
HAL Id: hal-03874051
https://hal.science/hal-03874051v1

Preprint submitted on 27 Nov 2022 (v1), last revised 16 Mar 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The ICO Tool Suite: Optimizing Highly Configurable
Systems

Edouard Guégain, Amirhosein Taherkordi, Clément Quinton

To cite this version:
Edouard Guégain, Amirhosein Taherkordi, Clément Quinton. The ICO Tool Suite: Optimizing Highly
Configurable Systems. 2022. �hal-03874051v1�

https://hal.science/hal-03874051v1
https://hal.archives-ouvertes.fr


The ICO Tool Suite:
Optimizing Highly Configurable Systems

Edouard Guégain, Clément Quinton
Univ. Lille, CNRS, Inria

Centrale Lille, UMR 9189 CRIStAL
F-59000 Lille, France

{edouard.guegain;clement.quinton}@univ-lille.fr

Abstract—Dealing with large configuration spaces is a complex
task for developers, especially when manually searching for the
configuration that best suits some given requirements. In this
paper, we present the ICO tool suite, a set of software components
designed to help developers optimize their configuration w.r.t a set
of performance indicators. This tool suite can be used through a
command-line client or an Eclipse plugin, while the loose coupling
with its core library make it flexible-enough to be integrated into
existing tools. ICO is assessed by evaluating the time it saves to
users over a manual optimization.

Index Terms—tools, software, variability, optimization, perfor-
mance

I. INTRODUCTION

Our society relies on numerous software systems that ex-
hibit a large set of functionalities, options and parameters. This
variability aims at addressing various needs of our daily lives
and satisfy as many requirements as possible. That is, modern
software systems can exhibit millions of configurations [1],
i.e., a large configuration space. As a developer, managing
such highly configurable systems comes with the challenges
of (i) dealing with the huge number of configurations and (ii)
providing the best possible software to end-users.

A practical way to encode large configuration spaces is
by means of feature models [2]. A feature model, such as
the one in Figure 2a, is a tree of hierarchically organized
features which describes – with the help of cross-tree con-
straints expressing inter-feature dependencies – the possible
and allowed feature combinations, i.e., the software configu-
rations. Automated analysis of feature models provides support
for checking the validity of a configurations, in particular
regarding the set of features developers decide to include or
exclude from such configurations [3].

Although the configuration satisfying the developer’s re-
quirements (i.e., containing all the wanted features) may be
valid, it is not possible to ensure that this configuration is
optimal regarding a defined performance indicator. That is, it
is not possible to manually ensure that, among millions of
other valid configurations, the current configuration performs
better, e.g., in terms of memory footprint, response time, or
energy consumption.

In this paper, we thus propose the Iterative Configuration
Optimizer (ICO) tool suite. ICO provides developers with an
automated support for finding configurations that comply with
their functional requirements (i.e., features that have to be

included or excluded) while efficiently complying with some
given performance indicators.

In the remainder of the paper, Section II explains the moti-
vations behind the development of ICO. Section III describes
the architecture and components of the tool suite. Section IV
shows the experiments we conducted to evaluate ICO while
Section V concludes the paper.

II. WHY ICO?
Managing software variability and performance is a difficult

task: configuration spaces can be large and manual inspection
of the performance of each configuration is not a viable
option. There has been an effort from the software variability
community to address these issues by providing various tool
supports [4]–[7]. However such tools usually exhibit one of
the two following drawbacks:

• Ad-hoc mechanisms and algorithms, requiring an upfront
development investment to be used in different contexts
or with different indicators [4]–[6];

• Large all-in-one tools, built with the intent of dealing
with any project, but requiring (i) to go through a steep
learning curve and (ii) to deal with a lot of technical
requirements [7].

Both industrial and academic practitioners and researchers
are thus missing a simple, turnkey solution to manage and
optimize their software configurations. To address the limi-
tations previously described, we therefore propose a generic,
easy-to-use and lightweight tool suite, ICO.

ICO is built upon the approach presented in [8]. This
approach was designed to compute the energy consumption
of features and aims at optimizing the energy consumption
of configurations containing such features. ICO implements
and extends this approach. In particular, the scope of ICO
is extended to optimize any functional or non-functional per-
formance indicator. Moreover, ICO supports multi-objective
optimization with performances composed of several indica-
tors, e.g., energy consumption and memory footprint. In the
remainder of the paper, performance indicators is used as a
placeholder referring to either a unique indicator or a com-
position of indicators. Finally, while the approach described
in [8] is tested against one use case, ICO is domain agnostic
and can be used with any configurable software represented
by a feature model.



III. THE ICO TOOL SUITE

The ICO tool suite1 is a set of software components inter-
acting together to help developers optimize the configuration
– w.r.t a performance indicators – of the software being
developed. The ICO tool suite is composed of three tools:

• ICOLIB, a library that perform the optimizations;
• ICOCLI, a command-line tool to interact with ICOLIB;
• ICOPLUGIN, an Eclipse plugin to interact with ICOLIB.

Configuration
Feature model

Performance indicators

ICOPLUGINICOCLI

ICOLIB

FeatureIDE

Optimized configuration

Fig. 1: The architecture of the ICO tool suite.

Figure 1 presents the architecture of ICO. ICO executes
user’s instructions regarding (i) the configuration to optimize,
(ii) the feature model encoding the configuration space of the
software, and (iii) its related performance data files.

The architecture of the tool suite is flexible enough to
be extended by any front-end components interacting with
ICOLIB. These components take as input performance data
as csv files. Performance files can describe the performance
of individual features as well as the performance of pairs
of features, in order to take feature interactions into ac-
count [9], [10]. Through either ICOCLI or ICOPLUGIN, user’s
instructions are sent to ICOLIB which in turns relies on the
FeatureIDE library [11] to perform an automated analysis of
the configurations. In particular, the library checks the validity
of the resulting optimized configurations returned by ICOLIB.
Relying on this library also makes ICO more versatile, as
it provides support for a wide range of feature model and
configuration file formats, such as CNF and DIMACS for
feature models or XML and Equation for configurations.

Based on user’s inputs (e.g., features that have to be
included or excluded for functional reasons), ICOLIB pro-
vides suggestions to improve the current configuration by
maximizing its performance indicators. These suggestions are
provided both for a completed configuration (e.g., suggesting
to replace features), or dynamically while configuring by
suggesting which feature should be added next to make the
configuration both valid and more efficient. As such, ICO can
thus be considered both as an optimizer and a recommender
system [12], [13].

1The source code is available at https://gitlab.inria.fr/ico

A. ICOlib

ICOLIB is the central component of the tool suite. It
provides a facade exposing the API handling all operations
that can be performed with ICO: load a project, display
current performances, manage constraints (i.e., the lists of
features that have to be included or excluded from the con-
figuration), list or apply improvement suggestions and
save the new configuration. While managing constraints and
listing/applying suggestions are core functionalities of ICO,
the processes of loading, validating and saving configuration
are delegated to the FeatureIDE library.

The time required to generate suggestions is highly
dependant on the structure of the feature model, espe-
cially on the number of features and cross-tree constraints
(and their complexity). However, as suggestions are in-
dependent from each other, their generation can be par-
allelized. ICOLIB current Java implementation relies on
Stream.parallelStream() for such a task.

Two ICOLIB clients are provided: the first one as an Eclipse
Plugin (ICOPLUGIN), and the second one as a command line
tool (ICOCLI).

B. ICOPlugin

ICOPLUGIN is an Eclipse2 plugin developed to interact with
ICOLIB and implemented as an Eclipse view. Whenever a
configuration file is selected by the user, the ICOPLUGIN view
displays the five following tabs:

• Features, to list and apply feature-based suggestions;
• Interactions, to list and apply interaction-based sugges-

tions;
• Constraints, to manage the exclusion and inclusion of

features;
• Details, to monitor the current configuration perfor-

mances;
• Logs, to monitor ICOLIB execution logs.

Both Features and Interactions suggestion tabs give access
to the Apply all suggestions and Find suggestions functional-
ities of their respective mode. When listed, each suggestion
exhibits an Apply button to let the developer perform the
proposed suggestion. Figure 2 shows the Interactions tab of
ICOPLUGIN. The configuration to optimize belongs to the
configuration space encoded by the feature model presented in
Figure 2a. Figure 2b is a screenshot of the Interactions tab of
ICOPLUGIN providing the user with a list of suggestions. The
suggestions are ordered according to their improvement rate,
i.e., applying the first suggestion will have the most effective
impact regarding the considered performance indicators. Each
suggestion can be applied individually by clicking on its
related Apply button. The Apply all suggestions button is used
to apply all the best suggestions in an automated way, by
recomputing new suggestions for the improved configuration
and applying the best suggestion recursively.

2https://www.eclipse.org/

https://gitlab.inria.fr/ico
https://www.eclipse.org/


(a) An excerpt of a feature model.

(b) The interaction suggestion tab of ICOPLUGINwhile optimizing a configuration from the feature model.

Fig. 2: Usage of ICOPLUGIN

C. ICOCLI

Another mean to interact with ICOLIB is by using ICO-
CLI, a lightweight command line interface program. ICOCLI
proposes two modes: the single-line mode, where instructions
are given as parameters, and the interactive mode where
instructions are given sequentially by the developer in a shell.
ICOCLI can also be used by mixing the two modes, such as
giving some instructions as parameters (e.g., to load a project)
while the remaining ones are computed in interactive mode.
The single-line mode is relevant for automation (e.g., for
CI/CD or in an automated process) or to perform a single task,
whereas the interactive mode provides a more human-friendly
interaction with the tool suite, enabling an in-depth exploration
of the variability of the software and its performances, e.g.,
comparing the performance of features and interactions or the
impact of constraints on suggestions.

Figure 3 presents the same set of tasks computed in the
three different modes. The developer loads the software project
./project, the feature model ./project/model.xml and
the configuration file ./project/configs/default.xml

respectively with parameters -P, -M and -C. Then, features
feat1 and feat2 are added to the exclusion list and feature
feat3 is added to the inclusion list using parameters -e and
-i in single-line mode and the exclude/include commands
in interactive mode. All the best feature-related suggestions are
then applied with parameters -F -A in single-line mode or by
using the apply -F -A command in interactive mode. Finally
the configuration ./configs/default.xml is overwritten
by -S in single-line mode or save in interactive mode. The
developer quits the program with exit in interactive and

mixed modes, while in single-line mode the -N parameter
prevents the shell from opening.

With the change command (not shown in Figure 3), ICO-
CLI also supports arbitrary modifications of the configuration
and displays the resulting impact of such modifications on the
configuration’s performance and validity. These modifications
can take the form of addition, removal or replacement of user-
defined features.

Listing 1: Single-line mode
./ICOcli -P ./project -M model.xml -C

↪→ configs/default.xml -e feat1,feat2 -i feat3 -F
↪→ -A -S -N

Listing 2: Interactive mode
./ICOcli
> load -P ./project -M model.xml -C configs/default.xml
> exclude --add feat1,feat2
> include --add feat3
> apply -F -A
> save
> exit

Listing 3: Mixed mode
./ICOcli -P ./project -M model.xml -C

↪→ configs/default.xml
> exclude --add feat1,feat2
> include --add feat3
> apply -F -A
> save
> exit

Fig. 3: The three modes of ICOCLI.



IV. EVALUATION

In our previous work [8], we conducted an empirical evalua-
tion to assess the effectiveness of our optimization algorithms
when measuring and optimizing energy consumption of an
highly configurable systems, namely RobocodeSPL. In this pa-
per, for assessing ICO which implements this algorithms, we
extend that previous evaluation with additional experiments.

We conducted a survey to determine how developers could
benefit from using ICO in their everyday work when dealing
with a large configuration space and trying to find the best
suitable configuration with respect to their functional (i.e.,
features to be included or excluded) and non-functional (i.e.,
performance indicators) requirements. Precisely, 15 software
developers, with 5 to 20 years of professional experience, were
asked to perform the same experiment with and without ICO.
We provided the participants with a configuration file and
the following question: ”How to improve the configuration of
this software?”. The experiment consisting in comparing the
time saved by optimizing a configuration with ICO instead
of manually. Specifically, the users were given two tasks:
improving a specific configuration a first time w.r.t feature
performances and a second time w.r.t interaction performances.
They were asked to perform these two tasks by relying on
a spreadsheet containing the performance data, and then by
using ICOPLUGIN.

The participants received an explanation of the usage of the
spreadsheet and ICOPLUGIN, and they performed the tasks a
first time on a toy configuration before the actual evaluation.

Task

Avg. time
Without ICO With ICO Gain

Feature-wise 131,9s 14,3s 89%

Interaction-wise 164,7s 10,1s 94%

TABLE I: The time to optimize a configuration by the inter-
viewee.

Table I presents the results of this evaluation. Regarding
the feature-wise optimization, the average time to perform
the experiment was 131.9 seconds without ICO and 14,3
seconds with ICO, resulting in a 82% time reduction. As of the
interaction-wise optimization, the average time to perform the
experiment was 164,7 seconds without ICO and 10,1 seconds
with ICO, i.e., a 94% time reduction. The average time taken
to perform the experiment without ICO increased between the
feature-wise optimization and the interaction-wise one, as the
latter is more complicated. Contrarily, it remained consistent
when using ICO as the both optimization take the form of a
similar task in ICOPLUGIN.

ICO thus offers substantial time savings on the optimization
process, while requiring a very minimal learning step. Such
results tend to confirm the relevance of ICO as an easily
accessible optimization tool.

V. CONCLUSION

In this paper, we presented ICO, a tool suite designed to
improve the performance of a configuration. Our approach
extends our previous work [8] and provides developers with
suggestions to improve the performances of their configura-
tions. We conducted a preliminary evaluation showing how
ICO can be used in practice by developers to save time during
the configuration and optimization of their software. As future
work, we plan to develop a plugin to be integrated with IntelliJ
IDEA to address a wider range of developers and we are
considering improving the parallelization process (used for
generating suggestions) by leveraging GPU with the CUDA
framework [14], in order to tackle larger feature models.

ACKNOWLEDGMENTS

This work was funded by the ANR-19-CE25-0003-01
KOALA project.

REFERENCES

[1] H. Martin, M. Acher, L. Lesoil, J. M. Jezequel, D. E. Khelladi, J. A.
Pereira, Transfer learning across variants and versions : The case of
linux kernel size, IEEE Transactions on Software Engineering (2021).

[2] M. Lienhardt, F. Damiani, E. B. Johnsen, J. Mauro, Lazy product dis-
covery in huge configuration spaces, in: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, ICSE ’20,
Association for Computing Machinery, New York, NY, USA, 2020, p.
1509–1521.

[3] D. Benavides, S. Segura, A. Ruiz-Cortés, Automated analysis of feature
models 20 years later: A literature review, Information Systems 35
(2010) 615–636.

[4] J. Rodas-Silva, J. A. Galindo, J. Garcia-Gutierrez, D. Benavides,
Selection of software product line implementation components using
recommender systems: An application to wordpress, IEEE Access 7
(2019) 69226–69245.

[5] J. Guo, J. White, G. Wang, J. Li, Y. Wang, A genetic algorithm for
optimized feature selection with resource constraints in software product
lines, Journal of Systems and Software 84 (2011).

[6] X. Lian, L. Zhang, J. Jiang, W. Goss, An approach for optimized feature
selection in large-scale software product lines, Journal of Systems and
Software 137 (2018) 636–651.

[7] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, S. Apel,
G. Saake, Spl conqueror: Toward optimization of non-functional proper-
ties in software product lines, Software Quality Journal (2012) 487–517.

[8] Édouard Guégain, C. Quinton, R. Rouvoy, On reducing the energy
consumption of software product lines, Proceedings of the 25th ACM
International Systems and Software Product Line Conference - Volume
A (2021) 89–99.

[9] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. Batory,
M. Rosenmüller, G. Saake, Predicting performance via automated
feature-interaction detection, Proceedings of the 34th International Con-
ference on Software Engineering (2012) 167–177.

[10] M. Calder, A. Miller, Feature interaction detection by pairwise analysis
of ltl properties—a case study, Formal Methods in System Design 28
(2006) 213–261.

[11] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, T. Leich,
Featureide: An extensible framework for feature-oriented software de-
velopment, Science of Computer Programming 79 (2014) 70–85.

[12] J. A. Pereira, P. Matuszyk, S. Krieter, M. Spiliopoulou, G. Saake,
A feature-based personalized recommender system for product-line
configuration, Proceedings of the 2016 ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences
(2016).

[13] J. A. Pereira, S. Schulze, S. Krieter, M. Ribeiro, G. Saake, A context-
aware recommender system for extended software product line config-
urations, Proceedings of the 12th International Workshop on Variability
Modelling of Software-Intensive Systems (2018).

[14] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, J. C.
Phillips, Gpu computing, Proceedings of the IEEE 96 (2008) 879–899.


	Introduction
	Why ICO?
	The ICO Tool Suite
	ICOlib
	ICOPlugin
	ICOcli

	Evaluation
	Conclusion
	References

