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A UNIVERSAL BLACK-BOX OPTIMIZATION METHOD WITH
ALMOST DIMENSION-FREE CONVERGENCE RATE GUARANTEES

KIMON ANTONAKOPOULOS*°, DONG QUAN VU®*, VOLKAN CEVHER*,
KFIR YEHUDA LEVYT, AND PANAYOTIS MERTIKOPOULOS?!

ABsTrRACT. Universal methods for optimization are designed to achieve theoretically
optimal convergence rates without any prior knowledge of the problem’s regularity
parameters and/or the accurarcy of the gradient oracle employed by the optimizer. In this
regard, existing state-of-the-art algorithms achieve an O(1/T?2) value convergence rate in
Lipschitz smooth problems with a perfect gradient oracle, and an O(l/\/T) convergence
rate when the underlying problem is non-smooth or the gradient oracle is stochastic. On
the downside, these methods do not take into account the problem’s dimensionality, and
this can have a catastrophic impact on the achieved convergence rate, in both theory and
practice. Our paper aims to bridge this gap by providing a scalable universal gradient
method — dubbed UNDERGRAD — whose oracle complexity is almost dimension-free in
problems with a favorable geometry (like the simplex, linearly constrained semidefinite
programs and combinatorial bandits), while retaining the order-optimal dependence on T'
described above. These “best-of-both-worlds” guarantees are achieved via a primal-dual
update scheme inspired by the dual exploration method for solving variational inequalities.

1. INTRODUCTION

The analysis of first-order methods for convex minimization typically revolves around
the following regularity conditions: a) Lipschitz continuity of a problem’s objective function
and /or b) Lipschitz continuity of the objective’s gradients. Depending on these conditions
and the quality of the gradient oracle available to the optimizer, the optimal convergence
rates that can be obtained by an iterative first-order algorithm after 7" oracle queries are:

(1) O(|X)|\/(G? + ¢2)/T) if the problem’s objective is G-Lipschitz continuous and the
oracle’s variance is o.

(2) O(L|X|]?/T? + o||X||/VT) if the objective is L-Lipschitz smooth.

[In both cases, ||X|| == sup, ,/cx|z" — x| denotes the diameter of the problem’s domain
X C R for an in-depth treatment, see [11, 38] and references therein.]

This stark separation of black-box guarantees has led to an intense search for universal
methods that are capable of interpolating smoothly between these rates without any prior
knowledge of the problem’s regularity properties or the oracle’s noise profile. As far as we
are aware, the first algorithm with order-optimal rate guarantees for unconstrained problems
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and no knowledge of the problem’s smoothness parameters was the ACCELEGRAD proposal
of Levy et al. [28]. Subsequently, in the context of constrained convex problems (the focus of
our work), Kavis et al. [24] combined the extra-gradient / mirror-prox algorithmic template
of Korpelevich [25] and Nemirovski [36] with an “iterate averaging” scheme introduced by
Cutkosky [16] to change the query structure of the base algorithm and make it more amenable
to acceleration. In this way, Kavis et al. [24] obtained a universal extra-gradient algorithm —
dubbed UNIXGRAD — which interpolates between the optimal rates mentioned above, without
requiring any tuning.

Our contributions. The starting point of our paper is the observation that, even though
the rates in question are optimal in 7', they may be highly supoptimal in d, the problem’s
dimensionality. For example, if the noise in the oracle has unit variance, o would scale as
O(V/d); this represents a hidden dependence on d which could have a catastrophic impact on
the method’s actual convergence rate. Likewise, in problems with a favorable geometry (like
the L!-ball, trace-constrained semidefinite programs, combinatorial bandits, etc.), methods
based on the mirror descent [37] and mirror-prox [36] templates can achieve rates with a
logarithmic (instead of polynomial) dependence on d.

Importantly, the UNIXGRAD algorithm of Kavis et al. [24] is itself based on the mirror-prox
blueprint, so it would seem ideally suited to achieve convergence rates that are simultaneously
optimal in T and d. However, the method’s guarantees depend crucially on the Bregman
diameter of the problem’s domain, a quantity which becomes infinite when the method is
used with a regularization setup that can lead to almost dimension-free guarantees. This
would seem to suggest that universality comes at the cost of scalability, leading to the
following open question:

Is it possible to achieve almost dimension-free convergence rates
while retaining an order-optimal dependence on T'?

In this paper, we develop a novel adaptive algorithm, which we call universal dual
extrapolation with reweighted gradients (UNDERGRAD), and which provides a positive answer
to this question. Specifically, the value convergence rate of UNDERGRAD scales in terms of
G, o0, L and T as:

(1) O(\/Rr(G? +¢2)/T) in non-smooth problems.

(2) O(RyL/T?+ 0+/Ry,/T) in smooth problems.

In the above, the method’s “range parameter” R}, scales as O(||X||?) in the worst case and as
O(log d) in problems with a favorable geometry — that is, in problems where it is possible to
attain almost dimension-free convergence rates [11, 38]. In this regard, UNDERGRAD seems
to be the first method in the literature that concurrently achieves order-optimal rates in
both T and d, without any prior knowledge on the problem’s level of smoothness.

To achieve this result, the UNDERGRAD algorithm combines the following basic ingredients:

(1) A modified version of the dual extrapolation method of Nesterov [39] for solving
variational inequalities.

(2) A gradient “reweighting” scheme that allows gradients to enter the algorithm with
increasing weights.

(3) An iterate averaging scheme in the spirit of Cutkosky [16] which allows us to obtain
an accelerated rate of convergence by means of an online-to-batch conversion.

The glue that holds these elements together is an adaptive learning rate inspired by Rakhlin &
Sridharan [41, 42] which automatically rescales aggregated gradients by a) a small, constant
amount when the method approaches a solution where gradient differences vanish (as in the
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smooth, deterministic case); and b) a factor of O(v/T) otherwise (thus providing the desired
interpolation between smooth and non-smooth problems). In so doing, the proposed policy
achieves the correct step-size scaling and achieves the desired optimal rates.

Related work. The term “universality” was coined by Nesterov [40] whose universal primal
gradient descent (UPGD) algorithm interpolates between the O(1/7?) and O(1/v/T) rates
for smooth and non-smooth problems respectively (assuming access to noiseless gradients
in both cases). On the downside, UPGD relies on an Armijo-like line search to interpolate
between smooth and non-smooth objectives, so it is not applicable to stochastic environments.

A partial work-around to this issue was achieved by the accelerated stochastic approxima-
tion (AC-SA) algorithm of Lan [26] which uses a mirror descent template and guarantees
order-optimal rates for both noisy and noiseless oracles. However, to attain these rates, the
AC-SA algorithm requires a precise estimate of the smoothness modulus of the problem’s
objective, so it is not universal in this respect. Subsequent works on the topic have focused
on attaining universal guarantees for composite problems [21], non-convex objectives [29, 46],
preconditioned methods [17, 21|, non-Lipschitz settings [2—4], specific applications [45], or
variational inequalities / min-max problems [4, 5, 7, 20].

Of the generalist works above, some employ a Bregman regularization setup [2, 7], but the
guarantees obtained therein either fall short of an accelerated O(1/T?) convergence rate for
Lipschitz smooth problems, or they depend on the problem’s Bregman diameter — so they
cannot be associated with a Bregman setup leading to almost dimension-free convergence rate
guarantees. To the best of our knowledge, UNDERGRAD is the first method that manages to
combine the “best of both worlds” in terms of universality with respect to T and scalability
with respect to d.

2. PRELIMINARIES

2.1. Notation and basic definitions. Let V be a d-dimensional space with norm ||-||. In what
follows, we will write ) = V* for the dual of V, (y, ) for the pairing between y € Y and
x €V, and ||y||« = sup{(y, z) : ||z|| < 1} for the dual norm on Y. Given an extended-real-
valued convex function f: V — RU {oo}, we will write dom f = {z € V : f(z) < oo} for its
effective domain and Of (z) ={y € Y : f(2') — f(x) — (y,2’ — x) > 0 for all 2’ € V} for the
subdifferential of f at x € dom f. Any element g € df(x) will be called a subgradient of f at
x, and we will write domdf = {z € dom f : 9f # &} for the domain of subdifferentiability

of f.

2.2. Problem setup and blanket assumptions. The main focus of our paper is the solution of
convex minimization problems of the form
minimize f(z)

Opt
subject to z € X (Opt)

where X is a closed convex subset of V and f: V — R U {co} is a convex function with
dom f = domdf = X. To avoid trivialities, we will assume throughout that the solution set
X* = argmin f of (Opt) is non-empty, and we will write z* for a generic minimizer of f.

Other than this blanket assumption, our main reqularity requirements for f will be as
follows:

(1) Lipschitz continuity:
[f(2") = (@) < Gll2" — =] (LC)

for some G > 0 and for all z,2’ € X.
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(2) Lipschitz smoothness:
L
F@) < f@) + (g:2" —2) + S lla" = 2 (LS)

for some L > 0 and for all g € 9f(x), z,2’ € X.

Since dom df = X, the above requirements are respectively equivalent to assuming that f
admits a selection of subgradients V f(z) € 0f(z) with the properties below:

(1) Bounded (sub)gradient selection:
IVf(@)l <G (BG)

for some G > 0 and for all z € X.

(2) Lipschitz (sub)gradient selection:

IVf(@") = V(@) <Llj2" — (LG)
for some L > 0 and for all z,2’ € X.

In the rest of our paper, we will assume that f satisfies at least one of (BG) or (LG).

Remark 1. For posterity, we note here that the requirement (LG) does not imply that 9f(x)
is a singleton.! In any case, the directional derivative f’(z;z2) = d/dt|,—of(x + t2) of f at
x € X along z € V exists and is equal to (Vf(x), z) for all vectors of the form z = 2’ — z,
2’ € X. We will use this fact freely in the sequel. 9

2.3. The oracle model. To solve (Opt), we will consider iterative methods and algorithms
with access to a stochastic first-order oracle (SFO), i.e., a black-box device that returns
a (possibly random) estimate of a subgradient of f at the point at which it was queried.
Formally, following Nesterov [38], an SFO for f is a measurable function G: X x Q — Y
such that
E[G(z;w)] =V f(z) forallze X (SFO)

where (92, F,P) is a complete probability space and V f(z) is a selection of subgradients of f
as per (BG)/(LG). The oracle’s statistical precision will then be measured by the associated
noise level o = esssup,, ,[|G(7;w) — Vf(x)|« (assumed finite). In particular, if o = 0, G will
be called perfect (or deterministic); otherwise, G will be called noisy.

In practice, the oracle is called repeatedly at a sequence of query points x; with a different
random seed w; drawn according to IP at each time.? In this way, at the t-th query to (SFO),
the oracle G returns the gradient signal

9t = G(z;wi) = V() + Uy (1)

where U; denotes the “gradient noise” of the oracle (obviously, U; = 0 if the oracle is perfect).
For measurability purposes, we will write F; for the history (adapted filtration) of z;, so x;
is Fi-measurable (by definition) but wy, g; and Uy are not. In particular, conditioning on
Fi, we have E[g; | F¢] = Vf(a:) and E[U; | Fz] = 0, justifying in this way the terminology
“gradient noise” for Uy.

Remark 2. The oracle model detailed above is not the only one possible, but it is very widely
used in the analysis of parameter-agnostic and adaptive methods, cf. [2, 24, 28, 46] and
references therein. In view of this, we will not examine either finer or coarser assumptions
for (SFO). 1

LConsider for example the case of f(z) = z for z € [0,1] and f(x) = oo otherwise: f clearly satisfies
(BG)/(LS), even though its 9f(0) and 9f(1) are infinite sets.
In the sequel, ¢ may take both integer and half-integer values.
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We close this section by noting that the best convergence rates that can be achieved by an
iterative algorithm that outputs a candidate solution Zr € X after T' queries to (SFO) are:*

(1) f(zr) —min f = O(1/VT) if f satisfies (BG) and G is deterministic.
(2) f(Fr) —min f = O(1/T?) if f satisfies (LG) and G is deterministic.
(3) E[f(Zr) — min f] = O(1/V/T) if G is stochastic.

In general, without finer assumptions on f or G, the dependence of these rates on T' cannot
be improved [11, 38]; we will revisit this issue several times in the sequel.

3. REGULARIZATION, UNIVERSALITY, AND THE CURSE OF DIMENSIONALITY

To set the stage for the analysis to come, we discuss below the properties of two algorithmic
frameworks — one non-adaptive, the other adaptive — based on the mirror-prox template [36].
Our aim in doing this will be to set a baseline for the sequel as well as to explore the impact
of the problem’s dimensionality on the attained rates of convergence.

3.1. Motivating examples. As a first step, we present three archetypal problems to motivate
and illustrate the general setup that follows.

Example 1 (Resource allocation). Consider a set of computing resources (GPUs in a cluster,
servers in a computing grid, ...) indexed by s € S = {1,...,d}. Each resource is capable
of serving a stream of computing demands that arrive at a rate of p units per time: if the
optimizer assigns a load of 2y > 0 to the s-th resource, the marginal cost incurred is ¢, (z5) per
unit served, where ¢, : [0, p] — Ry is the cost function of the s-th resource (assumed convex,
differentiable, and increasing in x5). Taking p = 1 for simplicity, the goal of the optimizer
is to minimize the aggregate cost f(z) = Z'Si:l xscs(xs), leading to a convex minimization
problem over the unit d-dimensional simplex X = A(S) = {z e RL : }_ z, = 1}. bl

Example 2 (Input covariance matrix optimization). Consider a Gaussian vector channel in
the spirit of [44, 47]: the encoder controls the covariance matrix X = E[xx'] of the Gaussian
input signal x € CM and seeks to maximize the transfer rate of the output signal y = Hx +z,
where z € CV is the ambient noise in the channel and H € CV*M is the channel’s transfer
matrix. By the Shannon-Telatar formula [44], this boils down to maximizing the capacity
function

R(X) = E[logdet(I+HXHT)] (2)
subject to the constraint tr(X) < P, where P denotes the encoder’s maximum input power
and the expectation in (2) is taken over the statistics of the (possibly deterministic) matrix
H. Since R is concave in X [10, 47], we obtain a minimization problem of the form (Opt)
over the spectrahedron D = {X = 0 : tr(X) < P}. Since X is Hermitian, D can be seen as a
convex body of R? where d = M?; in the optimization literature, this is sometimes referred
to as the “spectrahedron setup” [22]. 1

Example 3 (Combinatorial bandits). In bandit linear optimization problems, the optimizer is
given a finite set of n possible actions A C {0,1}%, i.e., each action a € A is a d-dimensional
binary vector indicating whether the i-th component is “on” or “off”. The optimizer then
chooses an action o € A based on a mixed strategy p € A(A) and incurs the mean loss

U(p;w) = E[ZaeApa@w (3)

3n general, the query and output points — x7 and Zp respectively — need not coincide, hence the
different notation. The only assumption for the rates provided below is that the output point Z is an affine
combination of z1,¢1,...,2z7, 97 [11, 38].
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Domain (X)) Breg. Diam. (B;) Range (R}) Shape (x) Rate (L = oo) Rate (L < o0, 0 = 0)

EucLIDEAN  any below O(1) O(1) Vd (’)(m) o(d/T)

ENTROPIC simplex 00 logd 1 O(\/W) O(logd/T)
QuaNTUM spectrahedron 00 logd 1 o( \/W) O(logd/T)
CoMBAND conv(A) 0o O(logd) 1 O(y/logd/T) O(logd/T)

Table 1: The convergence rate of (MP) in terms of d and T for different regularizers.
In the combinatorial setup of Example 3, the unnormalized entropy has R; =
m(1 +log(d/m)), where m = maxacalla|1 is the maximum number of elements
of {1,...,d} that can be simultaneously “on” [27, Chap. 30]. In many applications,
m does not scale with d, so it has been absorbed in the O(-) notation; other than
that, O(-) contains only universal constants.

where w is a random vector with values in [0, 1]¢ (but otherwise unknown distribution). In
many cases of interest — such as slate recommendation and shortest-path problems — the
cardinality of A is exponential in d, so it is computationally prohibitive to state the resulting
minimization problem in terms of p. Instead, writing ; = > 4 pa; for the probability
of the i-th component being “on” under p, the optimizer’s objective can be rewritten more
compactly as f(z) = E[{(xz,w)] with 2 constrained to lie on the d-dimensional convex hull
X = conv(A) of A in R?. In the literature on multi-armed bandits, this setup is known as a
combinatorial bandit; for an in-depth treatment, see [13, 14, 19, 27] and the many references
cited therein. 9

Examples 1-3 all suffer from the “curse of dimensionality”: for instance, the dimensionality
of a vector Gaussian channel with M = 256 input entries is d ~ 6.5x10*, while a combinatorial
bandit for recommendation systems may have upwards of several million arms. Nonetheless,
these examples also share a number of geometric properties that make it possible to design
scalable optimization algorithms with (almost) dimension-free convergence rate guarantees.
We elaborate on this in the next section.

3.2. The mirror-prox template. We begin by considering the well-known mirror-proz (MP)
method of Nemirovski [36]. Following [22, 35], this is defined via the recursion

Xt+1/2 = Px,(—="gt) (MP)
Xit1 = Px,(=7t9t+1/2)

where

(1) t=1,2,... denotes the method’s iteration counter (for the origins of the half-integer
notation, see Facchinei & Pang [18] and references therein).

(2) & > 0 is the algorithm’s step-size sequence.

(3) g+ and g4/ are stochastic gradients of f obtained by querying the oracle G at X;
and X, /5 respectively.

) 13

(4) Px,(-) is a generalized projection operator known as the method’s “prox-mapping”
(more on this later).

The most elementary instance of (MP) is the extra-gradient (EG) algorithm of Korpelevich
[25], in which case the method’s prox-mapping is the Euclidean projector

Po(y) = Ox(x +y) = argming c yllz +y — 2'[|2 (4)

for all x € X, y € Y. More generally, the prox-mapping in (MP) is defined in terms of a
Bregman regularizer as follows:
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Definition 1. A Bregman regularizer on X is a convex function h: V — RU {oco} such that

(1) domh = X and h is continuous on X.

(2) The subdifferential of A admits a continuous selection, i.e., there exists a continuous
mapping Vh: dom 0h — Y with Vh(z) € 0h(z) for all z € dom Oh.

(3) his strongly conver on X, i.e.,
h(z') > h(z) + (Vh(z), 2" - z) + 3 Kp||2" — || (5)
for some K} > 0 and all z € domOh, ' € X.

We also define the Bregman divergence of h as

D(a',z) = h(z') — h(z) — (Vh(z), 2" — z) (6)
and the induced proz-mapping as
Py(y) = argmin, cx{(y,z — 2’) + D(2’,2)} (7)

forall z € X, 2’ € X and all y € Y.

Remark. The set X}, := dom Oh is often referred to as the pror-domain of h; by standard
results in convex analysis, we have riX C Aj, C X' [43, Chap. 26].

In terms of output, the candidate solution returned by (MP) after T iterations is the
so-called “ergodic average”

T
- _1 e X
Xr = —Zt—lf aniLY 8)
D1 Nt

Then, assuming the method’s step-size 7; is chosen appropriately (more on this below), X7
enjoys the following guarantees [22, 42]:

a) If f satisfies (BG), then

G+ 7 Dy

E[f(Xr) —min f] = O /T (92)
b) If f satisfies (LG), then
E[f(X7) — min f] = o(fi} +o K%T) (9Db)

In the above, D; = D(z*, X1) is the minimum Bregman divergence between a solution
x* of (Opt) and the initial state X; of (MP). In particular, if (MP) is initialized at the
proz-center x, = argminh of X, we have

Dy < h(z*) —minh < maxh —minh = Rp,. (10)

We will refer to R, = maxh — minh as the range of h.
To quantify the interplay betwen the problem’s dimensionality and the rate guarantees
(9) for (MP), it will be convenient to introduce the normalized regularity parameters
G L o
Ghzi Lhzi and Op =

Ky vV K}

(11)
and the associated shape factor

VGE + o3 if L = o0,
X =< VL if L <ooando =0, (12)
on if L <ooando >0.
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Since at least one of the terms G/v/ K}, L/K}, and o//K}, appears in (9), it follows that
the leading term in T scales as O(x+/D1/T) in non-smooth / stochastic environments, and
as O(x2D1/T) in smooth, deterministic problems.

The importance of the normalized parameters Gy, Ly, o, and the shape factor x lies in
the fact that they do not depend on the ambient norm ||-|| (a choice which, to a certain extent,
is arbitrary). Indeed, if ||-|| and ||-||" are two norms on V that are related as ||| < pl|-||" for
some y > 0, it is straightforward to verify that h is (u?K},)-strongly convex relative to [|-||’.
Likewise, in terms of dual norms we have ||-|[« > (1/u)]-||%, so the constants G, o and L
would respectively become uG, po and gL when computed under ||-||". In general, these
inequalities are all tight, so a change in norm does not affect the shape factor x; accordingly,
any dependence of x on d will be propagated verbatim to the guarantees (9).

In Table 1, we provide the values of Ry and y for the following cases:

(1) The Euclidean regularizer h(x) = ||x||3/2 that gives rise to the extra-gradient
algorithm (4).

(2) The entropic regularizer h(x) = 2?21 x; log x; for the simplex setup of Example 1.

(3) The von Neumann regularizer h(X) = tr(Xlog X) + (1 — tr X) log(1 — tr X)) for the
spectrahedron setup of Example 2.

(4) The unnormalized entropy h(zx) = Z?Zl(xi log x; — x;) for the combinatorial setup
of Example 3.

These derivations are standard, so we omit the details. For posterity, we only note that the
logarithmic dependence on d is asymptotically optimal, cf. [12, 13] and references therein.

3.3. The UnixGrad algorithm. As can be seen from Table 1, the mirror-prox algorithm
achieves an almost dimension-free rate of convergence when used with a suitable regularizer.
However, this comes with two important caveats: First, the algorithm’s rate in the smooth
case falls short of the optimal O(1/T?) dependence in T, so (MP) is suboptimal in this
regard. Second, to achieve the rates presented in Eq. (9), the algorithm’s step-size v; must
be tuned with prior knowledge of the problem’s parameters: in particular, under (BG), the
algorithm must be run with step-size v; < 1/4/(G? 4+ ¢2)T while, under (LG), the algorithm
requires v, = K /L if o = 0 and 7; o< 1/(0v/T) otherwise. This creates an undesirable state
of affairs because the parameters G, L and o are usually not known in advance, and (MP)
can — and does — fail to converge if run with an untuned step-size.

In the rest of this section, we briefly discuss the UNIXGRAD algorithm of Kavis et al. [24]
which expands on the mirror-prox template in the following two crucial ways: a) it introduces
an iterate-averaging mechanism in the spirit of Cutkosky [16] to enable acceleration; and b) it
employs an adaptive step-size policy that does not require any tuning by the optimizer. In
so doing, UNIXGRAD interpolates smoothly between the optimal convergence rates described
in Section 2 without requiring any prior knowledge of G, L or o.

Concretely, UNIXGRAD proceeds as (MP), but instead of querying G at X; and X,1s,
it introduces the weighted query states

5 _ Xt T asXo

t— t

23:1 Qg
t—1
@ X172+ D o1 s Xgp1/2
T
Zs:l Qs

where «; is a “gradient weighting” parameter. Then, building on an idea by Rakhlin &
Sridharan [41, 42], the oracle queries g; < G(X¢;wt) and g1 172 < G(Xiq1/2;wig1/2) are

(13)

Xt+1/2
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used to update the method’s step-size as

By,
v = — (14)
12 @ lgerays - 0l
where
Bp, = 8up,ex prex, V2D(w,2') (15)

is the so-called Bregman diameter of X.
With all this in hand, Kavis et al. [24] provide the following bounds if UNIXGRAD is run
with oy = ¢:

a) If f satisfies (BG), then

_ VO & o2
Elf(X7+41/2) — min f] = O(B}LG\/W—TFO> (16a)
b) If f satisfies (LG), then
2 o
E[f(XT+1/2) —min f] = O([‘?}?j{/g + \/BKhﬁ> (16b)

As we mentioned in Section 2, the bounds (16) cannot be improved in terms of T without
further assumptions, so UNIXGRAD is universally optimal in this regard.

That being said, these guarantees also uncover an important limitation of UNIXGRAD,
namely that the bounds (16) become void when the method is used in conjunction with one
of the non-Euclidean frameworks of Examples 1-3. For example, the Bregman diameter
of the simplex under the entropic regularizer is By, = sup, . ), z;log(z;/x}) = oo, so
the multiplicative constants in (16) become infinite (and the bounds themselves become
meaningless). However, since the use of these regularizers is crucial to obtain the scalable,
dimension-free convergence rates reported in Table 1, * we are led to the open question we
stated before:

Is it possible to achieve almost dimension-free convergence rates
while retaining an order-optimal dependence on T'?

We address this question in the next section.

4. UNIVERSAL DUAL EXTRAPOLATION

The point of departure of our analysis is the observation that gradient queries enter (MP)
with decreasing weights. Specifically, if UNIXGRAD is run with oy = ¢ (a choice which is
necessary to have a shot at acceleration), the denominator of (14) may grow as fast as
O(t*/?) in the non-smooth /stochastic case, leading to an asymptotic O(1/v/t) worst-case
behavior for ;. In fact, even under the ansatz that the algorithm’s query points converge
to a minimizer of f at an accelerated rate, the denominator of (14) may still grow as ©(t),
indicating that ~; will, at best, stabilize to a positive value as t — co. This feature of the
step-size rule (14) is somewhat counterintuitive because conventional wisdom would suggest
that a) recent queries are more useful than older, potentially obsolete ones; and b) gradients
should be “inflated” as the method’s query points approach a zero-gradient solution in order
to maintain a fast rate of convergence.

The problem with a vanishing step-size becomes especially pronounced if the method
is used with a non-Euclidean regularizer (which is what one would wish to do in order to
obtain scalable convergence guarantees). To see this, consider the iterates of the mirror-prox

4In particular, since the shape factor of the Euclidean regularizer is x = v/d, employing UNIxGRAD with
ordinary Euclidean projections would not lead to scalable guarantees.
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template generated by the regularizer h(z) = wlogx on X = [0,00).% In this case, the
induced prox-mapping is P, (y) = zexp(y), leading to the recursion

2+ = Po(—yv) = z exp(—y). (17)

Therefore, if the problem’s objective function attains its minimum at 0, the actual steps
of the method scale as 27 — 2 = O(z) for small x, so it is imperative to maintain a large
step-size to avoid stalling the algorithm.

This scaling issue is at the heart of the dual extrapolation (DE) method of Nesterov
[39]. Originally designed to solve variational inequalities and related problems, the method
proceeds by (i) using a prox-step to generate the method’s leading state and get a “look-ahead”
gradient query; (i) aggregating gradient information with a constant weight; and, finally,
(i17) using a “primal-dual” mirror map to update the method’s base state. Formally, the
algorithm follows the iterative update rule

Xiy1/2 = Px,(—79t)
Yiri =Y — giy1,2 (DE)
Xit1 = Q(Ve41Ye41)

where the so-called “mirror map” @: )Y — X is defined as
Qly) = argeﬂglcax{@, z) — h(z)}. (18)

Unfortunately, the template (DE) is not sufficient for our purposes, for two main reasons:
First, the method still couples a prox-step with a variable (decreasing) step-size update; this
is not problematic for the application of the method to VIs (where the achievable rates are
different), but it is not otherwise favorable for acceleration.

In addition to the above, the method’s gradient pre-multiplier is the same as its post-
multiplier (7 in both cases), and it is not possible to differentiate these parameters while
maintaining optimal rates [39]. However, this differentiation is essential for acceleration,
especially when ; cannot be tuned with prior knowledge of the problem’s parameters.

Our approach to overcome this issue consists of: a) eliminating the prox-step altogether
in favor of a mirror step; and b) separating the weights used for introducing new gradients
to the algorithm versus those used to generate the base and leading states. To formalize
this, we introduce below the “universal” dual extrapolation template:

Yiyi0 =Y — g Xiv12 = Q(ntYes1)2)

UDE
Yitr =Y —agiy1s Xeyr = Qer1Yen) ( )

In the above, the gradient signals g; and g;, /2 are considered generic and the query points
are not specified. To get a concrete algorithm, we will use the weighting scheme of Kavis
et al. [24] and query the oracle at the averaged states X; and X, /2 introduced previously
in (13). Finally, regarding the algorithm’s gradient weighting and averaging parameters (o
and n; respectively), we will use an increasing weight for the method’s step-size ay = ¢ and
the adaptive rule

b

N =
t—1
Va2 + YT g1 — gul2
for the method’s learning rate (the parameters a and b are discussed below, and we are using
the standard convention that empty sums are taken equal to zero).

(19)

5Strictly speaking this regularizer is not strongly convex over [0, 00) but this detail is not relevant for the
question at hand.
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Algorithm 1: Universal dual extrapolation with reweighted gradients (UNDERGRAD)
1 Parameters a < /Kp; b < /Kn(Rn + Ki|| X]?)

2 Initialize Y1 < 0; Z1 < 0; S1 « a®

s fort=1,2,...,7T do

4 Nt < b/\/STt set learning rate
5 X Q(th) mirror step
6 )_(t — (Otit + Zt)/Zi:l Qg mixing
7 gt G()_(t; wt) oracle query
8 Y;5+1/2 —Y:— g dual step
9 Xiy1/2 ¢+ Q(nt}/tj+1/2) mirror step
10 Xy < (uXiq1y2 + Zt)/Zizl o mixing
11 Jii1/2 G(Xt+1/2;wt+1/2) oracle query
12 Yig1 < Y — Qtgit1/2 dual step
13 Siy1 < St + a?“gt+1/2 — gt“z precondition
14 Ziy1 < Zy + atXHl/g update mixing state

15 return T < XT_H/Q

The resulting method — which we call universal dual extrapolation with reweighted gradients
(UNDERGRAD) — is encoded in pseudocode form in Algorithm 1 and represented schematically
in Fig. 1. Its main guarantees are as follows:

Theorem 1. Suppose that UNDERGRAD (Algorithm 1) is run for T iterations with n; given

by (19), oy =t for allt =1,2,..., and a = VKp, b = Cpv/Kp, with Cp, = /Ry, + K| X2
Then the algorithm’s output state Tt = X412 simultaneously enjoys the following guaran-
tees:

a) If f satisfies (BG), then

E[f(Z7)] < min f + 2Ch\/Kh i iéhG; + %) (200)
b) If f satisfies (LG), then
E[f(2r)] < min f 4 S2V2CL | 8V2Cho (20D)

Ky T2 KnT

Theorem 1 is our main result so, before discussing its proof (which we carry out in detail
in the appendix), some remarks are in order.

The first point of note concerns the dependence of the anytime bounds (20) on the
problem’s dimensionality. To that end, let Cyt = C’,Ql and Cgow = Ch, so UNDERGRAD’S
rate of convergence scales as O(CrastXx?/T?) in smooth, deterministic problems, and as
O(CyiowXx/VT) in non-smooth and/or stochastic environments. Thus, to compare the
algorithm’s rate of convergence to that of mirror-prox and UNIXGRAD (and up to universal
constants), we have to compare C}, to R, and By, respectively.

To that end, we calculate below the values of Ciag; and Cgow in the three archetypal
examples of Section 3:

(1) In the simplex setup of Example 1, we have R}, = logd, ||X| =1 and K} =1, so
Caow = O(Vlogd) and Ct.gy = O(logd).
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t—1
R, = Zs:l asXs—}-%

Figure 1: Schematic representation of the UNDERGRAD algorithm (Algorithm 1).
The light blue area represents the problem’s domain (X), whereas the grey area
represents the dual space ().

(2) In the spectrahedron setup of Example 2, we have again Rj, = logd, | X|| = 1 and
K =1, 30 Csiow = O(V1ogd) and Cr.ss = O(logd). [For a detailed discussion, see
[9, 23, 34] and references therein.]

(3) Finally, in the combinatorial setup of Example 3, we have R}, = m(1 + log(d/m)),
|X|| = m and Kj, =1 [27]. Thus, if m = O(1) in d, we get again Cyon = O(y/logd)
and Crast = O(log d).

The above shows that UNDERGRAD achieves the desired almost dimension-free rates of
the non-adaptive mirror-prox algorithm, as well as the universal order-optimal guarantees
of UNIXGRAD. The only discrepancy with the rates presented in Table 1 is the additive
constant K, that appears in the numerator of (20a): this constant is an artifact of the
analysis and it only becomes relevant when G — 0 and ¢ — 0. Since the scaling of the
algorithm’s convergence rate concerns the large G regime, this difference is not relevant for
our purposes.

An additional difference between UNDERGRAD and UNIXGRAD is that the latter involves
the prox-mapping (7), whereas the former involves the mirror map (18). To compare the
two in terms of their per-iteration complexity, note that if we apply the prox-mapping (7) to
the prox-center x. < argmin h of X, we get

Py, (y) = argmin,c x{(y, . — 7) + D(z,2.)}
= argmin, ¢y {h(z) — (Vh(zc) + y,2)}
= Q(Vh(z.) +y) (21)

so, in particular, Q(y) = Py_(y) whenever z. € ri X (which is the case for most regularizers
used in practice, including the Legendre regularizers used in Examples 1-3 above). This
shows that the calculation of the mirror map Q(y) = P, (y — Vh(x.)) is at least as simple
as the calculation of the prox-mapping P, (y) for a general base point z € X — and, typically,
calculating the mirror map is strictly lighter because there is no need to vary the base point
over different iterations of the algorithm. In this regard, the per-iteration overhead of (UDE)
is actually lighter compared to (MP) or (DE).

Finally, we should note that all our results above implicitly assume that the problem’s
domain is bounded (otherwise the range parameter Ry of the problem becomes infinite).
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Thus, in addition to these convergence properties of UNDERGRAD, we also provide below an
asymptotic guarantee for problems with an unbounded domain:

Theorem 2. Suppose that UNDERGRAD is run with perfect oracle feedback with n; given by
(19) and oy = t. If f satisfies (LG), the algorithm’s output state Zr = Xpiq1/0 enjoys the
rate f(Z7) — min f = O(1/T?).

This result provides an important extension of Theorem 1 to problems with unbounded
domains. It remains an open question for the future to derive the precise constants in the
convergence rate presented in Theorem 2.

Main ideas of the proof. The detailed proof of Theorem 1 is fairly long so we defer it to the
appendix and only present here the main ideas.

The main ingredient of our proof is a specific template inequality used to derive an
“appropriate” upper bound of the term 7~ZT(:C) = Zthl at<gt+1/27 KXit1/2 — x> Importantly,
to prove the dimension-free properties of UNDERGRAD, such an upper-bound cannot involve
Bregman divergences: even though this is common practice in previous papers [1, 24], these
terms would ultimately lead to the Bregman diameter By, that we seek to avoid. This is
a principal part of the reason for switching gears to the DE template for UNDERGRAD:
in so doing, we are able to employ the notion of the Fenchel coupling [31, 32], which is
a “primal-dual distance” as opposed to the Bregman divergence which is a “primal-primal
distance” (cf. Appendix A.1). This poses another challenge on connecting the Fenchel
coupling of targeted points before and after a mirror step, for which we need to employ a
primal-dual version of the “three-point identity” (Lemma A.3). These elements lead to the
following proposition:

Proposition 1. For all z € X, we have

. Ry,

T
+ ) oelgir1y2 — 96 Xigrjo — Xeg1)
t=1

- K zT: [ X1 — Xiqayoll” + 1 Xiq1/2 — Xl

(22)
t=1 2

With (22) in hand, (20a) comes from the application of the Fenchel-Young inequality to
upper-bound the right-hand-side of (22) as Z;le & 41/|ge41/2 — 9¢ll« (plus a constant term
involving || X||). The challenge here is to notice and successfully prove that this summation
is actually upper-bounded by 77;&1 (due to our special choice of the learning rate update).
Finally, by its definition, n;il can be bounded by G, o and K}, as described in the statement
of Theorem 1.

The proof of (20b) is far more complex. The main challenge is to manipulate the terms
in (22) to derive an upper-bound of the form Zthl g+ )IVF(Xig1/2) — VIXe|2 (plus
a term involving the noise level o) where g(n;:+1) is a function of the learning rate chosen
such that only the first Ty < T elements of this summation are positive. Once this has been
achieved, the quantity ||V f(X;41/2) — V.fX¢|. is connected to ||X|| via (LG) and our claim
is obtained.

5. NUMERICAL EXPERIMENTS

For the experimental validation of our results, we focus on the simplex setup of Example 1
with linear losses and d = 100. Our first experiment concerns the perfect SFO case and tracks
down the convergence properties of UNDERGRAD run with the entropic regularizer adapted
to the simplex. As a baseline, we ran UNIXGRAD, also with the entropic regularizer. A first
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Figure 2: Convergence of UNDERGRAD and UNIXGRAD in the simplex setup with
a perfect SFO. The y-axis corresponds to the differences between the f-value of the
relevant point of each algorithm and min f. The code is available at https://github.
com/dongquan-vu/UnDerGrad_Universal_CnvOpt_ICML2022.
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challenge here is that the Bregman diameter By, of the simmplex is infinite, so UNIXGRAD
is not well-defined. On that account, we choose the step-size update rule of UNIXGRAD
such that its initial step-size 7; equals the initial learning rate 7; of UNDERGRAD. We also
ran UNIXGRAD with the update rule such that +; is smaller or larger than 7,. Finally, for
comparison purposes, we also present a non-adaptive accelerated entropic gradient (AEG)
algorithm, and we report the results in Fig. 2.

Fig. 2 confirms that UNDERGRAD successfully converges with an accelerated rate of
O(1/T?). Perhaps surprisingly, it also shows that when UNIXGRAD’s initial step-size is small
(10E-3 or smaller), UNIXGRAD also achieves an O(1/7?), but at a much more conservative
pace, trailing UNDERGRAD by one or two orders of magnitude. On the other hand, when
UNIXGRAD’s initial step-size is of the same magnitude as the UNDERGRAD’s learning rate (or
larger), UNIXGRAD eventually destabilizes and its rate drops from O(1/7?) to approximately
O(1/T). We also conducted experiments in the setup with a noisy SFO; these are reported
in Appendix C.

APPENDIX A. BREGMAN REGULARIZERS AND PRELIMINARY RESULTS

A.1. Bregman regularizers and their properties. We begin by clarifying and recalling some
of the notational convetions used throughout the paper. We also give the formal definition
of the Fenchel coupling (a key notion for the proof our main results) and we present some
preliminary results to prepare the ground for the sequel.

The convex conjugate h*: Y — R of h is then defined as

h*(y) = jgg{@,x) — h(z)}. (A1)

As a result, the supremum in (A.1) is always attained, and h*(y) is finite for all y € Y [8].
Moreover, by standard results in convex analysis [43, Chap. 26], h* is differentiable on )
and its gradient satisfies the identity

Vh*(y) = argg{ax{(y, x)y — h(x)}. (A.2)

Thus, recalling the definition of the mirror map Q: Y — X, we readily get
Qy) = VI (y). (A.3)
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Lemma A.1. Let h be a Bregman regqularizer on X. Then, for all x,€™ domdh and all
y,v € Y, we have:

a) z=Q(y) < y € Oh(x). (A.4a)
b) zt =Q(Vh(z) +v) < Vh(z)+v € dh(z™) (A.4Db)

Finally, if © = Q(y) and z* € X, we have
(Vh(z),z —x*) < (y,x — x*). (A.5)

Proof of Lemma A.1. To prove (A.4a), note that  solves (A.2) if and only if y — Oh(z) > 0,
i.e., if and only if y € Oh(x). Eq. (A.4b) is then obtained in the same manner.
For the inequality (A.5), it suffices to show it holds for all z* € A}, = domdh (by
continuity). To do so, let
¢(t) = h(z +t(a" — ) = [h(x) + {y, 2 + t(z" — 2))]. (A.6)

Since h is strongly convex relative to g and y € Oh(z) by (A.4a), it follows that ¢(t) > 0 with
equality if and only if t = 0. Moreover, note that (t) = (Vh(z + t(z* —x)) —y,z* — ) is a
continuous selection of subgradients of ¢. Given that ¢ and ¢ are both continuous on [0, 1],
it follows that ¢ is continuously differentiable and ¢’ = v on [0, 1]. Thus, with ¢ convex and
o(t) > 0= ¢(0) for all ¢ € [0,1], we conclude that ¢'(0) = (Vh(z) — y,z* —z) > 0. [ |

As we mentioned earlier, much of our analysis revolves around a “primal-dual” divergence
between a target point x* € X and a dual vector y € ), called the Fenchel coupling. Following
[33], this is defined as follows for all * € X, y € Y-

F(z%,y) = h(z") + h*(y) — (y,=7). (A7)
The following lemma illustrates some basic properties of the Fenchel coupling:

Lemma A.2. Let h be a Bregman regularizer on X with convezity modulus K. Then, for all
z* € X and all y € Y, we have:

(1) F(z*,y) = D(z*,Q(y)) if Q(y) € Xn (but not necessarily otherwise).
(2) Fa*,y) = 5 Q(y) —«*|?
Proof. For our first claim, let = Q(y). Then, by definition we have:
F(a*,y) = h(z") — (y,Q(y)) — M(Q(y)) — (y, ") = h(z") — h(z) — (y,2" —z).  (A8)

Since y € Oh(z), we have h/(z;z* — x) = (y,2* — x) whenever z € X}, thus proving our first
claim. For our second claim, working in the previous spirit we get that:

F(z%,y) = h(z") — h(z) = (y, 2" — ) (A.9)
Thus, we obtain the result by recalling the strong convexity assumption for h with respect

to the respetive norm ||-||. [ |

We continue with some basic relations connecting the Fenchel coupling relative to a target
point before and after a gradient step. The basic ingredient for this is a primal-dual analogue
of the so-called “three-point identity” for Bregman functions [15]:

Lemma A.3. Let h be a Bregman regularizer on X. Fizr some x* € X and let y,y* € V.
Then, letting © = Q(y), we have

F(z*,y") = F(z*,y) + F(z,y") + (y" —y, 2 — 2*). (A.10)
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Proof. By definition, we get:
Fa®y*) = h(z") + 1" (y") = (y*,2")

F(a' ) = hia) + () = (5.2, Gy
Then, by subtracting the above we get:
F(a®,y*) = F(z",y) = h(z") + h*(y") — (y*,2%) — h(z") — h*(y) + (y,2")
=h0"(y") = h(y) - (y" —y. ")
=h"(y") = (1, QW) + h(Qy)) — (y* —y,2")
=h*(y") = (y,2) + h(z) = (" —y.2")
=h*(y") + " —y2) = () + () = (YT —y,aT)
= F(z,y*) + (y* —y,z — ") (A.12)
and our proof is complete. [ |

A .2. Numerical sequence inequalities. In this section, we provide some necessary inequalities
on numerical sequences that we require for the convergence rate analysis of the previous
sections. Most of the lemmas presented below already exist in the literature, and go as far
back as Auer et al. [6] and McMahan & Streeter [30]; when appropriate, we note next to
each lemma the references with the statement closest to the precise version we are using in
our analysis.

Lemma A.4 (30, 28). For all non-negative numbers ay, . ..az, the following inequality holds:

(A.13)

APPENDIX B. ANALYSIS AND PROOFS OF THE MAIN RESULTS

The proof of the template inequality. We first prove the template inequality of UNDERGRAD;
this is the primary element of our proof of Theorem 1:

Proposition 1. For all z € X, we have

T
~ R
Rr(z) < — +Zat<9t+1/2 = gt: Xey1/2 — Xit1)
{E s -

T
— K Z [ Xe1 — Xogrsall® + 1 Xig172 — Xell?
P 2m
Proof. First, we set ﬁ =nY;. For all x € X we have:
Oét<gt+1/27Xt+1 — )

1~ 1 -
=(—Yi — — Y1, Xey1 — )

Mt Tt+1
1 -~ ~ 1 1 -
=—(Y; — Y1, X1 —2) + — — 10— Yiy1, Xog1 — 2)
n M+1 Mt
1

= F(x,Y,) = F(2,Yi1) — F(Xt-l—laﬁ)}
t
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1 1 ~
+ [ — ] (F(JJ,O) — F(x,Y41) — F(Xt_H,O)) # from Lemma A.3
M+1 Tt

1 ~ 1 1
—F(z,Y,) — _ =
Mt Mt+1 M+1 T
Here, the last inequality comes from the facts that F(z,0) = h(z) — h(Q(0)) = h(z) —
mingex h < R, and F(-,-) > 0 and that 7; is decreasing.
As a consequence of (B.1), we have:

A

F(x,Y) + { } Ry — %F(Xm,fft). (B.1)

at<gt+1/27Xt+1/2 — )
= (G172, Xeg1/2 — Xeg1) + @e{geq1/2, Xeg1 — )
1

F(l’, }7t+1)
Tt+1

1 -
< i (gey1/2, Xig1y2 — Xeg1) + EF(CU, Yi)
1 1 1 ~
+|— ——|BRn— —F(X411,Y2) (B.2)
Me+1 T Nt
On the other hand, if we let }725“/2 = 1nY;41/2, we have

1 - -
(Ve = Yip12, Xevr72 — Xeg1)

e

1 ~ - -
o {F(Xt+laY;t) — F(Xi11,Yiq1/2) — F(Xig1)2, Yt)]

at<gtaXt+1/2 - Xt+1> =

SO

1 -
n*F(XtH, Y:) = ai(g:, Xt+1/2 - Xt+1>
t

1 ~ 1 ~
+ EF(Xt+17Y;+1/2) + EF(Xt-H/szt)- (B.3)

Thus, replacing (B.3) into (B.2), we get:

(G172, Xeg1/2 — ) < i (Gegry2 — 96, Xegry2 — Xeg1)

1 ~ 1 - 1 -

+ —F(z,Y:) — —F(2,Yi41) — — F(Xi41, Yig1/2)
Ui Nt+1 Nt

—lF(X Vi) + [1—1}]% (B.4)
m t+1/2, ¥t e m he .

Now, recall the definitions X1/, = Q(fftﬂ/z) and X; 1 = Q(Yz41) in Algorithm 1, apply
Lemma A.2 to F(X¢41, }7;+1/2) and F(Xt+1/27ﬁ) then combine with (B.4), we get:

b

1 - -
04t<9t+1/2, Xt+1/2 —x) < at<gt+1/2 - gtaXt+1/2 = Xip1) + EF(% Y;) — Tort F(z,Yi41)
Kh 2 Kh 2 1 1
— — || X1 — X - — X - X _—— — B.5
oT [ Xer1 — Xerayall oT [ Xtt1/2 — Xel[” + e Ry, (B.5)

Hence, after telescoping and recalling the notation ﬁT(az) = ZtT=1 at<gt+1/2, Xiy1/2 — a:>,
we get:

N 1 N 1 1
Rola) < ~F(a, V1) + ( - )Rh
Nr+1 T

+ Z (G172 — 96, X172 — Xe1)
=1
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T

K
727“Xt+1 Xt+1/2||2*2277}:”Xt+1/2 - X2 (B.6)
t=1

Finally, by our initial choice of Y7 = 0, we have F\(z, )71) = h(z) — mingex h(z) < Ry, and
(22) follows (B.6). This concludes the proof of Proposition 1. [ |

Regret-to-rate conversion lemma. The next element in our proof is the following lemma that
will be used to connect the term Ry (z) (which, in intuition, is similar to a regret term)
and the term E|f(Xr41/2) — min f| whose bounds will characterize the convergence rate of
UNDERGRAD.

Lemma B.1. For any x* € X*, for any T, we have:

E[f(X111/2) —min f] <E

2 & _
ﬁz (VI (Xer12), Xeg1/2 — )
t=1

2 > *
- ﬁJE[RT(gc )] (B.7)
Remark 1. A variation of Lemma B.1 appears in [16, 24]; for the sake of completeness, we
provide its proof below. 9

t

Proof. Let us denote Hy := ) ., . From the update rule of Algorithm 1, we can rewrite

H, ¥ Hih o
Xip172 = ?;Xt+1/2 — %tXt,l/Q. Therefore,

* H vV * H* vV *
Xip12— 2" = J(Xt—&-l/Q —x*) — - (Xi—1/2 — ")
Qg Qi
1 - . _ _
= o [Oét(Xt+1/2 — ")+ Hy (X120 — Xt—1/2)]~ (B.8)
As a consequence, we have:

T T
Zat (V£( Xt+1/2) Xt+1/2 —z") = Zat Vf Xt+1/2) Xt+1/2 -z >
t=1 t=1

+Hi Z<Vf(Xt+1/2)7 Xiv1yo— Xio12)
t=1

HMH

[f(Xis1/2) — f(z")]
+ Z Hia[f(Xigay2) = F(Xic12)]
= Zat [f()_(t+1/2) - f(x*)]
=1

+ Z Qt [f(XT+1/2) - f(Xt+1/2)]
# since Hy — Hy_ 1 = oy

[f(XT+1/2 Z (B.9)
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Divide two sides of (B.9) by H; > 0 and choose a; such that H; > %2 (for example, choose
a; = «), we obtain that:

T
% Zat<vf(Xt+1/2)aXt+1/2 —a*) > f(XT+1/2) — f(z¥) = f(XT+1/2) —min f. (B.10)
t=1

Finally, we recall that by definition, g;4/2 = G(Xt+1/2; Wiy1/2) = Vf(XtJrl/g) +Uit1/2
where E[Ut+1/2 ’]—'tH/Q] = 0. Therefore, by the law of total expectation, we have:
T

IRT('T*) =E [Z at<vf(Xt+1/2)vXt+1/2 —z")

t=1

T
Z at<Ut+1/27 Xt+1/2 —z")

t=1

+E

T
=E lz Olt<Vf(Xt+1/2)7 Xit172 — x*)]

t=1

T
+E ZatE[<Ut+l/2aXt+l/2 —z") |ft+1/2}]
=1
T —
=K Zat<Vf(Xt+1/2), Xev1/2 — I*>] : (B.11)
=1

Then, taking expectations on both sides of (B.10) and invoking (B.11) concludes the proof. H

Proof of (20a): convergence of UnderGrad under (LC)/(BG). Our starting point is Eq. (22)
that we established in Proposition 1 that leads to the following inequality:

T

T
K
+ E at<gt+1/2 - gtht+1/2 = Xiq1) — g *277’1 | Xir1 — Xt+1/2||2 (B.12)
t=1 t=1

We now focus on the second term in the right hand side of (B.12). From the Cauchy-
Schwarz inequality and the fact that

- R,
Ry(z) < —2
Nr+1

. 1 2 a 2
I = YL = X0 = migd Sy - v+ 1 - X (B.13)

for any X, X', Y, Y’ € R4S we have:

T T
Zat<gt+1/2 = 9t Xiy172 — Xey1) < Z atllgir1sz = gell«[[ Xet1/2 — Xesal
t=1 t=1

T
1
< 2K, ; Oét277t+1||gt+1/2 — gl
T
K, 1 )
i X, - X . B.14
+ B ; F— [ Xt1 t+1/2]l ( )

Moreover, from the definition of 7,11 and by applying Lemma A.4, we have:
T T

1 b a?llges1/2 — 9:l2
2K, Za?nt+1”9t+1/2 —g:ll? = oK : ; 4 -
= ni a2 g2 — g2

6This can be proved trivially: a* = |Y —Y’|| |X —X'|| is a minimizer of the function
2 2
P(a) = 5 IV = Y'|IE+ 51X - X|°.
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T

b bva?

< —K a2+ ; Qi ||9t+1/2 gtz — 2K,
b? bva?

(B.15)

T Kuonra 2KR

Combine (B.14) and (B.15) with (B.12) and by the compactness of the feasible region X,
we get:

R 1 <
N , )
< _
RT(m)inT—&-l 2K, Zatﬂt+1||9t+1/2 9ll?
T
32l 2
SENT | - S X - X
2 ,5:21 M+1 Mt X = t+1/2“
By P 1)\/672‘+Kh||)a||2 a [ 1 1]
Ty Knenryr 2K 2 = m
1 b? Kh||X||2> ( 1 Kh|X”2>
= Ry + — + — 0 ) —bva2 [ o + ). B.16
77T+1( " Ky 2 2K}, 2 (B-16)

Hence, by invoking Lemma B.1, we have:

E[f(XTH/g) - g,lc_lg(l f(g[;)] < W

2 b? Kh||X||2>:| [ 1 }
=—||Rpn+—+ E
T2 |:( h K 2 NTr+1

20v/a? (1 s
T2 2K}, 2 '

(B.17)

On the other hand, by the definition of nr1, we get:

T
1 1
E{ ] < EE a2+t22104t2||9t+1/2*9t||3 S - QQJFZO% Ugis1/2 — gell2]-
(B.18)

Moreover, we have that:
E[IVf(Xt11/2) = VF(Xt) = Upsry2 — Un) 2]
E[2(Vf(Xii1/2) = VI(X)Z +2|Upsry2 — UelZ]
E4(IVF(Xera) 12+ IV XN + 41U g2l + 1U)12)]
[802 + 41U 212+ 1U:D)] # from (BG)
=8[G* + 7. (B.19)

Therefore, when we choose the step-size parameters oy = t,Vt as indicated in Theorem 1,
we have:

b2 KhHXHQ 1 b2 Kh”XHQ 1
“ - E < R — — - 2 8 GQ 2 E

E[||9t+1/2 - gtH ]
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Ry, b K| X|? 3 R
She, 0 BRI T3,
_(b L AR Va2 +8(G? + 02?)
(B.20)
Finally, substituting (B.20) into (B.17), we get:

- , R, b Ku||lX|*\ Va2 +8(G?+a2)T3
_ < —n _
E |:f(XT+1/2) gél;(l f(fE):| = 2( b + Kh + 2b T2

N 2
_bvar 1 KT (B.21)
72 \ 2K, >

Then, from our choice for b and a? in Theorem 1, we obtain

- . Cn /Kn+8(G? + 02

Proof of (20b): convergence of UnderGrad under (LG)/(LS). From (22) and (B.14)
have:

5 Ry, 2 2
Ro(z) < — _
7(7) < p QKhZatTltHHgtﬂ/Q gellx
K, 1 1 2 K
=h — )X — X Xyi1s— X
S (- D) = Xl 3 e~ X
(B.23)
We analyze the terms in the right-hand-side of (B.23). First, we have
K 1 K| X|I? 1 1
K (—)|Xt+1 Xl < PR (L) g
2 Met1 7 2 nr+1 M
Second, we have:
T T
Ky 1 Ky
o5 2 m||Xt+1/2 - X = 5 ; { - } [ Xet1/2 — Xel?
T
Ky <~ 1 )
ShNT X e — X
+ 5 ;m\l t+1/2 ¢l
Ku X2/ 1 1 Kp o~ 1
< B () Y i - P
T+l M 2 =
(B.25)
Hence,
T T
Kyn & 1 , Kh|X||2< 1 1> K 1 ,
CEENT X e X2 < BRI 2 2 BN D X e X2 (B26
33 X < SR (e )T e Xl (B2

Combine (B.24) and (B.26) with (B.23), we have:

~ Kpl|lX|I?  Kpl|X|?

RT(m)gR” rl| XN KX
Nr+1 m
T

KhT

2K ZatntJrngtJrl/Q —gell? — 5 E”Xﬂrlﬂ - X% (B.27)
t=1
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We will analyze the terms in the right-hand-side of (B.27). To do this, we first introduce
the quantities

B} = min{[|Vf(X11/2) = VX N9e41/2 — 0:ll2} (B.28a)
and
&= [9t+1/2 - gt} - [Vf(yt+1/2) - Vf(yt)] . (B~28b)
We also define
b

i = . (B.29)
Va2 + X} 022
By these definitions, we obtain that
||9t+1/2 - 9t||i < Bt2 + [||9t+1/2 - gt||3 - min{||Vf(Yt+1/2) - Vf(Yt)Ili, ||9t+1/2 - 9t||3}]
< Bf + max{0, |grr1/2 — 9ill2 — IVf (Xiz1/2) — VF(X0)2}
< BY + B + 2%
= 2B} + 2|&]I3- (B.30)

Here, the last inequality is obtained by the fact that if ||g;11/2 — g¢[|2 = | Vf (X iq1/2) —
Vf(X)||? then it yields:
Ige41/2 — 9ell? = IV F(Xeq1/2) — VX2 < BE + 21412 (B.31)
Therefore, we have:

T
b Oét2||91t+1/2 - 9t||3

2Kn i \/a2 +3 a2\ gsr1ye — gsH2

T
1
% Z a?nt+1||gt+1/2 - gtlli =
t=1

T
b bva?
< 2 2 — 2 _
=% a* + t§:10¢t|\9t+1/2 gel? 2K,
# from Lemma A.J
T T
b bva?
< — a2+25 a232+2§ a?|| &2 —
Kh po t—t pot t ||§t” 2Kh

# from (B.30)

T 5 5 bva?
Zat”gtH* 2K
=1 h

bv2 a2
o? &2 - K # from Lemma A.J
h h

N
K,

41 B + X, 5

(B.32)

I
5
M=
S
il

T
S a2 + b‘/‘?(f—l).
t=1
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On the other hand, by the update rule in Algorithm 1 and our choice of o = ¢,Vt as in
Theorem 1, we also have X; — X;,1/2 = 29;73%()_(75 — Xt+1/2) = at2+1 (X't — Xt+1/2). Use
this and recall that % < % for any ¢ and that f is L-smooth over X, we have:

T T
Kh 1 Kh
- — || X - Xt+1/2||2 < —— g —
2 = N 2 = N

— Xigay2ll®

T 2
Kh (07 — —
=-—) X - Xyl
Mt+1

< ?Z 11L2||Vf(Xt) V(X123

:1

K, &
< _Kn B.33
<o g s (B.33)
Finally, letting Cy, = /Ry, + K,||X]|?, (B.30) yields:
Ys g ) Yy
C? Crl, )
= a? + e —g¢||?
p— b tzl t||gt+1/2 el
o2 T T
< SE|a?+2) afBi +2) of|&l?
t=1 t=1
V203 - V20E |
< V20 a2 13 azBp + 200 | S” a2l
t=1
V202 T 232 V202 T
< Ve Y + Y aBlel
b \/2 t 232 b ! *
t=1 /a2 + 3 ., a2B? t=1
V2C2/a? 202 | &
hza Mty1B] + g 3 L ZCY?H&HE- (B.34)
t=1
Combine (B.32), (B.33) and (B.34) into (B.27), we have:
d Ry KnllX]? Ky
a2B? Vg —
; K G +Kh)m+1 8L2ﬁt+1]
Ry KnllX|* b d
+\[<b b +K;) Za?ll&lli
v t=1
ba? 1\ Kp|X|>Va2  V2C3Va?
+ KZ <\f2—2)— ul bH ¢ +\[g <. (B.35)
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Now, define Tj as follows:

VK
To=max{ 1<t <T:ijy > h (B.36)
\/SLz(z;h Kl | 1)

In other words, for any ¢t > Tp, <% + M

+ Kh)ﬁt+1_8lé(ﬁ < 0. As a consequence,
T
Ry K|l X 2 - K,
ﬂzafo [(l)? + !2 ” + = | M1 — 55—

Kh 8L27j11
7\[2 QBQKJ;h Khbf”2+Kh>m“ SLZ%J
gﬂ(fzh KhIZl;YIF Kh)zatBSmH
—va(f Bl LY, i
a= VRS S

Ry | Ku|X[* | b
<v2(=h g 2l
f( = +Kh

R K| x? b R, K|l X2
o3 h Kn|X[* LW _ Vo B, KulXIP [l Xl L
b K}, Kh

NTy+1 b b
/2 ;2 2
Ry | KnlX|? | 1 \*? L m L lXP b
<8 el k| R I e R O —). B.37
<b2 Ty TR VR b K, (B-37)

Combine (B.35) with (B.37) and use the fact that IE[HfHﬂ < 402, we have:

/2 32 2

- Ry, Kh\|)(||2 32 2 Rh KhHXH b
< _ — _ _

]E[RT(I)} 8( = 4+ — = +—= Kh V2a + X

VvV Kp, b
Ry, KhH?fH2
2 -
+ f( ; +Kh

2
2o

t=1

bWa? 1\  Ku|X|>Va2  V2C3a?
K, (f 2)_ - b L

(B.38)

Recall the choice oy = t,Vt, apply Lemma B.1, we have:

/2 32
— . 16 (R | KnlX|? 322
B |10 i@ < (M 1) v
AV2 Ry K| X|? 2C (b, a
+\[(h+h|||—|—K>a 20(b a?)
h

vie : = (B.39)
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where we set

5 2./72 2. /a2 2
bﬁ(ﬁ1>Kh||X|| ﬁ+ﬁcgﬁ@(m Kl X)? +K>
h

2\ .
Cb,a%) = K), 2 b b b

(B.40)
Finally, replace b = VKhC}% and a? = K}, as chosen in Theorem 1 into (B.39) and note that
with these choices, C(b,a?) < —2Cy\/K}, < 0; we rewrite (B.39) as follows:

32v/2L 820 Cp
ST <Kh)+ VT VK,

Convergence of UnderGrad in unbounded domains. Finally, we give the proof of Theorem 2
concerning the deterministic SFO in the (LG) case with a possibly unbounded domain X.

B | /(Xrya) - mip f(o)| < (B.41)

Proof. Since the respective learning rate 7; is non-increasing and non-negative, we have that
its limit exists. Particularly,

lim 7 = infieyn >0 (B.42)

t—00
Let us now assume that inf;cy 7 = 0. Then, by applying Proposition 1 we have:

T

— h(z) — mingex h(x
Zat<vf(Xt+1/2)7Xt+1/2 —x) < @) cx h(@)
t=1 NT+1

(B.43)

T
+ Z ar(Vf(Xis1/2) = VI(Xig1/2), Xo — Xiy1)

T
K, K,
_ZiHXt-H — Xip1y2)® — Z LHXt+1/2 - X|?
i1 2 t=1

(B.44)
Now for the term Z;Tzl at<Vf(Yt+1/2) - Vf(yt)aXt—‘rl/Q - Xt+1> - Z;T:l %”XFFI -
X 41/2]? we have:

T
- Z *||Xt+1 Xepapoll® + D0 an(VF(Xev2) = VI(Kir1/2) Xi = Xer)
t=1

< 2Kh Zatm IVf(Xsr12) — VX2

K, 1 K
h h
+ = Z *||Xt+1 — Xpp12? =D 51X = Xegr ol

2 t=1 e =1 277t

(B.45)
which readily yields:
_ _ K, )
Zat<vf(Xt+1/2) = VF(Xt), Xir172 — Xer) — Z THXt-&-l Xiya2ll
t=1 t=1
T

Z eIV (X ag172) = VX2

(B.46)
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Hence, putting everything together, we get:

T T
1 _
Zat VI (Xit1/2), Xeprje — ) S Za el Vf (X op1/2) = VX
t=1 =1
T
Ky 1
7277 |1 X — Xyp1p0]? (B.47)

Moreover, since f is smooth we have:

IVf(Xis1/2) = VIXDIZ < L2 X 141/ — Xel?
2

o

< P Xy — Xl

(Zt:l at)

4¢2

=I*——|X — X2

t2(t+ 1)2” t41/2 t”

4172

< 7||Xt+1/2 - Xt” (B.48)

Combining this with the fact that n; is a decreasing sequence, we can rewrite (B.47) as

follows:

T T
Z (VF(Xr1/2)s Xerye — %Z IV f(Xot1/2) = VX
t=1 t=1
T
Kh 042 -
" 17 2 ?Z”vf(Xt+l/2) ~ VX0 (B.49)

In the sequel, we look for the appropriate bounds of the two terms in the right-hand-side of
(B.49). We start with the second term. From (B.9), we also have Zthl o (Vf(Xet1/2), Xep1/2—
x) > 0. Combine this with (B.49), we have:

T
— Kh Oé2 —_— —_—
0< o7 Zatmnw Kor172) = VI =gz 2 oIV X eway2) = VAX DI (B.50)

t=1

Hence by rearranging we have:

T K 2 e .
Z 167?022 IVf(Xit1/2) — VX < 2K Z%m”vf( s+1/2) — VX))
t=1 1

B S 00X, ) - VIO
1612 &~ rr/z ol
1¢ n Ky,
2 ~ < 2 |
=_ X _ X L
5 2 eIV (Ko~ VIRIE [~ s
(B.51)
Now, since we assumed that 7; converges to 0, there exists some ty € N such that:
Ky,
< —— forall t>1¢ B.52
N> VSL 0 ( )
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which directly yields that [ = — } < 0 for all £ > Ty. Hence, we have:

817,L2
Ko 508 0 R o)~ VAT < Zanwx )V | L K
162 e e t+1/2 t t t+1/2 t K, 877tL2
(B.53)
On the other hand, we have:
t—1
1 1 _ _
— = —— | K+ 2| VX, VX2 > — =1 B.54
w = VR Kt L IV Ko) -V F¢ h (B.54)
and hence
T
K S O G 1 (R 10) — VI > & Za2||w Xparja) - VXD
1612 = 1, fTI6L2 &t :
2
N RV (R irye) - VAT
16L2K, &= ' .
Kj
_ B.55
16m2_, L? ( )
So, summarizing we have:
K? Tox 5o, i Kp
—h < C X X U B.56
1677%71L2_2;at||w( wy2) = VXL | 0~ 5 (B.56)

We now focus on the first term of the right-hand-size of (B.49). If one lets T' to infinity and
recalling the fact that we assumed that 7; converges to 0 (and so 1/n? — o), we have that:

Kh
877t L2

To
1 — _
oo < B ZCYEHVJC(XtH/z) — V(XD {Izt -

2 } < 00 (B.57)

a contradiction. This shows that inf;cyn; > 0 and hence

+oo
S V(X isry2) — VX2

t=1

hm ZatHVf (Xip12) = VX2

= lim — — K
T nf h
K‘ 2
=" _K,<o (B.58)
inf; n,
so our proof is complete. |

APPENDIX C. ADDITIONAL NUMERICAL EXPERIMENTS

In this last section, we report another numerical experiment highlighting the universality
of UNDERGRAD. In this experiment, we also focus on the simplex setup as presented in
Section 5. However, this time, we work with a noisy SFO that returns first-order feedback
that is perturbed by a noise generated from a pre-determined zero-mean normal distribution.
We compare the performances of UNDERGRAD and UNIXGRAD, both run with the entropic
regularizer. The result of this experiment is reported in Fig. 3.

Fig. 3 shows that UNDERGRAD obtains the optimal rate O(1/+/T) in this set-up. UNIX-
GRAD can also obtain the same rate but only when its step-size update rule is chosen
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10° 5

10—1 m

1072 4

’Q 10-3 4
~ —¥- UnderGrad

1
e
—e— UnixGrad, y1=m
107* § —e— UnixGrad, y1 = 1E+04n; {!
—e— UnixGrad, y1 = 1E-04-n; MRS (01
10*5 4

1076 S T T T . -
10° 10t 102 103 104 10°

T

Figure 3: Convergence of UNDERGRAD and UNIXGRAD in the simplex setup with a
noisy SFO. The plot is drawn in log-log scale. The y-axis corresponds to the differences
between the f-value of the relevant point of each algorithm and min f.

10~4 4 —¥— UnderGrad in setup with 0=0.1
@ UnderGrad in setup with 0=0.2
—®- UnderGrad in setup with 0=0.4
--- UnderGrad in setup with 0=0.6

T T T T T T
10° 10! 102 103 104 10°
T

Figure 4: Convergence of UNDERGRAD in the simplex setup with different noise levels
of the SFO.

appropriately (note again that with entropic regularizer, the update rule (14) of UNIXGRAD
is not available due to the fact that B, = c0): when 7 is chosen with the same or larger mag-
nitude of UNDERGRAD’s initial learning rate, UNIXGRAD converges with the rate O(1/v/T);
but if 7 is too small (e.g., when v = 1072 - 11), UNIXGRAD can have a very long warming
up phase. This experiment reasserts that in cases where the step-size update rule (14) is
unavailable, it is non-trivial to choose an appropriate step-size update rule of UNIXGRAD:
small 1 might lead to better performances under perfect SFO (cf. Section 5) but might
create unwanted behaviors in noisy SFO setups. On the contrary, UNDERGRAD does not
encounter such issues in our experiments.

Finally, we conduct another experiment to confirm the dependency of the convergence
rates of UNDERGRAD on the noise level o. The result is reported in Fig. 4.
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