheres,
balls, Grassmannians, or fixed-rank spectrahedra), cf. [40], [50] and references therein.

3.4. From discrete to continuous: RRM schemes and APTs. We are finally in a position to
state and discuss our main results concerning the convergence properties of (RRM). Our
first result describes the way in which (RRM) can be approximated by (RMD):

Theorem 1. Suppose that Assumptions 1–4 hold. Then, with probability 1, the geodesic
interpolation Z(t) of the sequence of iterates of (RRM) is an APT of (RMD).

The proof of Theorem 1 is fairly involved and the geometric scaffolding required is quite
delicate, so we first provide here a high-level outline. In brief, the main obstacle that we
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Figure 1: Illustration of an extended Fermi coordinate frame. The moving observer
Z(t + h) measures a curve λ(h) using time-indexed geodesics and an “inertial
frame system", i.e., frames obtained via parallel transport from Z(t). For each
h, λ̃(h) ∈ Rd is the normal coordinate of λ(h) ∈ M. The space-time map
Φ̃ : R+ ×M → R+ × Rd is locally defined on a neighborhood containing Z(t+ h)
and λ(h).

have to overcome in order to extend Euclidean APT theory to the manifold setting is the
following dichotomy:

• In view of definition (4), we need a coordinate system to compare the distance between
two points. This is typically done in normal coordinates [40]; on the other hand,
comparing vectors that belong to different tangent spaces in normal coordinates is a
formidable task.

• Since the flow Θt(z) is driven by a vector field, we will also need to compare vectors
living on different tangent spaces. To this end, the most convenient framework is the
parallel frame system, described in detail in Appendix B.1. Unfortunately, the parallel
frame system cannot coexist with a normal coordinate system unless M is flat, i.e., the
manifold’s Riemannian curvature tensor vanishes everywhere [28].

In words, the normal coordinate system is where distances behave as if the space were
Euclidean, and the parallel frame system is where vectors behave as in the Euclidean case;
unfortunately, the only setting where these two descriptions come together is in flat manifolds,
which are “almost” Euclidean to begin with. To circumvent this hurdle, we take the following
technical path:

(1) Based on the idea of Fermi coordinates [48], which can be intuitively understood as
“normal coordinates along a curve” (see Fig. 1), we begin by constructing an extended
Fermi coordinate frame that allows us to focus on a neighborhood of Z(t) containing
all the information we need. [This is a challenging but otherwise purely technical step
and can be safely omitted without losing the high-level picture.]

(2) Using the extended Fermi coordinates constructed above, we can reduce the task
of comparing the distance between two Riemannian curves to comparing several
Euclidean, albeit individually intractable, vector fields. This step will incur an error
term as compared to the Euclidean analysis; see (17) and (18).

(3) To obtain expressions of vector fields that are more amenable to computation, we
will switch from the extended Fermi coordinates to the parallel frame system and
bound the difference between the two. This step will pick up another error term as
compared to the Euclidean analysis, cf. Eqs. (27) and (28).
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(4) Serendipitously – and, perhaps, surprisingly – these additional error terms can be
managed without any further assumptions, and a more involved analysis in the spirit
of [5] concludes our proof.

Proof of Theorem 1. We will need the following ingredients:
• The concept of parallel frame system, reviewed in Appendix B.1.
• A key lemma by Fujita and Kotani [24] and Takahashi and Watanabe [65], which bounds

the distortion of velocities measured by a moving observer on a manifold relative to flat
spaces; see Lemma B.1.

• A comparison lemma between the differential of exponential map and parallel transport,
recited in Lemma B.2.

We now commence the proof. For ease of reading, we break down our proof into several
steps:
Step 1: Discrete-to-continuous transformations; noise stability. Recall the “effective time”
τn =

∑n−1
k=1 γk as the time that has elapsed at the n-th iteration of the discrete-time process

Zn; recall also the definition (Int) of the continuous-time interpolation Z(t) of Zn as

Z(t) = expZn

(
t− τn

τn+1 − τn
(γn[V (Zn) +Wn])

)
. (Int)

We will further require the “continuous-to-discrete” correspondence

m(t) = sup{n ≥ 1 : t ≥ τn} (8)

which measures the number of iterations required for the effective time τn of the process to
reach the timestamp t.

Given an arbitrary sequence An (which can be numbers or points/vectors, either Euclidean
or Riemannian), we will denote its piecewise-constant interpolation as

A(t) = An for all t ∈ [τn, τn+1), n ≥ 1. (9)

Using this notation, we can express (Int) in a differential form:1

Ż(t+ h) = ΓZ(t+h)→Z(t+h)

(
V
(
Z(t+ h)

)
+W (t+ h)

)
. (10)

Recall also the definition (RMD) and (PFlow):

θ̇(h) = V (θ(h)), (Flow)

λ̇(h) = ΓZ(t+h)→λ(h) (V (Z(t+ h))) , (PFlow)

both with initial condition Z(t). We also set

γ⋆(t) := sup
t≤h≤t+T

γ(h),

B
⋆
(t) := sup

t≤h≤t+T
B(h). (11)

We will also need a noise stability criterion. Let {ek(n)}dk=1 be an arbitrary sequence
of orthonormal basis for TZn

M, and let Un, be the (Eucldiean) noise vector composed of
components of the noise Un in the basis {ek(n)}dk=1:

Uk
n, := ⟨Un, ek(n)⟩Zn .

1In the literal sense; it has nothing to do with differential p-forms.
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Then it is easy to see that E[Un, |Fn] = 0, and

E
[
∥Un, ∥22|Fn

]
= E

[
∥Un∥2Zn

|Fn

]
≤ sup

n
σ2
n

< ∞

by Assumption 2. Therefore, {Un, }∞n=1 is a sequence of martingale Euclidean noise vectors
that is with zero mean and finite variance. The convergence of such noise sequences is a
well-studied subject in stochastic approximation: Define

∆(t;T ) := sup
0≤h≤T

∥∥∥∥∥
∫ t+h

t

U (u) du

∥∥∥∥∥
2

. (12)

It is classical (see e.g., [5]) that

For all T, lim
t→∞

∆(t;T ) = 0 (a.s.) (13)

Step 2: Everything is bounded. We first note that, by Proposition 1, supt r(Z(t)) < ∞
where r(·) is the radial function defined in Assumption 3′.

We claim that Proposition 1 also implies the boundedness of the Picard flow. To see this,
simply note that, since the parallel transport is an isometry,∥∥∥λ̇(h)∥∥∥

λ(h)
= ∥ΓZ(t+h)→λ(h) (V (Z(t+ h)))∥λ(h)
= ∥V (Z(t+ h))∥Z(t+h),

so that
sup

0≤h≤T
dist(λ(0), λ(h)) ≤ T · sup

0≤h≤T

∥∥∥λ̇(h)∥∥∥
λ(h)

< ∞,

which implies sup0≤h≤T r(λ(h)) < ∞. On the other hand, the boundedness for the flow
follows readily from the L-Lipschitzness of V and the 1-Lipschitzness of dist:2

d

dh
r(θ(h)) ≤

∥∥∥θ̇(h)∥∥∥
θ(h)

= ∥V (θ(h))∥θ(h)
≤ ∥V (θ(h))− Γp→θ(h) (V (p))∥θ(h) + ∥Γp→θ(h) (V (p))∥θ(h)
≤ Lr(θ(h)) + ∥V (p)∥p.

An application of the Gron̈wall’s inequality then concludes sup0≤h≤T r(θ(h)) < ∞. Therefore,
all computations in the sequel can be restricted to a compact set. We may thus further
assume that the sectional curvatures K are bounded. Since γn → 0, for t large enough we
may assume γ⋆(t) < 1.

To summarize, for some −∞ < Klow ≤ Kup < ∞, we have

γ⋆(t) < 1,

Klow ≤ K ≤ Kup. (14)

In addition, there exists an R = R(T, L,G) depending on T , L, and G such that

sup
0≤h≤T

{
dist(Z(t+ h), θ(h)),dist(Z(t+ h), λ(h))

}
≤ R < ∞. (15)

2Due to the smoothness of the flow, the function r(θ(h)) is always differentiable in h in the metric space
sense [3], even though θ(h) might reach the cut locus of p.
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Step 3: Constructing the extended Fermi coordinates. Let V be the neighborhood defined
in Appendix B.2 restricted to [t, t + T ] (i.e., V =

⋃T
h=0 Uh where Uh is defined in (B.4));

evidently, V contains {Z(t+ h) : h ∈ [0, T ]}. Recall the Fermi coordinate system Φ̃ in (B.5)
restricted to [t, t+ T ]. Recall also that Φ̃ carries a system of orthonormal frames {ek(h)}dk=1,
one for each Z(t+ h). Below, we will always work in these frames with no explicit mention.

Fix ȟ ∈ [0, T ]. Let γθ and γλ be two minimizing geodesics such that γθ(0) = γλ(0) =
Z(t + ȟ), γθ(1) = θ(ȟ) and γλ(1) = λ(ȟ). Our first goal is to extend V to an open set of
M that contains the geodesics γθ and γλ, while retaining the exponential mapping as local
diffeomorphisms. This will serve a dual purpose:

(1) It enables us, for a fixed ȟ, to consider the parallel frame systems at Z(t+ ȟ) and
θ(ȟ) (or Z(t+ ȟ) and λ(ȟ)), so that we can easily compare the vector fields at these
points; see Appendix B.1.

(2) We want to apply Lemma B.1 to the curves θ(·) and λ(·); in order to make sense of
˙̃
θ(ȟ) or ˙̃

λ(ȟ), V needs to contain both curves for at least an open time interval that
includes ȟ.

This is where Assumption 4 comes into play: Since the conjugate points are precisely where
the exponential map ceases to be local diffeomorphisms [40], it is reasonable to expect that,
away from the time points where Z(t+ h) is conjugate to θ(h) or λ(h), it is always possible
to extend V to include the geodesics connecting Z(t+ h) to θ(h) and λ(h). Assumption 4
then simply posits that there cannot be “too many” such conjugate time points.

Consider any ȟ /∈ C(t, T ) where C(t, T ) is defined in (4), and assume also that t+ ȟ ̸= τn
for all n (i.e., t + ȟ is not a “corner” of (Int)). Since the exponential mapping is a local
diffeomorphism away from conjugate points [40], it follows that

expZ(t+ȟ)(·) : TZ(t+ȟ)M → M

is a local diffeomorphism at λ̃(ȟ) and θ̃(ȟ), where λ̃(ȟ) and θ̃(ȟ) are the normal coordinates
of λ(ȟ) and θ(ȟ) with center Z(t + ȟ). By continuity of the flow/Picard flow and frame
system {ek(·)}dk=1, there exists an open interval (hinit, hfin) containing ȟ such that, for all
h ∈ (hinit, hfin),

expZ(t+h)(·) : TZ(t+h)M → M
is a local diffeomorphism at λ̃(h) and θ̃(h), where λ̃(h) and θ̃(h) are the normal coordinates
of λ(h) and θ(h) with center Z(t + h). Let γh

θ be a family of minimizing geodesics such
that γh

θ (0) = Z(t+ h) and γh
θ (1) = θ(h), and define γh

λ similarly. Since both γh
θ and γh

λ are
minimizing geodesics and since θ(h) and λ(h) are not conjugate to Z(t+ h), [40, Theorem
10.15] ensures that no point on γh

θ or γh
λ is conjugate to Z(t+ h).

In short, we have shown that the exponential mapping is a local diffeomorphism at any
point in the set:

{γh
θ }h∈(hinit,hfin)

⋃
{γh

λ}h∈(hinit,hfin).

The final step in our construction is to consider the union of all such (hinit, hfin) for all
ȟ /∈ C(t, T ) and t+ ȟ ̸= τn; we denote the so obtained set by H. We claim that

• H is a dense open subset of [0, T ], and
• H can be written as a countable union of disjoint open intervals: H =

⋃
k(hk, hk+1).

The first claim follows readily from Assumption 4 and the fact that the set {ȟ : t + ȟ =
τn for some n} is countable. To prove the second claim, simply note that, since all open
intervals of R contain at least one rational number, it is impossible for an open set to be the
union of uncountably many disjoint open intervals.
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To summarize, we can extend V and Φ̃ to an open set including

{γh
θ }h∈(hk,hk+1)

⋃
{γh

λ}h∈(hk,hk+1),

which obviously contains
⋃

h∈(hk,hk+1)
{θ(h), λ(h)}. We call such a pair (V, Φ̃) the extended

Fermi coordinate, since it not only contains the central curve h → Z(t+ h) as in the classical
case, but also θ(h) and λ(h) for almost every h ∈ [0, T ].

Step 4: Controlling the distance by decomposition. From now on, all computation happens
within the scope of the extended Fermi coordinate (V, Φ̃). By definition of θ(·), and since
θ̃(h) is the normal coordinate of θ(h) with center Z(t+ h), we have, for all h ∈ H,

dist(Z(t+ h),Θh(Z(t))) = dist(Z(t+ h), θ(h))

= ∥θ̃(h)∥2
≤ ∥θ̃(h)− λ̃(h)∥2 + ∥λ̃(h)∥2. (16)

Since H is a dense open subset of [0, T ] and since it is a countable union of open intervals, it
follows that θ̃(h) and λ̃(h) are differentiable except for a measure zero set. We can thus write

∥θ̃(h)− λ̃(h)∥2 =

∥∥∥∥∥
∫ h

0

(
˙̃
θ(u)− ˙̃

λ(u)
)
du

∥∥∥∥∥
2

.

By Lemma B.1, (RMD), and (PFlow), we have

˙̃
θk(u) = θ̇k(u)− Żk(t+ u) +O

(
∥θ̃(u)∥22

)
= Ṽ i(u, θ̃(u))− Żk(t+ u) +O

(
∥θ̃(u)∥22

)
,

˙̃
λk(u) = λ̇k(u)− Żk(t+ u) +O

(
∥λ̃(u)∥22

)
= Λ̃k

(
u, λ̃(u)

)
− Żk(t+ u) +O

(
∥λ̃(u)∥22

)
,

where Ṽ k(u, θ̃(u)) and Λ̃k
(
u, λ̃(u)

)
are, respectively, the k-th components of the vectors

V
(
θ(u)

)
and ΓZ(t+u)→λ(u) (V (Z(t+ u))) in the frame induced by the normal coordinate with

center Z(t + u) and frame {ek(u)}dk=1, and Żk(·) is defined in Lemma B.1. Denoting by
Ṽ (u, θ̃(u)) the (Euclidean) vector with components Ṽ i(u, θ̃(u)) and, by Λ̃

(
u, λ̃(u)

)
the

vector with components Λ̃k
(
u, λ̃(u)

)
, we may thus write

∥θ̃(h)− λ̃(h)∥2 ≤

∥∥∥∥∥
∫ h

0

(
Ṽ (u, θ̃(u))− Λ̃

(
u, λ̃(u)

))
du

∥∥∥∥∥
2

+

∫ h

0

R1(u)du (17)

where the remainder term R1(u) is of order O
(
∥θ̃(u)∥22 + ∥λ̃(u)∥22

)
. Noting that, by (15),

∥θ̃(u)∥2 = dist (Z(t+ u),Θu(Z(t))) ≤ R,

∥λ̃(u)∥2 = dist (Z(t+ u), λ(t+ u)) ≤ R,

we have ∥θ̃(u)∥22+∥λ̃(u)∥22 ≤ R
(
∥θ̃(u)∥2 + ∥λ̃(u)∥2

)
, and hence R1(u) = OR

(
∥θ̃(u)∥2 + ∥λ̃(u)∥2

)
where OR(·) hides constants depending on R.
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In the same vein, denoting by ˙̃Z(t+ u) the Euclidean vector whose k-th component is
Żk(t+ u), we have

∥λ̃(h)∥2 ≤

∥∥∥∥∥
∫ h

0

(
Λ̃
(
u, λ̃(u)

)
− ˙̃Z(t+ u)

)
du

∥∥∥∥∥
2

+

∫ h

0

R2(u)du (18)

where R2(u) = O
(
∥λ̃(u)∥22

)
= OR

(
∥λ̃(u)∥2

)
.

Step 5: Switching coordinate systems: From Fermi to parallel. So far, we have reduced the
proof to comparing between the vectors in (17) and (18). However, these vectors are not
amenable to further computation as they are expressed in the frames induced by the normal
coordinates, and these frames may not even be orthonormal.

On the other hand, when expressed in the parallel frame system (see Appendix B.1) with
a common base point Z(t+ u), the vectors V

(
θ(u)

)
and ΓZ(t+u)→λ(u) (V (Z(t+ u))) possess

some favorable properties. To see this, parallel transport the frame {ek(u)}dk=1 along the
geodesic from Z(t+ u) to form an orthonormal frame {e′k(u)}

d
k=1 of Tλ(u)M, and consider

the Euclidean vector Λ̃
(
u, λ̃(u)

)
whose components are defined as

Λ̃k
(
u, λ̃(u)

)
:= ⟨ΓZ(t+u)→λ(u) (V (Z(t+ u))) , e′k(u)⟩λ(u)
= ⟨V (Z(t+ u)), ek(u)⟩Z(t+u). (19)

Similarly, parallel transport the frame {ek(u)}dk=1 along the geodesic from Z(t+ u) to form
an orthonormal frame {e′′k(u)}

d
k=1 of Tθ(u)M, and define

Ṽ k
(
u, θ̃(u)

)
:= ⟨V

(
θ(u)

)
, e′′k(u)⟩θ(u). (20)

Since the parallel transport is an isometry, we get

Ṽ k
(
u, θ̃(u)

)
− Λ̃k

(
u, λ̃(u)

)
=
〈
V
(
θ(u)

)
, e′′k(u)

〉
θ(u)

− ⟨ΓZ(t+u)→λ(u) (V (Z(t+ u))) , e′k(u)⟩λ(u)
=
〈
Γθ(u)→Z(t+u)

(
V
(
θ(u)

))
, ek(u)

〉
Z(t+u)

− ⟨V (Z(t+ u)), ek(u)⟩Z(t+u)

=
〈
Γθ(u)→Z(t+u)

(
V
(
θ(u)

))
− V (Z(t+ u)), ek(u)

〉
Z(t+u)

,

whence∥∥∥Ṽ (
u, θ̃(u)

)
− Λ̃

(
u, λ̃(u)

)∥∥∥
2
= ∥Γθ(u)→Z(t+u)

(
V
(
θ(u)

))
− V (Z(t+ u))∥Z(t+u)

≤ Ldist(θ(u), Z(t+ u)) = L∥θ̃(u)∥2 (21)

where we have used the L-Lipschitzness of V and the fact that θ̃(u) is the normal coordinate
with center Z(t+ u).

We would like to therefore replace Ṽ
(
u, θ̃(u)

)
−Λ̃

(
u, λ̃(u)

)
with Ṽ

(
u, θ̃(u)

)
−Λ̃

(
u, λ̃(u)

)
in (17). To this end, consider the difference in the k-th component of Ṽ

(
u, θ̃(u)

)
and

Ṽ
(
u, θ̃(u)

)
:

Ṽ k
(
u, θ̃(u)

)
− Ṽ k

(
u, θ̃(u)

)
=
〈
V
(
θ(u)

)
, e′′k(u)

〉
θ(u)

−
〈
V
(
θ(u)

)
,

∂

∂zk

∣∣∣
θ(u)

〉
θ(u)

(22)

where ∂
∂zi

∣∣∣
θ(u)

is the k-th basis in the frame induced by the normal coordinate with center

Z(t+u) and frame {ek(u)}dk=1. More specifically, denote by v the vector
∑d

k=1 θ̃
k(u)ek(u) ∈
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TZ(t+u)M and consider a family of geodesics

γ(s, s′) := expZ(t+u)

(
s(v + s′ek(u))

)
. (23)

Then

∂

∂zi

∣∣∣
θ(u)

=
∂

∂s′
γ(1, 0)

= d expZ(t+u)(v)(ek(u)). (24)

Invoking Cauchy-Schwartz, (14), Lemma B.2, and using the fact that {ek(u)}dk=1 is orthonor-
mal, we get

∣∣∣Ṽ k
(
u, θ̃(u)

)
− Ṽ k

(
u, θ̃(u)

)∣∣∣ = ∣∣∣∣∣
〈
V
(
θ(u)

)
, e′′k(u)−

∂

∂zk

∣∣∣
θ(u)

〉
θ(u)

∣∣∣∣∣
≤ ∥V

(
θ(u)

)
∥θ(u) ·

∥∥∥∥∥e′′k(u)− ∂

∂zk

∣∣∣
θ(u)

∥∥∥∥∥
θ(u)

≤ G ·Kmax · f−Kmax(v) · ∥ek(u)⊥∥Z(t+u)

≤ G ·Kmax · f−Kmax(v) = G ·Kmax · f−Kmax(∥θ̃(u)∥2) (25)

where Kmax = max (|Kup|, |Klow|). Since a standard Taylor expansion argument shows that
sinh(x)

x − 1 ≤ cosh(x) ≤ ex for all x ≥ 0, by (B.7), (B.8), and (14), we get

f−Kmax(∥θ̃(u)∥2) ≤
1

Kmax
exp

(√
Kmax∥θ̃(u)∥2

)
≤ eR

√
Kmax

R ·Kmax
· ∥θ̃(u)∥2 (26)

where the last inequality follows from ∥θ̃(u)∥2 = dist(Z(t+ u),Θu(Z(t))) ≤ R. Combining
(25) and (26), we thus get

∣∣∣Ṽ k
(
u, θ̃(u)

)
− Ṽ k

(
u, θ̃(u)

)∣∣∣ ≤ GeR
√
Kmax

R
· ∥θ̃(u)∥2.

In short, we have shown that

Ṽ
(
u, θ̃(u)

)
= Ṽ

(
u, θ̃(u)

)
+R3(u). (27)

Here, R3(u) = OG,Kmax,R

(
∥θ̃(u)∥2

)
, where OG,Kmax,R(·) hides constants that depend on

G,Kmax and R. Exactly the same computation shows that, for some R4(u) = OG,Kmax,R

(
∥λ̃(u)∥2

)
,

Λ̃
(
u, λ̃(u)

)
= Λ̃

(
u, λ̃(u)

)
+R4(u). (28)
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Step 6: Concluding the proof. We will proceed by bounding (17) and (18).
Using (27), (28), and (21) in (17), we obtain:

∥θ̃(h)− λ̃(h)∥2 ≤

∥∥∥∥∥
∫ h

0

(
Ṽ
(
u, θ̃(u)

)
− Λ̃

(
u, λ̃(u)

))
du

∥∥∥∥∥
2

+

∫ h

0

R1(u)du

≤
∫ h

0

∥∥∥Ṽ (u, θ̃(u))− Λ̃
(
u, λ̃(u)

)∥∥∥
2
du+

∫ h

0

R1(u) du

≤
∫ h

0

∥∥∥Ṽ (
u, θ̃(u)

)
− Λ̃

(
u, λ̃(u)

)∥∥∥
2
du+

∫ h

0

(R1 +R3 +R4)(u) du

≤ L

∫ h

0

∥∥∥θ̃(u)∥∥∥
2
du+

∫ h

0

(R1 +R3 +R4)(u) du. (29)

We next turn to (18). Our first task is to obtain an expression for ˙̃Z(t+u); recall that this
is the Euclidean vector whose k-th component is Żk(t+u). To this end, fix an iteration count
n, and consider all u such that t+ u ∈ [τn, τn+1) (that is, consider only the interpolation
between Zn and Zn+1). We claim that Żk(t+ u) is constant throughout all such u, and, in
particular, Żk(t+ u) = Żk(τn). This readily follows by noticing that

1) The curve Z(·) is a geodesic segment when restricted to [τn, τn+1); see (Int).

2) The Fermi coordinate along Z(·), when restricted to {Z(s) : s ∈ [τn, τn+1)}, is simply
a parallel frame system: The frame {ek(u)}dk=1 is obtained from parallel transporting
{ek(τn)}dk=1 along Z(·) for all u such that t+ u ∈ [τn, τn+1).

Thus, a simple calculation akin to (B.2) yields, for all such u,

Żk(t+ u) = ⟨Ż(t+ u), ei(u)⟩Z(t+u)

=
〈
ΓZ(t+u)→Z(τn)

((
Ż(t+ u)

))
, ei(τn)

〉
Z(τn)

= ⟨V (Z(τn)) +Wn, ei(τn)⟩Z(τn)
= ⟨V (Z(τn)) + Un + bn, ei(τn)⟩Z(τn)

(30)

where we have used (10) and the definition of Wn in the last equality.
Armed with the above, we can obtain a succinct expression for ˙̃Z(t+u) as follows. Let ˜̄z(u)

be the normal coordinate of Z(t+ u) with center Z(t+ u) (i.e., (u, ˜̄z(u)) = Φ̃(u, Z(t+ u))),
and define a Euclidean vector Ṽ (u, ˜̄z(u)) by setting its k-th component to

Ṽ k (u, ˜̄z(u)) :=
〈
V
(
Z(t+ u)

)
, ei(m(t+ u))

〉
Z(t+u)

(31)

where the mapping m(·) is defined in (8). Define also the Euclidean noise and bias vectors
Un, and bn, by setting their components to

Uk
n, := ⟨Un, ei(m(t+ u))⟩Z(t+u),

bkn, := ⟨bn, ei(m(t+ u))⟩Z(t+u).

Then (30) states precisely that

˙̃Z(t+ u) = Ṽ (u, ˜̄z(u)) + U (t+ u) + b (t+ u). (32)
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Substituting (32) into (18) and invoking (28), (11), and (12), we obtain

∥λ̃(h)∥2 ≤

∥∥∥∥∥
∫ h

0

(
Λ̃
(
u, λ̃(u)

)
− Ṽ (u, ˜̄z(u))− U (t+ u)− b (t+ u)

)
du

∥∥∥∥∥
2

+

∫ h

0

R2(u)du

≤
∫ h

0

∥∥∥Λ̃ (
u, λ̃(u)

)
− Ṽ (u, ˜̄z(u))

∥∥∥
2
du

+

∥∥∥∥∥
∫ h

0

U (t+ u) du

∥∥∥∥∥
2

+

∥∥∥∥∥
∫ h

0

b (t+ u) du

∥∥∥∥∥
2

+

∫ h

0

(R2 +R4)(u)du

≤
∫ h

0

∥∥∥Λ̃ (
u, λ̃(u)

)
− Ṽ (u, ˜̄z(u))

∥∥∥
2
du

+∆(t, T ) +B
⋆
(t) · h+

∫ h

0

(R2 +R4)(u)du. (33)

To bound the first term in (33), recall (19) and (31). An identical argument leading to (B.3)
shows that∥∥∥Λ̃ (

u, λ̃(u)
)
− Ṽ (u, ˜̄z(u))

∥∥∥
2
=
∥∥V (Z(t+ u))− ΓZ(t+u)→Z(t+u)

(
V (Z(t+ u))

)∥∥
Z(t+u)

≤ L · dist
(
Z(t+ u), Z(t+ u)

)
. (34)

Since Z(·) is a (not necessarily minimizing) geodesic on [m(t+ u), t+ u], we have, by (32),
(11), and (14),

dist
(
Z(t+ u), Z(t+ u)

)
≤

∥∥∥∥∥
∫ t+u

m(t+u)

˙̃Z(s) ds

∥∥∥∥∥
2

=

∥∥∥∥∥
∫ t+u

m(t+u)

Ṽ (s, ˜̄z(s)) + U (s) + b (s) ds

∥∥∥∥∥
2

≤

∥∥∥∥∥
∫ t+u

m(t+u)

Ṽ (s, ˜̄z(s)) ds

∥∥∥∥∥
2

+

∥∥∥∥∥
∫ t+u

m(t+u)

U (s) ds

∥∥∥∥∥
2

+

∥∥∥∥∥
∫ t+u

m(t+u)

b (s) ds

∥∥∥∥∥
2

≤
(
G+B

⋆
(t)
)
·

(∫ t+u

m(t+u)

ds

)
+

∥∥∥∥∥
∫ t+u

m(t+u)

U (s) ds

∥∥∥∥∥
2

≤
(
G+B

⋆
(t)
)
γ⋆(t) +

∥∥∥∥∥
∫ t+u

m(t+u)

U (s) ds

∥∥∥∥∥
2

. (35)

For t large enough, we have γ⋆(t) < 1, and hence∥∥∥∥∥
∫ t+u

m(t+u)

U (s) ds

∥∥∥∥∥
2

≤

∥∥∥∥∥
∫ m(t+u)

t−1

U (s) ds

∥∥∥∥∥
2

+

∥∥∥∥∫ t+u

t−1

U (s) ds

∥∥∥∥
2

≤ 2∆(t− 1, T + 1). (36)

Combing (34), (35), and (36), (33) then becomes

∥λ̃(h)∥2 ≤ L · h ·
((

G+B
⋆
(t)
)
γ⋆(t) + 2∆(t− 1, T + 1)

)
+∆(t, T ) +B

⋆
(t) · h+

∫ h

0

(R2 +R4)(u)du

≤ h · CL,G

(
B

⋆
(t) + γ⋆(t) + ∆(t− 1, T + 1)

)
+

∫ h

0

(R2 +R4)(u)du (37)
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for some constant CL,G that depends only on L and G. Using (29) and (37), we can then
bound (16) as

dist(Z(t+ h),Θh(Z(t))) = ∥θ̃(h)∥2
≤ ∥θ̃(h)∥2 + ∥λ̃(h)∥2 (38)

≤ ∥θ̃(h)− λ̃(h)∥2 + 2∥λ̃(h)∥2

≤ L

∫ h

0

∥∥∥θ̃(u)∥∥∥
2
du+ h · 2CL,G

(
B

⋆
(t) + γ⋆(t) + ∆(t− 1, T + 1)

)
+ 3

∫ h

0

(R1 +R2 +R3 +R4)(u) du (39)

where (R1 +R2 +R3 +R4)(u) = OG,Kmax,R

(∥∥∥θ̃(h)∥∥∥
2
+
∥∥∥λ̃(h)∥∥∥

2

)
. Therefore, there exists a

constant CL,G,Kmax,R depending only on L,G,Kmax, and R such that we may bound (38) as

∥θ̃(h)∥2 + ∥λ̃(h)∥2 ≤ CL,G,Kmax,R

∫ h

0

(∥∥∥θ̃(h)∥∥∥
2
+
∥∥∥λ̃(h)∥∥∥

2

)
du

+ h · 2CL,G

(
B

⋆
(t) + γ⋆(t) + ∆(t− 1, T + 1)

)
.

Grönwall’s inequality then implies

∥θ̃(h)∥2 + ∥λ̃(h)∥2 ≤ h · 2CL,G

(
B

⋆
(t) + γ⋆(t) + ∆(t− 1, T + 1)

)
· eh·CL,G,Kmax,R . (40)

From (40), we may conclude the proof as follows:

lim
t→∞

sup
t≤h≤T

dist(Z(t+ h),Θh(Z(t))) ≤ lim
t→∞

sup
t≤h≤T

(
∥θ̃(h)∥2 + ∥λ̃(h)∥2

)
≤ lim

t→∞
T · 2CL,G

(
B

⋆
(t) + γ⋆(t) + ∆(t− 1, T + 1)

)
· eT ·CL,G,Kmax,R

= 0 a.s.

since limt→∞ B
⋆
(t) = limt→∞ γ⋆(t) = 0 a.s. by assumption, and limt→∞ ∆(t− 1, T + 1) = 0

a.s. by (13). ■

3.5. The Limits of Riemannian Robbins–Monro schemes. Now, having established that the
iterates of (RRM) constitute an APT of (RMD), we proceed to explore the formal link
between asymptotic pseudotrajectories and the solution orbits of (RMD). To this end, we
will need the important notion of an internally chain-transitive (ICT) set.

Definition 2. Let S be a nonempty compact subset of M and let Θ be a flow on M. Then:
(1) S is invariant if Θt(S) = S for all t ∈ R, i.e., Θt(z) ∈ S for all z ∈ S.
(2) S is an attractor of Θ if it is invariant and there exists a compact neighborhood K of

S such that limt→∞ dist(Θt(z),S) = 0 uniformly in z ∈ K.
(3) S is internally chain-transitive if it is invariant and Θ|S admits no other attractors

than S.

In words, ICT sets can be seen as a “terminal object” for the dynamics (RMD): the
ensemble of orbits that converges to an ICT set will not be ultimately contained in a smaller
subset thereof. Our next result shows that, with probability 1, all limit points of (RRM) lie
in some such set:

Theorem 2. If Assumptions 1–4 hold, then Zn converges almost surely to an ICT set of
(RMD).
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The proof of Theorem 2 leverages Theorem 1 in an essential way and employs a foundational
result of Benaïm and Hirsch [7] to establish the link with the ICT sets of (RMD):

Proof of Theorem 2. By Theorem 1, Zn generates APTs of the mean dynamics (RMD). Now,
let L =

⋂
t≥0 cl(Z(t,∞)) be the limit set of Z(t), i.e., the set of limit points of convergent

sequences Z(tn) with limn tn = ∞. Our claim then follows by the limit set theorem of Benaïm
and Hirsch [7, Theorem 8.2], which holds for an arbitrary metric (even non-Riemannian)
space. ■

An important message of Theorem 2 is that we can reduce the convergence analysis
of (RRM) to the study of a deterministic, continuous-time dynamical system which is
significantly simpler than the original stochastic, discrete-time system. In this sense, The-
orem 2 delivers the same high-level message as the classic SA literature for Euclidean
Robbins–Monro (RM) schemes. In particular, if V admits a potential or is strictly monotone,
it is easy to verify that the only ICT sets of (RMD) are the roots of V [63], so we readily
recover the series of asymptotic convergence results mentioned in the introduction. In the
general case, the roots of V are always contained in its ICT sets, but the inclusion may be
strict; however, this again becomes an equivalence under the standard assumptions which
have been used in the Euclidean RM literature to obtain global convergence – cooperative
dynamics, global asymptotic stability, etc. [5, 11, 36]. In the next section, we shall see that
Theorems 1–2 further capture a series of Riemannian algorithms – old and new – in a unified
fashion.

4. Applications and implications

We now proceed to show how a wide array of Riemannian algorithms can be seen as
special cases of (RRM) – enabling in this way the tandem use of Theorems 1 and 2 to
deduce their convergence properties. To simplify the presentation, we will make the following
technical assumption:

Assumption 5. The injectivity radius of M is uniformly bounded from below by δ > 0.

The injectivity radius at a point p on M is the largest radius for which the exponential
map at p is a diffeomorphism, and the injectivity radius of M is the infimum over all such
radii [40]. In this regard, Assumption 5 serves to ensure that exp is invertible at consecutive
iterates of (RRM) so as to avoid local topological complications; we will later prove in
Proposition 2 that exp−1 is well-defined in all the algorithms below.

4.1. Specific algorithms. Throughout this section, we adopt a black-box setup [52] with
stochastic first-order oracle (SFO) feedback. Specifically, when called at z ∈ M with random
seed ω ∈ Ω, an SFO returns a random vector V (z; θ) ∈ TzM of the form

V (z; θ) = V (z) + Err(z; θ) (SFO)

where the error term Err(z; θ) ∈ TzM is zero-mean and finite-variance with respect to the
Riemannian metric:

∀z ∈ M, E[Err(z; θ)] = 0 and E[∥Err(z; θ)∥2z] ≤ σ2. (41)

To facilitate comparisons with the Riemannian optimization literature, we will abusively
refer to queries of V as “gradients”; we stress, however, that V is not assumed to admit a
potential.

Algorithm 1 (Riemannian stochastic gradient methods). The simplest Riemannian stochastic
gradient method (RSGM) queries an SFO and proceeds as:

Zn+1 = expZn
(γnV (Zn; θn)) , (R-SGM)
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As such, (R-SGM) admits a straightforward RRM representation by taking Wn = Err(Zn; θn).
¶

Algorithm 2 (Riemannian proximal point methods). The (deterministic) Riemannian proxi-
mal point method (RPPM) is an implicit update rule of the form:

exp−1
Zn+1

(Zn) = −γnV (Zn+1). (R-PPM)

The RRM representation of (R-PPM) is obtained by taking Wn = Un + bn with

bn = ΓZn+1→Zn
(V (Zn+1))− V (Zn)

and Un = 0 (recall here that Γz→z′ (v) denotes parallel transport along minimizing geodesics).
¶

Algorithm 3 (Riemannian stochastic extra-gradient). Inspired by the original work of Kor-
pelevich [34], the Riemannian stochastic extra-gradient (RSEG) method iterates as

Zn+1/2 = expZn
(γnV (Zn; θn)) ,

Zn+1 = expZn

(
ΓZn+1/2→Zn

(
γnV (Zn+1/2; θn+1/2)

)) (R-SEG)

where θn and θn+1/2 are independent random seeds for (SFO). To recast (R-SEG) in the RRM
framework, simply take Un = ΓZn+1/2→Zn

(
Err(Zn+1/2; θn+1/2)

)
and bn = ΓZn+1/2→Zn

(
V (Zn+1/2)

)
−

V (Zn). ¶

Algorithm 4 (Riemannian optimistic gradient). Compared to (R-SGM), the scheme (R-SEG)
involves two oracle queries per iteration. Inspired by Popov [56], we can instead “recycle”
the last oracle query, leading to the Riemannian optimistic gradient method

Zn+1/2 = expZn

(
γnV (Z+

n−1; θn−1)
)
,

Zn+1 = expZn

(
ΓZn+1/2→Zn

(
γnV (Zn+1/2; θn)

))
.

(R-OG)

(R-OG) can be seen as a special case of (RRM) by taking Un = ΓZn+1/2→Zn

(
Err(Zn+1/2; θn)

)
and bn = ΓZn+1/2→Zn

(
V (Zn+1/2)

)
− V (Zn). ¶

In light of Theorems 1–2, to analyze the convergence of Algorithms 1–4 under a specific
choice of step-size, we can simply verify Assumptions 1–4. More precisely, it suffices to show
that (5) and (7) hold with probability 1. This is the purpose of the next proposition:

Proposition 2. Under Assumption 5 and a step-size strategy such that A/n ≤ γn ≤
B/
√

n(log n)1+ε for some A,B, ε > 0, the following hold for Algorithms 1–4:
(1) With probability 1, Zn+1 lies in the injectivity radius of Zn for n large enough.
(2) Equations (5) and (7) hold with probability 1. As a result, under Assumptions 3′–4,

Algorithms 1–4 generate APTs of (RMD) and converge to its ICT sets.

Before proving Proposition 2, we first provide a convenient lemma which shows that,
almost surely, the effect of the noise is asymptotically annihilated by the step-size:

Lemma 1. Under the assumptions in Proposition 2, we have, with probability 1,

lim
n→∞

∥γnV (Zn; θn)∥Zn
= 0. (42)

Proof of Lemma 1. By definition,

∥γnV (Zn; θn)∥Zn
= ∥γnV (Zn) + Err(Zn; θn)∥Zn

≤ γnG+ γn∥Err(Zn; θn)∥Zn
. (43)
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The first term goes to 0 by choice of step-sizes. To control the second term, note that by
Chebyshev’s inequality and (41), we have

P
(
∥Err(Zn; θn)∥Zn

≥
√

n log1+
ϵ
2 n

)
≤ σ2

n log1+
ϵ
2 n

(44)

where ε is the same as in our choice of step-size in Proposition 2. In turn, this implies that
∞∑

n=2

P
(
∥Err(Zn; θn)∥Zn

≥
√
n log1+

ϵ
2 n

)
< ∞

so, by the Borel-Cantelli lemma, we have ∥Err(Zn; θn)∥Zn
= O

(√
n log1+

ϵ
2 n

)
with proba-

bility 1. Hence, by our assumptions for the method’s step-size, we get

γn∥Err(Zn; θn)∥Zn = O


√
n log1+

ϵ
2 n√

n log1+ε n

 = O
(

1

log
ε
4 n

)
which, combined with (43), implies (42). ■

We are now ready to prove Proposition 2.

Proof of Proposition 2. The first claim of Proposition 2 is a direct consequence of Lemma 1
and Assumption 5. To prove the second claim, note that

∑
n γ

2
n < ∞ by our choice of

step-sizes. Thus, in order to prove (7), it suffices to show E[Bn] = E[∥bn∥] = O(γn) and
E[σ2

n] ≤ σ2 for some constant σ.
We next proceed method-by-method:

Algorithm 1: Riemannian stochastic gradient descent(/ascent). For (R-SGM), we have
Wn = Un = Err(Zn; θn) and bn = 0, so both (5) and (7) follow from the stated assumptions
for (SFO).
Algorithm 2: Riemannian proximal point method. For (R-PPM), we have Un = 0 and

∥bn∥Zn
= ∥ΓZn+1→Zn

(V (Zn+1))− V (Zn)∥Zn

≤ Ldist(Zn, Zn+1)

= γnL∥V (Zn)∥Zn

≤ γnLM = O(γn)

where we have used the L-Lipschitzness and G-boundedness of V , and the distance-minimizing
property of exp within the injectivity radius.
Algorithm 3: Riemannian stochastic extra-gradient. For (R-SEG), we have Un = ΓZn+1/2→Zn

(
Err(Zn+1/2; θn+1/2)

)
so that

E
[
σ2
n

]
= E

[
∥Un∥2Zn

]
= E

[∥∥Err(Zn+1/2; θn+1/2)
∥∥2

Zn+1/2

]
≤ σ2

by (41) and the fact that the parallel transport map is a linear isometry.
To verify (5), by the definition of (R-SEG), we have

∥bn∥ = ∥ΓZn+1/2→Zn

(
V (Zn+1/2)

)
− V (Zn)∥Zn ≤ Ldist

(
Zn+1/2, Zn

)
= γnL∥V (Zn; θn)∥Zn → 0

almost surely by Lemma 1.
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Algorithm 4: Riemannian optimistic gradient. For (R-OG), we have Un = ΓZn+1/2→Zn

(
Err(Zn; θn+1/2)

)
and bn = ΓZn+1/2→Zn

(
V (Zn+1/2)

)
− V (Zn), so E[σ2

n] ≤ σ2 again holds by (41). The bias
term can then be bounded exactly as in the case of Algorithm 3. ■

4.2. Operations that preserve Riemannian Robbins–Monro schemes. To increase the effi-
ciency of Riemannian iterative schemes, several important operations have been routinely
performed on top of the base algorithms in Section 4.1. In this section, we show that the
RRM template incorporates these operations in a unified fashion.
Retraction-Based Methods. When the exponential map is expensive to compute, a popular
alternative in practice is to use the retraction map [1, 12], which is defined as a smooth
mapping R·(·) : T M → M that mimics the exponential map up to first order: For all
(z, v) ∈ T M,

Rz(0) = z,
d

dt
Rz(tv)

∣∣∣∣
t=0

= v. (Rtr)

It turns out that, to replace the exponential map in Algorithms 1–4 with retraction, we only
need to pay a small price on the noise assumption:

Proposition 3. If, in addition to the assumptions in Proposition 2, the SFO has finite fourth
moment: E[∥Err(z; θ)∥4z] ≤ κ2 < ∞, then replacing expZn

(·) with RZn
(·) in Algorithms 1–4

results in another RRM scheme satisfying (5) and (7) with probability 1. As a result, under
Assumptions 3′–4, they generate APTs of (RMD) and converge to its ICT sets.

Remark 2. The condition E[∥Err(z; θ)∥4z] < ∞ cannot be relaxed as shown by the Euclidean
example of Rz(v) = z + (ev − 1) and Err(z; θ)

law
=

√
Y − E

[√
Y
]
, where P(Y > y) = y−3/2 if

y ≥ 1, and P(Y > y) = 1 otherwise.

Remark 3. In many practical settings, the map Rz(v) satisfies the stronger notion of “second-
order retraction” [1, 12]. In this case, the proof technique below shows that it suffices to
have E[∥Err(z; θ)∥3z] < ∞ in Proposition 3.

Proof of Proposition 3. By definition, Rz(v) is a smooth map and hence satisfies limv→0 Rz(v) =
z. Then Lemma 1 readily implies that Zn+1 lies in the injectivity radius of Zn with probability
1 for n large enough.

We first consider the retraction-based Algorithm 1:

Zn+1 = RZn
(γnV (Zn; θn)). (45)

Let Ṽn ∈ TZn
M be the vector such that expZn

(
γnṼn

)
= Zn+1, i.e.,

γnṼn = exp−1
Zn

(
RZn(γnV (Zn; θn))

)
. (46)

Then (45) is an RRM scheme with Wn = Ṽn − V (Zn) where Ṽn is defined in (46). We will
show that, under the assumption E[∥Err(z; θ)∥4z] < ∞, the following holds with probability
1:

bn = E[Wn | Fn] → 0, sup
n

E
[
∥Wn∥2Zn

]
< ∞ (47)

which obviously implies (5) and (7).
Consider the curve c(t) := RZn

(tV (Zn; θn)). By Lemma 1, for n large enough, c(t) lies in
the injectivity radius of Zn almost surely for all t ∈ [0, γn]. Let ĉ(t) be the smooth curve
of c(t) in the normal coordinate with base Zn and an arbitrary orthonormal frame, and
let Ẑn+1 be the normal coordinate of Zn+1. Also, let Ṽ N

n be the (Euclidean) vector of Ṽn
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expanded in the chosen orthonormal basis, and define V N(Zn; θn) and ErrN(Zn; θn) similarly.
By definition, Ẑn+1 is nothing but γnṼ

N
n .

Since Zn = c(0) and Zn+1 = c(γn), by properties of a retraction map we must have

γnṼ
N
n = ĉ(γn)

= ĉ(0) + γn ˙̂c(0) +O
(
γ2
n∥ ˙̂c(0)∥22

)
= γnV

N(Zn; θn) +O
(
γ2
n∥V (Zn; θn)∥2Zn

)
=: γnV

N(Zn; θn) + γnb̃n (48)

where b̃n = O
(
γn∥V (Zn; θn)∥2Zn

)
. Therefore, since E[∥Err(z; θ)∥4z] < ∞ for all z ∈ M, we

have

E
[
∥Wn∥2Zn

]
= E

[∥∥∥ErrN(Zn; θn) + b̃n

∥∥∥2
2

]
< ∞.

On the other hand,

∥bn∥Zn
= ∥E[Wn | Fn]∥Zn

=
∥∥∥E[b̃n ∣∣∣Fn

]∥∥∥
2

= O
(
γn∥V (Zn; θn)∥2Zn

)
.

By Chebyshev’s inequality and the fact that E[∥Err(z; θ)∥4z] ≤ κ2 < ∞, we have

P
(
∥Err(Zn; θn)∥2Zn

≥
√
n log1+

ϵ
2 n

)
≤ κ2

n log1+
ϵ
2 n

where ε is the same as in our choice of step-size in Proposition 2. Using an calculation
identical to Lemma 1, we conclude that

γn∥Err(Zn; θn)∥2Zn
= O


√
n log1+

ϵ
2 n√

n log1+ε n

 = O
(

1

log
ε
4 n

)
which concludes the proof of (47).

For retraction-based Algorithms 2–4, by the above analysis, we may replace Rz(γnV (·; θn))
with expz

(
γn

(
V (·; θn) + b̃n

))
where b̃n → 0 almost surely. The rest is the same as in the

proof of Proposition 2. ■

Alternation. Consider a Riemannian (zero-sum) two-player game: minmaxX∈M1,Y ∈M2
ℓ(X,Y )

where M1 and M2 are smooth manifolds. Instead of performing simultaneous updates as in
Algorithms 1–4, a common variant is to alternately update the min/max variables:

Xn+1 = expXn
(γn[VX(Xn, Yn) + UX,n + bX,n])

Yn+1 = expYn
(γn[VY (Xn+1, Yn) + UY,n + bY,n])

(alt-R-RM)

where (VX , VY ) := (−∇Xℓ,∇Y ℓ), UX,n and bX,n are the noise and bias of the RRM scheme
employed by the X variable, and similarly for UY,n and bY,n. It is easy to see that alternating
Algorithms 1–4 results in another convergent RRM scheme:

Proposition 4. Let Zn := (Xn, Yn) where (Xn, Yn) is generated by using Algorithms 1–4 in
(alt-R-RM). Under the same assumptions as in Proposition 2, Zn is itself an RRM scheme
satisfying (5) and (7) with probability 1. As a result, under Assumptions 3′–4, Zn generates
an APT of (RMD) and converges to its ICT sets.
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Remark 4. It is easy to generalize Proposition 4 to any number of players and any type of
(not necessarily zero-sum) games.

Remark 5. A simple but useful observation is that compositions of RRM schemes merely
“slow down” the algorithm but do not change its asymptotic behavior: For any two RRM
schemes RM1 and RM2, the update Zn+1 = RM2 ◦ RM1(Zn) is equivalent to a new RRM
scheme Z̃n where Z̃2n = Zn and Z̃2n+1 = RM1(Z̃2n). This allows us to “mix-and-match”
Propositions 2–4 to prove, for instance, the convergence of alternating (R-SEG) minimizer
vs. retraction-based (R-PPM) maximizer in Riemannian two-player games.

Proof of Proposition 4. Similar to Proposition 2, Lemma 1 guarantees that all geodesics are
minimizing and invertible. Hence, by the L-Lipschitzness of V and (alt-R-RM), we have,
with probability 1,

∥VY (Xn+1, Yn)− VY (Xn, Yn)∥Yn
≤ Ldist

([
Xn+1

Yn

]
,

[
Xn

Yn

])
= Lγn∥VX(Xn, Yn) + UX,n + bX,n∥Xn

→ 0 (49)

by Lemma 1 and Proposition 2. Therefore, we may rewrite (alt-R-RM) as

Zn+1 = expZn

(
γn

[
VX(Xn, Yn) + UX,n + bX,n

VY (Xn, Yn) + UY,n + b′Y,n

])
where b′Y,n = bY,n + VY (Xn+1, Yn)− VY (Xn, Yn). By (49) and Proposition 2, b′Y,n satisfies
(5) and (7), concluding the proof. ■

4.3. Implications. We collect some immediate consequences of the results in Sections 4.1–4.2.

Riemannian non-convex optimization. When V (z) = −∇f(z) for some sufficiently smooth
function f : M → R, Sard’s theorem implies that the ICT sets consist of connected com-
ponents of critical points [63]. Therefore, all the above-mentioned algorithms converge to
critical points of f . This is a vast generalization of the main result of Bonnabel [10] which,
in the context of this paper, can only cover (retraction-based) Algorithm 1 and bounded
(SFO).

Riemannian monotone games. Consider the game setting: V = [−∇ziℓi] where ℓi : M =∏
i Mi → R denotes the loss of the i-th player. If V is monotone [68] and sufficiently

smooth, then combining our results with [35] shows that all the above mentioned algorithms
converge to the Nash–Stampacchia equilibria, a natural generalization of Nash equilibria to
Riemannian manifolds. To the best of our knowledge, most of the algorithms we consider
are new in this setting except for the deterministic gradient method and extra-gradient
mentioned in the Introduction.

Riemannian non-convex potential games. Solving general non-convex games remains an
open problem even for Euclidean spaces. However, a special class of games, known as the
Riemannian potential games, has found interesting applications [33, 51]. For such games,
the continuous-time (RMD) has been shown to enjoy many desirable properties such as
convergence to critical points or local stability [57–59], whereas we are not aware of any
similar result on stochastic RRM schemes. Our theory bridges this gap by showing that the
same guarantees in [57–59] are in fact achieved by a wide array of RRM schemes.
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Markov potential games via Natural Gradient Descent. An interesting class of games that
models collaborative behavior in multi-agent reinforcement learning is the Markov potential
games (MPGs) [41, 47, 49]. These games can be solved via a variety of learning schemes,
notably the natural policy gradient (NPG) method of Kakade [30], which has found wide
empirical success.

As noticed by Bonnabel [10], NPG, as a particular case of the Natural Gradient Descent
method [2], is an important instance of retraction-based algorithms. In our framework, NPG
is simply a retraction-based Algorithm 1. Since MPGs can be reduced to jointly optimizing
a global objective as in Riemannian potential games [47], under mild assumptions on the
noise, our theory together with [57–59] then not only implies the convergence of plain NPG,
but also its optimistic/extra-gradient variants. To our knowledge, these are new schemes
that might be of independent interest.

5. Concluding remarks

Motivated by applications to stochastic approximation and optimization problems on
manifolds, our paper proposed a general class of Riemannian iterative algorithms à la Robbins-
Monro, and we showed that it captures a wide array of existing and novel algorithms. Our
theory provides a unified analysis for the convergence of RRM schemes that might seem
vastly different from each other at first sight: By verifying certain simple criteria on the error
terms Wn in Assumption 2, we can instead study (RMD) to infer the algorithm’s long-run
behavior.

At the same time, we should stress that our results offer but a glimpse of the flexibility of
(RRM). Specifically, the following important questions are left open (and deferred to future
work):

(1) We have only analyzed stochastic first-order methods. In practice, however, evaluating
Riemannian (stochastic) gradients can be out of reach in online / sequential learning
problems. To remedy this issue, various zeroth-order or bandit algorithms, which
only require function evaluations, have been proposed. It is, however, unclear whether
a Riemannian analogue of the Kiefer–Wolfowitz algorithm can analyzed viea the
Robbins–Monro template as in the Euclidean case [26].

(2) The assumption on the diminishing step-sizes is indispensable to our analysis, which
covers many practically relevant settings. However, another common strategy in
practice is the constant step-size rule, which is not covered by our theory. It is thus
interesting to see if the techniques for analyzing constant step-size SA schemes can be
generalized to Riemannian manifolds [11, 38, 39].

(3) Finally, several Riemannian algorithms have been designed to avoid undesirable
solutions such as non-minimizing critical points [16, 64]. We conjecture that the
avoidance theory of Benaïm and Hirsch [6] can be extended to Riemannian manifolds;
this, if true, would imply that many iterative Riemannian methods, including the
retraction-based ones, converge only to local minimizers ((a.s.)).

Appendix A. Stability Analysis

The purpose of this appendix is to prove:

Proposition 1. If M is simply connected, Assumption 3′ implies Assumption 3.

Fix an arbitrary (base) point p ∈ M playing the role of the origin, and define the radial
distance r(z) := dist(z, p) and let k(z) := 1

2r
2(z). The following theorem makes it clear

under which assumptions is k(·) smooth and provides a control on its Hessian.
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Theorem 1 (Jost [29, Theorem 6.6.1]). Let p ∈ M be arbitrary, and suppose that the
exponential map expp is a diffeomorphism on {v ∈ TpM : ∥v∥ ≤ ρ}. Moreover, suppose the
sectional curvature is nonpositive and bounded below by −κ2 on the ball of radius ρ around p.

Let r(·) and k(·) be defined as above. Then k(·) is smooth on B(p, ρ) := {z ̸= p : dist(z, p) ≤ ρ}
and

∇ k(z) = − exp−1
p z.

In addition, ∥∇ k(z)∥ = r(z), and one has the following control on Hessian of k(·):

Hess k(z)[v, v] ≤ κr(z) ctgh(κr(z))∥v∥2z,

for all z ∈ B(p, ρ) and v ∈ TzM.

Since M is simply-connected and complete, we may take ρ = ∞ in the theorem above
[29, Corollary 6.9.1].

Recall that the vector field V satisfies the weak-coercivity condition if for some R > 0
and some p ∈ M (and hence all p ∈ M) we have for all z ∈ M outside of B(p,R),

⟨V (z),∇ k(z)⟩z ≤ 0.

Our proof relies on constructing a suitable “energy function” that serves as an easy-to-control
proxy for the distance of the iterates of (RRM) from the origin. This function will be of the
form

Φ(z) = f(r(z))

where f is a C∞ non-negative function with f(x) = 0 for all x ≤ R and satisfies

0 ≤ f ′(x) ≤ C1, f ′′(x) ≤ C2 (A.1)

for all x ≥ R. Moreover, we require f(x) = Ω(x) as x → ∞ so that controlling f implies
control of x. One example of such functions is given in Lemma A.2.

We first show that Φ has a bounded Hessian and is smooth.

Lemma A.1. Let Φ be defined as above. Then, Φ is negatively correlated with V :

⟨∇Φ(z), V (z)⟩z ≤ 0, ∀z ∈ M,

and there is some constant C such that HessΦ(z)[v, v] ≤ C∥v∥2z. Moreover, Φ is C-smooth,
that is,

Φ(z2) ≤ Φ(z1) + ⟨∇Φ(z1), exp
−1
z1 z2⟩+

C

2
dist2(z1, z2).

Proof. We first compute the gradient of Φ:

∇Φ(z) =

{
0 r(z) ≤ R,
f ′(r(z))
r(z) ∇ k(z) r(z) > R.

By assumption, f ′(r(z))/r(z) ≥ 0, and hence, ⟨∇Φ(z), V (z)⟩z has the same sign as
⟨∇ k(z), V (z)⟩z if r(z) > R, and is zero if r(z) ≤ R. Thus, Φ and V are negatively
correlated.

To compute the Hessian of Φ, notice that HessΦ(z)[v, v] = ⟨∇v ∇Φ(z), v⟩z. Hence,

HessΦ(z)[v, v] = ∇v
f ′(r(z))

r(z)
· ⟨∇ k(z), v⟩z +

f ′(r(z))

r(z)
⟨∇v ∇ k(z), v⟩z

=

〈
∇ f ′(r(z))

r(z)
, v

〉
· ⟨∇ k(z), v⟩z︸ ︷︷ ︸

a○

+
f ′(r(z))

r(z)
Hess k(z)[v, v]︸ ︷︷ ︸

b○

.
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Here we use the same notation for directional derivative of a scalar function and the covariant
derivative. We first compute a○. We have

∇ f ′(r(z))

r(z)
=

(
f ′′(r(z))− f ′(r(z))

r(z)

)
1

r2(z)
∇ k(z),

hence,

a○ =

(
f ′′(r(z))− f ′(r(z))

r(z)

)
1

r2(z)
⟨∇ k(z), v⟩2z

≤ C2

r2(z)
∥∇ k(z)∥2z∥v∥2z

= C2 ∥v∥2z.

For b○, as x ctghx ≤ 1 + x for x ≥ 0, we obtain

b○ ≤ f ′(r(z))

r(z)
(1 + κr(z))∥v∥2z ≤ C1

(
1
R + κ

)
∥v∥2z.

Summing up everything, we obtain

HessΦ(z)[v, v] ≤ (C2 + C1/R+ C1κ)∥v∥2z =: C∥v∥2z,

that is, Φ has bounded Hessian. Moreover, Φ is smooth as a composition of smooth functions.
Let z1, z2 ∈ M be arbitrary, and let γ : [0, 1] → M be a geodesic connecting the two. By
Taylor’s remainder theorem, there exists some t ∈ (0, 1) such that

Φ(z2) = Φ(z1) + ⟨∇Φ(z1), γ̇(0)⟩z1 +
1

2
HessΦ(γ(t))[γ̇, γ̇].

Thus, by the Hessian upper bound, and noticing that ∥γ̇∥ = dist(z1, z2) and γ̇(0) = exp−1
z1 z2,

we get

Φ(z2) ≤ Φ(z1) + ⟨∇Φ(z1), exp
−1
z1 z2⟩+

C

2
dist2(z1, z2),

as desired. ■

We now proceed to the main argument, where we show how to use Φ to control the iterates
Zn. Letting Φn = Φ(Zn) and using Lemma A.1 we get

Φn+1 = Φ
(
expZn

(γnV̂n)
)

≤ Φn + γn⟨∇Φ(Zn), V̂n⟩Zn
+

Cγ2
n

2
∥V̂n∥2Zn

≤ Φn + γn⟨∇Φ(Zn), Un + bn⟩Zn
+

3Cγ2
n

2

[
∥V (Zn)∥2Zn

+ ∥Un∥2Zn
+ ∥bn∥2Zn

]
where the second line follows from negative correlation of Φ and V , the definition (1) of
V̂n, and the Cauchy-Schwartz inequality. Conditioning on Fn and taking expectations, and
invoking Cauchy-Schwartz and the fact that ∥∇Φ(Zn)∥ ≤ C1

r(Zn)
∥∇ k(Zn)∥ = C1, we obtain:

E[Φn+1 | Fn] ≤ Φn + γnC1Bn + 3
2Cγ2

n

[
G2 +B2

n + σ2
n

]
, (A.2)

where we have bounded the second moments by their respective upper bounds.
To proceed, let εn = γnC1Bn + (3/2)Cγ2

n

[
G2 +B2

n + σ2
n

]
denote the “residual” term in

(A.2). Notice that
∞∑

n=1

εn ≤ C1

∞∑
n=1

γnBn +
3C

2

∞∑
n=1

γ2
n(G

2 +B2
n + σ2

n),
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and hence, by (7) and dominated convergence theorem, we have that E[
∑

n εn] < ∞. Next,
consider the auxiliary process Φ̂n = Φn+E[

∑∞
k=n εk | Fn], adapted to the same filtration. By

(A.2), we have E[Φ̂n+1 | Fn] ≤ Φn + E[
∑∞

k=n εk | Fn] = Φ̂n−1, i.e., Φ̂n is a supermartingale
with respect to Fn. This shows that E[Φ̂n] ≤ E[Φ̂1] < ∞, i.e., Φ̂n is uniformly bounded in L1.
Hence, by Doob’s supermartingale convergence theorem [25, Theorem 2.5], it follows that
Φ̂n converges with probability 1 to some finite random limit Φ̂∞. In turn, since

∑
n εn < ∞

(a.s.), this implies that Φn = Φ̂n − E[
∑∞

k=n εn | Fn] also converges to some (random) finite
limit (a.s.). From this and the fact that Φn = Ω(r(Zn)), we deduce lim supn r(Zn) < ∞ as
claimed.

Lemma A.2. Let h : R → R be the function

h(x) =


0 x ≤ 0

e−1/x

e−1/x+e−1/(1−x) x ∈ (0, 1)

1 x ≥ 1

.

It is easy to see that h is C∞. For R > 0 define

f(x) =

∫ x

0

h(s−R) ds.

Then f is C∞, satisfies the conditions (A.1) with C1 = 1 and C2 = 2. In addition, one has
f(x) ≥ x− (R+ 1), and hence f(x) = Ω(x).

Proof. As h(x) ∈ [0, 1], we obtain that f ′(x) ∈ [0, 1]. By straight-forward computation, one
observes that h has bounded first derivative 0 ≤ h′(x) ≤ 2. Hence,

f ′′(x) = h′(x−R) ≤ 2.

Notice that for x ≥ R+ 1, f(x) =
∫ x

0
h(s−R) ds ≥

∫ x

R+1
1 ds = x− (R+ 1). ■

Appendix B. Preliminaries for the Proof of Theorem 1

In this appendix, we collect the necessary tools for the proof of Theorem 1.

B.1. The parallel frame system. Fix any two points z, z′ ∈ M, and consider two arbitrary
vectors v ∈ TzM and v′ ∈ Tz′M. There is a convenient frame system (i.e., a set of
bases for TzM and Tz′M) for comparing v and v′, defined as follows: Pick an arbitrary
orthonormal frame {ek}dk=1 for TzM. Since the parallel transport map is an isometry, the
vectors {e′k}

d
k=1

:= {Γz→z′ (ek)}dk=1 form an orthonormal basis for Tz′M. Consider the
component vectors of v, v′ in these two frames:

v ∈ Rd, vk := ⟨v, ek⟩z; v′ ∈ Rd, v′k := ⟨v′, e′k⟩z′ . (B.1)

We shall call (B.1) the parallel frame system for vectors v and v′ (the dependence on the
initial frame {ek}dk=1 is suppressed).

By virtue of parallel transport, in the parallel frame system we have

Γz→z′ (v)
k
= ⟨Γz→z′ (v) , e

′
k⟩z′

= ⟨v,Γz′→z (e
′
k)⟩z

= vk. (B.2)
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In the same vein, we have Γz′→z (v
′)
k
= v′k. Thus, since {ek}dk=1 is orthonormal, we may

write:

∥v′ − Γz→z′ (v)∥z = ∥v − Γz′→z (v
′)∥z′

= ∥v − v′ ∥2.
In other words, in the parallel frame system, the comparison of vectors living on different
tangent spaces is reduced to simply comparing the Euclidean norms of their components.
For instance, the L-Lipschitzness of V can be rephrased as:

∀z, z′ ∈ M, ∥V (z′)− V (z)∥2 ≤ Ldist(z, z′). (B.3)

B.2. The Fermi coordinate system. For any h, let Uh ⊂ TZ(t+h)M ≃ Rd be a neighborhood
of 0 on which the mapping

expZ(t+h)(·) : Uh → M (B.4)
is a diffeomorphism between Uh and expZ(t+h) (Uh). It is well-known that such a neighborhood
exists, and that the exponential map expZ(t+h) along with an arbitrary orthonormal frame at
TZ(t+h)M induces a local coordinate system on expZ(t+h) (Uh), called the normal coordinate
with center Z(t+ h) [40]. Normal coordinates are best suitable for comparing distances of
points on manifolds. For instance, if z̃′ is the normal coordinate of z′ with center z, then
dist(z, z′) = ∥z̃′∥2.

The Fermi coordinate [48], roughly speaking, is a system of normal coordinates “along
a curve”. To define it, fix an arbitrary orthonormal frame {ek(0)}dk=1 for TZ(t)M. We can
obtain a system of orthonormal frames {ek(h)}dk=1 by parallel transporting {ek(0)}dk=1 from
TZ(t)M to TZ(t+h)M along the curve h 7→ Z(t+ h). Let Uh ⊂ TZ(t+h)M be a neighborhood
of 0 defined as in (B.4), and set V :=

⋃
h{expZ(t+h) (Uh)} ⊂ M. Consider the mapping

Φ̃ : R+ × V → R+ × Rd (B.5)

by sending a point (h, z) ∈ R+ × V to (h, z̃) ∈ R+ ×Rd, where z̃ is the normal coordinate of
z with center Z(t+ h) and frame {ek(h)}dk=1. By virtue of the normal coordinate, we know
that Φ̃ is a diffeomorphism between R+ × V and a neighborhood of R+ × {0}. The mapping
Φ̃ and its inverse is called the Fermi coordinate system along the curve h 7→ Z(t+ h). In the
sequel, we will abuse the notation and simply call it the Fermi coordinate along Z(·).

The following property of the Fermi coordinate system plays a key role in our analysis:

Lemma B.1 ([24, 65]). Let γ be a differentiable curve on M such that γ(h) ∈ Uh for
all h ∈ R+, and let γ̃ be the curve of γ in the Fermi coordinate system along Z(·) (i.e.,
(h, γ̃(h)) = Φ̃(h, γ(h)). Then

˙̃γk(h) = γ̇k(h)− Żk(t+ h) +O
(
∥γ̃(h)∥22

)
.

Here, Żk(t+ h) := ⟨Ż(t+ h), ek(h)⟩Z(t+h) is the k-th component of Ż(t+ h) in the frame
{ek(h)}dk=1, and γ̇k(h) is the k-th component of γ̇(h) in the (possibly non-orthonormal) frame
induced by the normal coordinate with center Z(t+ h) and frame {ek(h)}dk=1.

B.3. Comparing the differential of exp and parallel transport. As will become clear in the
proof, the parallel frame system is convenient for comparing vectors at different points,
whereas the Fermi coordinate system is best suitable for comparing the distance between
curves, both features being essential to our proof. There is, however, a dichotomy: It is
known that if the Fermi coordinate in (B.5) is simultaneously a parallel frame system for
all points nearby the curve Z(·), then the underlying manifold M must be flat; i.e., the
Riemannian curvature tensor vanishes everywhere [28].
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Therefore, we would like to work with parallel frame and Fermi coordinate systems
separately, and compare the difference between the two whenever needed. To this end, we
will need the following technical lemma, whose proof can be found in [42, Theorem 3.12] or
[17, Proposition A.1]:

Lemma B.2 (Comparing d exp and parallel transport). Let M be a Riemannian manifold
whose sectional curvatures are in the interval [Klow,Kup], and let K = max (|Klow|, |Kup|).
For v ∈ TzM, consider the geodesic γ(t) = expz(tv). If γ is defined and has no interior
conjugate point on the interval [0, 1], then

∀v′ ∈ TzM, ∥Tv(v
′)− Γv(v

′)∥γ(1) ≤ K · fKlow(∥v∥z) · ∥v′⊥∥z (B.6)

where v′⊥ := v′ − ⟨v,v′⟩z
⟨v,v⟩z v is the component of v′ orthogonal to v, Tv = dexpz(v) is the

differential of the exponential map, and Γv denotes the parallel transport along γ from γ(0)
to γ(1). The function fKlow in (B.6) is defined as

fKlow(a) =


r2

6 , Klow = 0

r2
(
1− sin(a/r)

a/r

)
, Klow = 1

r2 > 0

r2
(

sinh(a/r)
a/r − 1

)
, Klow = − 1

r2 < 0

. (B.7)

Moreover, the function fKlow is dominated by the case Klow < 0: For all K ≥ |Klow| and
a ∈ R+,

fKlow(a) ≤ f−K(a). (B.8)
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