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Abstract
Adaptive first-order methods in optimization are
prominent in machine learning and data science
owing to their ability to automatically adapt to the
landscape of the function being optimized. How-
ever, their convergence guarantees are typically
stated in terms of vanishing gradient norms, which
leaves open the issue of converging to undesirable
saddle points (or even local maximizers). In this
paper, we focus on the ADAGRAD family of al-
gorithms – with scalar, diagonal or full-matrix
preconditioning – and we examine the question
of whether the method’s trajectories avoid saddle
points. A major challenge that arises here is that
ADAGRAD’s step-size (or, more accurately, the
method’s preconditioner) evolves over time in a
filtration-dependent way, i.e., as a function of all
gradients observed in earlier iterations; as a result,
avoidance results for methods with a constant or
vanishing step-size do not apply. We resolve this
challenge by combining a series of step-size stabi-
lization arguments with a recursive representation
of the ADAGRAD preconditioner that allows us to
employ stable manifold techniques and ultimately
show that the induced trajectories avoid saddle
points from almost any initial condition.

1 Introduction
Deep learning architectures have brought forth a revolution
in numerous application areas, from computer vision and
recommender systems, to speech recognition and natural
language processing [6, 19]. Although gradient descent (and
its variants) is the mainstay training tool for such models,
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it comes with a significant inherent drawback: the gradient
steps taken at each iteration are essentially “Markovian”,
in the sense that information gained about the model’s loss
landscape over time is not taken into account when perform-
ing an update. For this reason, adaptive gradient algorithms
have emerged as an essential ingredient of contemporary
machine learning models and architectures: by incorporat-
ing data and knowledge from gradients observed in earlier
iterations, adaptive methods perform more informed gra-
dient steps in later iterations, and they are able to adapt
efficiently to the landscape of the function being optimized.

The blueprint for most adaptive first-order methods – in-
cluding ADAM [17], ADAMNC [32], AMSGRAD [32], and
RMSPROP – is the ADAGRAD family of algorithms that
was introduced concurrently by Duchi et al. [10] and McMa-
han & Streeter [24]. In the unconstrained case (which is
the playground of choice for most adaptive methods of
this type), the ADAGRAD algorithm proceeds as a gradient
descent method with a matrix-valued step-size – typically
referred to as a preconditioner – which is defined recur-
sively by taking the square root of the sum of squares of
past gradients (possibly tensored, depending on the specific
variant of the method). Owing to this clever preconditioning
mechanism, ADAGRAD excels in solving convex-structured
problems with sparse gradients, while remaining competi-
tive in environments with full (dense) gradients.

Specifically, in convex problems with Lipschitz continuous
objectives, ADAGRAD attains an O(1/

√
T ) value conver-

gence rate after T queries to a first-order oracle (stochastic
or deterministic). This rate improves to O(log T/T ) if the
problem’s objective is strongly convex [10],1 and toO(1/T )
if the problem’s objective is Lipschitz smooth [1, 2, 22].2 In
this regard, ADAGRAD is not order-optimal because it does
not attain the iconic O(1/T 2) accelerated convergence rate
of Nesterov [26]; however, other adaptive methods based on
the ADAGRAD template do achieve this – like the ACCELE-
GRAD proposal of [22], or the more recent UNIXGRAD and
UNDERGRAD algorithms by [16] and [4, 34] respectively.

In the non-convex world (which is of greater interest to

1Or if the noise in the method’s gradient oracle is a relative
percentage of the gradient norm, cf. the recent paper [3].

2Importantly, the first of these rates continues to hold in the
stochastic case, but the second does not.
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deep learning applications), ADAGRAD has been shown to
attain an O(1/T ) convergence rate when the optimizer has
access to a perfect, deterministic gradient oracle, and an
O(1/

√
T ) convergence rate when only stochastic gradients

are available [23, 35]. Importantly, the merit function in
both cases is no longer the value of the objective function,
but the sum of gradient norms squared. As a result, the
above guarantees translate to a convergence rate for the
method’s “best iterate”, i.e., the queried point with the least
(true) gradient norm.3 In this regard, ADAGRAD is an order-
optimal method in the non-convex case – which, coupled
with its simplicity and the capability of exploiting sparse
gradients – makes it an ideal choice for many problems
with moderate-to-high dimensionality and a sparse solution
structure.

At the same time, it should be noted that the only guarantee
provided in non-convex settings is that of a vanishing gra-
dient, not a value minimization certificate (local or global).
This leaves open not only the question of global versus local
optimality, but an even more fundamental one:

Do the trajectories of ADAGRAD avoid saddle points?

This question is the core of our paper; to put our contri-
butions in the proper context, we begin by discussing the
related work on the topic.

Related work. The literature on saddle-point avoidance
is quite extensive, so some general remarks are in order.
First, to the best of our knowledge, existing results concern
almost exclusively non-adaptive methods (we discuss the
single exception that we are aware of below). These results
can be subsequently classified into results for deterministic
and stochastic gradient descent (depending on the oracle in
question); perhaps surprisingly, these two branches of the
literature do not intersect and, for reasons that we explain
below, the insights and techniques cannot be ported from
one regime to the other.

Historically, the first avoidance results were obtained in
the stochastic setting in the early 90’s, with Pemantle [30]
and Brandière & Duflo [7] being the first to establish the
avoidance of hyperbolic saddle points for stochastic gradi-
ent descent methods.4 Specifically, they showed that the
trajectories of any vanishing step-size stochastic approxi-
mation of a gradient flow avoid hyperbolic saddle points
with probability 1, from any initial condition. More re-

3This creates an issue in the stochastic case because it is not
possible to identify the point with the least gradient norm when
only a single run of random gradient observations is available. In
our paper, we only treat the deterministic case, so this issue does
not arise.

4A saddle point is hyperbolic if the Hessian of the objective
function is invertible and has at least one negative eigenvalue at
said point.

cently, and under a somewhat different set of assumptions
for the problem’s objective function, Ge et al. [12] showed
that stochastic gradient descent (SGD) escapes strict sad-
dle points (i.e., stationary points where the Hessian of the
objective has at least one negative eigenvalue, but could
also have zero eigenvalues), and produces iterates close to
second-order optimal stationary points with high probability.
Daneshmand et al. [8] further refined this result by obtain-
ing positive probability results for second-order stationary
points, while Mertikopoulos et al. [25] and Hsieh et al. [14]
showed that strict saddles are avoided with probability 1, not
only by SGD, but by any Robbins-Monro approximation
of a gradient flow (including stochastic extra-gradient, opti-
mistic gradient, and several other non-adaptive first-order
methods). Finally, Staib et al. [33] examined a variant of
SGD with adaptive preconditioning (including AMSGRAD
and RMSPROP) and obtained a strict saddle escape result in
the spirit of Ge et al. [12]; to the best of our knowledge, this
is the only escape result for adaptive, stochastic methods,
and we discuss it in detail later in the paper.

On the deterministic side of the literature, Lee et al. [20]
showed that the trajectories of deterministic gradient descent
avoid strict saddle points from any initial condition. In a con-
current paper, Panageas & Piliouras [27] established a more
general version of this result concerning non-isolated (i.e.,
continua of) saddle points – including ridges, talwegs, or
other manifolds of non-minimizing stationary points. These
two approaches where shortly afterwards unified into a gen-
eralized methodology that was able to address numerous
distinct first-order optimization methods including gradient
descent, block coordinate descent, mirror descent and vari-
ants thereof [21]. Since these first works, several extensions
and refinements have appeared, regarding the rate of conver-
gence to second-order optimal points [9, 15], zeroth-order
methods [11], constrained distributed optimization [29] and,
finally, gradient descent with a vanishing step-size [28].

The key difference between the two regimes – deterministic
and stochastic – is that stochastic results invariably rely on
a “positive excitation” assumption for the noise: not neces-
sarily that it is isotropic, but that it excites all directions in
space in a uniformly positive amount (for a precise defini-
tion, see [5, 30]). In this regard, the noise in the optimizer’s
gradient queries can be viewed as providing a “boost” to
escaping saddle points (though the extent of this boost can
be relatively small in high-dimensional problems, a question
that has been examined at depth in the relevant literature).
By contrast, this “stochastic boost” is completely absent
in the analysis of deterministic gradient descent schemes;
as a result, the techniques employed in “stochastic escape”
papers are likewise completely different to the techniques
employed in the “deterministic avoidance” literature. More
to the point, because the noise profile is always assumed
to be persistent in the stochastic literature, results about
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stochastic methods do not imply anything for the determin-
istic case – and, likewise, of course for the converse.

Comparison of techniques. We outline below the tech-
nical challenges of our approach and the techniques we
employed relative to other works in the literature. All pre-
vious papers in the deterministic regime with the single
exception of [28], apply standard machinery from the dy-
namical systems literature and specifically standard variants
of the celebrated stable manifold theorem [31]. This is a
standard tool in analyzing the behavior of a dynamical sys-
tem in the neighborhood of a stationary point; however, in
its standard formulation, this theorem applies only to au-
tonomous (i.e., time-independent) smooth maps or flows.
As such, this framework turns out to be too restrictive for
many interesting machine learning applications where the
map producing the dynamics is also evolving itself over
time.

Such non-autonomous dynamical systems require particular
care and case-by-case analysis as they are intractable in
their full generality. As a first step in this direction, gradient
descent with vanishing step-sizes was shown to provably
avoid saddle points via a novel tailored version of the sta-
ble manifold theorem [28]. The dynamical system arising
from ADAGRAD (this paper) poses unique and novel chal-
lenges that puts us well outside any prior approach. These
differences are as follows:

• The update rule of ADAGRAD is a “filtration-
dependent” function of all its history depending on
time as well as all previous states.

• The step-size matrix of ADAGRAD could be either van-
ishing or non-vanishing, depending on the landscape
encountered. non-vanishing, the norm converges to a
non-zero constant for each initial condition x0.

In view o the above, there is no a priori reason to expect that
ADAGRAD should avoid saddle points in the same way that
gradient descent does. In more detail, the vanishing step-
size regime requires a completely different center-stable
theorem than the constant step-size case, and since ADA-
GRAD interpolates between the two, neither analysis or
technique is sufficient for this. In addition, the fact that we
have a matrix-valued step-size – the preconditioning matrix
– it is crucial to establish sufficient control over its spectrum
(and, in particular, the minimum and maximum eigenval-
ues thereof). We achieve this by proving the existence of
a strictly positive-definite limit for the method’s precon-
ditioner which, combined with a “Markovian” reframing
of the ADAGRAD update sequence, allows us to decom-
pose the underlying dynamics into a stable system plus a
“small” residual term which does not affect the method’s
convergence properties. Then, leveraging a Lipschitz-type

condition for this remainder term allows us to derive an
ADAGRAD-tailored stable manifold theorem that precludes
the algorithm’s convergence to strict saddle points.

2 Setup and preliminaries

2.1 Setup

In this paper, we will focus on non-convex optimization
problems of the form

minimize f(x), (Opt)

subject to x ∈ Rd.

In the above, f : Rd → R ∪ {∞} is assumed to be lower
bounded and continuously differentiable, i.e., the following
holds:

1. infx∈Rd f(x) > −∞.

2. There exists some positive constant L > 0 such that

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ (LS)

for all x,y ∈ Rd.

An important property which follows directly from (LS) is
the so-called descent inequality:

f(x) ≤ f(y)+ ⟨∇f(y),x−y⟩+ L

2
∥x−y∥2 (Descent)

for all x,y ∈ Rd. Heuristically, (Descent) allows us to
upper-bound our objective by a quadratic majorant. This
property will play a crucial role in what follows.

Another condition for f is concerns its critical points. In
particular, we say that x∗ ∈ Rd is a strict saddle point if x∗

is a critical point and the Hessian of f at x∗ has at least one
negative eigenvalue, i.e.,

∥∇f(x∗)∥ = 0 and λmin(∇2f(x∗)) < 0.

Throughout this paper we use saddle point for short when
there is no ambiguity.

2.2 Algorithm and Problem

In this paper, we will investigate gradient descent with an
adaptive step-size in the spirit of the ADAGRAD algorithm
of Duchi et al. [10]. Formally, the algorithm is described by
the following recursive formula:

xt+1 = xt − Γt∇f(xt), (ADAGRAD)

where the step-size Γt has following three variants:

• ADAGRAD with squared norm adaptation

Γt =
1√

δ20 +
∑t

s=0∥∇f(xs)∥2
(ADANORM)
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• ADAGRAD with diagonal step-size scaling

Γt = G
− 1

2
t (ADADIAG)

where

Gt = δ20I + diag

(
t∑

s=0

∇f(xs)∇f(xs)
⊤

)
.

• ADAGRAD with full matrix preconditioning

Γt = G
− 1

2
t (ADAFULL)

where

Gt = δ20I +

t∑
s=0

∇f(xs)∇f(xs)
⊤.

We clarify that throughout this paper, all the step-size poli-
cies and gradients are deterministic. The problem we ad-
dress in this article is: Do ADAGRAD algorithms provably
avoid saddle points?

This saddle avoidance type question stimulates the study
of non-convex optimization, machine learning and dynam-
ical systems in recent years. It is an essential part leading
us to a better understanding of the power of deterministic
ADAGRAD algorithms.

2.3 Technical Preliminaries

For posterity, we list some fundamental concepts and results
that will be frequently referred to in our analysis and proofs.
Standard references for matrix calculus and Banach fixed
point arguments can be found in [13] and [18] respectively.

Dynamical systems. Let T = R or Z. A smooth dynam-
ical system on Rd is a continuous differentiable mapping
ϕ : T× Rd → Rd, where ϕ(t,x) = ϕt(x) satisfies

• ϕ0 : Rd → Rd is the identity mapping.

• The composition ϕt ◦ ϕs = ϕt+s for each t, s ∈ T.

In our setting, the T compositions of mappings defined by
the update rule can be seen as a mapping ϕ(T,x0) from the
initial point x0 to ϕT (x0).

Diffeomorphism. A differentiable mapping ϕ : Rd → Rd

is a local diffeomorphism at x if the Jacobian matrix Dϕ(x)
is invertible.
Remark 1. A typical example of diffeomorphism is gra-
dient descent with small constant step-size, whose up-
date mapping is ϕ(x) = x − η∇f(x). In our setting,
the step-size policy is time-dependent and the mapping
ϕ(t,x) = x−Γt∇f(x) is expected to be a diffeomorphism
on Rd for each t ∈ N.

Matrix preliminaries. For Hermitian matrices G,H we
write G ≼ H or H ≽ G to mean H−G is positive semidef-
inite. In particular, H ≽ 0 indicates that H is positive
semidefinite. This order is known as the Löwner partial or-
der. If H is positive definite, i.e., positive semidefinite and
invertible, we write H ≻ 0. The following two results are
frequently applied in stabilization analysis of the adaptive
step-size matrix Γt.

• Löwner-Heinz inequality: If A ≽ B ≽ 0 and 0 ≤ r ≤
1 then Ar ≽ Br.

• Weyl’s monotonicity lemma: If H is positive, and the
eigenvalues of A+H and A are ordered as

|λ1(A+H)| ≥ · · · ≥ |λd(A+H)|

and
|λ1(A)| ≥ · · · ≥ |λd(A)|.

Then

λi(A+H) ≥ λi(A) for all i = 1, . . . , d.

Banach fixed point theorem. Let (X, d) be a complete
metric space, then each contraction map T : X → X has
unique fixed point.
Remark 2. The matrix preliminaries are used in the stabiliza-
tion analysis of the step-size policy Γt. The Banach fixed
point theorem plays a crucial role in the proving Theorem
1, where the complete metric space consists of sequences,
and the operator T is a discrete analogy of the integral oper-
ator in the continuous time dynamical system. Uniqueness
means that the sequence (generated by ADAGRAD) converg-
ing to the saddle point under discussion is unique.

3 Analysis and results
In this section we provide the results that (ADANORM),
(ADADIAG) and (ADAFULL) avoid saddle points from al-
most every initial condition. Our approach consists of three
parts:

• The sequence of adaptive matrices Γt, t = 1, 2, . . . ,
converges to a (strictly) positive-definite matrix.

• The analysis of the local structure of the ADAGRAD
iterative dynamics based on the stabilization of the
method’s preconditioner.

• Prove the local stable manifold theorem for the ADA-
GRAD dynamics and then extend the result to global.

We will elaborate on this in the following subsections.
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3.1 Stabilization of the preconditioner

Proposition 1. Let Γt be one of adaptive step-size policies
of (ADANORM),(ADADIAG) or (ADAFULL). Then the fol-
lowing statements hold:

1. For each initial point x0, the eigenvalues of Γt con-
verges to strictly positive numbers, i.e.,

lim
t→∞

λi(Γt) > 0 for all i = 1, . . . , d.

2. For each sequence {xt}t∈N generated by ADAGRAD,
the sum of square of gradient norms is finite, i.e.,

∞∑
t=0

∥∇f(xt)∥2 <∞.

3. The limit of {Γt}t∈N exists and in particular, the limit
is positive definite, i.e.,

lim
t→∞

Γt = Γ with Γ ≻ 0.

Remark 3. An immediate consequence of the above stabliza-
tion result is that the ADAGRAD algorithms under study
have a gradient decay rate of O(1/T ). In particular, by Part
2 of Proposition 1 and the construction of the ADAGRAD
preconditioning matrix (see also Propositions A.1–A.3 in
Appendix A), we immediately get that

1

T

T∑
t=1

∥∇f(Xt)∥2 ≤
L

2

f(X1)− inf f

T
= O

(
1

T

)
In turn, this yields the rate mint=1,...,T ∥∇f(Xt)∥2 =
O(1/T ) or, if we pick X̄T uniformly at random from
X1, . . . , XT , we get E[∥∇f(X̄T )∥2] = O(1/T ).

In the first statement of the above proposition, we briefly re-
gard Γt as the product of the adaptive scalar and the identity
matrix. In the proof of the proposition, we show the stabiliza-
tion of Γt and summability of ∥∇f(x)∥2 independently for
three adaptive policies. To provide some intuition, we will
below sketch the main idea of the proof for (ADANORM),
the proof of the other two ADAGRAD methods following
the same strategy with additional techniques from theory of
matrix analysis.

In what follows, we use the notation in the Appendix, i.e.,
we denote

γt =
1√

δ20 +
∑t

s=0∥∇f(xs)∥2
,

to emphasize that γt is the scalar step-size in (ADANORM).

We begin by noting that, since γt is decreasing and bounded
from below, its limit exists, i.e.,

lim
t→∞

γt = inf
t∈N

γt = γ∞ ≥ 0.

The proof is completed by contradiction. Assume that γ∞ =
0. Then by the fact that f is smooth, we have

f(xt+1) ≤ f(xt)+⟨∇f(xt),xt+1−xt⟩+
L

2
∥xt+1−xt∥2.

By the update rule of (ADANORM), we further have

xt+1 − xt = −γt∇f(xt). (1)

Thus, by rearraning the descent inequality, we obtain the
uper bound:

f(xt)− f(xt+1) +
γt
2
[Lγt − 1]∥∇f(xt)∥2.

Summing over all the terms for t = 1, . . . , T , and using the
fact that f(xT ) ≥ inf f(xt), we have

1

2

T∑
t=0

γt∥∇f(xt)∥2 ≤ f(x1)− inf
t
f(xt)

+

T∑
t=0

γt
2
[Lγt − 1]∥∇f(xt)∥2.

Since we assume that γt → 0 as t → ∞, there must exist
some t0 such that Lγt − 1 < 0 for all t > t0. Therefore,
the right hand side of the above inequality is finite because∑T

t=0
γt

2 [Lγt − 1]∥∇f(xt)∥2 spikes at T = t0, and thus
we have

1

2

∞∑
t=0

γt∥f(xt)∥2 < +∞.

However, we can also have the following lower bound in-
equality by direct calculation in Appendix, i.e.,

1

2γT
− δ0

2
≤ 1

2

T∑
t=0

γ∥∇f(xt)∥2.

Again by our assumption that limt→∞ γt = 0, letting t→
∞, we conclude that,

∞ ≤ δ0
2

+

∞∑
t=0

γt∥∇f(xt)∥2 <∞,

a contradiction which yields the desired result.
Remark 4. The proof of Proposition 1 for the matrix-based
variants of ADAGRAD follows the same template. Specif-
ically, the first step is to show that the method’s precondi-
tioning matrix is non-increasing in the Löwner order, i.e.,
Γt ≽ Γt+1 for all t. Then, by Weyl’s monotonicity theorem,
this result subsequently translates to the eigenvalues of Γt,
i.e., λi(Γt) ≥ λi(Γt+1) for all i = 1, . . . , d (where λi(·)
denotes the i-th eigenvalue of the matrix in question). In
view of this, by invoking a similar series of steps based
on the descent inequality and an eigenvalue-per-eigenvalue
decomposition, it can be shown that the limit of each λi(Γt)
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is strictly positive, which in turn can be used to show that Γt

converges to a (strictly) positive-definite matrix and the sum
of the gradient norms of f is finite. For the precise state-
ments and proofs, we refer the reader to Propositions A.2
and A.3 in Appendix A.

3.2 Local structure of the ADAGRAD dynamics

The first essential technique in proving saddle avoidance of
ADAGRAD algorithms is the following. Since the increment
of each iterate is the product of a preconditioned matrix
and gradient vector, all three ADAGRAD algorithms can be
decomposed into a stabilized matrix and a residual term.

More precisely, all of the above algorithms have the follow-
ing form:

xt+1 = xt − Γt∇f(xt) (2)

where Γt is a sequence of positive definite matrices that
converge to a symmetric positive definite matrix Γ, and we
assume that

∥Γ∥2 ≤ ∥Γ0∥2 ≤
1

δ0
≤ 1

L
.

Since we have assumed that Γt has the limit matrix Γ, and
then we can write

Γt = Γ + Γt − Γ.

Thus, the algorithm (2) can be written as

xt+1 = xt − Γt∇f(xt)

= xt − (Γ + Γt − Γ)∇f(xt)

= xt − Γ∇f(xt)− (Γt − Γ)∇f(xt)

Without loss of generality, we assume that 0 is a strict saddle
point of f , i.e., ∇f(0) = 0, then the Taylor expansion of f
at 0 is the following

∇f(x) = ∇f(0) +∇2f(0)x+ θ(x)

= ∇2f(0)x+ θ(x).

With the Taylor expansion of∇f(x) in a neighborhood of
0, we replace the first∇f(xt) with

∇f(xt) = ∇2f(0)xt + θ(xt),

provided that xt is taken from a small neighborhood of
0 where the Taylor expansion is performed. We have an
equivalent expression of the dynamical system (2) through
the following calculation.

xt+1 = xt − Γt∇f(xt)

= xt − Γ
(
∇2f(0)xt + θ(xt)

)
− (Γt − Γ)∇f(xt)

= xt − Γ∇2f(0)xt − Γθ(xt)− (Γt − Γ)∇f(xt)

=
(
I − Γ∇2f(0)

)
xt − Γθ(xt)− (Γt − Γ)∇f(xt)

We denote the non-linear part of the above dynamical system
by η(t,x), i.e.,

η(t,x) = −Γθ(x)− (Γt − Γ)∇f(x). (3)

In Lyapunov-Perron method, the Lipschitz type condition
of the whole remainder is an crucial property that enable us
to prove the existence of local stable manifold. By a Taylor
expansion, we trivially get θ(x) = ∇f(x) −∇2f(0)x so
the differential of θ(x) becomes

Dθ(x) = D(∇f(x)−∇2f(0)x) = ∇2f(x)−∇2f(0),

with the Lipschitzness of θ(x) being a consequence of the
boundedness of Dθ(x). Sice the gradient ∇f(x) is Lips-
chitz by assumption, the other part of η(t,x) satisfies the
Lipschitz type condition as long as t is large enough since
the norm of Γt − Γ becomes arbitrarily small as t goes to
infinity. The formal statement is provided in the following
proposition and we defer the detailed proof to Appendix B.

Proposition 2. By the definition of η(t,x) in (3), we have
that for any ϵ > 0, there exist a neighborhood B of 0 and
some t0 ∈ N, such that for all x,y ∈ B and t ≥ t0, we have

∥η(t,x)− η(t,y)∥ ≤ ϵ∥x− y∥

3.3 ADAGRAD avoids saddle points

Given the properties of the remainder η(t,x), we are now
ready to state the local stable-manifold theorem correspond-
ing to the ADAGRAD family of algorithms.

Theorem 1. Suppose 1 ≥ λ1 ≥ . . . ≥ λs > 0 > λs+1 ≥
. . . ≥ λd, H is a diagonal matrix of the form:

H =

 λ1
. . .

λd

 .
Suppose that for any ϵ > 0, there exists a ball centering at
0 with radius δ, such that the mapping η(t,x) satisfes

• η(t,0) = 0,

• ∥η(t,x)− η(t,y)∥ ≤ ϵ∥x− y∥ for all x,y ∈ B(δ).

Suppose further that γ(t,x) is a function satisfying

0 < c ≤ γ(t,x) ≤ 1

λ1
.

Then the dynamical system

xt+1 = (I − γ(t,x0)H)xt + η(t,xt) (4)
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has an s-dimensional stable manifold at 0. In particular,
stable manifold exists for the case when γ(t,x) = 1, i.e.,
the dynamical system is

xt+1 = (I −H)xt + η(t,xt).

By an s-dimensional manifold, we mean a set that can be
represented as a graph of a function. The scheme of proving
existence of stable manifold for a dynamical system is called
Lyapunov-Perron method, which originated from the study
of structure stability of dynamical system defined by ordi-
nary differential equations. The goal of all effort is to show
that if the dynamical system converges to a unstable fixed
point (in our settings, it means a saddle point) with an initial
point x0, then this initial point x0 lies on the graph of some
function from the stable space to unstable subspace with
respect to the eigenspace decomposition of the linearization
of the dynamical system. We give a quick review of the
Lyapunov-Perron method for continuous time dynamical
system. For a detailed study of Lyapunov-Perron method,
we recommend [31] as a reference. Consider the dynamical
system defined by

dx

dt
= A(t)x+R(t,x) (5)

where A(t) is a time-dependent matrix. If the solution
u(t,x0) generated by the dynamical system with some ini-
tial condition x0 converges to an unstable fixed point, then
it must hold that for the integral operator T :

Tu(t,x0) = U(t)x0 +

∫ t

0

U(t− s)R(s, u(s,x0))ds

−
∫ ∞

t

V (t− s)R(s, u(s,x0))ds,

u(t,x0) is a fixed point of T . We will skip the discussion
on U(t) and V (t) since they play no role other than giving
intuition on the form of the discrete version of T . The
Banach space consists of curves converging to the fixed
point and having initial points whose stable components are
all equal. Banach fixed point theorem ensures the existence
and uniqueness of local stable manifold of the dynamical
system (5). The main challenge of proving Theorem 1 is to
formulate the discrete and adaptive version of operator T
and then to show that T is a contraction map on the space
of sequences converging to saddle points.

The reason for which one cannot treat the dynamical system
arising from ADAGRAD algorithms as straightforwardly
as the previous works is because the step-size is a matrix
that involves all the historic iterations. Our main claim is
the following: suppose the sequence {xt}t∈N is generated
by dynamical system of ADAGRAD algorithm and this se-
quence converges to a saddle point, WLOG, 0. Then we
only have to focus on the sequence of step-size matrices

{Γt}t∈N which is generated by the iterations. We will treat
{Γt}t∈N as a fixed sequence that is pre-generated, further-
more, this sequence actually depends only on the initial
point x0, so whenever necessary, we use Γt(x0) to empha-
size this property. Theorem 1 implies a more general result:
for any sequence {Γt(x0)}t∈N, if the initial condition x0

makes the sequence {xt}t∈N converge to a saddle point,
then the initial condition x0 lies on an s-dimensional mani-
fold which is a graph of a function from the stable space to
unstable space.

To obtain a full discrete analogy of the solution u(t,x0)
in the continuous case, we regard the sequence {xt}t∈N a
sequence of functions {xt(x0)}t∈N of the initial condition
x0. This notion is essential in the proof of Theorem 1. The
discrete version of T acting on space of sequences is as
follows:

(Tx)t+1 = B(t, 0)x+
0 +

t∑
i=0

B(t, i+ 1)η+(i,x0,xi)

−
∞∑
i=0

C(t+ 1 + i, t+ 1)−1η−(t+ 1 + i,x0,xt+1+i)

where the definition of B(t, 0), C(t+ 1 + i, t+ 1) will be
elaborated in Appendix. T transform a sequence {xt}t∈N
to a new sequence {(Tx)t}t∈N and locally we will focus on
the space of sequences converging to the saddle point. The
main ingredients of showing the existence of local stable
manifold consist of the following:

• The transformed sequence {(Tx)t}t∈N converges to
the fixed point 0 as long as {xt}t∈N does, (Proposition
C.1);

• The sequences {xt}t∈N converging to 0 whose initial
points have the same stable component, say x+

0 = a,
form a complete metric space, denoted as X(a,0),
(Lemma C.4);

• The operator T is a contraction mapping acting on
X(a,0), (Lemma C.6).

Therefore, applying Banach Fixed Point Theorem, we can
conclude that there exists a unique sequence converging to
0 for each fixed stable component of the initial condition
x0, and this sequence gives the unique correspondence be-
tween the stable-unstable components of x0, and this can
be written as x−

0 = ϕ(x+
0 ).

Note that the dynamical system of ADAGRAD algorithms is
conjugate to the dynamical system above. By assumption,
the Hessian of f(x) at isolated strict saddle point 0 is sym-
metric and diagonalizable. For a symmetric positive definite
matrix Γ, the matrix

Γ− 1
2Γ∇2f(0)Γ

1
2 = Γ

1
2∇2f(0)Γ

1
2
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has the same eigenvalues as Γ∇2f(0), while Γ
1
2∇2f(0)Γ

1
2

has the same number of positive and negative eigenvalues
as∇2f(0) does. Thus Γ

1
2∇2f(0)Γ

1
2 is diagonalizable and

this implies that Γ∇2f(0) is also diagonalizable. Moreover,
the number of positive and negative eigenvalues of Γ∇2f(0)
agree with that of∇2f(0). Suppose that the diagonalization
of Γ∇2f(0) can be completed by the linear transformation
matrix Q, i.e., H is a diagonal matrix and Γ∇2f(0) =
Q−1HQ, then we have

xt+1 = (I −Q−1HQ)xt + η(t,xt) (6)

= Q−1(I −H)Qxt + η(t,xt) (7)

which is equavalent to

Qxt+1 = (I −H)Qxt +Qη(t,xt).

If we denote yt = Qxt, we have a dynamical system in-
terms of yt as follows,

yt+1 = (I −H)yt +Qη(t, Q−1yt). (8)

We leave the complete argument showing thatQη(t, Q−1yt)
satisfies the Lipschitzness condition of Theorem 1 and the
existence of local stable manifold of the dynamical system
of (8) and that of xt to Appendix (Lemma C.7).

Note that the existence of local stable manifold of ADA-
GRAD algorithm implies that the set of initial points con-
verging to saddle point is of measure zero, but to extend
the result to the whole Euclidean space, we need the fol-
lowing proposition assuring that the mapping defined by
ADAGRAD algorithms are diffeomorphism.

Proposition 3. There exists a positive number δ0 ≥ L for
Lipschitz number L, such that (ADANORM), (ADADIAG)
and (ADAFULL) are local diffeomorphisms on Rd.

The main difficulty in understanding that ADAGRAD algo-
rithms are diffeomorphisms comes from the fact that these
algorithms depend on all iterations. However, it suffices to
show that for each iterate, the map defined by the algorithm
is a diffeomorphism, i.e., for the iteration

xt+1 = xt − Γt∇f(xt),

we need to show that map

φ(x)
def
= x− Γt∇f(x),

where Γt is the preconditioned step matrix from
(ADAFULL), (ADANORM), or (ADADIAG), is a diffeomor-
phism. Take (ADAFULL) for example,

Γt =

(
δ20I +

t∑
s=0

∇f(xs)∇f(xs)
T

)− 1
2

,

to show that φ(x) is a diffeomorphism on the t’th iterate,
we split Γt as follows:

Γt =
(
δ20I + S +∇f(xt)∇f(xt)

T
)− 1

2

where

S =

t−1∑
s=0

∇f(xs)∇f(xs)
T .

Note that only ∇f(xt)∇f(xt)
T depends on xt, and thus

the rest terms ξI and S can be treated as constants in proving
that the t’th iterate is a diffeomorphism. To be precise, the
mapping

φ(x) = x−
(
δ20I + S +∇f(x)∇f(x)T

)− 1
2 ∇f(x)

is expected to be a diffeomorphism as long as δ0 is properly
tuned. The standard approach of showing φ(x) to be a
diffeomorphism is to compute the Jacobian matrix of φ(x),
and the diffeomorphism follows if the determinant ofDφ(x)
is positive by Inverse Function Theorem.

Now, regarding the calculation of the Jacobian matrix,
(ADANORM) is fundamentally different from the other two
variants. The reason for this is that in (ADANORM), the
preconditioned matrix Γt is essentially a scalar function,
i.e.,

Γt =
I√

δ20 +
∑t

s=0∥∇f(xs)∥2
,

so the Jacobian matrix of φ(x) can be computed explicitly
if we write it as

φ(x) = x− 1√
δ20 + S + ∥∇f(x)∥2

∇f(x)

where S =
∑t−1

s=0∥∇f(xs)∥2.

By contrast, the diffeomorphism arguments for (ADAFULL)
and (ADADIAG) require a different set of arguments. Es-
pecially for (ADAFULL), it is more convenient to analyze
the determinant of Jacobian according to the condition Γt

satisfies. Since the essential strategy is to show that the
determinant of Dφ(x) is positive, we have the intuition that
once ξ is taken to be large, the determinant ofDφ(x) can be
arbitraritly close to 1. The assumptions on the boundedness
of (higher-order) partial derivatives of f guarantee that the
determinant ofDφ(x) is close to 1 as long as ξ is large. The
detailed analysis is provided in Appendices A and B.

Combining the new Stable Manifold Theorem and Proposi-
tion 3, we finally obtain:

Theorem 2. (ADANORM), (ADADIAG) and (ADAFULL)
avoid strict saddle points from almost any initialization.

It is straightforward to conclude the saddle avoidance if the
saddle points are assumed to be isolated. The proof of the
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last theorem extends the saddle avoidance guarantee from
the countable saddle points to uncountable. We leave the
full proof to the appendix.

3.4 Comparison with related results

We conclude this section with a discussion of a series of
related results in the literature. To put things in context, it
is important to first describe in detail the type of statements
obtained in the “escape” literature – to which the work of
Staib et al. [33] belongs.

To begin with, the typical “escape result” – and, in particular,
the work of Staib et al. [33] – follows the template below:

1. Fix some probability threshold δ > 0.

2. Run a stochastic gradient-based algorithm for a prede-
termined number of iterations T with a fixed step-size
η (both η and T given as a function of δ).

3. Then, with probability at least 1 − δ, at least one of
the iterates produced by the algorithm under study
will be close to a second-order stationary point (and
hence away from all saddle points). [The existence of
a second-order stationary point is assumed by default].

In view of this, the first important difference with results
of this type is that escape results only guarantee that some
iterate of the algorithm under study will be close to a second-
order stationary point. In particular, the work of Staib et al.
[33] on adaptive algorithms leaves open the possibility that
the algorithm may revisit a saddle point infinitely often,
and it cannot exclude the event that the limit points of the
algorithm may contain strict saddles. By contrast, our paper
rules out exactly this behavior, so it is complementary to the
analysis of Staib et al. [33] in this regard.

The second fundamental difference with the escape literature
is that it is typically assumed therein that the algorithm
under study is subject to persistent noise lower-bounded
along any direction (see for example Definition 4.2 in Staib
et al. [33] and the discussion right after). More concretely,
this means that the iterates of the algorithms studied in this
literature are subject to continual random shocks, a fact
which greatly facilitates the “escape” from saddle points
(in the sense described above). This is readily seen in the
bounds for T given by Staib et al. [33], which are of the form
T = O(1/ν4), with ν > 0 denoting the minimum noise
level along any direction. [In particular, it is not possible to
get deterministic results by setting the variance of the noise
to 0 in Staib et al. [33].]

These differences are also reflected in the divergent tools
and techniques required to establish avoidance results com-
pared to the escape literature. Specifically, thanks to the
persistent noise in the setup of standard escape results, the
analysis does not require any delicate center stable manifold

arguments. However, these arguments are indispensable for
excluding strict saddles as limit points of the underlying dy-
namics, a fact which serves to explain the gulf in techniques
between Staib et al. [33] and our paper. As far as we are
aware, there is no comparable stable manifold theorem for
adaptive algorithms in the literature.

In regards to the stochastic setting, to the best of our knowl-
edge, the only avoidance results for stochastic algorithms are
[7, 14, 25, 30]. These stochastic avoidance results concern
exclusively non-adaptive algorithms with persistent noise.
Obtaining avoidance results for stochastic adaptive methods
would be a very fruitful direction for future research, but
not one which can be attacked at this stage.

4 Concluding remarks
In this paper we examined the saddle-point avoidance prop-
erties of the ADAGRAD family of methods (ranging from
scalar to full-matrix preconditioning), and we showed that
all policies under study avoid saddle points from almost any
initial condition. A major challenge in our analysis is that
the dynamical system arising from ADAGRAD is not only
time-dependent, but filtration-dependent. Nonetheless, after
an extensive stabilization analysis for the method’s precon-
ditioner, the induced dynamical system reduces to a form
that enables us to apply the Lyapunov-Perron method to
prove a new stable manifold theorem for ADAGRAD. These
techniques and results not only advance our understanding
of adaptive gradient methods, but they also initiate the study
of saddle-point avoidance results for other methods like
adaptive mirror descent; we leave this to future work.
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A Stabilization of the ADAGRAD preconditioners
In this section we shall investigate the asymptotic behaviour of the classical gradient descent algorithmic scheme run with
different types of step-sizes. More precisely, in what follows we shall investigate the case of a scalar, diagonal and full
matrix step-sizes.

For the sake of convenience we develop their respective analysis individually.

A.1 AdaGrad with scalar step-size

We start by investigating the particular case of the gradient descent,

xt+1 = xt − γt∇f(xt) (GD)

run with the adaptive scalar step-size policy:

γt =
1√

δ20 +
∑t

s=0∥∇f(xs)∥2∗
(AdaNorm)

with δ20 > 0. The first result concerns the asymptotic stabilization of the adaptive step-size around a (strictly) positive value
γ∞ > 0.

Proposition A.1. Assume that f : Rd → R is smooth and xt are the iterates of (GD) run with the adaptive step-size policy
(AdaNorm). Then, the following hold:

1. The (AdaNorm) step-size γt converges to some strictly positive value γ∞, i.e.,

γt → inf
t∈N

γt = γ∞ > 0 (A.1)

2. The sequence {∥∇f(xt)∥2∗}t∈N is summable, i.e.,

+∞∑
t=0

∥∇f(xt)∥2∗ < +∞ (A.2)

Proof. We shall start with the first property. Since γt is decreasing and bounded from below by 0, we have. that its limit
exists and more precisely:

lim
t→+∞

γt = inf
t∈N

γt = γ∞ ≥ 0

Assume that γ∞ = 0. Then, by the fact that f is smooth, we can choose positive number β > L, and we have:

f(xt+1) ≤ f(xt) + ⟨∇f(xt),xt+1 − xt⟩+
β

2
∥xt+1 − xt∥2

= f(xt)− γt∥∇f(xt)∥2∗ +
βγ2t
2
∥∇f(xt)∥2∗

= f(xt)−
1

2
γt∥∇f(xt)∥2∗ −

1

2
γt∥∇f(xt)∥2∗ +

βγ2t
2
∥∇f(xt)∥2∗

= f(xt)−
1

2
γt∥∇f(xt)∥2∗ +

γt
2
[βγt − 1] ∥∇f(xt)∥2∗

which yields after rearranging,

1

2
γt∥∇f(xt)∥2∗ ≤ f(xt)− f(xt+1) +

γt
2
[βγt − 1] ∥∇f(xt)∥2∗ (A.3)

One the other hand, one may directly verify that the quantity γt

2 [βγt − 1] ∥∇f(xt)∥2∗ becomes non-positive whenever
γt ≤ 1/β. Now, by the assumption that γ∞ = 0 there exists some t0 ∈ N such that:

γt ≤
1

β
for all t > t0
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So, after telescoping (A.3), we have:

1

2

T∑
t=0

γt∥∇f(xt)∥2∗ ≤ f(x1)− inf
t
f(xt) +

T∑
t=0

γt
2
[βγt − 1] ∥∇f(xt)∥2∗

= f(x1)− inf
t
f(xt) +

t0∑
t=0

γt
2
[βγt − 1] ∥∇f(xt)∥2∗ +

T∑
t=t0+1

γt
2
[βγt − 1] ∥∇f(xt)∥2∗

≤ f(x1)− inf
t
f(xt) +

t0∑
t=0

γt
2
[βγt − 1] ∥∇f(xt)∥2∗

with the last inequality being obtained by the definition of t0. We proceed by bounding the quantity 1
2

∑T
t=0 γt∥∇f(xt)∥2∗

from below. More precisely, we have:

1

2

T∑
t=0

γt∥∇f(xt)∥2∗ =
1

2

T∑
t=0

∥∇f(xt)∥2∗√
δ20 +

∑t
s=0∥∇f(xs)∥2∗

≥ 1

2
√
δ20 +

∑T
t=0∥∇f(xt)∥2∗

T∑
t=0

∥∇f(xt)∥2∗

=
1

2
√
δ20 +

∑T
t=0∥∇f(xt)∥2∗

[
δ20 +

T∑
t=1

∥∇f(xt)∥2∗ − δ20

]

=
γT
2

[
1

γ2T
− δ20

]
=

1

2γT
− γT δ

2
0

2

≥ 1

2γT
− δ0

2

with the last inequality being obtained by the fact that γt ≤ 1/δ0 for all t = 1, 2, . . . So, summarizing the above estimations
we get:

1

2γT
≤ f(x1)− inf

t
f(xt) +

δ0
2

+

t0∑
t=0

γt
2
[βγt − 1] ∥∇f(xt)∥2∗ (A.4)

Now, by letting T → +∞ we have that 1
2γT
→ +∞, since we assumed that γt → 0 and hence we get that:

+∞ ≤ f(x1)− inf
t
f(xt) +

δ0
2

+

t0∑
t=0

γt
2
[βγt − 1] ∥∇f(xt)∥2∗ < +∞ (A.5)

which is a contradiction. Hence, we readily get that γ∞ > 0 and the result follows.

For the second claim, we have that:

+∞∑
t=0

∥∇f(xt)∥2∗ = lim
T→+∞

T∑
t=0

∥∇f(xt)∥2∗

= lim
T→+∞

[
1

γ2T
− δ20

]
=

1

γ∞
− δ20

< +∞

with the last strict inequality being obtained by the fact that γ∞ > 0 being invoking our first claim and hence the result
follows. ■
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A.2 AdaGrad with diagonal adaptation

We next investigate the diagonal AdaGrad method. This is given by the following formula:

xt+1 = xt − Γt∇f(xt) (A.6)

where Γt ∈ Rd×d is a sequence of matrices defined as the inverse square root of Gt:

Γt = G
− 1

2
t =

[
δ20I + diag

(
t∑

s=0

∇f(xs)∇f(xs)
⊤

)]− 1
2

(AdaDiag)

Lemma A.1. Assume that xt aer the iterates of AdaGrad algorithm with step-size policy (AdaDiag). Then the following
hold:

1. The sequence of matrices {Γt}t∈N is non-increasing in the Löwner sense, i.e.,

Γt ≽ Γt+1 for all t = 1, 2, ...

2. The sequence of eigenvalues is non-increasing, i.e.,

λi(Γt) ≥ λi(Γt+1)

Proof. We show the first claim. By definition of Gt in the (AdaDiag), we have that

Gt+1 −Gt = diag
(
∇f(xt+1)∇f(xt+1)

⊤) ≽ 0

which means that Gt is a Löwner non-decreasing sequence, i.e.,

Gt+1 ≽ Gt.

Therefore, by applying Löwner-Heinz inequality, we can have

G
1
2
t+1 ≽ G

1
2
t for all t = 1, 2, ...

and then
Γt ≽ Γt+1.

The second claim is straightforward since Gt is diagonal, thus Γt is diagonal, and the eigenvalues are the diagonal
entries,i.e.,we have that

λi(Γt) ≥ λi(Γt+1).

■

Proposition A.2. Assume that f : Rd → R is smooth and xt are the iterates run with with adaptive step-size policy
(AdaDiag). Then, the following hold:

1. The sequence of the eigenvalues {λi(Γt)}t∈N converges to strictly positive value λ∞i for all i = 1, 2, ... i.e.,

lim
t→∞

λi(Γt) = inf
t∈N

λi(Γt) = λ∞i > 0 for all i = 1, 2, ...d

2. The sequence {∥∇f(xt)∥2∗}t∈N is summable, i.e.,

∞∑
t=0

∥∇f(xt)∥2∗ <∞.
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Proof. Since {Γt}t∈N is a decreasing sequence of diagonal positive definite matrices, the eigenvalues λi(Γt) is bounded
below by 0, i.e.,

lim
t→∞

λi(Γt) = inf
t∈N

λi(Γt) = λ∞i ≥ 0

for some λ∞i . We will show that λ∞i is actually strictly positive.

By the fact that f is smooth, we can choose β > L and have:

f(xt+1) ≤ f(xt) + ⟨∇f(xt),xt+1 − xt⟩+
β

2
∥xt+1 − xt∥2

= f(xt)−∇f(xt)
⊤Γt∇f(xt) +

β

2
∥Γt∇f(xt)∥2

= f(xt)−
1

2
∇f(xt)

⊤Γt∇f(xt)−
1

2
∇f(xt)

⊤[I − βΓt]Γt∇f(xt)

= f(xt)−
1

2
∇f(xt)

⊤Γt∇f(xt) +
1

2

d∑
i=1

[
∂f

∂xi
(xt)

]2
(βλ2i (Γt)− λi(Γt)).

By rearranging, we have

1

2
∇f(xt)

⊤Γt∇f(xt) ≤ f(xt)− f(xt+1) +
1

2

d∑
i=1

[
∂f

∂xi
(xt)

]2
(βλ2i (Γt)− λi(Γt)) (A.7)

and then

1

2

T∑
t=0

∇f(xt)
⊤Γt∇f(xt) ≤ f(x1)− inf

t
f(xt) +

1

2

T∑
t=0

d∑
i=1

[
∂f

∂xi
(xt)

]2
(βλ2i (Γt)− λi(Γt)). (A.8)

Since λi(Γt) is assumed to approach 0 as t→∞, there must exist some t0, such that for all t > t0,

βλ2i (Γt)− λi(Γt) < 0,

and this implies

1

2

T∑
t=0

∇f(xt)
⊤Γt∇f(xt) ≤ f(x1)− inf

t
f(xt) +

1

2

t0∑
t=0

d∑
i=1

[
∂f

∂xi
(xt)

]2
(βλ2i (Γt)− λi(Γt))

for T > t0.

On the other hand, the lower bound can be estimated as follows:

1

2

T∑
t=0

∇f(xt)
⊤Γt∇f(xt) ≥

1

2

T∑
t=0

∇f(xt)
⊤ΓT∇f(xt)

=
1

2

T∑
t=0

d∑
i=1

[
∂f
∂xi

(xt)
]2

√
δ20 +

∑T
s=1

[
∂f
∂xi

(xs)
]2

≥ 1

2

√
δ20 +

∑T
s=0

[
∂f
∂xi

(xs)
]2

T∑
t=0

[
∂f

∂xi
(xt)

]2

where i is the one with respect to λi(Γt) that goes to 0 as t→∞.

Note that

1

2

T∑
t=0

∇f(xt)
⊤Γt∇f(xt) ≥

1

2

√
δ20 +

∑T
s=0

[
∂f
∂xi

(xs)
]2

T∑
t=0

[
∂f

∂xi
(xt)

]2
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=
1

2

√
δ20 +

∑T
s=0

[
∂f
∂xi

(xs)
]2
(
δ20 +

T∑
t=0

[
∂f

∂xi
(xt)

]2
− δ20

)

=
γT
2

(
1

γ2T
− δ20

)
=

1

2γT
− γT δ

2
0

2

≥ 1

γT
− δ0

2

where we denote

γT =
1√

δ20 +
∑T

s=0

[
∂f
∂xi

(xs)
]2 ,

and the last inequality comes from the fact that we can choose T such that γT < 1
δ0

.

By rearranging and combining previous estimate, we have:

1

γT
≤ 1

2

T∑
t=0

∇f(xt)
⊤Γt∇f(xt) +

δ0
2

≤ δ0
2

+ f(x1)− inf
t
f(xt) +

1

2

t0∑
t=0

d∑
i=1

[
∂f

∂xi
(xt)

]2
(βλ2i (Γt)− λi(Γt))

< +∞,

and letting T →∞, we have γT → 0, and therefore

+∞ ≤ 1

2

∞∑
t=0

∇f(xt)
⊤Γt∇f(xt) +

δ0
2
< +∞

which is a contradiction.

To show that the sequence of gradient norm is summable, it sufficies to show that for each component i,
∑∞

t=0

[
∂f
∂xi

(xt)
]2
<

∞. This is true since we have

∞∑
t=0

[
∂f

∂xi
(xt)

]2
= lim

T→∞

T∑
t=0

[
∂f

∂xi
(xt)

]2
= lim

T→∞

[
1

γ2T
− δ20

]
= lim

T→∞

1

γ2T
− δ20

< +∞

where γT is from the argument in proving the first claim, and the last inequality holds also because of the first claim, since
for all i, the limit limT→∞

1
γ2
T

exists and is finite. This proves our assertion and completes our proof. ■

A.3 AdaGrad with full matrix adaptation

Finally, we examine the full matrix version of the AdaGrad-type methods. In particular, this is given by the following
recursive formula:

xt+1 = xt − Γt∇f(xt) (A.9)
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where Γt ∈ Rd×d is a sequence of symmetric (full dimensional) matrices defined as the inverse square root of Gt:

Γt ≡ G
− 1

2
t =

[
δ20I +

t∑
s=0

∇f(xs)∇f(xs)
⊤

]− 1
2

(ADAFULL)

Lemma A.2. Assume that xt are the iterates of (A.9) run with the adaptive step-size policy (ADAFULL). Then, the
following hold:

1. The sequence of matices {Γt}t∈N is non-increasing in the Löwner sense, i.e.,

Γt ≽ Γt+1 for all t = 1, 2, . . . (A.10)

2. The sequence of eigenvalues λi(Γt) is non-increasing, i.e.,

λi(Γt) ≥ λi(Γt+1) (A.11)

Proof. We begin with the first claim. By definition of Gt we have:

Gt+1 −Gt = ∇f(xt+1)∇f(xt+1)
⊤ ≽ 0 (A.12)

which in turn yields that Gt is a Löwner non-decreasing sequence, i.e.,:

Gt+1 ≽ Gt for all t = 1, 2, . . . (A.13)

Hence, by applying Löwner-Heinz inequality we readily get:

G
1
2
t+1 ≽ G

1
2
t for all t = 1, 2, . . . (A.14)

and so by applying Weyl’s monotonicity thoerem for Γt = G
− 1

2
t we have:

Γt ≽ Γt+1

and
λi(Γt) ≥ λi(Γt+1).

■

We proceed by providing the following proposition

Proposition A.3. Assume that f : Rd → R is smooth and xt are the iterates of (A.9) run with the adaptive step-size policy
(ADAFULL). Then, the following hold:

1. The sequence of the eigenvalues {λi(Γt)}t∈N converges to a strictly positive value λ∞i for all i = 1, 2, . . . , d, i.e.,

lim
t→+∞

λi(Γt) = inf
t∈N

λi(Γt) = λ∞i > 0 for all i = 1, 2, . . . d (A.15)

2. The sequence {∥∇f(xt)∥2∗}t∈N is summable, i.e.,

+∞∑
t=0

∥∇f(xt)∥2∗ < +∞ (A.16)

Proof. We start with the proof of our first claim. By combining the fact that {Γt}t∈N is a decreasing sequence of matrices
and Weyl’s monotonicity inequality we have that for every i = 1, 2, . . . d the respective sequence of eigenvalues λi(Γt) is
non-increasing. Moreover, since Γt is positive definite for all t = 1, 2, . . . we readily get for all i = 1, 2, . . . d the sequence
{λi(Γt)}t∈N is bounded from below by 0. Therefore, for all i = 1, 2, . . . d the limit of the sequence {λi(Γt)}t∈N exists and
more precisely:

lim
t→+∞

λi(Γt) = inf
t∈N

λi(Γt) = λ∞i ≥ 0 for all i = 1, 2, . . . d (A.17)
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We assume now that there exists some i0 ∈ {1, 2, . . . , d} such that:

lim
t→+∞

λi0(Γt) = 0 (A.18)

Then, by the fact that f is smooth, we can choose β > L and have:

f(xt+1) ≤ f(xt) + ⟨∇f(xt),xt+1 − xt⟩+
β

2
∥xt+1 − xt∥2

= f(xt)−∇f(xt)
⊤Γt∇f(xt) +

β

2
∥Γt∇f(xt)∥2

= f(xt)−∇f(xt)
⊤Γt∇f(xt) +

β

2
∇f(xt)

⊤Γ⊤
t ∇f(xt)Γt

= f(xt)−
1

2
∇f(xt)

⊤Γt∇f(xt)−
1

2
∇f(xt)

⊤ [I − βΓ⊤
t

]
Γt∇f(xt)

and by rearranging we have:

1

2
∇f(xt)

⊤Γt∇f(xt) ≤ f(xt)− f(xt+1)−
1

2
∇f(xt)

⊤ [I − βΓ⊤
t

]
Γt∇f(xt)

= f(xt)− f(xt+1)−
1

2
∇f(xt)

⊤ [I − βΓt]
⊤
Γt∇f(xt)

Now, since Γt is decreasing we have:
1

δ0
I = Γ0 ≽ Γt (A.19)

where under the assumption δ0 > β yields:

I − βΓt ≻ 0 for all t = 1, 2, . . . (A.20)

and hence by telescoping we have:

1

2

T∑
t=0

∇f(xt)
⊤Γt∇f(xt) ≤ f(x1)− inf

t∈N
f(xt) (A.21)

On the other hand, we bound the quantity 1
2

∑T
t=0∇f(xt)

⊤Γt∇f(xt) from below as follows:

1

2

T∑
t=0

∇f(xt)
⊤Γt∇f(xt) ≥

T∑
t=0

∇f(xt)
⊤ΓT∇f(xt)

=

T∑
t=0

tr(ΓT∇f(xt)∇f(xt)
⊤)

= tr(ΓT

T∑
t=0

∇f(xt)∇f(xt)
⊤)

= tr(ΓT

[
δ20I +

T∑
t=0

∇f(xt)∇f(xt)
⊤ − δ20I

]
)

= tr(ΓTGT )− δ20 tr(ΓT )

Now since by definition Γt = G
− 1

2
t we have that ΓTGT = G

1
2

T = Γ−1
T . Furthermore by the monotonicity of the trace

operator (cf. +++) we have that:
δ20 tr(ΓT ) ≥ δ20 tr(Γ0) (A.22)

and by the fact Γ0 = 1
δ0
I we have:

δ20 tr(ΓT ) ≥ δ0d (A.23)
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and hence we have:

1

2

T∑
t=0

∇f(xt)
⊤Γt∇f(xt) ≥ tr(Γ−1

T )− δ0d

≥
d∑

i=1

1

λi(ΓT )
− δ0d

≥ 1

λi0(ΓT )
− δ0d

Therefore, summarizing the above estimations we get:

1

λi0(ΓT )
≤ f(x1)− inf

t∈N
f(xt) + δ0d (A.24)

Now, by letting T → +∞ we get that 1
λi0 (ΓT ) → +∞ since we assumed that λi0(ΓT )→ 0. So, summarizing the above

estimations:
+∞ ≤ f(x1)− inf

t∈N
f(xt) + δ0d < +∞ (A.25)

which is a contradiction. Hence, for all i = 1, 2, . . . d the sequence of the eigenvalues λi(Γt) converges to a strictly positive
value λ∞i > 0 and therefore the result follows.

Now, we turn our attention towards the proof of our second claim. In particular, by the above we have:

T∑
t=0

∇f(xt)
⊤Γt∇f(xt) ≤ f(x1)− inf

t∈N
f(xt) (A.26)

Moreover, we have:

T∑
t=0

∇f(xt)
⊤Γt∇f(xt) ≥

T∑
t=0

∇f(xt)
⊤ΓT∇f(xt)

≥ λmin(ΓT )

T∑
t=0

∇f(xt)
⊤∇f(xt)

≥ λmin(ΓT )

T∑
t=0

∥∇f(xt)∥2∗

So, we have:

λmin(ΓT )

T∑
t=1

∥∇f(xt)∥2∗ ≤ f(x1)− inf
t∈
f(xt) (A.27)

Now, by letting T → +∞ and recalling from our previous claim that:

lim
T→+∞

λmin(ΓT ) = λ∞min > 0 (A.28)

we get:
T∑

t=0

∥∇f(xt)∥2∗ ≤
1

λ∞min

[
f(x1)− inf

t∈N
f(xt)

]
< +∞ (A.29)

and the result follows. ■

We proceed by showing that matrix sequence {Gt}t∈N itself stabilizes asymptotically around a positive definite matix G∞.
Formally, we have the following proposition.
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Proposition A.4. Assume that f : Rd → R is smooth and xt are the iterates of (A.9) run with the adaptive step-size policy
(ADAFULL). Then, the limit of {Gt}t∈N exists and in particular we have:

lim
t→+∞

Gt = G∞ with G∞ ≻ 0 (A.30)

Proof. We start by showing the limit existence of Gt. Fix i ̸= j ∈ {1, 2, . . . d}. We then have:

• For the diagonal terms of Gt: [Gt]i,i:

[Gt]i,i =

[
δ20I +

t∑
s=0

∇f(xs)∇f(xs)
⊤

]
i,i

= δ20 +

t∑
s=0

[
∇f(xs)∇f(xs)

⊤]
i,i

= δ20 +

t∑
s=0

(∇f i(xs))
2

≤ δ20 +
+∞∑
t=0

∇f(xs)
⊤∇f(xs)

< +∞

with the last inequality being obtained by Proposition A.3. So, since the sequence {[Gt]i,i}t∈N is a non-decreasing and
upper-bounded its limit exists.

• For the terms [Gt]i,j we have:

[Gt]i,j =

[
δ20I +

t∑
s=0

∇f(xs)∇f(xs)
⊤

]
i,j

=

t∑
s=0

[
∇f(xs)∇f(xs)

⊤]
i,j

=

t∑
s=0

∇f i(xs)∇f j(xs)

Now, by applying Cauchy-Schwartz inequality we have:

t∑
s=0

|∇f i(xs)∇f j(xs)| ≤

√√√√ t∑
s=0

(∇f i(xs))2

√√√√ t∑
s=0

(∇f i(xs))2

≤
(+∞∑

s=1

∇f(xt)
⊤∇f(xt)

)2

< +∞

with the last strict inequality being obtained by Proposition A.3. So, we get that
∑t

s=1∇f i(xs)∇f j(xs) converges
absolutely, which yields that it converges. This in turn yields that the limit of [Gt]i,j exists.

So, summarizing we get that the limit of Gt exists, i.e.,

lim
t→+∞

Gt = G∞ (A.31)

On the other hand, concerning the positive definiteness of G∞ we have for all i = 1, 2, . . . d:

λi(G
∞) = lim

t→+∞
λi(Gt)
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= lim
t→+∞

λi(Γ
−2
t )

= lim
t→+∞

1

λi(Γt)2

=
1

(λ∞i )2

which by invoking Proposition A.3 yields that:

λi(G
∞) > 0 for all i = 1, 2, . . . d (A.32)

which concludes the proof. ■

B Proof of Proposition 2
Proof. Recall that in the context before proposition 2, it is denoted that

η(t,x) = −Γθ(x)− (Γt − Γ)∇f(x).

The proof consists of two parts.

Part 1: Recall that θ(x) is the remainder of the Taylor expansion of∇f(x) at 0, i.e.

∇f(x) = ∇f(0) +∇2f(0)x+ θ(x) (B.1)

= ∇2f(0)x+ θ(x) (B.2)

and then
θ(x) = ∇f(x)−∇2f(0)x.

The differential of θ(x) is
Dθ(x) = D(∇f(x)−∇2(0)x) = ∇2f(x)−∇2f(0).

From the Fundamental Theorem of Calculus and chain rule, we have that

θ(x)− θ(y) =
∫ 1

0

d

dt
θ(tx+ (1− t)y)dt (B.3)

=

∫ 1

0

(
Dθ(z)|z=tx+(1−t)y

)
· d
dt

(tx+ (1− t)y)dt (B.4)

=

∫ 1

0

(
Dθ(z)|z=tx+(1−t)y

)
· (x− y)dt. (B.5)

Thus, the norm of the difference θ(x)− θ(y) can be estimated as

∥θ(x)− θ(y)∥ = ∥
∫ 1

0

(
Dθ(z)|z=tx+(1−t)y

)
· (x− y)dt∥ (B.6)

≤
∫ 1

0

∥
(
Dθ(z)|z=tx+(1−t)y

)
· (x− y)∥dt (B.7)

≤
∫ 1

0

∥Dθ(z)|z=tx+(1−t)y∥ · ∥x− y∥dt (B.8)

≤
(∫ 1

0

∥Dθ(z)|z=tx+(1−t)y∥dt
)
∥x− y∥, (B.9)

where
Dθ(z)|z=tx+(1−t)y =

(
∇2f(z)−∇2f(0)

)
|z=tx+(1−t)y

Since ∇2f(x) is assumed to be Lipschitz, for any ϵ > 0, there exists a δ-ball B of 0, such that for any z ∈ B, it holds that

∥∇2f(z)−∇2f(0)∥ ≤ ϵ,

and this completes the proof of part 1.
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Part 2: Since the limit of Γt is Γ and then given any ϵ > 0, there exists t0, such that for all t > t0, ∥Γt − Γ∥ < ϵ. On the
other hand, the gradient∇f(x) is assumed to be Lipschitz, thus for x,y ∈ B, and t > t0, it holds that

∥Γt − Γ∥ · ∥∇f(x)−∇f(y)∥ ≤ ϵL∥x− y∥.

Therefore, the norm of difference η(t,x)− η(t,y) is estimated as

∥η(t,x)− η(t,y)∥ ≤ ∥−Γθ(x)− (Γt − Γ)∇f(x) + Γθ(y) + (Γt − Γ)∇f(y)∥ (B.10)
≤ ∥Γθ(x)− Γθ(y)∥+ ∥(Γt − Γ)∇f(x)− (Γt − Γ)∇f(y)∥ (B.11)
≤ ∥Γ∥ · ∥θ(x)− θ(y)∥+ ∥Γt − Γ∥ · ∥∇f(x)−∇f(y)∥ (B.12)

For a given ϵ > 0, find a neighborhood B of 0 such that for all x,y ∈ B,

∥θ(x)− θ(y)∥ ≤ ϵ

∥Γ∥
∥x− y∥,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥,

and
∥Γt − Γ∥ ≤ ϵ

L
for t ≥ t0.

Thus, we have
∥η(t,x)− η(t,y)∥ ≤ ϵ∥x− y∥,

and the proof completes. ■

C Proof of Theorem 1

In the proof of Theorem 1, we will denote ξ = δ20 for convenience.

Proof. Let

A(m,n) = (I − γ(m,x0)H)...(I − γ(n,x0)H) (C.1)

=

[
B(m,n)

C(m,n)

]
(C.2)

for m ≥ n and I for m < n, where

B(m,n) = (I − γ(m,x0)H
+)...(I − γ(n,x0)H

+)

and
C(m,n) = (I − γ(m,x0)H

−)...(I − γ(n,x0)H
−).

Let v be a vector, we denote v+ the stable component and v− the unstable component of v, i.e., v+ ∈ Es and v− ∈ Eu,
E+ ⊕ E− = T0Rd = Rd. Then the solution xt+1 = (x+

t+1,x
−
t+1) can be written in the form of stable-unstable:

x+
t+1 = B(t, 0)x+

0 +

t∑
i=0

B(t, i+ 1)η+(i,xi)

and

x−
t+1 = C(t, 0)x−

0 +

t∑
i=0

C(t, i+ 1)η−(i,xi).

Then x−
0 can be written as

x−
0 = C(t, 0)−1x−

t+1 − C(t, 0)−1
t∑

i=0

C(t, i+ 1)η−(i,xi). (C.3)
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Simplifying the notation by denoting
Ci = I − γ(i,x0)H

−,

we have

C(t, 0) = Ct...C0, and C(t, 0)−1 = C−1
0 ...C−1

t . (C.4)

Since H− is the diagonal matrix of all negative eigenvalues, the inverse of Ci is the following:

C−1
i =


1

1−γ(i,x0)λs+1

. . .
1

1−γ(i,x0)λd


and the entries satisfy

1 >
1

1− γ(i,x0)λs+1
≥ 1

1− γ(i,x0)λd
> 0.

Since γ(i,x0) > c is uniformly bounded above 0 in a neighborhood of 0, then the norm ∥C−1
i ∥ satisfies

∥C−1
i ∥ ≤

1

1− cλs+1
< 1,

and then
C(t, 0)−1 → 0, as t→∞.

Using the expression of (C.4), (C.3) can be written as

x−
0 = C(t, 0)−1x−

t+1 − C(t, 0)−1
t∑

i=0

C(t, i+ 1)η−(i,x0,xi) (C.5)

= C−1
0 ...C−1

t x−
t+1 −

(
C−1

0 η−(0,x0,x0) + ...+ C−1
0 ...C−1

t η−(t,x0,xt)
)
. (C.6)

If xt → 0, then the sequence is bounded in a neighborhood of x0. So assuming xt is bounded, we can push t to∞ (since
the identity holds for any t) and we have

x−
0 = −

∞∑
i=1

C(i− 1, 0)−1η−(i− 1,x0,xi−1). (C.7)

So far the above derivation is heuristic and no existence or uniqueness is guaranteed. But we can go one step further to see
where the "Stable Manifold" comes from. We say that the initial condition x0 lies on a manifold is equivalent to saying that
x0 lies on a graph of some mapping from stable space to unstable space, i.e.,

(x+
0 ,x

−
0 ) satisfies that x−

0 = φ(x+
0 ) for some φ : Es → Eu.

The right hand side of C.7 contains C(i− 1, 0)−1 that involves x0 = (x+
0 ,x

−
0 ) and the sequence xi−1 is also determined

by the initial condition x0, so we can also write xi−1 as a function of x0 in the following

xi−1 = xi−1(x
+
0 ,x

−
0 ).

Therefore the equation C.7 can be rewritten as

x−
0 = −

∞∑
i=1

C(i− 1, 0, (x+
0 ,x

−
0 ))

−1η−(i− 1, (x+
0 ,x

−
0 ),xi−1(x

+
0 ,x

−
0 )),

where the right hand side is a function of (x+
0 ,x

−
0 ) and we can denote the right hand side as Φ(x+

0 ,x
−
0 ). Then the stable

manifold x−
0 = φ(x+

0 ) (as an implicit function) is expected to be solved from the equation

x−
0 = Φ(x+

0 ,x
−
0 ).
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It suffices to show that for the sequence generated by the dynamical system of AdaGrad algorithm with initial condition
x0 = a⊕ x−

0 (when a satisfies certain condition), the unstable component x−
0 in uniquely determined by a. This comes

from that the operator T is a contraction mapping on the space of convergent sequences (with 0 the limit) whose 0’th terms
have the same stable component (the rest of the paper). Since the sequence that converges to 0 while generated by the
dynamical system is the unique fixed point of T , the initial condition x0 is also unique. But the stable component x+

0 is
fixed, so the uniqueness of the unstable component x−

0 implies the existence of some function φ : Es → Eu so that

x−
0 = φ(x+

0 ).

■

Lemma C.1. Suppose

x−
0 = −

∞∑
i=1

C(i− 1, 0)−1η−(i− 1,x0,xi−1).

Then

xt+1 =

(
B(t, 0)x+

0 +

t∑
i=0

B(t, i+ 1)η+(i,x0,xi)

)
⊕

(
−

∞∑
i=0

C(t+ 1 + i, t+ 1)−1η−(t+ 1 + i,x0,xt+1+i)

)
(C.8)

Proof. It suffices to show that

x−
t+1 = −

∞∑
i=0

C(t+ 1 + i, t+ 1)−1η−(t+ 1 + i,x0,xt+1+i). (C.9)

It has been shown that

x−
t+1 = C(t, 0)x−

0 +

t∑
i=0

C(t, i+ 1)η−(i,x0,xi) (C.10)

and assumed

x−
0 = −

∞∑
i=1

C(i− 1, 0)−1η−(i− 1,x0,xi−1). (C.11)

Plug C.11 into C.10:

x−
t+1 = C(t, 0)

(
−

∞∑
i=1

C(i− 1, 0)−1η−(i− 1,x0,xi−1)

)
︸ ︷︷ ︸

I

+

t∑
i=0

C(t, i+ 1)η−(i,x0,xi). (C.12)

Splitting −
∑∞

i=1 C(i− 1, 0)−1η−(i− 1,x0,xi−1) into

−
t+1∑
i=1

C(i− 1, 0)−1η−(i− 1,x0,xi−1)−
∞∑

i=t+2

C(i− 1, 0)−1η−(i− 1,x0,xi−1),

and we have

I = C(t, 0)

(
−

t+1∑
i=1

C(i− 1, 0)−1η−(i− 1,x0,xi−1)−
∞∑

i=t+2

C(i− 1, 0)−1η−(i− 1,x0,xi−1)

)
(C.13)

= −C(t, 0)
t+1∑
i=1

C(i− 1, 0)η−(i− 1,x0,xi−1)− C(t, 0)
∞∑

i=k+2

C(i− 1, 0)−1η−(i− 1,xi−1) (C.14)
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= −
t∑

i=0

C(t, i+ 1)η−(i,x0,xi)−
∞∑
i=0

C(t+ 1 + i, t+ 1)−1η−(t+ 1 + i,x0,xt+1+i). (C.15)

Therefore, by putting I back into C.12, we have

x−
t+1 = −

∞∑
i=0

C(t+ 1 + i, t+ 1)−1η−(t+ 1 + i,x0,xt+1+i)

which is exactly same as C.9. ■

The idea of Lyapunov-Perron method is to consider the right hand side of C.8 as an operator acting on a sequence {xt}t∈N,
note that this sequence {xt}t∈N is arbitrary and not necessarily generated by gradient descent or any other algorithm.
Specifically we call the action T on a sequence {xt}t∈N as

(Tx)t+1 =

(
B(t, 0)x+

0 +

t∑
i=0

B(t, i+ 1)η+(i,x0,xi)

)
⊕

(
−

∞∑
i=0

C(t+ 1 + i, t+ 1)−1η−(t+ 1 + i,x0,xt+1+i)

)

where t ≥ 0. Moreover, by the definition of B(m,n) = I if m < n, we have formally that the 0’th term of the transformed
sequence {(Tx)}t∈N is

(Tx)0 = x+
0 ⊕

(
−

∞∑
i=0

C(i, 1)−1η−(i,x0,xi)

)
.

This means that the action of the operator T preserves the stable component of the 0’th term of any sequence on which T
acts.

Another important property of T is this: Consider the definition of B(m,n), C(m,n) and η(t,x0,xt), we can conclude
that if the sequence {xt}t∈N is generated by the algorithm (adaptive gradient descent), then such sequence is a “fixed point"
of the operator T , i.e.,

xt+1 = (I − γ(t,x0)H)xt + η(t,x0,xt) =⇒ Tx = x

where x = {xt}t∈N and Tx = {(Tx)t}t∈N.

Proposition C.1. limt→∞(Tx)t = 0 if xt → 0.

Proof. The matrix B(t, 0) is in the form of:

(I − γ(t,x0)H
+) · · · (I − γ(0,x0)H

+)

where H+ is diagonal of positive eigenvalues, so B(t, 0)→ 0 as t→∞. Combining with Lemma C.2 and C.3, we can
conclude the result. ■

Lemma C.2. Suppose that limt→∞ xt = 0. Then

lim
t→∞

t∑
i=0

B(t, i+ 1)η−(i,x0,xi) = 0.

Proof. Denote γt = γ(t,x0) for short, and we do the following estimation.

∥
t∑

i=0

B(t, i+ 1)η−(i,x0,xi)∥ ≤
t∑

i=0

∥B(t, i+ 1)η−(i,x0,xi)∥

≤
t∑

i=0

∥B(t, i+ 1)∥ · ∥η−(i,x0,xi)∥

≤
t∑

i=0

∥B(t, i+ 1)∥ · ∥η(i,x0,xi)∥
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≤
t∑

i=0

∥B(t, i+ 1)∥ · γiϵ∥xi∥

= ϵ

t∑
i=0

∥B(t, i+ 1)∥ · γi∥xi∥

= ϵ

t∑
i=0

(1− γtλs) · · · (1− γi+1λs)γi∥xi∥.

The last equality from the above, i.e.,

∥B(t, i+ 1)∥ = (1− γtλs) · · · (1− γi+1λs)

comes from the notation of B(t, i+ 1) which is defined as:

B(t, i+ 1) =

 1− γtλ1
. . .

1− γtλs

 · · ·
 1− γi+1λ1

. . .
1− γi+1λs


where λ1 ≥ ... ≥ λs > 0.

Denote

St =

t∑
i=0

(1− γtλs) · · · (1− γi+1λs)γi∥xi∥

= (1− γtλs) · · · (1− γ1λs)γ0∥x0∥+ · · ·+ γt∥xt∥

and then

St+1 = (1− γt+1λs)...(1− γ1λs)γ0∥x0∥+ · · ·+ (1− γt+1λs)γt∥xt∥+ γt+1∥xt+1∥
= (1− γt+1λs) ((1− γtλs) · · · (1− γ1λs)γ0∥x0∥+ · · ·+ γt∥xt∥) + γt+1∥xt+1∥
= (1− γt+1λs)St + γt+1∥xt+1∥
= St − γt+1λsSt + γt+1∥xt+1∥
= St + γt+1(∥xt+1∥ − λsSt).

Subtracting St, we have that
St+1 − St = γt+1(∥xt+1∥ − λsSt),

and the following observation for the sequence {St}t∈N is immediate:

• Case 1: If St+1 − St > 0, then ∥xt+1∥ − λsSt > 0;

• Case 2: If St+1 − St < 0, then ∥xt+1∥ − λsSt < 0;

• Case 3: If St+1 − St = 0, then ∥xt+1∥ − λsSt = 0.

Note that Case 3 trivially implies that St → 0 by the assumption in the lemma that xt → 0. Moreover, Case 1 can be
interpreted as follows: If the sequence St is successively increasing over an interval of integers, i.e., t ∈ [n, ...n+m], then
the terms of St over this interval are dominated by terms of the convergent sequence {∥xt∥

λs
}t∈N because

∥xt+1∥ − λsSt > 0⇐⇒ ∥xt+1∥
λs

> St.

Therefore, the interval of integers over which St is increasing successively cannot have infinite length, and thus, Case 2 has
to occur infinitely often. Then the sequence St must have one of the following two patterns:
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• Pattern 1: St has infinitely many intervals of integers on which St is increasing successively,

• Pattern 2: St is decreasing after certain t∗ ∈ N.

If St is of Pattern 1, then we have
lim sup

t
St ≤ lim

t→∞
∥xt∥ = 0.

If St is of Pattern 2, then St is convergent and we can denote its limit by S∗ ∈ [0,∞). Taking limit for t ← ∞ in the
following relation

St+1 − St = γt+1(∥xt∥ − λsSt)

we have that
0 = S∗ − S∗ = c(0− λsS∗).

Since c is positive (recall that γt = γ(t,x0) is uniformly bounded away from 0 if x0 is taken from a ball centering at 0), it
must hold that

S∗ = 0.

So by the estimation in the beginning of the proof, we have

lim
t→∞
∥

t∑
i=0

B(t, i+ 1)η−(i,x0,xi)∥ ≤ ϵ lim
t→∞

St = 0

provided limt→∞ xt = 0. The proof completes. ■

Lemma C.3. Suppose that limt→∞ xt = 0. Then

lim
t→∞

−
∞∑
i=0

C(t+ 1 + i, t+ 1)−1η−(t+ 1 + i,x0,xt+1+i) = 0.

Proof. The estimate gives

∥−
∞∑
i=0

C(t+ 1 + i, t+ 1)−1η−(t+ 1 + i,x0,xt+1+i)∥

≤
∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1η−(t+ 1 + i,x0,xt+1+i)∥

≤
∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1∥ · ∥η−(t+ 1 + i,x0,xt+1+i)∥

≤
∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1∥ · ∥η(t+ 1 + i,x0,xt+1+i)∥
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≤
∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1∥ · γt+1+iϵ∥xt+1+i∥

= ϵ

∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1∥ · γt+1+i∥xt+1+i∥.

Since Γ(x0) = limt γ(t,x0) is a continuous function of x0, so if x0 is taken from a compact ball centering at 0, limt γ(t,x0)
is bounded above uniformly. Thus there exists a constant K > 0 such that

γ(t,x0) ≤ K for all t ∈ N, x0 ∈ B(0),x+
0 = a.

On the other hand, the norm of xt+1+i for i ≥ 0 satisfies

∥xt+1+i∥ ≤ sup
k>t
∥xk∥,

where supk>t∥xk∥ only depends on t. So

ϵ

∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1∥ · γt+1+i∥xt+1+i∥ ≤ ϵK sup
k>t
∥xk∥

∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1∥. (C.16)

The definition of C(m,n) gives the following

C(t+ 1 + i, t+ 1)−1

= (I − γt+1H
−)−1 · · · (I − γt+1+iH

−)−1

=

 1− γt+1λs+1

. . .
1− γt+1λd


−1

· · ·

 1− γt+1+iλs+1

. . .
1− γt+1+iλd


−1

=


1

1−γt+1λs+1

. . .
1

1−γt+1λd

 · · ·


1
1−γt+1+iλs+1

. . .
1

1−γt+1+iλd



=


1

(1−γt+1λs+1)···(1−γt+1+iλs+1)

. . .
1

(1−γt+1λd)···(1−γt+1+iλd)

 .
Recall that

0 > λs+1 ≥ ... ≥ λd
so we have that

1

(1− γt+1λs+1) · · · (1− γt+1+iλs+1)
≥ ... ≥ 1

(1− γt+1λd) · · · (1− γt+1+iλd)
,

and then the operator norm of C(t+ 1 + i, t+ 1)−1 is

∥C(t+ 1 + i, t+ 1)−1∥ = 1

(1− γt+1λs+1) · · · (1− γt+1+iλs+1)
.

Furthermore, γt = γ(t,x0) ≥ c, i.e., is uniformly bounded away from 0 if x0 is taken from a ball centering at 0, and then
the following inequality holds:

1

1− γtλs+1
≤ 1

1− cλs+1
.

Thus the norm satisfies

∥C(t+ 1 + i, t+ 1)−1∥ = 1

(1− γt+1λs+1) · · · (1− γt+1+iλs+1)
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≤
(

1

1− cλs+1

)i+1

.

Since the ratio 1
1−cλs+1

is less than 1, the series on the right hand side of the following inequality,

∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1∥ ≤
∞∑
i=0

(
1

1− cλs+1

)i+1

,

converges to the finite number C∗ = − 1
cλs+1

. Combining with the estimation in the beginning and C.16, we can conclude
that

∥−
∞∑
i=0

C(t+ 1 + i, t+ 1)−1η−(t+ 1 + i,x0,xt+1+i)∥ (C.17)

≤ ϵ
∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1∥ · γt+1+i∥xt+1+i∥ (C.18)

≤ ϵK sup
k>t
∥xk∥

∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1∥ (C.19)

≤ ϵK sup
k>t
∥xk∥

∞∑
i=0

(
1

1− cλs+1

)i+1

(C.20)

= ϵKC∗ sup
k>t
∥xk∥ (C.21)

= ϵK

(
− 1

cλs+1

)
sup
k>t
∥xk∥. (C.22)

By the assumption that limt→∞ xt = 0, we have that supk>t∥xk∥ as t→∞, so

∥−
∞∑
i=0

C(t+ 1 + i, t+ 1)−1η−(t+ 1 + i,x0,xt+1+i)∥ −→ 0 as t→∞,

and the proof completes. ■

We summerize two important properties of the integral operator T : Suppose {xt}t∈N is sequence in a ball centering at 0
such that limt→∞ xt = 0 and x+

0 = a. Then the transformed sequence {(Tx)t}t∈N satisfies

1. (Tx)+0 = a;

2. limt→∞(Tx)t = 0.

In another word, the operator T transforms a sequence converging to 0 whose stable component of the 0’th term is a to
another sequence converging to 0 whose stable component of the 0’th term is a.

Let X(a,0) = {{xt}t∈N : limt→∞ xt = 0,x+
0 = a}. Define the metric on X(a,0) as follows:

Definition 1. Let u = {ut}t∈N and v = {vt}t∈N be two sequences in X(a,0), then the distance d(u,v) is defined as

d(u,v) = sup
n≥0
{∥un − vn∥}.

The following lemma shows that the sequences satisfying above two properties form a complete metric space.

Lemma C.4. X(a,0) is a complete metric space.

Proof. Let u1 = {u1,j}j∈N, u2 = {u2,j}j∈N,..., {ui,j}j∈N... be a sequence of sequences that converges to 0 and u+
i,0 = a,

i.e., the 0’th term of ui has stable component equal to a. Suppose that {ui}i∈N is Cauchy, i.e., given any ϵ > 0, there exists
an integer L > 0, such that

d(un,um) = sup
j≥0
{∥un,j − um,j∥} < ϵ
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for all n,m > L. This implies that for each j, ∥un,j − um,j∥ < ϵ for all n,m > L. Furthermore, this is equivalent to say
that each sequence {uk,j}k∈N with fixed j, is Cauchy. Therefore, for each j, there exists a point u∗,j such that

lim
k→∞

uk,j = u∗,j

We denote the limit sequence
u∗ = {u∗,j}j∈N.

Letting m→∞, we have that
∥un,j − u∗,j∥ < ϵ

for all n > L. Since limj→∞ un,j = 0, we can conclude that

lim
j→∞

u∗,j = 0,

and this means that the limit sequence u∗ belongs to X(a,0). ■

Denote X(0,a, δ) the space of sequences {xt}t∈N satisfying

• limt→∞ xt = 0;

• x+
0 = a;

• ∥xt∥ ≤ δ for all t ∈ N.

Lemma C.5. Suppose (ϵ, δ) is a pair of positive constants such that the Lipschitz condition is satisfied. Then ϵ can be
adjusted so that for a sequence {xt}t∈N with x+

0 = a (∥a∥ ≤ δ), ∥x+
t ∥ ≤ δ, ∥x−

t ∥ ≤ δ for all t ≥ 0, the transformed
sequence Tx satisfies (Tx)+0 = a, ∥(Tx)+t ∥ ≤ δ, and ∥(Tx)−t ∥ ≤ δ for all t ≥ 0.

Proof. When t = 0, we have

(Tx)0 = a⊕

(
−

∞∑
i=0

C(i, 0)−1η−(i,x0,xi)

)
,

and then the estimate gives the following

∥(Tx)−0 ∥ = ∥−
∞∑
i=0

C(i, 0)−1η−(i,x0,xi)∥ (C.23)

≤
∞∑
i=0

∥C(i, 0)−1η−(i,x0,xi)∥ (C.24)

≤
∞∑
i=0

∥C(i, 0)−1∥ · ∥η−(i,x0,xi)∥ (C.25)

Since
∥η−(i,x0,x)∥ ≤ ∥η(i,x0,x)∥ = γ(i,x0)∥θ(xi)∥,

with the Lipschitz condition that
∥θ(x)∥ ≤ ϵ∥x∥

we have

∥η−(i,x0,x)∥ ≤ γ(i,x0)∥θ(xi)∥ (C.26)
≤ γ(i,x0)ϵ∥xi∥ (C.27)

= γ(i,x0)ϵ
√
∥x+

i ∥2 + ∥x
−
i ∥2 (C.28)

≤ γ(i,x0)ϵ
√
δ2 + δ2 (C.29)
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= γ(i,x0)ϵ
√
2δ. (C.30)

Then the estimate of ∥(Tx)−0 ∥ can be done as follows.

∥(Tx)−0 ∥ ≤
∞∑
i=0

∥C(i, 0)−1∥ · ∥η−(i,x0,xi)∥ (C.31)

≤ ϵ
√
2δ ·

( ∞∑
i=0

∥C(i, 0)−1∥ · γ(i,x0)

)
(C.32)

≤ γ(0,x0)ϵ
√
2δ ·

( ∞∑
i=0

∥C(i, 0)−1∥

)
(C.33)

≤ γ(0,x0)ϵ
√
2δ

(
− 1

cλs+1

)
(C.34)

≤ 1√
ξ
ϵ
√
2δ

(
− 1

cλs+1

)
(C.35)

The last inequality is due to that γ(0,x0) is uniformly bounded above by 1√
ξ

. As long as ϵ is chosen according to

1√
ξ

√
2ϵ

(
− 1

cλs+1

)
≤ 1⇐⇒ ϵ ≤ −cλs+1

√
ξ

2

we have that
∥(Tx)−0 ∥ ≤ δ.

To estimate the norm ∥(Tx)+t ∥ and ∥(Tx)−t ∥ for t ≥ 1, it is equivalent to estimate ∥(Tx)t+1∥ for t ≥ 0. We have that

∥(Tx)+t+1∥ ≤ ∥B(t, 0)a∥+
t∑

i=0

∥B(t, i+ 1)η+(i,x0,xi)∥ (C.36)

≤ ∥B(t, 0)a∥+
t∑

i=0

∥B(t, i+ 1)∥ · ∥η+(i,x0,xi)∥ (C.37)

where

∥η+(i,x0,xi)∥ ≤ ∥η(i,x0,xi)∥ (C.38)
= γ(i,x0)∥θ(xi)∥ (C.39)
≤ γ(i,x0)ϵ∥xi∥ (C.40)

≤ γ(i,x0)ϵ
√
2δ. (C.41)

Furthermore, recall that
B(t, i+ 1) = (I − γ(t,x0)H

+)...(I − γ(i+ 1,x0)H
+),

and γ(i,x0) ≥ c, the norm satisfies

∥B(t, i+ 1)∥ = (1− γ(t,x0)λs)...(1− γ(i+ 1,x0)λs) (C.42)
≤ (1− cλs)...(1− cλs)︸ ︷︷ ︸

t − i copies

(C.43)

= (1− cλs)t−i. (C.44)

So the sum
t∑

i=0

∥B(t, i+ 1)∥ =
t∑

i=0

(1− cλs)t−i (C.45)
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=
1− (1− cλs)t+1

1− (1− cλs)
(C.46)

=
1− (1− cλs)t+1

cλs
(C.47)

≤ 1

cλs
(C.48)

And then

∥(Tx)+t+1∥ ≤ ∥B(t, 0)a∥+
t∑

i=0

∥B(t, i+ 1)∥ · γ(i,x0)ϵ
√
2δ (C.49)

≤ ∥B(t, 0)a∥+ γ(0,x0)ϵ
√
2δ

(
t∑

i=0

∥B(t, i+ 1)∥

)
(C.50)

≤ ∥B(t, 0)∥δ + γ(0,x0)ϵ
√
2δ

(
1

cλs

)
(C.51)

≤ (1− cλs)t+1δ +
1√
ξ
ϵ
√
2δ

(
1

cλs

)
(C.52)

≤ (1− cλs)δ +
1√
ξ
ϵ
√
2δ

(
1

cλs

)
. (C.53)

The last inequality gives

∥(Tx)+t+1∥ ≤
(
(1− cλs) +

√
2

ξ
ϵ

(
1

cλs

))
δ,

and the ϵ should be chosen according to

(1− cλs) +
√

2

ξ
ϵ

(
1

cλs

)
< 1⇐⇒ ϵ < c2λ2s

√
ξ

2

so that
∥(Tx)+t+1∥ < δ

for all t ≥ 0.

To estimate ∥(Tx)−t+1∥, we firstly recall that

(Tx)−t+1 = −
∞∑
i=0

C(t+ 1 + i, t+ 1)−1η−(t+ 1 + i,x0,xt+1+i).

Therefore

∥(Tx)−t+1∥ = ∥−
∞∑
i=0

C(t+ 1 + i, t+ 1)−1η−(t+ 1 + i,x0,xi)∥ (C.54)

≤
∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1η−(t+ 1 + i,x0,xt+1+i)∥ (C.55)

≤
∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1∥ · ∥η−(t+ 1 + i,x0,xt+1+i)∥ (C.56)

where

∥η−(t+ 1 + i,x0,xt+1+i)∥ ≤ ∥η(t+ 1 + i,x0,xt+1+i)∥ (C.57)
= γ(t+ 1 + i,x0)∥θ(xt+1+i)∥ (C.58)
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≤ γ(t+ 1 + i,x0)ϵ∥xt+1+i∥ (C.59)

≤ γ(t+ 1 + i,x0)ϵ
√
2δ (C.60)

≤ 1√
ξ
ϵ
√
2δ. (C.61)

And then we have

∥(Tx)−t+1∥ ≤
√

2

ξ
ϵδ

( ∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1∥

)
(C.62)

≤
√

2

ξ
ϵδ

( ∞∑
i=0

(
1

1− cλs+1

)i+1
)

(C.63)

≤
√

2

ξ
ϵδ

(
− 1

cλs+1

)
. (C.64)

From the above estimate we need to chose ϵ according to√
2

ξ
ϵ

(
− 1

cλs+1

)
≤ 1⇐⇒ ϵ ≤ −cλs+1

√
ξ

2

and then
∥(Tx)−t+1∥ ≤ δ.

In summery, ϵ needs to be chosen according to

ϵ ≤ min

{
−cλs+1

√
ξ

2
, c2λ2s

√
ξ

2

}
(C.65)

=

√
ξ

2
·min{−cλs+1, c

2λ2s}, (C.66)

so that the operator T maps the sequences in the way described in the lemma. ■

Lemma C.6. Suppose that the function η(t, z,x) has the form of

η(t, z,x) = γ(t, z)θ(x)

and θ(x) satisfies that for any ϵ > 0, there exists δ > 0, such that

∥θ(x)− θ(y)∥ ≤ ϵ∥x− y∥

for all x,y ∈ B(δ). Then T is a contraction mapping on X(0,a, δ), i.e., there exists a positive constant κ < 1 such that

d(Tu, Tv) ≤ κd(u,v)

for all u,v ∈ X(0,a, δ).

Remark 5. In this lemma we use γ(t, z) for any sequences ignoring that different sequences have different initial conditions.
This is because for any sequence γ(t, z), we can associate with a dynamical system, e.g., the initial one we are interested in,
and we are actually looking for the stable manifold of this dynamical system at 0, so the sequence γ(t, z) can be regarded
independent of the sequences {xt}t∈N fed into T .

Proof. Let u = {ut}t∈N and v = {vt}t∈N be two sequences in X(0,a, δ). Then the 0’th term of the difference is

(Tu)0 − (Tv)0 = u+
0 ⊕

(
−

∞∑
i=0

C(i, 0)−1η−(i,u0,ui)

)
− v+

0 ⊕

(
−

∞∑
i=0

C(i, 0)−1η−(i,v0,vi)

)
(C.67)
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= (u+
0 − v+

0 )⊕

(
−

∞∑
i=0

C(i, 0)−1(η−(i,u0,ui)− η−(i,v0,vi))

)
(C.68)

= (a− a)⊕

(
−

∞∑
i=0

C(i, 0)−1(η−(i,u0,ui)− η−(i,v0,vi))

)
(C.69)

= −
∞∑
i=0

C(i, 0)−1(η−(i,u0,ui)− η−(i,v0,vi)). (C.70)

So the norm is estimated as follows:

∥(Tu)0 − (Tv)0∥ = ∥(Tu)−0 − (Tv)−0 ∥ (C.71)

≤ ∥
∞∑
i=0

C(i, 0)−1(η−(i, z,ui)− η−(i, z,vi))∥ (C.72)

≤
∞∑
i=0

∥C(i, 0)−1∥ · ∥η−(i, z,ui)− η−(i, z,vi)∥ (C.73)

≤
∞∑
i=0

∥C(i, 0)−1∥ · ∥η(i, z,ui)− η(i, z,vi)∥ (C.74)

≤
∞∑
i=0

∥C(i, 0)−1∥ · ∥γ(i, z)θ(ui)− γ(i, z)θ(vi)∥ (C.75)

≤
∞∑
i=0

∥C(i, 0)−1∥ · γ(i, z)∥θ(ui)− θ(vi)∥. (C.76)

Since
∥θ(ui)− θ(vi)∥ ≤ ϵ∥ui − vi∥, and γ(i, z) ≤ γ(0, z),

we have that

∥(Tu)0 − (Tv)0∥ ≤
∞∑
i=0

∥C(i, 0)−1∥ · γ(i, z)ϵ∥ui − vi∥ (C.77)

≤ γ(0, z)ϵ
∞∑
i=0

∥C(i, 0)−1∥ · ∥ui − vi∥ (C.78)

≤ γ(0, z)ϵ
∞∑
i=0

∥C(i, 0)−1∥ · sup
i≥0
∥ut − vt∥ (C.79)

= γ(0, z)ϵ
∞∑
i=0

∥C(i, 0)−1∥ · d(u,v) (C.80)

= γ(0, z)ϵ

(
− 1

cλs+1

)
d(u,v) (C.81)

≤ 1√
ξ
ϵ

(
− 1

cλs+1

)
d(u,v). (C.82)

Therefore, the first condition for ϵ so that
1√
ξ
ϵ

(
− 1

cλs+1

)
< 1

which implies that
ϵ < −cλs+1

√
ξ

The rest terms,i.e., (Tx)t+1 with t ≥ 0, give the following estimate.

(Tu− Tv)t+1 (C.83)
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= (Tu)t+1 − (Tv)t+1 (C.84)

=

(
B(t, 0)u+

0 +

t∑
i=0

B(t, i+ 1)η+(i, z,ui)

)
(C.85)

⊕

(
−

∞∑
i=0

C(t+ 1 + i, t+ 1)−1η−(t+ 1 + i, z,ut+1+i)

)
(C.86)

−

(
B(t, 0)v+

0 +

t∑
i=0

B(t, i+ 1)η+(i, z,vi)

)
(C.87)

⊕

(
−

∞∑
i=0

C(t+ 1 + i, t+ 1)−1η−(t+ 1 + i, z,vt+1+i)

)
(C.88)

=

(
B(t, 0)(u+

0 − v+
0 ) +

t∑
i=0

B(t, i+ 1)(η+(i, z,ui)− η+(i, z,vi))

)
(C.89)

⊕

(
−

∞∑
i=0

C(t+ 1 + i, t+ 1)−1(η−(t+ 1 + i, z,ut+1+i)− η−(t+ 1 + i, z,vt+1+i))

)
(C.90)

=

(
t∑

i=0

B(t, i+ 1)(η+(i, z,ui)− η+(i, z,vi))

)
(C.91)

⊕

(
−

∞∑
i=0

C(t+ 1 + i, t+ 1)−1(η−(t+ 1 + i, z,ut+1+i)− η−(t+ 1 + i, z,vt+1+i))

)
. (C.92)

So the norm of the difference is the following

∥(Tu)t+1 − (Tv)t+1∥ ≤
t∑

i=0

∥B(t, i+ 1)∥∥η+(i, z,ui)− η+(i, z,vi)∥ (C.93)

+

∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1∥∥η−(t+ 1 + i, z,ut+1+i)− η−(t+ 1 + i, z,vt+1+i)∥. (C.94)

Since η(t, z,x) = γ(t, z)θ(x), and then by Lipschitz condition on θ(x), we have that

∥η+(i, z,ui)− η+(i, z,vi)∥ ≤ ∥η(i, z,ui)− η(i, z,vi)∥ (C.95)
= ∥γ(i, z)θ(ui)− γ(i, z)θ(vi)∥ (C.96)
= γ(i, z)ϵ∥θ(ui)− θ(vi)∥ (C.97)
≤ γ(i, z)ϵ∥ui − vi∥. (C.98)

Same argument gives estimate on η−:

∥η−(t+ 1 + i, z,ut+1+i)− η−(t+ 1 + i, z,vt+1+i)∥ ≤ γ(t+ 1 + i, z)ϵ∥ut+1+i − vt+1+i∥.

The norm ∥(Tu)t+1 − (Tv)t+1∥ can be estimated as

∥(Tu)t+1 − (Tv)t+1∥ ≤
t∑

i=0

∥B(t, i+ 1)∥ · γ(i, z)ϵ∥ui − vi∥ (C.99)

+

∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1∥ · γ(t+ 1 + i, z)ϵ∥ut+1+i − vt+1+i∥ (C.100)

≤
t∑

i=0

∥B(t, i+ 1)∥ · γ(i, z)ϵ sup
t≥0
∥ut − vt∥ (C.101)
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+

∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1∥ · γ(t+ 1 + i, z)ϵ sup
t≥0
∥ut − vt∥ (C.102)

=

t∑
i=0

∥B(t, i+ 1)∥ · γ(i, z)ϵd(u,v) (C.103)

+

∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1∥ · γ(t+ 1 + i, z)ϵd(u,v) (C.104)

Since
γ(i, z) ≤ γ(0, z),

the above inequality can be simplified to

∥(Tu)t+1 − (Tv)t+1∥ ≤

(
t∑

i=0

∥B(t, i+ 1)∥+
∞∑
i=0

∥C(t+ 1 + i, t+ 1)−1∥

)
γ(0, z)ϵd(u,v) (C.105)

≤
(

1

cλs
− 1

cλs+1

)
γ(0, z)ϵd(u,v) (C.106)

≤
(

1

cλs
− 1

cλs+1

)
1√
ξ
ϵd(u,v) (C.107)

The coefficient (
1

cλs
− 1

cλs+1

)
1√
ξ
ϵ

needs to be adjusted so that it is less than 1, and this can be achieved by tuning ϵ so that

ϵ <
cλsλs+1

√
ξ

λs+1 − λs
.

Since −cλs+1

√
ξ
2 < −cλs+1

√
ξ, combining with the condition for ϵ in the previous lemma, we have that

ϵ < min

{
−cλs+1

√
ξ

2
, c2λ2s

√
ξ

2
,
cλsλs+1

√
ξ

λs+1 − λs

}

suffices to make T a contraction mapping, i.e., there exists κ < 1 such that

d(Tu, Tv) ≤ κd(u,v).

■

The following lemma guarantees that by a linear transformation, whose matrix comes from diagonalization of Hessian
matrix at saddle point, the stable manifold of the diagonalized dynamical system can be carried to the stable manifold of the
diagonalizable dynamical system.

Lemma C.7. Let G be a diagonalizable real matrix. Then the dynamical system

xt+1 = (I − γ(t,x0)G)xt − γ(t,x0)θ(xt).

has a local stable manifold at 0.

Proof. In this proof, we denote γt = γ(t,x0) for short. Since G is diagonalizable, there exists an invertible matrix Q such
that

G = Q−1HQ,
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and hence we have
QGQ−1 = H,

where

H =

 λ1
. . .

λd

 .
Consider the linear map

z = φ(x) = Qx,

note that φ induces a new dynamical system of z:

Q−1zt+1 = (I − γtG)Q−1zt − γtθ(Q−1zk).

Multiplying by Q from the left on both sides, we have

zt+1 = Q(I − γtG)Q−1zt − γtQθ(Q−1zt) (C.108)

= (I − γtH)zt − γtθ̂(zt), (C.109)

where
θ̂(zt) = Qθ(Q−1zt).

We next verify that θ̂ satisfies the Lipschitz condition, i.e., given any ϵ > 0, there exists a δ′ > 0, such that

∥θ̂(w1)− θ̂(w2)∥ = ∥Qθ(Q−1w1)−Qθ(Q−1w2)∥ (C.110)
≤ ϵ∥w1 −w2∥ (C.111)

for all w1,w2 ∈ B(0, δ′).

For any given ϵ > 0 and a fixed linear isomorphism Q, with respect to

ϵ

∥Q∥∥Q−1∥

there exists a δ > 0, such that
∥θ(u1)− θ(u2)∥ ≤

ϵ

∥Q∥∥Q−1∥
∥u1 − u2∥

for all u1,u2 ∈ B(0, δ). Denote
V := Q (B(0, δ)) ,

i.e.,
V = {w ∈ Rd : w = Q(u) for some u ∈ B(0, δ)}.

Since Qu is a linear diffeomorphism (change of basis is of full rank) from the open ball B(0, δ) to Rd, V is an open
neighborhood of 0. Therefore, there exists an open ball at 0 with radius δ′, denoted as B(0, δ′), such that B(0, δ′) ⊂ V . By
definition of V , we have that for any w1,w2 ∈ B(0, δ′) ⊂ V , there exist u1,u2 ∈ B(0, δ), such that{

w1 = Qu1

w2 = Qu2,
(C.112)

and the inverse transformation is given by {
u1 = Q−1w1

u2 = Q−1w2.
(C.113)

And then we have

∥θ̂(w1)− θ̂(w2)∥ = ∥Qθ(Q−1w1)−Qθ(Q−1w2)∥ (C.114)
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= ∥Qθ(u1)−Qθ(u2)∥ (C.115)
≤ ∥Q∥∥θ(u1)− θ(u2)∥ (C.116)

≤ ∥Q∥ ϵ

∥Q∥∥Q−1∥
∥u1 − u2∥ (C.117)

= ∥Q∥ ϵ

∥Q∥∥Q∥−1
∥Q−1w1 −Q−1w2∥ (C.118)

≤ ∥Q∥ ϵ

∥Q∥∥Q∥−1
∥w1 −w2∥ (C.119)

= ϵ∥w1 −w2∥. (C.120)

The verification completes. Thus the stable manifold (measure zero set of initial condition) of dynamical system with
diagonal linear part can be carried to dynamical system with diagonalizable linear part by the linear map Q. ■

D Proof of Proposition 3
We proceed by showing that AdaGrad-Norm, AdaGrad-Diag and FullAdaGrad are diffeomorphism if the parameter δ0 is
chosen properly. Throughout the proof, we denote ξ = δ20 for convenience.

Proof. By diffeomorphism, we mean the last iterate acting on xt is a diffeomorphism. Recall that the AdaGrad algorithms
have the following form:

xt+1 = xt − Γt∇f(xt),

where

Γt =

(
ξI +

t∑
s=1

∇f(xs)∇f(xs)
⊤

)− 1
2

for the FullAdaGrad, which we consider first. Since the matrix Γt can be written as

Γt = (ξI + S +∇f(xt)∇f(xt))
− 1

2 ,

where

S =

t−1∑
s=1

∇f(xs)∇f(xs),

then the update rule considered a mapping acting on xt can be reduce to the following form

φ(x) = x− Ω(x)∇f(x)

where

Ω(x) = Γt(x) =

 ω11 . . . ω1d

...
ωd1 . . . ωdd


and the entries ωij are functions of x, i.e., ωij = ωij(x).

The differential of φ(x) is

Dφ(x) = I −D (Ω(x)∇f(x))

By matrix differentiation rule, we have

D (Ω(x)∇f(x)) =


∂Ω1(x)·∇f(x)

∂x
...

∂Ωd(x)·∇f(x)
∂x

 (D.1)
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=

 Ω1(x)
∂∇f(x)

∂x +∇f(x)⊤ ∂Ω1(x)
∂x

...
Ωd(x)

∂∇f(x)
∂x +∇f(x)⊤ ∂Ωd(x)

∂x

 (D.2)

Note that the matrix  Ω1(x)
∂∇f(x)

∂x
...

Ωd(x)
∂∇f(x)

∂x


can have bounded norm as small as possible if ξ is taken to be small enough. On the other hand,

∂Ωi(x)

∂x

is of small norm if ξ is taken to be large.

Note that the matrix Ω satisfies the following property

Ω2(x)
(
ξI + S +∇f(x)∇f(x)⊤

)
= I,

where S is a matrix independent of x, and
(Ω2(x))ij =

∑
s

ωisωsj .

Therefore ∑
k

(Ω2)ik(ξδkj + Skj + ∂kf∂jf) (D.3)

=
∑
k

(∑
s

ωisωsk

)
(ξδkj + Skj + ∂kf∂jf) = δij (D.4)

Take partial derivative with respect to any xα, we have that

∑
k

[
∂

∂xα

(∑
s

ωisωsk

)
(ξδkj + Skj + ∂kf∂jf) +

(∑
s

ωisωsk

)
∂

∂xα
(ξδkj + Skj + ∂kf∂jf)

]
= 0.

By assumption that
∂

∂xα
(∂kf∂jf)

is bounded and since ξ can be taken as large as possible, the latter term(∑
s

ωisωsk

)
∂

∂xα
(ξδkj + Skj + ∂kf∂jf)

is uniformly bounded. And thus
∂

∂xα

(∑
s

ωisωsk

)
→ 0 as ξ →∞,

which will implies that the norm of
∂Ω

∂x

approaches 0 as ξ → ∞. We have completed the proof that when ξ → ∞, detDφ → 1, which means that φ is
a diffeomorphism. The above argument automatically applies to AdaGrad-Diag, to see that AdaGrad-Norm is also a
diffeomorphism, we take an explicit calculation. The algorithm

xt+1 = xt −
1√∑t

i=0∥∇f(xi)∥2 + ξ
∇f(xt)
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can be written as the update rule

g(t,x) = x− 1√
St + ∥∇f(x)∥2

∇f(x)

where

St =

t−1∑
i=0

∥∇f(xi)∥2 + ξ.

For each fixed t ∈ N, we can ignore the t and denote

γ(x) =
1√

S + ∥∇f(x)∥2

and keep in mind that S can be chosen as large as possible. Then the update rule is written as

g(x) = x− γ(x)∇f(x).

The Jacobian of g is computed by

Dg(x) = I −
(
∇γ(x)⊗∇f(x) + γ(x)∇2f(x)

)
(D.5)

The term γ(x)∇2f(x) is bounded and can be arbitrarily small if γ(x) is small because ∥∇2f(x)∥ is assumed to be bounded.
The first term

∇γ(x)⊗∇f(x)

is a matrix with entries in the form of
∂γ

∂xi

∂f

∂xj
.

Since in the beginning we assume the algorithm runs in a compact subset of Rd, ∂f
∂xj

are uniformly bounded. Moreover

∂γ

∂xi
=

∂

∂xi

1√
S + ∥∇f(x)∥2

(D.6)

= −1

2
(S + ∥∇f(x)∥2)− 3

2
∂∥∇f(x)∥2

∂xi
(D.7)

= −1

2
(S + ∥∇f(x)∥2)− 3

2
∂

∂xi

(
d∑

k=1

(
∂f

∂xk

)2
)

(D.8)

= −1

2
(S + ∥∇f(x)∥2)− 3

2

(
d∑

k=1

2
∂f

∂xk

∂2f

∂xi∂xk

)
(D.9)

Recall that for a matrix A, the ℓ1 norm is

∥A∥1 = max

n∑
i=1

|aij |,

and the inequality
1√
n
∥A∥1 ≤ ∥A∥2 ≤

√
n∥A∥1

shows the boundedness of ∂2f
∂xi∂xk

provided ∥∇2f(x)∥2 < L, even without the compactness assumption.

Thus we have proven that ∂γ
∂xi

can be arbitrarily small as long as S is large enough. And this shows that at each point x, the
Jacobian Dg(x) can be arbitrarily close to the identity I . Since the determinant det(Dg(x)) is a continuous function of the
entries of Dg(x), so det(Dg(x))→ 1, as γ(x)→ 0, and there exists a large enough S (so that γ(x) is close enough to 0)
at each point x, such that det(Dg(x)) is strictly positive. If x is in a compact set, there exists a uniform S such that the
update rule g(x) is a local diffeomorphism everywhere.

■



AdaGrad Avoids Saddle Points

E Proof of Theorem 2
We complete the proof of the last theorem by extending local existence of stable manifold to global, and then the measure
zero result of initial condition follows from the fact that the manifold is of lower dimension than that of Rd.

Proof. Note that the dynamical system defined by AdaGrad algorithms determines each iterate based on time t and the
initial condition x0, thus the t’th iterate can be thought as the image of a mapping depending on t adn x0, we denote this
mapping by ψ(t,x0), i.e.

xt+1 = ψ(t,x0).

We define
ψ̃(m,n,x) = ψ(m, ..., ψ(n+ 1, ψ(n,x))...) for m > n.

The stable set of a set of fixed point A∗, denoted by W s(A∗), of the dynamical system defined by ψ(t,x) is

W s(A∗) = {x0 : lim
k→∞

ψ̃(k, 0,x0) ∈ A∗}.

Fix a point x0 ∈W s(A∗). Since
ψ̃(k, 0,x0)→ x∗ ∈ A∗,

there exists some non-negative integer T and all t ≥ T , such that

ψ̃(t, 0,x0) ∈
⋃

x∗∈A∗

Ux∗ =

∞⋃
i=1

Ux∗
i
.

So ψ̃(t, 0,x0) ∈ Ux∗
i

for some x∗
i ∈ A∗ and all t ≥ T . This is equivalent to

ψ̃(T + k, T, ψ̃(T, 0,x0)) ∈ Ux∗
i

for all k ≥ 0, and this implies that
ψ̃(T, 0,x0) ∈ ψ̃−1(T + k, T, Ux∗

i
)

for all k ≥ 0. And then we have

ψ̃(T, 0,x0) ∈
∞⋂
k=0

ψ̃−1(T + k, T, Ux∗
i
).

Denote Si,T :=
⋂∞

k=0 ψ̃
−1(T + k, T, Ux∗

i
) and the above relation is equivalent to x0 ∈ ψ̃−1(T, 0, Si,T ). Take the union for

all nonnegative integers T , we have

x0 ∈
∞⋃

T=0

ψ̃−1(T, 0, Si,T ).

And union for all i we obtain that

x0 ∈
∞⋃
i=1

∞⋃
T=0

ψ̃−1(T, 0, Si,T )

implying that

W s(A∗) ⊂
∞⋃
i=1

∞⋃
T=0

ψ̃−1(T, 0, Si,T ).

Since Si,T ⊂ Wn(x
∗), and Wn(x

∗) has codimension at least 1. This implies that Si,T has measure 0 with respect to the
volume measure from the Riemannian metric on M . Since the image of set of measure zero under diffeomorphism is of
measure zero, and countable union of zero measure sets is still measure zero, we obtain that W s(A∗) is of measure zero. ■
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