
HAL Id: hal-03874050
https://hal.science/hal-03874050v1

Submitted on 28 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Goal-oriented quantization: Applications to convex cost
functions with polyhedral decision space

Hang Zou, Yifei Sun, Chao Zhang, Samson Lasaulce, Michel Kieffer, Lucas
Saludjian

To cite this version:
Hang Zou, Yifei Sun, Chao Zhang, Samson Lasaulce, Michel Kieffer, et al.. Goal-oriented quantization:
Applications to convex cost functions with polyhedral decision space. 20th International Symposium
on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks, WiOpt 2022, Sep 2022,
Turin, Italy. pp.291-297, �10.23919/WiOpt56218.2022.9930620�. �hal-03874050�

https://hal.science/hal-03874050v1
https://hal.archives-ouvertes.fr


Goal-Oriented Quantization: Applications to Convex
Cost Functions with Polyhedral Decision Space

Hang Zou∗, Yifei Sun∗, Chao Zhang†, Samson Lasaulce‡, Michel Kieffer∗ and Lucas Saludjian§
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Abstract—In this paper, the situation in which a receiver has
to execute a task from a quantized version of the information
source of interest is considered. The task is modeled by the
minimization problem of a general cost function f(x; g) for
which the decision x has to be taken from quantized parameters
g. Especially, we focus on the particular scenario where the
decision space is a convex polyhedron with cost function being
convex. Furthermore, we propose a new goal-oriented quantization
algorithm by combining the procedure of iteratively expanding
and reinstating decision set together with Jensen’s inequality.
Proposed method could also be extended to some non-convex
scenarios, namely, weakly convex cost function whose eigenvalues
of Hessian matrix w.r.t decision x are lower-bounded. Numerical
results show that proposed algorithm can considerably reduce the
optimality loss (OL) compared to conventional approaches or the
required number of quantization bits to achieve a certain relative
optimality loss.

I. INTRODUCTION

Most advances in wireless communications are deeply based
on the idea “reproducing at one point either exactly or ap-
proximately a message selected at another point” proposed
in Shannon’s locus classicus on information theory [1]. Its
concentration on merely the reliability requirement of com-
munication (e.g., the bit error rate, the packet error rate, the
outage probability) starts to show its limitations in meeting
the ambitious goals set for the sixth generation (6G) system
[2]–[4] in which the ignored semantic aspects of transmitted
information are believed to bring significant gain. Besides
classical paradigm could be highly inefficient in situations
where communication systems are merely designed to execute a
given task known both for transmitter and receiver. For instance,
transmitting an image of 1 Mbyte to a receiver whose utility
only depends on the absence/presence of a given object in the
image might be extremely extravagant since the transmission
of that particular one bit carrying the information of existence
is sufficient to accomplish the task. This simple but insightful
example motivates us to make a communication task- or goal-
oriented (GO).

Different aspects of goal-oriented communication (GOC) are
worth exploring and remain open. In this paper, we restrict our
attention to the signal quantization problem being crucial for the
design of a signal transmitter. The goal-oriented quantization
(GOQ) problem is of great importance for many applications
in various domains. First, it appears in controlled networks
that are built on a communication network. For example, a

smart meter may have to quantize or cluster the measured
series for complexity or privacy reasons [5] in smart grid.
Second, GOQ could also be formulated for some important
wireless resources allocation (RA) problems, e.g., the limited-
rate feedback quantization problem in [6]–[8] where transmitter
allocates resources based on some quantized information from
the receivers/sensors through a feedback channel. The idea of
sending minimum number of bits to execute the task could be a
competitive candidate for the upcoming 6G system to increase
largely the spectral efficiency (SE). Third, there exist some
early works on the problem of adapting the quantizer to the
task. By combining the system task with the quantization pro-
cess, [10] [11] investigated the influence of scalar quantization
on specific tasks and characterized the limiting performance
of recovering a lower dimensional linear transformation of the
analog signal and reconstruction of quadratic function of re-
ceived signals. Finally the conventional quantization paradigm
in [9] could also be regarded as a special case of GOQ by
taking the minimization of some distortion measures between
the original signal and its representation as the system task.
Therefore goal-oriented quantization is also a general frame-
work for communication systems with or without being goal-
oriented.

Nevertheless, the drawback of almost all existing works is
that either the impact of quantization on a given performance
metric is studied or a very specific performance metric is
considered. In contrast with this line of research works, we
introduce a general framework for GOQ. The task or goal
of the receiver is chosen to be modeled by a generic op-
timization problem (OP) which contains both decision vari-
ables x and parameters g. One fundamental difference of
this framework compared to existing works is that both for
the performance analysis and the design, the goal function
is a generic cost function f(x; g), x being the decision to
be made based on a quantized version of the parameters g.
The goal-oriented quantization paradigm is illustrated in Fig.
1. Another possibility of making quantization goal-oriented
is related to recent works on semantic communications [16]–
[24] where semantics are employed here with its etymological
meaning, that of significance. It can be seen as a measure of the
usefulness/importance of messages with respect to the system
task [16]. Reference [18] indicated that by properly recognizing
and extracting the relevant information to the system task,



the communication efficiency and reliability can be enhanced
without using more bandwidth. By introducing intrinsic states
and extrinsic observations, [19] uses indirect rate-distortion
theory to characterize the reconstruction error of semantic
information induced by lossy source coding schemes. Learning
tools have also been implemented to extract important attributes
in semantic communications in [22]–[24].

The closest contributions to the present work have been
produced by the authors through [26]–[29]. To the best of the
authors knowledge, the concept of GOQ has been introduced
for the first time in [26] and applied in other contexts in [27]–
[29]. Numerical results are provided and the focus is on a
Lloyd-Max (LM)-type algorithm [30] [31] in these references.
Despite the fact that proposed goal-oriented quantizers could
reduce the number of quantization bits tremendously compared
to conventional goal-ignorant quantizer for some cost functions,
the works supported by theoretical derivations are rare. It is ob-
served that hardness of goal-oriented quantization varies from
cost functions to cost functions. Therefore it is natural to study
the impact of regularity properties of cost functions on GOQ
problem, e.g., different types of generalized convexity (pseudo-
convexity, quasi-convexity and weak convexity) or Lipschitz
continuity. For instance, it is shown that a log-type cost function
is remarkably easier to quantize compared to a exp-type cost
function in [27]. To start with, in this paper we will focus on
a special case of GOQ problem where the decision space is a
convex polyhedron with cost function being convex. This type
of GOQ problem is of great importance in the various domains,
e.g., power allocation problems in [32], [33].

The rest of paper is organized as the following. In Sec. II, the
goal-oriented quantization problem with convex cost function
and convex polyhedral decision space is formulated. A new
algorithm by iteratively expanding and reinstating the decision
set is proposed and generalized to weakly convex cost functions
as well in Sec. III. Numerical results are presented in Sec. IV
to show the potential benefit of proposed method. Finally Sec.
V concludes this paper.

Fig. 1. Goal-oriented quantization paradigm

II. PROBLEM FORMULATION

Definition II.1. Let M ≥ 1 be an integer. An M−quantizer
QM is fully determined by a piecewise constant function QM :
G → G that is defined by QM (g) = zm for all zm ∈ Gm where:
m ∈ {1, ...,M}, the sets G1, ...,GM are called the quantization

regions and define a partition of G, and the points z1, ..., zM
are called the region representatives.

Without loss of generality we assume that G ⊂ R`2 with
`2 representing the dimension of the parameter space. Goal-
oriented quantization consists in assuming that the task to be
performed by the decision-making entity (e.g., the transmit-
ter) can be represented by a standard optimization problem
(OP), that is, a given function has to be minimized under
some constraints. Therefore, the objective is to minimize a
certain function or performance metric f(x; g) (e.g., some cost
or expense functions) with respect to the decision variable
x ∈ X ⊂ R`1 , where `1 ≥ 1 represents the dimension of
the decision space. This mathematically writes as the following
standard form OP:

minimize
x∈X

f (x; g) (1)

Denote χ(g) an optimal solution of the above OP, i.e.,

χ(g) ∈ arg min
x∈X

f(x; g), (2)

For a fixed probability density function (p.d.f.) φ(g) of the
parameter g, to evaluate the performance of the goal-oriented
quantization, we can assess the absolute optimality loss (OL)
induced by quantization error of quantizer QM as follows:

L (QM ) = Eg [f (χ (QM (g)) ; g)− f (χ (g) ; g)]

=

∫
g∈G

[f (χ (QM (g)) ; g)− f (χ (g) ; g)]φ (g) dg

(3)

Furthermore, we denote di , χ (zi) the decision for i-th
quantization region with ∀1 ≤ i ≤ M and the decision set
DM , {d1, . . . , dM} associated with quantizer QM . To this
end, the GOQ problem is to solve the OP formulated in Eq. 4,
i.e., to find the optimal goal-oriented quantizer minimizing the
OL:

min
{dm},{Gm}

M∑
m=1

∫
g∈Gm

[f (dm; g)− f (χ (g) ; g)]φ(g)dg, (4)

where the m-th quantization region is defined as:

Gm =
{
g ∈ Rd2 : f (dm; g) ≤ f (dn; g) , ∀n 6= m

}
(5)

This OP can be interpreted to jointly find the optimal quanti-
zation region with its corresponding decision (or its represen-
tative). Interestingly, it can be checked that the conventional
quantization approach can be treated as a special case of the
OP defined by (4) by specializing f as f(x; g) = ‖x−g‖2, ‖.‖
standing for the Euclidean norm.

However, in many practical applications, it could be fre-
quently met that the probability distribution of parameter is
unknown or too difficult to obtain. In this paper, we assume
only some realizations of parameters are available instead
of its statistical model. Therefore we consider an empirical



version of OL as our performance metric for a set of parameter
samples T =

{
g(t)
}T
t=1

:

L (DM ; T )

=
1

T

T∑
t=1

M∑
m=1

[
f
(
dm; g(t)

)
− f

(
χ
(
g(t)
)

; g(t)
)]

1{g(t)∈Gm}
(6)

where 1{·} is an indicator function. Different from OP in (4)
which could be equivalent to solve a NP-hard problem, one only
needs to find the decision set minimizing the empirical OL since
the corresponding quantization region for parameter samples
could be obtained by exhaustive comparison between different
decisions. Therefore, it is sufficient to solve the following OP
taking empirical OL as our performance metric:

min
DM

1

T

∑
t,m

[
f
(
dm; g(t)

)
− f

(
χ
(
g(t)
)

; g(t)
)]

1{g(t)∈Gm}
(7)

Additionally we assume some extra assumptions to make our
GOQ problem more traceable:

1) decision space X is a convex polyhedron represented by
a graph (V,E). V = {v1, . . . , vP } with vi is called the
vertex of the polyhedron.

2) cost function is a convex function w.r.t. decision x.

III. PROPOSED ALGORITHM

We first present our general idea about how to find the
optimal decision set minimizing the empirical OL. For a
decision set DM , we first expand it to a larger decision set
DM+N with N ∈ N+. Then we select the optimal subset D′

M

of DM+N which minimizes the empirical optimality loss. It is
obvious that we always have L

(
D′

M ; T
)
≤ L (DM ; T ). Then

the convergence of this method is guaranteed by repeatedly
expanding and then selecting the optimal subset of decisions.
Therefore it only remains to solve the problem of expanding
a decision set DM to DM+N in an efficient way. For notation
convention we denote the new expanded decision set as:

DM+N = {d1, . . . , dM , ζ1, . . . , ζN}

= DM
⋃
XN , (8)

where XN = {ζ1, . . . , ζN} is obviously the set of new deci-
sions. Since the decision space is a convex polyhedron, each
new decision ζn can be expressed as the convex combination of
vertices: ζn =

∑P
i=1 Ainvi with

∑P
i=1 Ain = 1,∀1 ≤ n ≤ N

with matrix A ∈ RP×N+ . Define the following partition of the
parameter space G:

Gmn , {g |χ̂ (g|DM ) = dm, χ̂ (g|DM+N ) = ζn } (9)

where
χ̂ (g|D) ∈ arg min

x∈D
f (x; g) (10)

The region Gmn is the set of all parameter so that its corre-
sponding optimal decision switches from dm to ζn once the

decision set DM is replaced by DM+N . For DM+N , one can
easily have:

L (DM ; T )− L (DM+N ; T )

=
1

T

∑
t,m,n

[
f
(
dm; g(t)

)
− f

(
ζn; g(t)

)]
1{g(t)∈Gmn} (11)

Applying Jensen’s inequality, one thus has

L (DM ; T )− L (DM+N ; T )

=
1

T

∑
t,m,n

[
f
(
dm; g(t)

)
− f

(
ζn; g(t)

)]
1{g(t)∈Gmn}

=
1

T

∑
t,m,n

[
f
(
dm; g(t)

)
− f

(∑
i

Ainvi; g
(t)

)]
1{g(t)∈Gmn}

≥ 1

T

∑
t,m,n

[
f
(
dm; g(t)

)
−
∑
i

Ainf
(
vi; g

(t)
)]

1{g(t)∈Gmn}

=
1

T

[∑
t,m,n

f
(
dm; g(t)

)
−
∑

t,m,n,i

Ainf
(
vi; g

(t)
)]

1{g(t)∈Gmn}

(12)

Introduce matrix W ∈ RT×M with Wtm = f
(
dm; g(t)

)
and a constant matrix U ∈ RT×P with Uti = f

(
vi; g

(t)
)
.

We further define a tensor function B (A) ∈ RT×M×N with
Btmn (A) = 1{g(t)∈Gmn}. By writing A = (A1, . . . ,AM ),
B = (B11, . . . ,BMN ) and U = (U1, . . . ,UP ) in form of
columns, the optimality loss decay ∆L (A;DM ) by expanding
DM to DM+N with XN representing by A could be lower
bounded:

∆L (A;DM )

= L (QM ; T )− L (QM+N ; T )

≥ 1

T

∑
n,m

WT
mBmn (A)− 1

T

∑
i,n

[
Ain

∑
m

UT
i Bmn (A)

]
︸ ︷︷ ︸

∆L̂(A;DM )

(13)

It is clear that one should make ∆L̂ (A;DM ) as large as
possible to expand the decision set efficiently. The search space
for A is the set of N -fold unit simplex of dimension P denoted
as 4NP :

4NP ,

{
Ain :

P∑
i=1

Ain = 1,∀1 ≤ n ≤ N

}
(14)

Before explain how to maximize ∆L̂ (A;DM ), we introduce
an important conception for matrix A:

Definition III.1. (Equivalent Relation) For a given parameter
sample set T and A,A′ ∈ 4NP , we denote A′ ∼T A if and only
if B (A) = B

(
A′
)
; otherwise we denote A � A′. The equivalent

class of A is denoted as [A]T .

One can easily prove the defined operation ∼T is an equiv-
alent relation for any parameter sample set T . Two decision
sets (matrix) are equivalent for a given parameter sample set
T means that their images under mapping B are exactly the



same. If the parameter sample set is unchanging, we will omit
it for both equivalent operator and equivalent class to simplify
the notation. One can easily prove that

∆L̂ (C;DM )−∆L̂ (A;DM )

=
1

T

∑
i,n

[
(Ain − Cin)

∑
m

UT
i Bmn (A)

]
, for ∀C ∼ A. (15)

The meaning of Eq. 15 is that ∆L̂ (· ;DM ) is a simple linear
function within a given equivalent class [A] for tensor B being
invariant. Therefore maximizing ∆L̂ (· ;DM ) is relatively easy
in each equivalent class of matrix A. Besides, we will show
that it is sufficient to consider singleton-expansion for decision
set. For a matrix A within a given equivalent class, we denote
y = [y1, . . . yP ]

T ∈ RP×1 with yi =
∑
m UT

i Bmn (A), then
one has

∆L̂ (A;DM ) =
1

T

∑
n,m

WT
mBmn (A)− 1

T

∑
i

yi

(∑
n

Ain

)
(16)

By introducing a vector α = [α1, . . . , αP ]
T with αi =

1
N

∑
n Ain, one can easily find that the decision represented

by α plays the same role as N decisions represented by matrix
A. The reason for this degeneration is due to the independence
of new decisions maximizing ∆L̂ (· ;DM ). Thus we will only
consider single-decision expansion for decision set in the rest
of paper. Therefore we use vector α to represent the single new
decision ζ1 instead of matrix A. With a little abuse of notation,
tensor B degenerates to a matrix defined as B (α) ∈ RT×M
with Btm (α) = 1

{
g(t) ∈ Gm1

}
. And we have

∆L̂ (α;DM )

=
1

T

∑
m

WT
mBm (α)− 1

T

∑
i

αi
∑
m

UT
i Bm (α) (17)

Even we have shown that singleton expansion is sufficient,
it is still cumbersome to maximize ∆L̂ (α;DM ) globally for
two reasons. First, it ts obvious that the number of equivalent
class for α depends on the number of parameter samples T .
In worst case, we could have |[α]| = 2T which entails that the
direct exhaustive search for matrix B leads to an exponential
complexity of O

(
2T
)
. Second, the optimal solution within

equivalent class is always on the boundary of equivalent class
which is hard to determine or at least implicitly given. So
instead of directly searching the optimal solution, we introduce
the conception of greedy improvement to give a sub-optimal
direction.

Definition III.2. (Greedy Improvement) Define α† for α
with yi =

∑
m UT

i Bm (α) s.t. α† − α = νei? with ν =
sup {c ≥ 0 |α ∼ α+ cei? } and i? ∈ arg min

i
yi; ei is the P -

tuple with all components equal to 0, except the i-th.

The meaning of greedy improvement is that this improve-
ment minimizes ∆L̂ (α; T ) along the deepest-gradient-descent
direction within equivalent class of α. However, it is still cum-
bersome to determine the exact value of ν since the boundary

of equivalent is generally implicitly given. Fortunately, this fact
never stops us to construct an algorithm to find the solution for
OP in (7). The basic idea is that if α is over-improved, i.e.,
∃ν′ > ν and α′ = α+ νei? s.t. ∆L̂

(
α

′
; T
)
< ∆L̂ (α; T ) and

α′ � α, then we do find a solution α′ better than α outside
of the equivalent class of α which means that one can further
improve α along the greedy direction; Otherwise, the result
of further move along the greedy direction is not clear, then
a new search direction should be created for α′. Performance
(empirical OL) for all obtained candidates is evaluated finally
to find the best solution for each iteration. Combining this
technique with the idea of expanding and then reinstating the
decision results in proposed algorithm summarized in alg. 1.

Algorithm 1: Expanding-Reinstating Algorithm

1 Initialization: Number of decisions M ; initialize D(0)
M ;

choose number of expanding decisions N , step rate ε
and error tolerance δ.

2 for t = 1 to Tex do
3 for m = M to M +N − 1 do
4 Find α(0) s.t. ∆L

(
α(0);D(t−1)

m

)
≥ 0

β(0) ← α(0);

5 G(0) ← ∆L
(
α(0);D(t−1)

m

)
;

6 for i = 0 to ITER do
7 for j = 1 to P do
8 yj ←

∑
m UT

j Bm
(
α(i)

)
;

9 j? ∈ arg min1≤k≤P yk;
10 γ(0) ← α(i);
11 for j = 1 to J do
12 γ(j) ← γ(j−1) + εej? ;
13 if γ(j) � γ(j−1) then
14 α(i+1) ← γ(j);

15 if ∆L̂
(
γ(j−1);D(t−1)

m

)
>

∆L̂
(
γ(j);D(t−1)

m

)
then

16 G(i+1) ← ∆L
(
γ(j−1);D(t−1)

m

)
;

17 β(i+1) ← γ(j−1);
18 else
19 G(i+1) ← ∆L

(
γ(j);D(t−1)

m

)
;

20 β(i+1) ← γ(j);

21 k ∈ arg max
0≤i≤ITER

G(i);

22 D(t−1)
m+1 ← D

(t−1)
m

⋃{∑
p α

(k)
p vp

}
;

23 D(t+1)
M ∈ arg min

D′⊂D(t)
M+N ,|D′|=M

L (D′; T )

24 if L
(
D(t)
M ; T

)
− L

(
D(t+1)
M ; T

)
< δ then

25 Break;

Output: Required decision set is D(t)
M ;



Before ending the section we will show that proposed method
could be extended to some cases of non-convex cost function.
Without loss of generality, we assume that the cost function
f (x; g) is twice-differentiable w.r.t. to decision variable x.We
denote the Hessian matrix Hf (x0, g) of f w.r.t. x at point
(x0, g) as

Hf (x0, g) ,
∂2f (x; g)

∂xi∂xj

∣∣∣∣
(x0,g)

(18)

and its smallest eigen-value given parameter g for all possible
x ∈ X : λmin (g) = minx∈X λ {Hf (x, g)}. To generalize the
Jensen’s inequality to non-convex function, we introduce so
called weakly convex function [35]:

Definition III.3. (r-weakly convex function) Given a contin-
uous function u : RK → R defined on a convex set S,
consider the function h : RK+1 → R with r ∈ R defined
by h (x, r) = u (x) − 1

2rx
Tx. If function h (x, r) is a convex

function on S for some r, then h (x, r) is called a convexfication
of u and r is a convexifier of u on S. function u is said to be
r-weakly convex if it has a convexifier r.

Weakly convex functions are important for various optimiza-
tion problem (see examples in [36], [37]). Furthermore, we can
generalized Jensen’s inequality from strictly convex functions
to weakly convex functions as the following proposition:

Proposition III.4. (Generalized Jensen’s inequality) For any
r-weakly convex function u, it holds that for ∀a ∈ 4P

u

(
P∑
i=1

aixi

)
≤

P∑
i=1

aiu (xi)−
r

2

 P∑
i,j=1

aiajx
T
i (xi − xj)


(19)

Proof: The proof is omitted here. For more details, see
[38].

Equipped with generalized Jensen’s inequality, similar anal-
ysis is possible for the optimality loss. One can easily have:

L (QM ; T )− L (QM+N ; T )

≥ 1

T

∑
m

WT
mBm (α)− 1

T

∑
i

αi
∑
m

UT
i Bm (α)

+
1

2T

∑
t,m,i,j

αiαjv
T
i (vi − vj) Btm (α) ρt (20)

where ρt is a convexfier of cost function f given g(t) w.r.t. x.
Obviously one would like to minimize the optimality loss in-
troduced by expanding decision set, then the optimal choice for
vector ρt should be ρt = λmin

(
g(t)
)

since all ρ
′

t < λmin

(
g(t)
)

is also a convefixier of cost function for parameter g(t). Similar
analysis and algorithm could be applied to the lower bound
obtained in Eq. 20. Due to limit of space, it is omitted to avoid
duplicated materials.

IV. NUMERICAL RESULTS

In this section, we aim at showing the benefits of our
proposed methods by comparing with conventional quantization
technique.

I We first consider the spectral efficiency (SE) function
fSE (x; g) = −

∑S
i=1 log

(
σ2 + xigi

)
under maximum power

constraint
∑S
i=1 xi ≤ Pmax. One can easily verify that its

Hessian matrix is HfSE (x; g) = diag
{

g2i
(σ2+xigi)

2

}
i
. Therefore

the cost function is convex function w.r.t. decision variable
x. Meanwhile the decision space is a convex polyhedron. For
parameter setting, we choose number of bands S = 4, power
budget Pmax = 10mW, variance of noise σ2 = 1mW, number
of parameter samples Nsample = 10000, number of iteration
changing the equivalent class ITER = 1000; iteration number
for decision set expansion Tex = 10 and largest cardinality of
decision set is chosen as N = M + 1. In Fig. 1 , the relative
optimality loss (ROL) in percentage (relatively to the idea case):

Relative OL(%) = 100×
(
f(χ(QM (g)); g)− f(χ(g); g)

f(χ(g); g)

)
(21)

v.s. number of decisions is illustrated for decision set found
by alg. 1 and Lloyd-Max algorithm which is distortion-based
or goal-ignorant. One can observe that the performance of
the proposed algorithm always dominates the Lloyd-Max algo-
rithm. Moreover algorithm 1 is easier to implement for general
cost function it requires merely simple linear computation
of matrices compared to Lloyd-Max algorithm which is an
alternating algorithm in essence.
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Fig. 2. Relative optimality loss (%) v.s. number of decisions for distortion-
based vector quantization (Lloyd-Max algorithm) and proposed algorithm 1.
This figure clearly shows the importance of adapting the quantizer to the goal
instead of using the conventional distortion-based quantization paradigm.

I Now we assume `1 = `2 = 24. We consider a performance
metric which is relevant for a communication problem in
the smart grid. Indeed, we consider that the goal function
fPCS(x; g) = ‖x+g‖P, P being the exponent power parameter
of the LP norm, and PCS stands for power consumption
scheduling. Here the vector x = (x1, ..., x`1) represents the
chosen flexible power consumption scheduling strategy; we
impose that xi ≥ 0 and

∑`1
i=1 xi ≥ E, E > 0 being the

desired energy level. The parameter vector g represents the
non-controllable part of the power. When P becomes large,
the problem amount to limiting the peak power. For a given
relative OL of 5% one then looks at the number of required



clusters (that is, M ) versus the exponent power parameter of
the LP (that is, P). In Fig. 3, the performance of the k−means
algorithm with the proposed algorithm for the Pecanstreet
database [39] with E = 40kWh is illustrated. For large
exponent power, e.g., P = 20, proposed goal-oriented approach
reduce the number of cells from 50 to 14 to achieve a ROL of
5% by taking advantage of the convexity of the LP norm.
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Fig. 3. Required number of cells (M ) against the exponent power parameter
of the LP-norm (P) for the k-means and proposed algorithm. Proposed goal-
oriented approach could largely reduce the number of cells especially for large
exponent power.

V. CONCLUSIONS

In this paper, we focus on a special scenario of general
goal-oriented quantization problem where the decision space
is a convex polyhedron and the cost function is (weakly)
convex function with respect to decision variable. An algorithm
based on expanding and reinstating the decision set and taking
advantage of Jensen’s inequality is proposed. We have shown
that it is sufficient to consider single-decision expansion for
proposed methods. Besides, numerical results show that pro-
posed algorithm could reduce the optimality loss or the required
number of quantization bits comparing to conventional task-
ignorant quantizer. One future work of current framework is
to extend proposed method for general scenario where cost
functions are no longer convex with arbitrary shape of decision
space. Techniques such as deep learning could be of great
interest to explore for the situation where the optimal solution
of the targeted optimization problem is unknown or its closed
form is missing.
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