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NESTED BANDITS

MATTHIEU MARTIN∗, PANAYOTIS MERTIKOPOULOS⋄,∗,
THIBAUD RAHIER∗, AND HOUSSAM ZENATI∗,§

Abstract. In many online decision processes, the optimizing agent is called to choose
between large numbers of alternatives with many inherent similarities; in turn, these
similarities imply closely correlated losses that may confound standard discrete choice
models and bandit algorithms. We study this question in the context of nested bandits, a
class of adversarial multi-armed bandit problems where the learner seeks to minimize
their regret in the presence of a large number of distinct alternatives with a hierarchy
of embedded (non-combinatorial) similarities. In this setting, optimal algorithms based
on the exponential weights blueprint (like Hedge, EXP3, and their variants) may incur
significant regret because they tend to spend excessive amounts of time exploring irrelevant
alternatives with similar, suboptimal costs. To account for this, we propose a nested
exponential weights (NEW) algorithm that performs a layered exploration of the learner’s
set of alternatives based on a nested, step-by-step selection method. In so doing, we obtain
a series of tight bounds for the learner’s regret showing that online learning problems
with a high degree of similarity between alternatives can be resolved efficiently, without a
red bus / blue bus paradox occurring.

1. Introduction

Consider the following discrete choice problem (known as the “red bus / blue bus paradox”
in the context of transportation economics). A commuter has a choice between taking a car
or bus to work: commuting by car takes on average half an hour modulo random fluctuations,
whereas commuting by bus takes an hour, again modulo random fluctuations (it’s a long
commute). Then, under the classical multinomial logit choice model for action selection
[19, 20], the commuter’s odds for selecting a car over a bus would be exp(−1/2)/ exp(−1) ≈
1.6 : 1. This indicates a very clear preference for taking a car to work and is commensurate
with the fact that, on average, commuting by bus takes twice as long.

Consider now the same model but with a twist. The company operating the bus network
purchases a fleet of new buses that are otherwise completely identical to the existing ones,
except for their color: old buses are red, the new buses are blue. This change has absolutely
no effect on the travel time of the bus; however, since the new set of alternatives presented
to the commuter is {car, red bus, blue bus}, the odds of selecting a car over a bus (red or
blue, it doesn’t matter) now drops to exp(−1/2)/[exp(−1) + exp(−1)] ≈ 0.8 : 1. Thus, by
introducing an irrelevant feature (the color of the bus), the odds of selecting the alternative
with the highest utility have dropped dramatically, to the extent that commuting by car is
no longer the most probable outcome in this example.
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Of course, the shift in choice probabilities may not always be that dramatic, but the point
of this example is that the presence of an irrelevant alternative (the blue bus) would always
induce such a shift – which is, of course, absurd. In fact, the red bus / blue bus paradox was
originally proposed as a sharp criticism of the independence from irrelevant alternatives (IIA)
axiom that underlies the multinomial logit choice model [19] and which makes it unsuitable
for choice problems with inherent similarities between different alternatives. In turn, this has
led to a vast corpus of literature in social choice and decision theory, with an extensive array
of different axioms and models proposed to overcome the failures of the IIA assumption. For
an introduction to the topic, we refer the reader to the masterful accounts of McFadden [20],
Ben-Akiva & Lerman [6] and Anderson et al. [2].

Perhaps surprisingly, the implications of the red bus / blue bus paradox have not been
explored in the context of online learning, despite the fact that similarities between alternatives
are prevalent in the field’s application domains – for example, in recommender systems
with categorized product recommendation catalogues, in the economics of transport and
product differentiation, etc. What makes this gap particularly pronounced is the fact that
logit choice underlies some of the most widely used algorithmic schemes for learning in
multi-armed bandit problems – namely the exponential weights algorithm for exploration
and exploitation (EXP3) [3, 18, 27] as well as its variants, Hedge [4], EXP3.P [5], EXP3-IX
[16], EXP4 [5] / EXP4-IX [22], etc. Thus, given the vulnerability of logit choice to irrelevant
alternatives, it stands to reason that said algorithms may be suboptimal when faced with a
set of alternatives with many inherent similarities.

Our contributions. Our paper examines this question in the context of repeated decision
problems where a learner seeks to minimize their regret in the presence of a large number of
distinct alternatives with a hierarchy of embedded (non-combinatorial) similarities. This
similarity structure, which we formalize in Section 2, is defined in terms of a nested series of
attributes – like “type” or “color” – and induces commensurate similarities to the losses of
alternatives that lie in the same class (just as the red and blue buses have identical losses in
the example described above).

Inspired by the nested logit choice model introduced by McFadden [20] to resolve the
original red bus / blue bus paradox, we develop in Section 3 a nested exponential weights
(NEW) algorithm for no-regret learning in decision problems of this type. Our main result
is that the regret incurred by NEW is bounded as O(

√
neff log n · T ), where n is the total

number of alternatives and neff is the “effective” number when taking similarities into account
(for example, in the standard red bus / blue bus paradox, neff = 2, cf. Section 4). The gap
between nested and non-nested algorithms can be quantified by the problem’s price of affinity
(PoAf), defined here as the ratio α =

√
n/neff measuring the worst-case ratio between the

regret guarantees of the NEW and EXP3 algorithms (the latter scaling as O(
√
n log n · T )

in the problem at hand).
In practical applications (such as the type of recommendation problems that arise in

online advertising), α can be exponential in the number of attributes, indicating that the
NEW algorithm could lead to significant performance gains in this context. We verify that
this is indeed the case in a range of synthetic experiments in Section 5.

Related Work. The problem of exploiting the structure of the loss model and/or any side
information available to the learner is a staple of the bandit literature. More precisely, in
the setting of contextual bandits, the learner is assumed to observe some “context-based”
information and tries to learn the “context to reward” mapping underlying the model in
order to make better predictions. Bandit algorithms of this type – like EXP4 – are often
studied as “expert” models [5, 10] or attempt to model the agent’s loss function with a
semi-parametric contextual dependency in the stochastic setting to derive optimistic action
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selection rules [1]; for a survey, we refer the reader to [17] and references therein. While the
nested bandit model we study assumes an additional layer of information relative to standard
bandit models, there are no experts or a contextual mapping conditioning the action taken,
so it is not comparable to the contextual setup.

The type of feedback we consider assumes that the learner observes the “intra-class” losses
of their chosen alternative, similar to the semi-bandit in the study of combinatorial bandit
algorithms [11, 14]. However, the similarity with combinatorial bandit models ends there:
even though the categorization of alternatives gives rise to a tree structure with losses
obtained at its leaves, there is no combinatorial structure defining these costs, and modeling
this as a combinatorial bandit would lead to the same number of arms and ground elements,
thus invalidating the concept.

Besides these major threads in the literature, [26] recently showed that the range of
losses can be exploited with an additional free observation, while [12] improves the regret
guarantees by using effective loss estimates. However, both works are susceptible to the
advent of irrelevant alternatives and can incur significant regret when faced with such a
problem. Finally, in the Lipschitz bandit setting, [13, 15] obtain order-optimal regret bounds
by building a hierarchical covering model in the spirit of [9]; the correlations induced by a
Lipschitz loss model cannot be compared to our model, so there is no overlap of techniques
or results.

2. The model

We begin in this section by defining our general nested choice model. Because the technical
details involved can become cumbersome at times, it will help to keep in mind the running
example of a music catalogue where songs are classified by, say, genre (classical music, jazz,
rock,. . . ), artist (Rachmaninov, Miles Davis, Led Zeppelin,. . . ), and album. This is a simple
– but not simplistic – use case which requires the full capacity of our model, so we will use it
as our “go-to” example throughout.

2.1. Attributes, classes, and the relations between them. Let A = {ai : i = 1, . . . , n} be a
set of alternatives (or atoms) indexed by i = 1, . . . , n. A similarity structure (or structure
of attributes) on A is defined as a tower of nested similarity partitions (or attributes) Sℓ,
ℓ = 0, . . . , L, of A with {A} =: S0 ≽ S1 ≽ · · · ≽ SL := {{a} : a ∈ A}. As a result of this
definition, each partition Sℓ captures successively finer attributes of the elements of A (in our
music catalogue example, these attributes would correspond to genre, artist, album, etc.).1

Accordingly, each constituent set A of a partition Sℓ will be referred to as a similarity class
and we assume it collects all elements of A that share the attribute defining Sℓ: for example,
a similarity class for the attribute “artist” might consist of all Beethoven symphonies, all
songs by Led Zeppelin, etc.

Collectively, a structure of attributes will be represented by the disjoint union

S :=
∐L

ℓ=0
Sℓ ≡

⋃L

ℓ=0
{(A, ℓ) : A ∈ Sℓ} (1)

of all class/attribute pairs of the form (A, ℓ) for A ∈ Sℓ. In a slight abuse of terminology
(and when there is no danger of confusion), the pair S = (A, ℓ) will also be referred to as a
“class”, and we will write S ∈ Sℓ and a ∈ S instead of A ∈ Sℓ and a ∈ A respectively. By
contrast, when we need to clearly distinguish between a class and its underlying set, we
will write A = elem(S) for the set of atoms contained in S and ℓ = attr(S) for the attached
attribute label.

1The trivial partitions S0 = {A} and SL = {{a} : a ∈ A} do not carry much information in themselves,
but they are included for completeness and notational convenience later on.
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Figure 1: A structure with L = 3 attributes on the set A = {a1, . . . , a8}; for
example, the class S1

2 consists of {a3, a4}.

Remark 1. The reason for including the attribute label ℓ in the definition of S is that a set of
alternatives may appear in different partitions of A in a different context. For example, if “IV”
is the only album by Led Zeppelin in the catalogue, the album’s track list represents both
the set of “all songs in IV” as well as the set of “all Led Zeppelin songs”. However, the focal
attribute in each case is different – “artist” in the former versus “album” in the latter – and
this additional information would be lost in the non-discriminating union

⋃L
ℓ=0 Sℓ (unless,

of course, the partitions Sℓ happen to be mutually disjoint, in which case the distinction
between “union” and “disjoint union” becomes set-theoretically superfluous). ¶

Moving forward, if a class S ∈ Sℓ contains the class S′ ∈ Sk for some k > ℓ, we will
say that S′ is a descendant of S (resp. S is an ancestor of S′), and we will write “S′ ≺ S”
(resp. “S ≻ S′”).2 As a special case of this relation, if S′ ≺ S and k = ℓ+ 1, we will say that
S′ is a child of S (resp. S is parent of S′) and we will write “S′ ◁ S” (resp. “S ▷ S′”). For
completeness, we will also say that S′ and S′′ are siblings if they are children of the same
parent, and we will write S′ ∼ S′′ in this case. Finally, when we wish to focus on descendants
sharing a certain attribute, we will write “S′ ≺ℓ S” as shorthand for the predicate “S′ ≺ S
and attr(S′) = ℓ”.

Building on this, a similarity structure on A can also be represented graphically as a
rooted directed tree – an arborescence – by connecting two classes S, S′ ∈ S with a directed
edge S → S′ whenever S ▷ S′. By construction, the root of this tree is A itself,3 and the
unique directed path A ≡ S0 ▷ S1 ▷ · · · ▷ Sℓ ≡ S from A to any class S ∈ S will be referred
to as the lineage of S. For notational simplicity, we will not distinguish between S and its
graphical representation, and we will use the two interchangeably; for an illustration, see
Fig. 1.

2.2. The loss model. Throughout what follows, we will consider loss models in which
alternatives that share a common set of attributes incur similar costs, with the degree of
similarity depending on the number of shared attributes. More precisely, given a similarity
class S ∈ S, we will assume that all its immediate subclasses S′ share the same base cost cS
(determined by the parent class S) plus an idiosyncratic cost increment rS′ (which is specific

2More formally, we will write S′ ≺ S when elem(S′) ⊆ elem(S) and attr(S′) > attr(S). The corresponding
weak relation “≼” is defined in the standard way, i.e., allowing for the case attr(S′) = attr(S) which in turn
implies that S′ = S.

3Stricto sensu, the root of the tree is (A, 0), but since there is no danger of confusion, the attribute label
“0” will be dropped.
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to the child S′ ◁ S in question). Formally, starting with cA = 0 (for the root class A), this
boils down to the recursive definition

cS′ = cS + rS′ for all S′ ◁ S, (2)

which, when unrolled over the lineage A ≡ S0 ▷ S1 ▷ · · · ▷ Sℓ ≡ S of a target class S ∈ Sℓ,
yields the expression

cS =
∑

S′≽S
rS′ = rS1

+ · · ·+ rSℓ
. (3)

Thus, in particular, when S ← a ∈ A, the cost assigned to an individual alternative a ∈ A
will be given by

ca =
∑L

ℓ=1
rSℓ

=
∑

S∋a
rS for all a ∈ A. (4)

Finally, to quantify the “intra-class” variability of costs, we will assume throughout that
the idiosyncratic cost increments within a given parent class S are bounded as

rS′ ∈ [0, RS ] for all S′ ◁ S. (5)

This terminology is justified by the fact that, under the loss model (2), the costs cS′ , cS′′

to any two sibling classes S′, S′′ ◁ S (i.e., any two classes parented by S) differ by at most
RS . Analogously, the costs to any two alternatives a, a′ ∈ A that share a set of common
attributes S1, . . . , Sℓ will differ by at most

∑L
k=ℓ+1 RSk

.

Example 1. To represent the original red bus / blue bus problem as an instance of the
above framework, let S1 = {{red bus, blue bus}, car} be the partition of the set A =
{red bus, blue bus, car} by type (“bus” or “car”), and let S2 be the corresponding sub-
partition by color (“red” or “blue” for elements of the class “bus”). The fact that color does
not affect travel times may then be represented succinctly by taking Rcolor = 0 (representing
the fact that color does not affect travel times). ¶

Remark 2. We make no distinction here between ca and c{a}, i.e., between an alternative
a of A and the (unique) singleton class of {a} ∈ SL containing it. This is done purely for
reasons of notational convenience. ¶

Remark 3. For posterity, we also note that the optimizing agent is assumed to be aware of the
cost decomposition (4) after selecting an alternative a ∈ A. In the context of combinatorial
bandits [11] this would correspond to the so-called “semi-bandit” setting. ¶

2.3. Sequence of events. With all this in hand, we will consider a generic online decision
process that unfolds over a set of alternativesA endowed with a similarity structure S =

∐
ℓ Sℓ

as follows:

(1) At each stage t = 1, 2, . . . , the learner selects an alternative at ∈ A by selecting
attributes from S one-by-one.

(2) Concurrently, nature sets the idiosyncratic, intra-class losses rS,t for each similarity
class S ∈ S.

(3) The learner incurs rS,t for each chosen class S ∋ at for a total cost of ct =
∑

S∋at
rS,t,

and the process repeats.

To align our presentation with standard bandit models with losses in [0, 1], we will assume
throughout that

∑
S∋a RS ≤ 1 for all a ∈ A, meaning in particular that the maximal cost

incurred by any alternative a ∈ A is upper bounded by 1. Other than this normalization,
the sequence of idiosyncratic loss vectors rt ∈ RS , t = 1, 2, . . . , is assumed arbitrary and
unknown to the learner as per the standard adversarial setting [10, 24].
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To avoid deterministic strategies that could be exploited by an adversary, we will assume
that the learner selects an alternative at at time t based on a mixed strategy Xt ∈ ∆(A),
i.e., at ∼ Xt. The regret of a policy Xt, t = 1, 2, . . . , against a benchmark strategy p ∈ ∆(A)
is then defined as the cumulative difference between the player’s mean cost under p and Xt,
that is

Regp(T ) =

T∑
t=1

[EXt
[cat,t]− Ep[cat,t]] =

T∑
t=1

⟨ct, Xt − p⟩ (6)

where ct = (ca,t)a∈A ∈ RA denotes the vector of costs encountered by the learner at time t,
i.e., ca,t =

∑
S∋a rS,t for all a ∈ A. This definition will be our main figure of merit in the

sequel.

3. The nested exponential weights algorithm

Our goal in what follows will be to design a learning policy capable of exploiting the
type of similarity structures introduced in the previous section. The main ingredients of
our method are a nested attribute selection and cost estimation rule, which we describe in
detail in Sections 3.1 and 3.2 respectively; the proposed nested exponential weights (NEW)
algorithm is then developed and discussed in Section 3.3.

3.1. Probabilities, propensities, and nested logit choice. We begin by introducing the at-
tribute selection scheme that forms the backbone of our proposed policy. Our guiding
principle in this is the nested logit choice (NLC) rule of McFadden [20] which selects an
alternative a ∈ A by traversing S one attribute at a time and prescribing the corresponding
conditional choice probabilities at each level of S.

To set the stage for all this, if x = (x1, . . . , xn) ∈ ∆(A) is a mixed strategy on A we will
write

xS =
∑

a∈S xa (7)
for the probability of choosing S ∈ S under x, and

xS′|S = xS′/xS (8)

for the conditional probability of choosing a descendant S′ of S assuming that S has already
been selected under x.4 Then the NLC rule proceeds as follows: first, it prescribes choice
probabilities xS1 for all classes S1 ∈ S1 (i.e., the coarsest ones); subsequently, once a
class S1 ∈ S1 has been selected, NLC prescribes the conditional choice probabilities xS2|S1

for all children S2 of S1 and draws a class from S2 based on xS2|S1
. The process then

continues downwards along S until reaching the finest partition SL and selecting an atom
{a} ≡ SL ◁ SL−1 ◁ · · · ◁ S0 ≡ A.

This step-by-step selection process captures the “nested” part of the nested logit choice
rule; the “logit” part refers to the way that the conditional probabilities (8) are actually
prescribed given the agent’s predisposition towards each alternative a ∈ A. To make this
precise, suppose that the learner associates to each element a ∈ A a propensity score ya ∈ R
indicating their tendency – or propensity – to select it. The associated propensity score of a
similarity class Sℓ−1 ∈ Sℓ−1, ℓ = 1, . . . , L, is then defined inductively as

ySℓ−1
= µℓ log

∑
Sℓ◁Sℓ−1

exp(ySℓ
/µℓ) (9)

where µℓ > 0 is a tunable parameter that reflects the learner’s uncertainty level regarding
the ℓ-th attribute Sℓ of S. In words, this means that the score of a class is the weighted
softmax of the scores of its children; thus, starting with the individual alternatives of A –

4Note here that the joint probability of selecting both S and S′ under x is simply xS′ whenever S′ ≼ S.
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that is, the leaves of S – propensity scores are propagated backwards along S, and this is
repeated one attribute at a time until reaching the root of S.

Remark 4. We should also note that Eq. (9) assigns a propensity score to any similarity class
S ∈ S. However, because the primitives of this assignment are the original scores assigned
to each alternative a ∈ A, we will reserve the notation y = (y1, . . . , yn) ∈ RA for the profile
of propensity scores (ya)a∈A that comprises the basis of the recursive definition (9). ¶

With all this in hand, given a propensity score profile y = (y1, . . . , yn) ∈ RA, the nested
logit choice (NLC) rule is defined via the family of conditional selection probabilities

PSℓ|Sℓ−1
(y) =

exp(ySℓ
/µℓ)

exp(ySℓ−1
/µℓ)

(NLC)

where:
(1) Sℓ ∈ Sℓ and Sℓ−1 ∈ Sℓ−1 is a child / parent pair of similarity classes of S.
(2) µ1 ≥ · · · ≥ µL > 0 is a nonincreasing sequence of uncertainty parameters (indicating a

higher uncertainty level for coarser attributes; we discuss this later).
In more detail, the choice of an alternative a ∈ A under (NLC) proceeds as follows: given
a propensity score ya ∈ R for each a ∈ A, every similarity class SL−1 ∈ SL−1 is assigned a
propensity score via the recursive softmax expression (9), and the same procedure is applied
inductively up to the root A of S. Then, to select an alternative a ∈ A, the conditional
logit choice rule (NLC) proceeds in a top-down manner, first by selecting a similarity class
S1 ◁ S0 ≡ A, then by selecting a child S2 ◁ S1 of S1, and so on until reaching a leaf
{a} ≡ SL ◁ SL−1 ◁ · · · ◁ S0 ≡ A of S.

Equivalently, unrolling (NLC) over the lineage A ≡ S0 ▷ S1 ▷ · · · ▷ Sℓ ≡ S of a target
class S ∈ Sℓ, we obtain the expression

PS(y) =
∏ℓ

k=1

exp(ySk
/µk)

exp(ySk−1
/µk)

(10)

for the total probability of selecting class S under the propensity score profile y ∈ RA.
Clearly, (NLC) and (10) are mathematically equivalent, so we will refer to either one as the
definition of the nested logit choice rule.

3.2. The nested importance weighted estimator. The second key ingredient of our method
is how to estimate the costs of alternatives that were not chosen under (NLC). To that end,
given a cost vector c ∈ [0, 1]A and a mixed strategy x ∈ ∆(A) with full support, a standard
way to do this is via the importance-weighted estimator [8, 17]

ĉa =
1{a = â}

xa
ca (IWE)

where â ∼ x is the (random) element of A chosen under x.
This estimator enjoys the following important properties:

a) It is non-negative.
b) It is unbiased, i.e.,

E[ĉa] = ca for all a ∈ A. (11)

c) Its importance-weighted mean square is bounded as

E
[∑

a∈A
xaĉ

2
a

]
≤ n (12)
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This trifecta of properties plays a key role in establishing the no-regret guarantees of the
vanilla exponential weights algorithm [4, 18, 27]; at the same time however, (IWE) fails to
take into account any side information provided by similarities between different elements
of A. This is perhaps most easily seen in the original red bus / blue bus paradox: if the
commuter takes a red bus, the observed utility would be immediately translateable to the
blue bus (and vice versa). However, (IWE) is treating the red and blue buses as unrelated,
so ĉblue bus is not updated under (IWE), even though cblue bus = cred bus by default.

To exploit this type of similarities, we introduce below a layered estimator that shadows
the step-by-step selection process of (NLC). To define it, let x ∈ ∆(A) be a mixed strategy
on A with full support, and assume that an element â ∈ A is selected progressively according
to x as in the case of (NLC):5 First, the learner chooses a similarity class Ŝ1 ∈ S1 with
probability P(Ŝ1 = S1) = xS1

; subsequently, conditioned on the choice of Ŝ1, a class Ŝ2 ◁ Ŝ1

is selected with probability P(Ŝ2 = S2|Ŝ1) = xS2|Ŝ1
, and the process repeats until reaching a

leaf ŜL = {â} of S (at which point the selection procedure terminates and returns â). Then,
given a loss profile r ∈ [0,+∞)S and a mixed strategy x ∈ ∆(A), the nested importance
weighted estimator (NIWE) is defined for all ℓ = 1, . . . , L as

r̂Sℓ
=
1
{
Sℓ = Ŝℓ, . . . , S1 = Ŝ1

}
xSℓ|Sℓ−1

· · ·xS2|S1
xS1

rSℓ
(NIWE)

where the chain of categorical random variables A ≡ Ŝ0 ▷ Ŝ1 ▷ · · · ▷ ŜL = {â} is drawn
according to x ∈ ∆(A) as outlined above.6

This estimator will play a central part in our analysis, so some remarks are in order. First
and foremost, the non-nested estimator (IWE) is recovered as a special case of (NIWE) when
there are no similarity attributes on A (i.e., L = 1). Second, in a bona fide nested model, we
should note that ĉSℓ

is Ŝℓ-measurable but not Ŝℓ−1-measurable: this property has no analogue
in (IWE), and it is an intrinsic feature of the step-by-step selection process underlying
(NIWE). Third, it is also important to note that (NIWE) concerns the idiosyncratic losses
of each chosen class, not the base costs ca of each alternative a ∈ A. This distinction is
again redundant in the non-nested case, but it leads to a distinct estimator for ca in nested
environments, namely

ĉa =
∑

S∋a
r̂S for all a ∈ A. (13)

In particular, in the red bus / blue bus paradox, this means that an observation for the class
“bus” automatically updates both ĉred bus and ĉblue bus, thus overcoming one of the main
drawbacks of (IWE) when facing irrelevant alternatives.

To complete the comparison with the non-nested setting, we summarize below the most
important properties of the layered estimator (NIWE):

Proposition 1. Let S =
∐L

ℓ=1 Sℓ be a similarity structure on A. Then, given a mixed strategy
x ∈ ∆(A) and a vector of cost increments r ∈ RS as per (5), the estimator (NIWE) satisfies
the following:

(1) It is unbiased:
E[r̂S ] = rS for all S ∈ S. (14)

5To clarify, this process adheres to the “nested” part of (NLC); the conditional probabilities xS′|S may of
course differ.

6The indicator in (NIWE) is assumed to take precedence over xSk|Sk−1
, i.e., ĉSℓ

= 0 if Sk ̸= Ŝk for some
k = 1, . . . , ℓ.
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(2) It enjoys the importance-weighted mean-square bound

E
[
xS r̂

2
S

]
≤ R2

S for all S ∈ S. (15)

Accordingly, the loss estimator (13) is itself unbiased and enjoys the bound

E
[∑

a∈A
xaĉ

2
a

]
≤ neff (16)

where neff is defined as
√
neff =

∑L

ℓ=1

√
nℓR̄ℓ (17)

with nℓ = |Sℓ| denoting the number of classes of attribute Sℓ, and

R̄ℓ =

√
1

nℓ

∑
Sℓ∈Sℓ

R2
Sℓ

(18)

denoting the “root-mean-square” range of all classes in Sℓ.

Of course, Proposition 1 yields the standard properties of (IWE) as a special case when
L = 1 (in which case there are no similarities to exploit between alternatives). To streamline
our presentation, we prove this result in Appendix B.

3.3. The nested exponential weights algorithm. We are finally in a position to present the
nested exponential weights (NEW) algorithm in detail. Building on the original exponential
weights blueprint [4, 18, 27], the main steps of the NEW algorithm can be summed up as
follows:

(1) For each stage t = 1, 2, . . . , the learner maintains and updates a propensity score
profile Yt ∈ RA.

(2) The learner selects an action at ∈ A based on the nested logit choice rule at ∼ P(ηtYt)
where ηt ≥ 0 is the method’s learning rate and P is given by (NLC).

(3) The learner incurs rS,t for each class S ∋ at and constructs a model ĉt of the cost
vector ct of stage t via (NIWE).

(4) The learner updates their propensity score profile based on ĉt and the process repeats.

For a presentation of the algorithm in pseudocode form, see Algorithm 1; the tuning of the
method’s uncertainty parameters µ1 ≥ . . . ≥ µL > 0 and the learning rate ηt is discussed in
the next section, where we undertake the analysis of the NEW algorithm.

4. Analysis and results

We are now in a position to state and discuss our main regret guarantees for the NEW
algorithm. These are as follows:

Theorem 1. Suppose that Algorithm 1 is run with a non-increasing learning rate ηt > 0 and
uncertainty parameters µ1 ≥ · · · ≥ µL > 0 against a sequence of cost vectors ct ∈ [0, 1]A,
t = 1, 2, . . . , as per (4). Then, for all p ∈ ∆(A), the learner enjoys the regret bound

E[Regp(T )] ≤
H

ηT+1
+

neff

2µL

T∑
t=1

ηt (19)

with neff given by (17) and H ≡ H(µ1, . . . , µL) defined by setting y = 0 in (9) and taking
H = yA, i.e.,

H = log

 ∑
S1◁S0

 ∑
S2◁S1

· · ·

 ∑
SL◁SL−1

1


µL

µL−1

· · ·


µ2
µ1


µ1

(20)
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Algorithm 1: Nested exponential weights (NEW)

Require: set of alternatives A; attribute structure S =
∐L

ℓ=1 Sℓ
Params: uncertainty levels µ1, . . . , µL > 0; learning rate ηt ≥ 0

Input: sequence of class costs rt ∈ [0, 1]S , t = 1, 2, . . .

1: initialize Y ← 0 ∈ RA, S0 = A # initialization
2: for t = 1, 2, . . . do # scoring phase
3: for ℓ = L− 1, . . . , 0 and for all S ∈ Sℓ do
4: YS ← µℓ+1 log

∑
S′◁S exp(YS′/µℓ+1) # as per (9)

5: set r̂S ← 0 # baseline guess
6: end for
7: for ℓ = 1, . . . , L do # selection phase
8: select class Sℓ ◁ Sℓ−1 # class choice

Sℓ ∼ XSℓ|Sℓ−1
=

exp(ηtYSℓ/µℓ)

exp(ηtYSℓ−1/µℓ)
# (NLC)

9: get rSℓ,t # intra-class cost
10: set r̂Sℓ ← r̂Sℓ +

rSℓ,t

XSℓ|Sℓ−1
· · ·XS1|S0

#(NIWE)

11: end for
12: set ĉa ←

∑
S∋a r̂S for all a ∈ A # loss model

13: set Y ← Y − ĉ # update propensities
14: end for

In particular, if Algorithm 1 is run with µ1 = · · · = µL =
√
neff/2 and ηt =

√
log n/(2t), we

have
E[Regp(T )] ≤ 2

√
neff log n · T . (21)

Theorem 1 is our main regret guarantee for NEW so, before discussing its proof (which
we carry out in detail in Appendices A–C), some remarks are in order.

The first thing of note is the comparison to the corresponding bound for EXP3, namely

E[Regp(T )] ≤ 2
√

n log n · T . (22)

This shows that the guarantees of NEW and EXP3 differ by a factor of7

α =
√
n/neff , (23)

which, for reasons that become clear below, we call the price of affinity (PoAf).
Since the variabilities of the idiosyncratic losses within each attribute have been normalized

to 1 (recall the relevant discussion in Section 2.3), Hölder’s inequality trivially gives neff ≤ n,
no matter the underlying similarity structure. Of course, if there are no similarities to exploit
(L = 1), we get neff = n, in which case the two bounds coincide (α = 1).

At the other extreme, suppose we have a red bus / blue bus type of problem with, say,
n1 = 2 similarity classes, n2 = 100 alternatives per class, and a negligible intra-class loss
differential (R2 ≈ 0). In this case, EXP3 would have to wrestle with n = n1n2 = 200
alternatives, while NEW would only need to discriminate between neff ≈ n1 = 2 alternatives,
leading to an improvement by a factor of α ≈ 10 in terms of regret guarantee. Thus, even
though the red bus / blue bus paradox could entangle EXP3 and cause the algorithm to

7Depending on the source, the bound (22) may differ up to a factor of
√
2, compare for example [24,

Corollary 4.2] and [17, Theorem 11.2]. This factor is due to the fact that (22) is usually stated for a known
horizon T (which saves a factor of

√
2 relative to anytime algorithms). Ceteris paribus, the bound (21) can

be sharpened by the same factor, but we omit the details.
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accrue significant regret over time, this is no longer the case under the NEW method; we
also explore this issue numerically in Section 5.

As another example, suppose that each non-terminal class in S has m children and the
variability of the idiosyncratic losses likewise scales down by a factor of m per attribute.
In this case, a straightforward calculation shows that neff scales as Θ(m), so the gain in
efficiency would be of the order of α =

√
n/neff = Θ(m(L−1)/2), i.e., polynomial in m and

exponential in L. This gain in performance can become especially pronounced when there is
a very large number of atlernatives organized in categories and subcategories of geometrically
decreasing impact on the end cost of each alternative. We explore this issue in practical
scenarios in Section 5 and Appendix D.

Finally, we should also note that the parameters of NEW have been tuned so as to
facilitate the comparison with EXP3. This tuning is calibrated for the case where S is fully
symmetric, i.e., all subcategories of a given attribute have the same number of children.
Otherwise, in full generality, the tuning of the algorithm’s uncertainty levels would boil down
to a transcedental equation involving the nested term H(µ1, . . . , µL) of (19). This can be
done efficiently offline via a line search, but since the result would be structure-dependent,
we do not undertake this analysis here.

Proof outline of Theorem 1. The detailed proof of Theorem 1 is quite lengthy, so we defer it
to Appendices A–C and only sketch here the main ideas.

The first basic step is to derive a suitable “potential function” that can be used to track
the evolution of the NEW policy relative to the benchmark p ∈ ∆(A). The main ingredient
of this potential is the “nested” entropy function

h(x) =
∑L

k=0
δk
∑

Sk∈Sk

xSk
log xSk

, (24)

where δk = µk − µk+1 for all k = 1, . . . , L (with µL+1 = 0 by convention).8 As we show
in Proposition A.1 in Appendix A, the “tiers” of h can be unrolled to give the “non-tiered”
recursive representation

h(x) =
∑

S∈S
h(x|S) (25)

where h(x|S) = µℓ+1

∑
S′◁S xS′ log(xS′/xS) denotes the “conditional” entropy of x relative

to class S ∈ Sℓ. Then, by means of this decomposition and a delicate backwards induction
argument, we show in Proposition A.2 that a) the recursively defined propensity score yA of
A can be expressed non-recursively as yA = argmaxx∈∆(A){⟨y, x⟩ − h(x)}; and b) that the
choice rule (NLC) can be expressed itself as

Pa(y) =
∂yA
∂ya

for all y ∈ RA, a ∈ A. (26)

This representation of (NLC) provides the first building block of our proof because, by
Danskin’s theorem [7], it allows us to rewrite Algorithm 1 in more concise form as

Yt+1 = Yt − ĉt

Xt+1 = argmax
x∈∆(A)

{⟨ηt+1Yt+1, x⟩ − h(x)} (NEW)

with ĉt given by (13) appplied to x← Xt. Importantly, this shows that the NEW algorithm
is an instance of the well-known “follow the regularized leader” (FTRL) algorithmic framework
[24, 25]. Albeit interesting, this observation is not particularly helpful in itself because there
is no universal, “regularizer-agnostic” analysis giving optimal (or near-optimal) regret rates

8In the non-nested case, (24) boils down to the standard (negative) entropy h(x) =
∑

a xa log xa. However,
the inverse problem of deriving the “correct” form of h in a nested environment involves a technical leap of
faith and a fair degree of trial-and-error.
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for FTRL with bandit/partial information.9 Nonetheless, by adapting a series of techniques
that are used in the analysis of FTRL algorithms, we show in Appendix C that the iterates
of (NEW) satisfy the “energy inequality”

⟨ĉt, Xt − p⟩ ≤ Et − Et+1 +
1

ηt
F (Xt, ηtYt+1)

+ (η−1
t+1 − η−1

t )[h(p)−minh] (27)

where ĉt is the nested importance weighted estimator (13) for the cost vector encountered ct,
and we have set

F (x, y) = h(x) + yA − ⟨y, x⟩ (28)
and Et = η−1

t F (p, ηtYt).
Then, by Proposition 1, we obtain:

Proposition 2. The NEW algorithm enjoys the bound

E[Regp(T )] ≤
H

ηT+1
+

T∑
t=1

E[F (Xt, ηtYt+1)]

ηt
. (29)

Proposition 2 provides the first half of the bound (19), with the precise form of H derived
in Lemma C.1. The second half of (19) revolves around the term E[F (Xt, ηtYt+1)] and boils
down to estimating how propensity scores are back-propagated along S. In particular, the
main difficulty is to bound the difference y+A − yA in the propensity score of the root node
A of S when the underlying score profile y ∈ RA is incremented to y+ = y + w for some
w ∈ RA.

A first bound that can be obtained by convex analysis arguments is |y+A−yA| ≤ ⟨y, P(y)⟩+
∥w∥2∞; however, because the increments of (NEW) are unbounded in norm, this global
bound is far too lax for our puposes. A similar issue arises in the analysis of EXP3,
and is circumvented by deriving a bound for the log-sum-exp function using the identity
exp(x) ≤ 1 + x + x2/2 for x ≤ 0 and the fact that the estimator (IWE) is non-negative
[10, 17, 24]. Extending this idea to nested environments is a very delicate affair, because
each tier in S introduces an additional layer of error propagation in the increments Yt+1−Yt.
However, by a series of inductive arguments that traverse S both forward and backward, we
are able to show the bound

y+A − yA ≤ ⟨y, P(y)⟩+
1

2µL

L∑
ℓ=1

∑
Sℓ∈Sℓ

PSℓ
(y)r2Sℓ

(30)

which, after taking expecations and using the bounds of Proposition 1, finally yields the
pseudo-regret bound (19).

5. Numerical experiments

In this section we present a series of numerical experiments designed to test the efficiency
of our method compared to EXP3. We use a synthetic environment where we simulate
nested similarity partitions with trees. While NEW exploits the similarity structure by
making forward/backward passes through the associated tree with its logit choice rule
(NLC), EXP3 is simply run over the leaves of the tree, i.e., A. All experiment details
(as well as additional results) are presented in Appendix D. For every setting, we report
the results of our experiments by plotting the average regret of each algorithm for 20

9For the analysis of specific versions of FTRL with non-entropic regularizers, cf. [? ? ] and references
therein.
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Figure 2: Regret of EXP3 and NEW in the red bus / blue bus problem with
different numbers of buses.
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Figure 3: Regret of EXP3 and NEW in a tree environment with different values
of levels L and classes per level M
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Figure 4: Regret of EXP3 and NEW in a tree environment with different values
of levels L and classes per level M

seeds of randomly drawn losses. The code to reproduce the experiments can be found at
https://github.com/criteo-research/Nested-Exponential-Weights.

Benefits in the red bus/blue bus problem. We consider here a variant of the red bus/blue
bus problem with N different buses (the original paradox has N = 2). In this experiment
(see illustration in Fig. 5, Appendix D.2) we allow each bus to have non-zero intrinsic losses
and illustrate in Fig. 2 how both algorithms perform when N grows. We observe there
that for all configurations NEW achieves better regret than EXP3. While both methods
achieve sublinear regret, EXP3 requires far more steps to identify the best alternative as N
grows and suffers overall from worse regret while NEW achieves similar regret and does not
suffer as much from the number of irrelevant alternatives. We provide additional plots in

https://github.com/criteo-research/Nested-Exponential-Weights
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Appendix D.2 which show that NEW performs consistently better than EXP3 when there
exists a similarity structure allowing to efficiently update scores of classes that have very
similar losses.

Performance in general nested structures. In this setting we generate symmetric trees and
experiment with different values of number of levels L and number of child per nodes M = |Sℓ|
for ℓ = 1, . . . , L. Specifically, in Fig. 3 with a fixed M , we see that NEW obtains better
regret than EXP3 even when L increases. We provide variance plots for the experiments
that generated the same performance on the plots in D.3 as well as additional visualisations.
Finally, in Fig. 4, we can see that for a shallow tree (L = 2) NEW performs always better
than EXP3, even for high values of M . Indeed, when the number of children per nodes M
increases, the tree loses its “factorized” structure which also affects NEW due to the less
"structured" tree. Thus, again, NEW performs consistently better than EXP3 when it is
possible to efficiently handle classes with similar losses.

Overall, our experiments confirm that a learning algorithm based on nested logit choice can
lead to significant benefits in problems with a high degree of similarity between alternatives.
This leaves open the question of whether a similar approach can be applied to structures
with non-nested attributes; we defer this question to future work.

Appendix A. The nested entropy and its properties

Our aim in this appendix is to prove the basic properties of the series of (negative) entropy
functions that fuel the regret analysis of the nested exponential weights (NEW) algorithm.

To begin with, given a similarity structure S onA and a sequence of uncertainty parameters
µ1 ≥ · · · ≥ µL > 0 (with µL+1 = 0 by convention), we define:

(1) The conditional entropy of x ∈ ∆(A) relative to a target class S ∈ Sℓ:

h(x|S) = µℓ+1

∑
S′◁S

xS′ log
xS′

xS
= µℓ+1 xS

∑
S′◁S

xS′|S log xS′|S . (A.1)

(2) The nested entropy of x ∈ ∆(A) relative to S ∈ Sℓ:

hS(x) =

L∑
k=ℓ

δk
∑

Sk≼kS

xSk
log xSk

(A.2)

where δk = µk − µk+1 for all k = 1, . . . , L.

(3) The restricted entropy of x ∈ ∆(A) relative to S ∈ Sℓ:

h|S(x) = hS(x) + χ∆(S)(x) =

{
hS(x) if x ∈ ∆(S),

∞ otherwise,
(A.3)

where χ∆(S) denotes the (convex) characteristic function of ∆(S), i.e., χ∆(S)(x) = 0
if x ∈ ∆(S) and χ∆(S)(x) = ∞ otherwise. [Obviously, h|S(x) = hS(x) whenever
x ∈ ∆(S).]

Remark 1. As per our standard conventions, we are treating S interchangeably as a subset
of A or as an element of S; by analogy, to avoid notational inflation, we are also viewing
∆(S) as a subset of ∆(A) – more precisely, a face thereof. Finally, in all cases, the functions
h(x|S), hS(x) and h|S(x) are assumed to take the value +∞ for x ∈ RA \∆(A). ¶

Remark 2. For posterity, we also note that the nested and restricted entropy functions (hS(x)
and h|S(x) respectively) are both convex – though not necessarily strictly convex – over
∆(A). This is a consequence of the fact that each summand xS log xS in (A.2) is convex
in x and that δk = µk − µk+1 ≥ 0 for all k = 1, . . . , L. Of course, any two distributions
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x, x′ ∈ ∆(A) that assign the same probabilities to elements of S but not otherwise have
hS(x) = hS(x

′), so hS is not strictly convex over ∆(A) if S ̸= A. However, since the function∑
a∈S xa log xa is strictly convex over ∆(S), it follows that hS – and hence h|S – is strictly

convex over ∆(S). ¶

Our main goal in the sequel will be to prove the following fundamental properties of the
entropy functions defined above:

Proposition A.1. For all S ∈ Sℓ, ℓ = 1, . . . , L, and for all x ∈ ∆(A), we have:

hS(x) =
∑
S′≼S

h(x|S′) + µℓ xS log xS . (A.4)

Consequently, for all x ∈ ∆(S), we have:

h|S(x) =
∑
S′≼S

h(x|S′). (A.5)

Proposition A.2. For all S ∈ S and all y ∈ RA, we have:

(1) The recursively defined propensity score yS of S as given by (9) can be equivalently
expressed as

yS = max
x∈∆(A)

{⟨y, x⟩ − h|S(x)} (A.6)

(2) The conditional probability of choosing a ∈ A given that S has been chosen under
(NLC) is given by

Pa|S(y) =
∂yS
∂ya

= argmax
x∈∆(A)

{⟨y, x⟩ − h|S(x)} (A.7)

These propositions will be the linchpin of the analysis to follow, so some remarks are in
order:

Remark 3. Note here that the maximum in (A.6) is taken over the restricted entropy function
h|S , not the nested entropy hS . This distinction will play a crucial role in the sequel; in
particular, since h|S is strictly convex over ∆(S), it implies that the argmax in (A.7) is a
singleton. ¶

Remark 4. The first part of Proposition A.2 can be rephrased more concisely (but otherwise
equivalently) as

yS = h∗
|S(y) (A.8)

where
h∗
|S(y) = max

x∈∆(A)
{⟨y, x⟩ − h|S(x)} (A.9)

denotes the convex conjugate of h|S . This interpretation is conceptually important because it
spells out the precise functional dependence between the (primitive) propensity score profile
y ∈ RA and the propensity scores yS that are propagated to higher-tier similarity classes
S ∈ S via the recursive definition (9). In particular, this observation leads to the recursive
rule

exp

(
h∗
|S(y)

µℓ+1

)
=
∑
S′◁S

exp

(
h∗
|S′(y)

µℓ+1

)
for all S ∈ Sℓ, ℓ = 0, 1, . . . , L− 1. (A.10)

We will we use this representation freely in the sequel. ¶



16 M. MARTIN, P. MERTIKOPOULOS, T. RAHIER, AND H. ZENATI

Remark 5. It is also worth noting that the propensity scores yS , Sℓ ∈ Sℓ, can also be seen
as primitives for the arborescence S ′ =

∐ℓ
k=0 Sk obtained from S by excising all (proper)

descendants of Sℓ. Under this interpretation, the second part of Proposition A.2 readily
gives the more general expression

PS′|S(y) =
∂yS
∂yS′

for all S′ ≼ S, (A.11)

where, in the right-hand side, yS is to be construed as a function of yS′ , defined recursively
via (9) applied to the truncated arborescence S ′. Even though we will not need this specific
result, it is instructive to keep it in mind for the sequel.

The rest of this appendix is devoted to the proofs of Propositions A.1 and A.2.

Proof of Proposition A.1. Let ℓ = attr(S), and fix some attribute label k > ℓ. We will
proceed inductively by collecting all terms in (A.4) associated to the attribute Sk and then
summing everything together. Indeed, we have:

µk

∑
S′≼kS

xS′ log xS′ = µk

∑
Sk−1≼k−1S

 ∑
S′◁Sk−1

xS′ log xS′

 # collect attributes

= µk

∑
Sk−1≼k−1S

 ∑
S′◁Sk−1

xS′|Sk−1
xSk−1

log(xS′|Sk−1
xSk−1

)


# by definition

= µk

∑
Sk−1≼k−1S

 ∑
S′◁Sk−1

xS′|Sk−1
xSk−1

log xS′|Sk−1

 (A.12a)

+ µk

∑
Sk−1≼k−1S

 ∑
S′◁Sk−1

xS′|Sk−1
xSk−1

log xSk−1

 (A.12b)

with the tacit understanding that any empty sum that appears above is taken equal to zero.
Now, by the definition of the nested entropy, we readily obtain that

(A.12a) =
∑

Sk−1≼k−1S

h(x|Sk−1) (A.13a)

whereas, by noting that
∑

S′◁Sk−1
xS′|Sk−1

= 1 (by the definition of conditional class choice
probabilities), Eq. (A.12b) becomes

(A.12b) = µk

∑
Sk−1≼k−1S

xSk−1
log xSk−1

. (A.13b)

Hence, combining Eqs. (A.12), (A.13a) and (A.13b), we get:

µk

∑
S′≼kS

xS′ log xS′ =
∑

Sk−1≼k−1S

h(x|Sk−1) + µk

∑
Sk−1≼k−1S

xSk−1
log xSk−1

. (A.14)

The above expression is our basic inductive step. Indeed, summing (A.14) over all
k = L, . . . , ℓ = attr(S), we obtain:

hS(x) =

L∑
k=ℓ

(µk − µk+1)
∑

S′≼kS

xS′ log xS′ # by definition
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=

ℓ+1∑
k=L

µk

∑
S′≼kS

xS′ log xS′ − µk+1

∑
S′≼kS

xS′ log xS′

+ (µℓ − µℓ+1)xS log xS

# isolate S

=

ℓ+1∑
k=L

 ∑
Sk−1≼k−1S

h(x|Sk−1) + µk

∑
Sk−1≼k−1S

xSk−1
log xSk−1

− µk+1

∑
S′≼kS

xS′ log xS′


+ (µℓ − µℓ+1)xS log xS # by (A.14)

=

L−1∑
k=ℓ

∑
S′≼kS

h(x|S′) + µℓ xS log xS − µL+1

∑
S′≼LS

xS′ log xS′ (A.15)

with the last equality following by telescoping the terms involving µk. Now, given that
µL+1 = 0 by convention, the third sum above is zero. Finally, since the conditional entropy of
x relative to any childless class is zero by definition, the first sum in (A.15) can be rewritten
as
∑L−1

k=ℓ

∑
S′≼kS

h(x|S′) =
∑

S′≼S h(x|S′), and our claim follows.
Finally, (A.5) is a consequence of the fact that xS = 1 whenever x ∈ ∆(S) – i.e., whenever

supp(x) ⊆ S. ■

Proof of Proposition A.2. We begin by noting that the optimization problem (A.6) can be
written more explicitly as

maximize ⟨y, x⟩ − hS(x),

subject to x ∈ ∆(A) and supp(x) ⊆ S.
(OptS)

We will proceed to show that the (unique) solution of (OptS) is given by the vector of
conditional probabilities (Pa|S(y))a∈A. The expression (A.6) for the maximal value of (OptS)
will then be derived from Proposition A.1, and the differential representation (A.7) will
follow from Legendre’s identity. We make all this precise in a series of individual steps below.

Step 1: Optimality conditions for (OptS). For all a ∈ S, the definition of the nested entropy
gives

∂hS

∂xa
=

L∑
k=ℓ

δk
∑

S′≼kS

∂

∂xa
(xS′ log xS′) =

L∑
k=ℓ

δk
∑

S′≼kS

(1 + log xS′)
∂xS′

∂xa

=

L∑
k=ℓ

δk
∑

S′≼kS

(1 + log xS′)1{a ∈ S′}

=

L∑
k=ℓ

δk(1 + log xSk
)

= µℓ +

L∑
k=ℓ

δk log xSk
(A.16)

where S ≡ Sℓ ▷ Sℓ+1 ▷ · · · ▷ SL ≡ {a} denotes the lineage of a up to S (inclusive). This
implies that ∂ahS(x) → −∞ whenever xa → 0, so any solution x of (OptS) must have
xa > 0 for all a ∈ S. In view of this, the first-order optimality conditions for (OptS) become

ya −
∂hS

∂xa
= ya − µℓ −

L∑
k=ℓ

δk log xSk
= λ for all a ∈ S, (A.17)
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where λ is the Lagrange multiplier for the equality constraint
∑

a∈A xa = 1.10 Thus, after
rearranging terms and exponentiating, we get

xδL
SL
· xδL−1

SL−1
· · ·xδℓ

Sℓ
=

exp(ya)

Z
, (A.18)

for some proportionality constant Z ≡ Z(y) > 0.

Step 2: Solving (OptS). The next step of our proof will focus on unrolling the chain (A.18),
one attribute at a time. To start, recall that δL = µL, so (A.18) becomes

xSL
· xδL−1/µL

SL−1
· · ·xδℓ/µL

Sℓ
=

exp(ySL
/µL)

Z1/µL
, (A.19)

where we used the fact that SL = a by definition. Now, since SL−1 ≼ Sℓ = S, it follows that
all children of SL−1 are also desendants of S, so (A.19) applies to all siblings of SL as well.
Hence, summing (A.19) over SL ◁ SL−1, we get

xSL−1
· xδL−1/µL

SL−1
· · ·xδℓ/µL

Sℓ
=

exp(ySL−1
/µL)

Z1/µL
, (A.20)

where we used the definition (7) of xSL−1
=
∑

SL◁SL−1
xSL

and the recursive definition (9)
for ySL−1

, i.e., the fact that exp(ySL−1
/µL) =

∑
SL◁SL−1

exp(ySL
/µL). Therefore, noting

that
1 +

δL−1

µL
= 1 +

µL−1 − µL

µL
=

µL−1

µL
(A.21)

the product (A.20) becomes

x
µL−1

SL−1
· xδL−2

SL−2
· · ·xδℓ

Sℓ
=

exp(ySL−1
)

Z
(A.22)

or, equivalently

xSL−1
· xδL−2/µL−1

SL−2
· · ·xδℓ/µL−1

Sℓ
=

exp(ySL−1
/µL−1)

Z1/µL−1
. (A.23)

This last equation has the same form as (A.20) applied to the chain Sℓ ▷ Sℓ+1 ▷ · · · ▷ SL−1

instead of Sℓ ▷ Sℓ+1 ▷ · · · ▷ SL. Thus, proceeding inductively, we conclude that

xµk

Sk

ℓ∏
j=k−1

x
δj
Sj

=
exp(ySk

)

Z
for all k = L, . . . , ℓ (A.24)

with the empty product
∏

j∈∅ x
δj
Sj

taken equal to 1 by standard convention.
Now, substituting k ← k + 1 in (A.24), we readily get

x
µk+1

Sk+1
· xδk

Sk

ℓ∏
j=k−1

x
δj
Sj

=
exp(ySk+1

)

Z
for all k = L− 1, . . . , ℓ. (A.25)

Consequently, recalling that δk = µk − µk+1 and dividing (A.24) by (A.25), we get

x
µk+1

Sk+1

x
µk+1

Sk

=
exp(ySk+1

)

exp(ySk
)
, (A.26)

and hence
xSk+1

xSk

=
exp(ySk+1

/µk+1)

exp(ySk
/µk+1)

= PSk+1|Sk
(y) (A.27)

10Since xa > 0 for all a ∈ S, the multipliers for the corresponding inequality constraints all vanish by
complementary slackness.
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by the definition of the conditional logit choice model (NLC). Therefore, by unrolling the
chain

xa|S =
xa

xS
=

xSL

xSL−1

·
xSL−1

xSL−2

· · ·
xSℓ+1

xSℓ

= PSL|SL−1
(y)× PSL−1|SL−2

(y)× · · · × PSℓ+1|Sℓ
(y)

(A.28)
we obtain the nested expression

xa = xS

L−1∏
k=ℓ

PSk+1|Sk
(y) for all a ∈ S. (A.29)

Thus, with xS = 1 (by the fact that supp(x) = S), we finally conclude that

xa =

L−1∏
k=ℓ

PSk+1|Sk
(y) = Pa|S(y) for all a ∈ S. (A.30)

Step 3: The maximal value of (OptS). To obtain the value of the maximization problem
(OptS), we will proceed to substitute (A.30) in the expression (A.4) provided by Proposi-
tion A.1 for hS(x). To that end, for all k = ℓ, . . . , L− 1 and all Sk ≼k S, the definition (A.1)
of the conditional entropy gives:

h(x|Sk) = µk+1 xSk

∑
Sk+1◁Sk

xSk+1|Sk
log xSk+1|Sk

# by definition

= µk+1 xSk

∑
Sk+1◁Sk

xSk+1|Sk
log

exp(ySk+1
/µk+1)

exp(ySk
/µk+1)

# by (A.27)

= xSk

∑
Sk+1◁Sk

xSk+1|Sk
ySk+1

− xSk
ySk

# since
∑

Sk+1◁Sk
xSk+1|Sk

= 1

=
∑

Sk+1◁Sk

xSk+1
ySk+1

− xSk
ySk

(A.31)

and hence∑
Sk≼kS

h(x|Sk) =
∑

Sk≼kS

 ∑
Sk+1◁Sk

xSk+1
ySk+1

− xSk
ySk

 =
∑

Sk+1≼k+1S

xSk+1
ySk+1

−
∑

Sk≼kS

xSk
ySk

.

(A.32)

Thus, telescoping this last releation over k = ℓ, . . . , L and invoking Proposition A.1, we
obtain:

hS(x) =
∑
S′≼S

h(x|S′) + µk xS���log xS # by Proposition A.1

=

L−1∑
k=ℓ

∑
Sk≼kS

h(x|Sk) # collect parent classes

=

L−1∑
k=ℓ

 ∑
Sk+1≼k+1S

xSk+1
ySk+1

−
∑

Sk≼kS

xSk
ySk

 # by (A.32)

= ⟨y, x⟩ − xSyS (A.33)

where, in the second line, we used the fact that the conditional entropy h(x|SL) relative to
any childless class SL ∈ SL is zero by definition. Accordingly, substituting back to (OptS)
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we conclude that
val (OptS) = ⟨y, x⟩ − hS(x) = xSyS = yS , (A.34)

as claimed.

Step 4: Differential representation of conditional probabilities. To prove the second part of
the proposition, recall that the restricted entropy function h|S is convex, and let

h∗
|S(y) = max

x∈∆(A)
{⟨y, x⟩ − h|S(x)} (A.35)

denote its convex conjugate.11 By standard results in convex analysis [e.g., Theorem 23.5 in
23], h∗

|S is differentiable in y and we have the Legendre identity:

x = ∇h∗
|S(y) ⇐⇒ y ∈ ∂h|S(x) ⇐⇒ x ∈ argmax

x′∈∆(A)

{⟨y, x′⟩ − h|S(x
′)} (A.36)

Now, by (A.30), we have xa = Pa|S(y) whenever x solves (OptS) and hence, by Fermat’s
rule, whenever y − ∂h|S(x) ∋ 0. Our claim then follows by noting that h∗

|S(y) = yS and
combining the first and third legs of the equivalence (A.36). ■

These properties of the nested entropy function (and its restricted variant) will play a key
role in deriving a suitable energy function for the nested exponential weights algorithm. We
make this precise in Appendix C below.

Appendix B. Auxiliary bounds and results

Throughout this appendix, we assume the following primitives:

• A fixed sequence of real numbers µ1 ≥ µ2 ≥ · · · ≥ µL > 0; all entropy-related objects
will be defined relative to this sequence as per the previous section.
• A score vector y ∈ RA that defines inductively the score yS of any class S ∈ S using

(9), as well as the associated nested choice probability P(y) as per (NLC).
• A vector of cost increments r = (rS)S∈S ∈ RS that defines an associated cost vector
c ∈ RA as per (4), viz.

ca =
∑
S∋a

rS for all a ∈ A. (B.1)

Moreover, for all c, y ∈ RA, we define the nested power sum function σc,y : S\SL → R
which, to any S ∈ S\SL, associates the real number

σc,y(S) =


∑
a◁S

Pa|S(y) exp(−ca/µL) if attr(S) = L− 1,∑
S′◁S

PS′|S(y)σc,y(S
′)

µℓ+2
µℓ+1 if attr(S) = ℓ < L− 1.

(B.2)

The following lemma links the increments of the conjugate entropy h∗ to the nested power
sum defined above:

Lemma B.1. For all y ∈ RA, c ∈ RA, we have

h∗(y − c) = h∗(y) + µ1 log(σc,y(A)). (B.3)

Lemma B.1 will be proved as a corollary of the more general result below:

11Note here that h∗
|S(y) is bounded from above by the convex conjugate h∗

S(y) of hS(x) because the

latter does not include the constraint supp(x) ⊆ S.
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Lemma B.2. Fix some y ∈ RA and c ∈ RA. Then, for all Sℓ ∈ Sℓ, ℓ < L,we have

exp

(
h∗
|Sℓ

(y − c)

µℓ+1

)
= exp

(
h∗
|Sℓ

(y)

µℓ+1

)
σc,y(Sℓ) (B.4)

Proof of Lemma B.1. Simply invoke Lemma B.2 with S ← A. ■

Proof of Lemma B.2. We proceed by descending induction on ℓ = attr(S).

Base step. Fix some S ∈ S with attr(S) = L− 1. We then have:

exp

(
h∗
|S(y − c)

µL

)
=
∑
a◁S

exp

(
h∗
|a(y − c)

µL

)
# by Eq. (A.10)

=
∑
a◁S

exp

(
h∗
|a(y)− ca

µL

)
# the a’s are leaves

=
∑
a◁S

exp

(
h∗
|a(y)

µL

)
exp

(
− ca
µL

)

= exp

(
h∗
|S(y)

µL

)∑
a◁S

 exp
(

h∗
|a(y)

µL

)
exp
(

h∗
|S(y)

µL

)
 exp

(
− ca
µL

)
︸ ︷︷ ︸

=σc,y(S) by definition

= exp

(
h∗
|S(y)

µL

)
σc,y(S) (B.5)

with the last equality following from the definition of Pa|S via (NLC) and by the definition
of σc,y(S). This concludes the start of the induction process.

Induction step. Fix some S ∈ S with attr(S) = ℓ− 1, ℓ < L, and suppose that (B.4) holds
at level ℓ. We then have:

exp

(
h∗
|S(y − c)

µℓ

)
=
∑
S′◁S

exp

(
h∗
|S′(y − c)

µℓ

)

=
∑
S′◁S

exp

(
h∗
|S′(y − c)

µℓ+1

)µℓ+1
µℓ

=
∑
S′◁S

[
exp

(
h∗
|S′(y)

µℓ+1

)
σc,y(S

′)

]µℓ+1
µℓ

# inductive hypothesis

=
∑
S′◁S

exp

(
h∗
|S′(y)

µℓ

)
σc,y(S

′)
µℓ+1
µℓ

= exp

(
h∗
|S(y)

µℓ

) ∑
S′◁S

exp
(

h∗
|S′ (y)

µℓ

)
exp
(

h∗
|S(y)

µℓ

)
σc,y(S

′)
µℓ+1
µℓ

︸ ︷︷ ︸
=σc,y(S) by definition

= exp

(
h∗
|S(y)

µL

)
σc,y(S) (B.6)



22 M. MARTIN, P. MERTIKOPOULOS, T. RAHIER, AND H. ZENATI

with the last equality following from the definition of PS′|S and σc,y(S). This being true
for all S ∈ S with attr(S) = ℓ − 1, the inductive step and – a fortiori – our proof are
complete. ■

The next lemma provides an upper bound for σc,y(A), which will in turn allow us to
derive a bound for the increment of h∗.

Lemma B.3. For y ∈ RA and c ∈ [0,+∞)A, we have:

σc,y(A) ≤ 1− 1

µ1

[∑
a∈A

Pa(y)ca −
1

2µL

∑
a∈A

Pa(y)c
2
a

]
. (B.7)

As in the case of B.1, Lemma B.3 will follow as a special case of the more general,
class-based result below:

Lemma B.4. Fix some y ∈ RA and c ∈ RA
+. Then, for all Sℓ ∈ Sℓ, ℓ < L,we have

σc,y(Sℓ) ≤ 1− 1

µℓ+1

[∑
a∈Sℓ

Pa|Sℓ
(y)ca −

1

2µL

∑
a∈Sℓ

Pa|Sℓ
(y)c2a

]
, (B.8)

Proof of Lemma B.3. Simply invoke Lemma B.4 with S ← A. ■

Proof of Lemma B.4. We proceed again by descending induction on ℓ = attr(S).

Base step. Fix some S ∈ S with attr(S) = L− 1. We then have:

σc,y(S) =
∑
S′◁S

PS′|S(y) exp(−
cS′

µL
)

≤
∑
S′◁S

PS′|S(y)(1−
cS′

µL

c2S′

2µ2
L

) # e−x ≤ 1− x+ x2/2 for x ≥ 0

= 1− 1

µL

[∑
S′◁S

PS′|S(y)cS′ − 1

2µL

∑
S′◁S

PS′|S(y)c
2
S′

]

= 1− 1

µ(L−1)+1

[∑
a◁S

Pa|S(y)ca −
1

2µL

∑
a◁S

Pa|S(y)c
2
a

]
(B.9)

so the initialization of the induction process is complete.

Induction step. Fix some S ∈ S with attr(S) = ℓ− 1, ℓ < L, and suppose that (B.8) holds
at level ℓ. We then have:

σc,y(S) =
∑
S′◁S

PS′|S(y)σc,y(S
′)

µℓ+1
µℓ

=
∑
S′◁S

PS′|S(y)

[
1 +

1

µℓ+1

(
−
∑
a◁S′

Pa|S′(y)ca +
1

2µL

∑
a◁S′

Pa|S′(y)c2a

)]µℓ+1
µℓ

# inductive hypothesis

≤
∑
S′◁S

PS′|S(y)

[
1 +

1

µℓ

(
−
∑
a◁S′

Pa|S′(y)ca +
1

2µL

∑
a◁S′

Pa|S′(y)c2a

)]
# (1 + x)β ≤ 1 + βx for β ≤ 1

= 1 +
1

µℓ

[
−
∑
S′◁S

∑
a◁S′

Pa|S′(y)PS′|S(y)ca +
1

2µL

∑
S′◁S

∑
a◁S′

Pa|S′(y)PS′|S(y)c
2
a

]
(B.10)
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= 1 +
1

µ(ℓ−1)+1

[∑
a◁S

Pa|S(y)ca +
1

2µL

∑
a◁S

Pa|S(y)c
2
a

]
(B.11)

This being true for all S ∈ S s.t. attr(S) = ℓ− 1, the induction step and the proof of our
assertion are complete. ■

With all this in hand, we are now in a position to upper bound the increments of the
conjugate nested entropy h∗.

Proposition B.1. For y ∈ RA and c ∈ [0,+∞)A, we have:

h∗(y − c)− h∗(y) ≤ −⟨P(y), c⟩+ 1

2µL

∑
a∈A

Pa(y)c
2
a. (B.12)

Proof. Using Lemmas B.1 and B.3 and the concavity inequality log x ≤ 1+x directly delivers
our assertion. ■

Remark 6. It is useful to note that, given a cost increment vector r ∈ RS with associated
aggregate costs given by c ∈ RA we have:

⟨P(y), c⟩ =
∑
a∈A

Pa(y)ca

=
∑
a∈A

Pa(y)
∑
S∋a

rS

=
∑
a∈A

Pa(y)
∑
S∈S

rS 1a∈S

=
∑
S∈S

[∑
a∈A

Pa(y)1a∈S

]
rS

=
∑
S∈S

PS(y)rS .

We are finally in a position to prove the basic properties of the NIWE estimator, which
we restate below for convenience:

Proposition 1. Let S =
∐L

ℓ=1 Sℓ be a similarity structure on A. Then, given a mixed strategy
x ∈ ∆(A) and a vector of cost increments r ∈ RS as per (5), the estimator (NIWE) satisfies
the following:

(1) It is unbiased:
E[r̂S ] = rS for all S ∈ S. (14)

(2) It enjoys the importance-weighted mean-square bound

E
[
xS r̂

2
S

]
≤ R2

S for all S ∈ S. (15)

Accordingly, the loss estimator (13) is itself unbiased and enjoys the bound

E
[∑

a∈A
xaĉ

2
a

]
≤ neff (16)

where neff is defined as
√
neff =

∑L

ℓ=1

√
nℓR̄ℓ (17)

with nℓ = |Sℓ| denoting the number of classes of attribute Sℓ, and

R̄ℓ =

√
1

nℓ

∑
Sℓ∈Sℓ

R2
Sℓ

(18)

denoting the “root-mean-square” range of all classes in Sℓ.
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Proof. Fix some S ∈ S with attr(S) = ℓ ∈ {1, . . . , L} and lineage A ≡ S0 ▷ S1 ▷ · · · ▷ Sℓ ≡
S. We will now prove both properties of the (NIWE) estimator.

Part 1. We begin by showing that the estimator (NIWE) is unbiased. Indeed, we have:

E[r̂S ] = E

[
1
{
Sℓ = Ŝℓ, . . . , S1 = Ŝ1

}
xSℓ|Sℓ−1

· · ·xS2|S1
xS1

rSℓ

]
= E

[
1
{
S = Ŝ

}
xS

rS

]
# Rewriting (NIWE)

=
rS
xS

E
[
1
{
S = Ŝ

}]
︸ ︷︷ ︸

xS

= rS . (B.13)

Part 2. We now turn to the proof of the importance-weighted mean-square bound of the
estimator (NIWE). In this case, for any S ∈ S, we have:

E
[
xS r̂

2
S

]
= xS E

[
r̂2S
]
= xS E

(1{S = Ŝ
}

xS
rSℓ

)2


= xS

r2Sℓ

x2
S

E
[
1
{
S = Ŝ

}]
= r2Sℓ

# because E
[
1
{
S = Ŝ

}]
= xS

≤ R2
S . (B.14)

We are left to derive the bound for the aggregate cost estimator (13), viz.

ĉa =
∑
S∋a

r̂S . (B.15)

With this in mind, we can write:∑
a∈A

xaĉ
2
a =

∑
a∈A

xa

(∑
S∋a

r̂S

)2

=
∑
a∈A

xa

[∑
S∋a

r̂2S + 2
∑
S′∋a

∑
S≻S′

r̂S r̂S′

]
=
∑
a∈A

∑
S∈S

xar̂
2
S 1a∈S +2

∑
a∈A

∑
S′∈S

∑
S≻S′

xar̂S r̂S′ 1a∈S′

=
∑
S∈S

r̂2S
∑
a∈A

xa 1a∈S︸ ︷︷ ︸
xS

+2
∑
S′∈S

∑
S≻S′

r̂S r̂S′

∑
a∈A

xa 1a∈S′︸ ︷︷ ︸
xS′

=
∑
S∈S

xS r̂
2
S + 2

∑
S′∈S

∑
S≻S′

xS′ r̂S r̂S′ . (B.16)

Now, decomposing the above sums attribute-by-attribute and taking expectations in (B.16),
we get:

E

[∑
a∈A

xaĉ
2
a

]
=

L∑
ℓ=1

∑
Sℓ∈Sℓ

xSℓ
E
[
r̂2Sℓ

]
+ 2

∑
1≤ℓ<ℓ′≤L

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

xSℓ′ E
[
r̂Sℓ

r̂Sℓ′

]
. (B.17)

The first term in (B.17) can simply be bounded using (B.14). Indeed:
L∑

ℓ=1

∑
Sℓ∈Sℓ

xSℓ
E
[
r̂2Sℓ

]
≤

L∑
ℓ=1

∑
Sℓ∈Sℓ

R2
Sℓ

=

L∑
ℓ=1

nℓR̄
2
ℓ . (B.18)
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with R̄ℓ =
√

1
nℓ

∑
Sℓ∈Sℓ

R2
Sℓ

for any ℓ = 1, . . . , L.
We now turn to the second term in (B.17). Let {ϵℓ,ℓ′}1≤ℓ′<ℓ≤L be any fixed sequence of

positive numbers. For any ℓ, ℓ′ ∈ {1, . . . , L} and any Sℓ ∈ Sℓ and Sℓ′ ∈ Sℓ′ , the Peter-Paul
inequality yields:

2r̂Sℓ′ r̂Sℓ
≤ 1

ϵℓ,ℓ′
r̂2Sℓ′

+ ϵℓ,ℓ′ r̂
2
Sℓ

(B.19)

Injecting (B.19) into the second term of (B.17) yields:

2
∑

1≤ℓ<ℓ′≤L

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

xSℓ′ E
[
r̂Sℓ

r̂Sℓ′

]

≤
∑

1≤ℓ<ℓ′≤L

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

xSℓ′

(
1

ϵℓ,ℓ′
E
[
r̂2Sℓ′

]
+ ϵℓ,ℓ′ E

[
r̂2Sℓ

])

=
∑

1≤ℓ<ℓ′≤L

1

ϵℓ,ℓ′

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

xSℓ′ E
[
r̂2Sℓ′

]
+

∑
1≤ℓ<ℓ′≤L

ϵℓ,ℓ′
∑

Sℓ∈Sℓ
Sℓ′≺ℓ′Sℓ

xSℓ′ E
[
r̂2Sℓ

]

=
∑

1≤ℓ<ℓ′≤L

1

ϵℓ,ℓ′

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

xSℓ′ E
[
r̂2Sℓ′

]
+

∑
1≤ℓ<ℓ′≤L

ϵℓ,ℓ′
∑

Sℓ∈Sℓ

E
[
r̂2Sℓ

] ∑
Sℓ′≺ℓ′Sℓ

xSℓ′︸ ︷︷ ︸
xSℓ

=
∑

1≤ℓ<ℓ′≤L

1

ϵℓ,ℓ′

∑
Sℓ′∈Sℓ′

xSℓ′ E
[
r̂2Sℓ′

]
+

∑
1≤ℓ<ℓ′≤L

ϵℓ,ℓ′
∑

Sℓ∈Sℓ

xSℓ
E
[
r̂2Sℓ

]
≤

∑
1≤ℓ<ℓ′≤L

1

ϵℓ,ℓ′

∑
Sℓ′∈Sℓ′

R2
Sℓ′

+
∑

1≤ℓ<ℓ′≤L

ϵℓ,ℓ′
∑

Sℓ∈Sℓ

R2
Sℓ

# by (B.14)

≤
∑

1≤ℓ<ℓ′≤L

1

ϵℓ,ℓ′
nℓ′R̄

2
ℓ′ +

∑
1≤ℓ<ℓ′≤L

ϵℓ,ℓ′nℓR̄
2
ℓ . (B.20)

Injecting (B.18) and (B.20) into (B.17) ensures that:

E
[∑

a∈A
xaĉ

2
a

]
≤
∑L

ℓ=1
nℓR̄

2
ℓ +

∑
1≤ℓ<ℓ′≤L

(
1

ϵℓ,ℓ′
nℓ′R̄

2
ℓ′ + ϵℓ,ℓ′nℓR̄

2
ℓ

)
holds for any sequence of positive numbers {ϵℓ,ℓ′}1≤ℓ′<ℓ≤L. As a result, taking ϵℓ,ℓ′ =

√
nℓ′
nℓ

R̄ℓ′
R̄ℓ

yields the tight bound

E
[∑

a∈A
xaĉ

2
a

]
≤
∑L

ℓ=1
nℓR̄

2
ℓ + 2

∑
1≤ℓ<ℓ′≤L

√
nℓ′R̄ℓ′

√
nℓR̄

2
ℓ =

(∑L

ℓ=1

√
nℓR̄ℓ

)2

,

(B.21)
which proves our original assertion. ■

Appendix C. Regret analysis

As we mentioned in the main text, the principal component of our analysis is a recursive
inequality which, when telescoped over t = 1, 2, . . . , will yield the desired regret bound. To
establish this “template inequality”, we will first require an energy function measuring the
disparity between a benchmark strategy x ∈ ∆(A) and a propensity score profile y ∈ RA.
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To that end, building on the notions introduced in Appendix A, let h : ∆(A)→ R denote
the total nested entropy function

h(x) = hA(x) =

L∑
k=0

δk
∑

Sk∈Sk

xSk
log xSk

, x ∈ ∆(A), (C.1)

and let

h∗(y) = max
x∈∆(A)

{⟨y, x⟩ − h(x)}, y ∈ RA, (C.2)

denote the convex conjugate of h so, by Proposition A.2, we have

h∗(y) = yA and Pa(y) =
∂h∗

∂ya
for all y ∈ RA. (C.3)

The Fenchel coupling between x ∈ ∆(A) and y ∈ RA is then defined as

F (x, y) = h(x) + h∗(y)− ⟨y, x⟩ for all x ∈ ∆(A), y ∈ RA, (C.4)

and we have the following key result:

Proposition C.1. Let S =
∐L

ℓ=0 Sℓ be a similarity structure on A with uncertainty parameters
µ1 ≥ · · · ≥ µL > 0. Then:

(1) The Fenchel coupling (C.4) is positive-definite, i.e.,

F (x, y) ≥ 0 for all x ∈ ∆(A) and all y ∈ RA, (C.5)

with equality if and only if x is given by (NLC), i.e., if and only if x = P(y).
(2) For all x ∈ A, we have

F (x, 0) = h(x) + h∗(0) = h(x)−minh (C.6)

where minh ≡ minx′∈∆(A) h(x
′) denotes the minimum of h over ∆(A).

Proof. Our first claim follows by setting S ← A in Propositions A.1 and A.2 and noting that
hS = h|S when S = A: indeed, by Young’s inequality, we have h(x) + h∗(y) − ⟨y, x⟩ ≥ 0
with equality if and only if y ∈ ∂h(x), so the equality x = P(y) follows from (A.36) applied
to S ← A and the fact that Pa|A(y) = Pa(y). As for our second claim, simply note that
h∗(0) = maxx∈∆(A){⟨0, x⟩ − h(x)} = −minx∈∆(A) h(x) and set y ← 0 in the definition (C.4)
of the Fenchel coupling. ■

With all this in hand, the specific energy function that we will use for our regret analysis
is the “rate-deflated ” Fenchel coupling

Et =
1

ηt
F (p, ηtYt) (C.7)

where p ∈ ∆(A) is the regret comparator, ηt is the algorithm’s learning rate at stage t,
and Yt is the corrsponding propensity score estimate. In words, since the mixed strategy
employed by the learner at stage t is Xt = P(ηtYt), the energy Et essentially measures the
disparity between Xt and the target strategy p (suitably rescaled by the method’s learning
rate). We then have the following fundamental estimate:

Proposition C.2. For all p ∈ ∆(A) and all t = 1, 2, . . . , we have:

Et+1 ≤ Et + ⟨ĉt, Xt − p⟩+ (η−1
t+1 − η−1

t )[h(p)−minh] +
1

ηt
F (Xt, ηtYt+1). (C.8)
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Proof. By the definition of Et, we have

Et+1 − Et =
1

ηt+1
F (p, ηt+1Yt+1)−

1

ηt
F (p, ηtYt) =

1

ηt+1
F (p, ηt+1Yt+1)−

1

ηt
F (p, ηtYt+1)

(C.9a)

+
1

ηt
F (p, ηtYt+1)−

1

ηt
F (p, ηtYt). (C.9b)

We now proceed to upper-bound each of the two terms (C.9a) and (C.9b) separately.
For the term (C.9a), the definition of the Fenchel coupling (C.4) readily yields:

(C.9a) =
[

1

ηt+1
− 1

ηt

]
h(p) +

1

ηt+1
h∗(ηt+1Yt+1)−

1

ηt
h∗(ηtYt+1). (C.10)

Inspired by a trick of Nesterov [21], consider the function φ(η) = η−1[h∗(ηy) +minh]. Then,
by Proposition A.2, letting x = P(ηy) and differentiating φ with respect to η gives

φ′(η) =
1

η
⟨y, P(ηy)⟩ − 1

η2
[h∗(ηy) + minh]

=
1

η2
[⟨ηy, x⟩ − h∗(ηy)−minh]

=
1

η2
[h(x)−minh] ≥ 0. (C.11)

Since ηt+1 ≤ ηt, the above shows that φ(ηt) ≥ φ(ηt+1). Accordingly, setting y ← Yt+1 in
the definition of φ yields

1

ηt+1
h∗(ηt+1Yt+1)−

1

ηt
h∗(ηtYt+1) ≤

[
1

ηt
− 1

ηt+1

]
minh (C.12)

and hence
(C.9a) ≤ (η−1

t+1 − η−1
t )[h(p)−minh]. (C.13)

Now, after a straightforward rearrangement, the second term of (C.9) becomes

(C.9b) =
1

ηt
[h(p) + h∗(ηtYt+1)− ηt⟨Yt+1, p⟩]−

1

ηt
[h(p) + h∗(ηtYt)− ηt⟨Yt, p⟩]

=
1

ηt
[h∗(ηtYt+1)− h∗(ηtYt)− ηt⟨ĉt, p⟩] # by (NEW)

=
1

ηt
[h∗(ηtYt+1)− h∗(ηtYt)− ηt⟨ĉt, Xt⟩] + ⟨ĉt, Xt − p⟩ # isolate benchmark

=
1

ηt
[h∗(ηtYt+1)− ⟨ηtYt, Xt⟩+ h(Xt)− ηt⟨ĉt, Xt⟩] + ⟨ĉt, Xt − p⟩

# by Proposition A.2

=
1

ηt
F (Xt, ηtYt+1) + ⟨ĉt, Xt − p⟩ (C.14)

Thus, combining the above with (C.13), we finally obtain

Et+1 = Et + (C.9a) + (C.9b)

≤ Et + (η−1
t+1 − η−1

t )[h(p)−minh] + ⟨ĉt, Xt − p⟩+ 1

ηt
F (Xt, ηtYt+1) (C.15)

and our proof is complete. ■

We are now in a position to state and prove the template inequality that provides the
scaffolding for our regret bounds:
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Proposition 2. The NEW algorithm enjoys the bound

E[Regp(T )] ≤
H

ηT+1
+

T∑
t=1

E[F (Xt, ηtYt+1)]

ηt
. (29)

Proof. Let Zt = ĉt − vt denote the error in the learner’s estimation of the t-th stage payoff
vector vt. Then, by substituting in Proposition C.2 and rearranging, we readily get:

⟨vt, p−Xt⟩ ≤ Et−Et+1+ ⟨Zt, Xt−p⟩+
(
η−1
t+1 − η−1

t

)
[h(p)−minh]+ηtF (p, ηtYt+1) (C.16)

Thus, telescoping over t = 1, 2, . . . , T , we have

Regp(T ) ≤ E1 − ET+1 +

(
1

ηT+1
− 1

η1

)
[h(p)−minh]

+

T∑
t=1

⟨Zt, Xt − p⟩+
T∑

t=1

1

ηt
F (Xt, ηtYt+1)

≤ h(p)−minh

ηT+1
+

T∑
t=1

⟨Zt, Xt − p⟩+
T∑

t=1

1

ηt
F (Xt, ηtYt+1) (C.17)

where we used the fact that a) Et ≥ 0 for all t (a consequence of the first part of Proposi-
tion C.1); and that b) E1 = η−1

1 [h(p) + h∗(0)] = η−1
1 [h(p)−minh] (from the second part of

the same proposition). Our claim then follows by taking expectations in (C.17) and noting
that E[Zt | Ft] = 0 (by Proposition 1). ■

In view of the above, our main regret bound follows by bounding the two terms in the
template inequality (C.8). The second term is by far the most difficult one to bound, and is
where Appendix B comes in; the first term is easier to handle, and it can be bounded as
follows:

Lemma C.1. Suppose that each class S ∈ Sℓ−1 has at most mℓ children, ℓ = 1, . . . , L. Then,
for all p ∈ ∆(A), we have

H ≤
L∑

ℓ=1

µℓ logmℓ with equality iff the tree is symmetric, (C.18)

H = µ log(n) if µ1 = µ2 = · · · = µL = µ. (C.19)

Proof. Suppose that ya = 0 for all a ∈ A. Then, applying (9) inductively, we have:

ySL
= 0 for all SL ∈ SL

ySL−1
= µL log

∑
SL◁SL−1

exp(0) ≤ µL logmL for all SL−1 ∈ SL−1

ySL−2
= µL−1 log

∑
SL−1◁SL−2

exp

(
ySL−1

µL−1

)
≤ µL−1 logmL−1 + µL logmL for all SL−2 ∈ SL−2

...
...

ySℓ−1
= µℓ log

∑
Sℓ◁Sℓ−1

exp(ySℓ
/µℓ) ≤

L∑
k=ℓ

µk logmk for all Sℓ−1 ∈ Sℓ−1

(C.20)
and hence H = h∗(0) = yA ≤

∑L
ℓ=1 µℓ logmℓ. Eq. (C.18) then follows from Proposition C.1.
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Now, if µ1 = µ2 = · · · = µL = µ, we have

H = log

 ∑
S1◁S0

 ∑
S2◁S1

· · ·

 ∑
SL◁SL−1

1


µL

µL−1

· · ·


µ2
µ1


µ1

= µ log
∑

S1◁S0

 ∑
S2◁S1

· · ·

 ∑
SL◁SL−1

1

· · ·


= µ log

[ ∑
SL◁LS0

1

]
= µ log n, (C.21)

which proves Eq. (C.19) and completes our proof. ■

Proposition C.3. For all p ∈ ∆(A) and all t = {1, 2, . . . }, we have:

F (Xt, µtYt+1) + ηt⟨ĉt, Xt⟩ = h∗(ηtYt + ηtĉt)− h∗(ηtYt). (C.22)

Proof. Let p ∈ ∆(A) and t ∈ 1, 2, . . . , we simply write:

F (Xt, ηtYt+1) = h(Xt) + h∗(ηtYt+1)− ηt⟨Yt+1, Xt⟩
= h(Xt) + h∗(ηtYt)− ⟨ηtYt, Xt⟩︸ ︷︷ ︸

=F (Xt,ηtYt)

+h∗(ηtYt+1)− h∗(ηtYt)− ηt⟨ĉt, Xt⟩

= h∗(ηtYt + ηtĉt)− h∗(Yt)− ηt⟨ĉt, Xt⟩ # F (Xt, ηtYt) = 0

and our assertion follows. ■

We are finally in a position to prove our main result (which we restate below for conve-
nience):

Theorem 1. Suppose that Algorithm 1 is run with a non-increasing learning rate ηt > 0 and
uncertainty parameters µ1 ≥ · · · ≥ µL > 0 against a sequence of cost vectors ct ∈ [0, 1]A,
t = 1, 2, . . . , as per (4). Then, for all p ∈ ∆(A), the learner enjoys the regret bound

E[Regp(T )] ≤
H

ηT+1
+

neff

2µL

T∑
t=1

ηt (19)

with neff given by (17) and H ≡ H(µ1, . . . , µL) defined by setting y = 0 in (9) and taking
H = yA, i.e.,

H = log

 ∑
S1◁S0

 ∑
S2◁S1

· · ·

 ∑
SL◁SL−1

1


µL

µL−1

· · ·


µ2
µ1


µ1

(20)

In particular, if Algorithm 1 is run with µ1 = · · · = µL =
√
neff/2 and ηt =

√
log n/(2t), we

have
E[Regp(T )] ≤ 2

√
neff log n · T . (21)

Proof. Injecting Eq. (C.22) in the result of Proposition 2 and using Proposition B.1 and
Eq. (16) of Proposition 1 directly yields the pseudo-regret bound (19).

Finally, if we choose µ1 = · · · = µL =
√

neff/2, Lemma C.1 gives

H =
√

neff/2 log n. (C.23)
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Thus, taking ηt =
√
log n/(2t) and substituting in (19) along with (C.23) finally delivers

E[Regp(T )] ≤ 2
√
neff log n · T , (C.24)

and our claim follows. ■

Appendix D. Additional Experiment Details and Discussions

In this appendix we provide additional details on the experiments as well as further
discussions on the settings we presented. The code with the implementation of the algorithms
as well as the code to reproduce the figures will be open-sourced and is provided along with
the supplementary materials.

D.1. Experiment additional details. In the synthetic environment, at each level, the rewards
are generated randomly according for each class nodes, through uniform distributions of
randomly generated means and fixed bandwidth. From a level ℓ to the next ℓ+1, the rewards
range are divided by a multiplicative factor Rℓ/Rℓ+1 = 10. The implemented method of
NEW uses the reward based IW. Moreover, no model selection was used in this experiment
as no hyperparameter was tuned. Indeed, a decaying rate of 1√

t
was used for the score

updates for all methods, as is common in the bandit litterature [17].

D.2. Blue Bus/ Red Bus environment. We detail in Figure 5 a graphical representation
of such blue bus/red bus environment, where many colors of the bus item build irrelevant
alternatives. In this setting, with few arms, we run the methods up to the horizon T = 1000.
We provide in Figure 6 the average reward of the two methods NEW and EXP3 with varying
number of subclasses of the “bus”.

S0

red bus

car bus

car blue bus
a1 a2a0

...
ai

...

Figure 5: Diagram of the blue Bus/Red Bus environment.

While the NEW method ends up selecting the best alternative and having the lowest
regret, the EXP3 seems to pick wrong alternative in some experiments, and ends up having
higher regret and requiring more iterations to converge to higher average reward. In some of
our experiments over the multiple random runs, alternatives of very low sampling probability
that were sampled changed the score vector too brutally in the IPS estimator which seemed
to hurt the EXP3 method much more than the NEW algorithm.

D.3. Tree structures. In this appendix we show additional results and visualisations for
the second setting presented in the main paper. We start with discussions on the depth
parameter L and follow with the breadth parameter related to the number of child per class
M = |S|.
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Figure 6: Regret and Average Reward of NEW and EXP3 on the Blue Bus/ Red
Bus environment.

Influence of the depth parameter L. In Figure 7 we show the influence of the depth parameter
with a fixed number of child per class. By making the tree deeper, we illustrate the effect of
knowing the nested structure compared to running the logit choice to the whole alternative
set. As shown in both the regret and average reward plots, the NEW method outperforms
the EXP3 algorithm. While the NEW method also use an IPS estimator, it is less prone to
variance issues than the EXP3 method. Indeed, due to the nested structure and the reward
decay related to the ratio Rℓ+1/Rℓ, the NEW estimator end up not hurting the regret by
still selecting "right" parent classes.

0 2000 4000 6000 8000 10000
0

100

200

300

400

Re
gr

et

Env - Tree Structure - Regret
EXP3 - L 4, M 3
EXP3 - L 5, M 3
EXP3 - L 6, M 3

NEW - L 4, M 3
NEW - L 5, M 3
NEW - L 6, M 3

0 2000 4000 6000 8000 10000
Steps

0.710

0.715

0.720

0.725

0.730

0.735

0.740

Av
er

ag
e 

Re
wa

rd

Env - Tree Structure - Average Reward
EXP3 - L 4, M 3
EXP3 - L 5, M 3
EXP3 - L 6, M 3

NEW - L 4, M 3
NEW - L 5, M 3
NEW - L 6, M 3

Figure 7: Regret and Average Reward of NEW and EXP3 on the synthetic
environment with varying number of levels L.

Influence of the number of child per class (wideness) M = |S|. In this setting we fix the
number of levels L and vary the number of child per classes M . In Figure 8 we can see that
the NEW method outperforms the EXP3 in terms of regret and average reward. Interestingly,
we see that the gap between the two methods shrinks when the number of child per class
augments. This is because when the size of a class increase, the NEW method also end up
having less knowledge locally and end up having a large number of alternatives to choose
among.

D.4. A visualisation of the effects of NEW. In this appendix we want to show the effects
of NEW through the simple setting where we assume a nested structure with L = 4 and
M = |S| = 3. We illustrate in Figure 9 the score vectors of the NEW method along the
optimal path in the tree (path which nodes have the highest cumulated mean, i.e which
generates the highest reward) along with the oracle means of the child nodes. We can see
that the algorithm takes advantage of the nested structure and updates the scores vectors
optimally with regards to the oracle means of all the nodes. The NEW algorithm therefore
estimates correctly the rewards of the environment.
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Figure 8: Regret and Average Reward of NEW and EXP3 on the synthetic
environment with varying number of child per class M = |S|.
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Figure 9: Histograms of the score vectors along the optimal path in the nested
structure, with visualisation of the mean value of the node.

Inversely we see in Figure 10 that the EXP3 method has suffered from variance issue and
selected a suboptimal alternative among the |S|L = 81 possible ones. The EXP3 did not
take advantage of the nested structure and therefore did not learn as correctly as the NEW
algorithm the reward values.
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Figure 10: Histogram of the score vector of the all alternatives, with a visualisation
of the mean value of all nodes.

D.5. Cases where both algorithms perform identically. In this appendix we merely show
that the implementation of the NEW and EXP3 algorithm match exactly and observe the
same behavior when the number of levels L is set to 1. This setting is where we have no
knowledge of any nested structure, therefore both algorithms perform identically in Figure
11.

D.6. Variance plots for the synthetic experiments. We discuss here the variance of the regret
at the final timestep T = 10000. Indeed, as shown on Figure 6 for the NEW algorithm , on
Figure 7 for both algorithms EXP3 and NEW, and on Figure 8 for EXP3, some of the plots
do no exhibit the monotonicity one would have expected when increasing the number of
arms through L or M , and are even overlapping on the regret plot. This can be explained on
Figures 12 for the Red Bus/Blue Bus environment, and in Figures 13 and 14 respectively for
depth and wideness tree experiments. Those plots show the variances (across the 20 random
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Figure 11: Regret and Average Reward of NEW and EXP3 on the synthetic
environment where L = 1.

seeds) of the final regret for both methods at the final step-size. In Figure 13 we see that
the EXP3 arms have similar mean values with large variances, which explains why they are
overlapping on the plot in Figure 3. In Figure 14 when varying M we can also have a closer
look on how NEW outperforms EXP3 and how the close values of NEW regrets through
different M can be explained by their high variance.
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Figure 12: Regret distribution at the final stepsize T = 1000 for the Red Bus/Blue
Bus environment.

D.7. Reproducibility. We provide code for reproducibility of our experiments and plots, in
addition to a more general implementation of both the NEW algorithm and EXP3 baseline.
All experiments were run on a Mac book pro laptop, with 1 processor of 6 cores @2.6GHz
(6-Core Intel Core i7). The code and all experiments can be found in the attached .zip.
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Figure 13: Regret distribution at the final stepsize T = 10000 when varying the
depth parameter L.
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Figure 14: Regret distribution at the final stepsize T = 10000 when varying the
wideness parameter M .
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