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Chapter 1

The biLipschitz geometry of complex
curves: an algebraic approach

Arturo Giles Flores, Otoniel N. Silva, Bernard Teissier

Abstract
The purpose of these notes is to explain why a generic projection to the

plane of a germ of reduced space curve is a biLipschitz homeomorphism for
the outer metric. This is related to the fact that all topologically equivalent
germs of plane curves are exactly the generic projections of a single space
curve. The analytic algebra of this space curve is the algebra of Lipschitz
meromorphic functions on any of its generic projections. An application to
the geometry of polar curves is given.

Introduction

These are the lecture notes of the course given by Bernard Teissier during
the second week of the “ International School on Singularities and Lipschitz
Geometry” which took place in Cuernavaca, Mexico from june 11 to june 22,
2018. The aim of the course was to explore the concept of “generic plane
linear projection” of a complex analytic germ of curve in CN . The objects
of our study will therefore be germs of curves pX, 0q Ă pCN , 0q, linear map
germs π : pCN , 0q Ñ pC2, 0q, and the images pπpXq, 0q Ă pC2, 0q.

Intuitively, a projection π is generic for pX, 0q if a small variation of π does
not change the ”equisingularity type” (or embedded topological type) of the
image pπpXq, 0q in pC2, 0q.
The main objective was to provide algebraic criteria for a projection to be
generic and to use them to prove two results related to Lipschitz geometry:

(1) That all equisingular (topologically equivalent) germs of reduced plane
curves are, up to analytic isomorphism, images of a single space curve
pX, 0q Ă pCN , 0q by generic linear projections π : CN Ñ C2, and that the
restriction π|pX, 0q : pX, 0q Ñ pπpXq, 0q to pX, 0q of such a generic projection
is a biLipschitz map for the metrics induced by the hermitian metrics of their
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respective ambient spaces. In particular, all topologically equivalent germs of
plane curves are biLipschitz equivalent.

(2) Given a reduced equidimensional germ of a complex space pX, 0q ãÑ

pCN , 0q, with dimension d, we consider a “general” projection π : CN Ñ C2

and the polar curve on X associated to the projection π. It is the closure
in X of the critical locus of the restriction of π to the smooth part of X . If
it is not empty, it is a curve usually denoted by Pd´1pX, πq which plays an
important role in the study of the Lipschitz geometry of X . We can consider π
as defining a plane projection of the space curve pPd´1pX, πq, 0q which varies
with π. The result is that if the projection π is sufficiently general, then it is
a generic plane projection for the curve pPd´1pX, πq, 0q Ă pCN , 0q.

The course assumed a certain familiarity with algebraic or complex ana-
lytic geometry, such as the definition of a complex analytic space X , the fact
that its local algebras of functions are analytic algebras, that is, quotients of
rings of convergent power series with complex coefficients, that the singular
locus SingX consisting of points where the local algebra is not isomorphic
to a ring of convergent power series, is a closed analytic subspace, etc. The
reader is also encouraged to consult the article [Sn] of Jawad Snoussi in this
volume.

1.0.1 What is a germ of complex analytic curve?

A complex analytic curve1 X may be locally regarded as a family of points
in an open subset U of the complex affine space CN which is the union of
finitely many sets of points depending analytically on one complex parameter.
It can also be defined as the zero set of a finite number of holomorphic
functions f1, . . . , f s on U satisfying certain algebraic conditions:

X “ tz P U | f1pzq “ ¨ ¨ ¨ “ f spzq “ 0u.

A germ of curve pX, 0q Ă pCN , 0q at a point which we take to be the origin is
an equivalence class of curves in open neighborhoods of the origin. Two such
objects defined respectively in U and U 1 are equivalent if their restrictions to
a third neighborhood of the origin U2 Ă U X U 1 coincide. Of course, when
we speak of germs, we think of representatives in some ”sufficiently small”
neighborhood of the origin. Because of analyticity, to give a germ is equiva-
lent to giving the convergent power series of f1, . . . , f s around the origin with
respect to some coordinate system.

This allows us to associate to the germ pX, 0q Ă pCN , 0q the analytic algebra
of germs of holomorphic functions on pX, 0q:

1 For more details on what follows in this section, we refer the reader to [Tei07].
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OX,0 :“ Ctz1, . . . , zN u{x f1, . . . , f sy,

where Ctz1, . . . , zN u denotes the ring of convergent power series. In these
notes we will only be interested in reduced germs, meaning that the ideal
J :“ x f1, . . . , f sy is radical and OX,0 is a reduced analytic algebra of pure
dimension 1.

In the case of plane curves pN “ 2q the ideal I “ x f yCtx, yu is principal
and f is square free, which means that f has a factorization of the form
f “ f1 ¨ ¨ ¨ fr , where each f i is irreducible in Ctx, yu and they are all different.
The point is that the f i ’s correspond to germs pXi, 0q Ă pC, 0q of analytically
irreducible curves called the branches of the curve.

pX, 0q “
r
ď

i“1

pXi, 0q.

For arbitrary N , the branches pXi, 0q correspond to the prime ideals appearing
in the primary decomposition of the ideal p0q in OX,0

p0q “ P1 X . . . X Pr, where each Pi is a minimal prime in OX,0

A germ of curve pX, 0q Ă pCN , 0q may also be described parametrically by
r sets of power series

ϕi1ptiq, . . . , ϕ
i
N ptiq P Cttiu, 1 ď i ď r,

where again r is the number of branches. For each i, zk “ ϕi
k
ptiq, 1 ď k ď N

defines a germ of map pDi, 0q ÝÑ pCN , 0q where Di is a disk in C. Together
these r n-uples of series correspond to a multigerm of map

ϕ :
r
ğ

i“1

pDi, 0q ÝÑ pCN , 0q; zk “ ϕik ptiq. (1.1)

The connexion between these two definitions goes back to Newton, who
showed that an equation f px, yq “ 0, with f p0, 0q “ 0 has solutions ypxq
which are power series in x with rational exponents with bounded denomina-
tors and coefficients in the algebraic closure of the smallest field containing
the coefficients of f px, yq. For Newton f px, yq is a polynomial with real coeffi-
cients, but the method works for series over any field k of characteristic zero.

Note that if
B f px,yq
By does not vanish at p0, 0q the implicit function Theorem

gives us a power series ypxq with integers as exponents. In the general case,

such a series ypxq “
ř

iPN ai x
i
n gives rise to a parametrization

x “ tn, y “
ÿ

iPN

ai t i .
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of one of the branches of the curve over an algebraic extension of k.

1.0.2 Structuring a parametrization

Suppose that we have an irreducible and reduced germ of curve in pCN , 0q,
given by zk “ ϕk ptq P Cttu, k “ 1, . . . , N . For simplicity we shall write zk “
ϕk ptq “

ř

i apiq
k

t i . We assume that the group generated by the exponents is Z,
which means that they are coprime. Let n be the smallest exponent appearing
in all the series ϕk ptq; up to reindexing the variables zi we may assume that

it is the order of ϕ1ptq, so that we may write ϕ1ptq “ apnq1 tnp1 ` ψptqq with
ψp0q “ 0. By making a homothetic change on the variable z1 we may assume

that apnq1 “ 1. Since we are in characteristic zero, we may extract an n-
th root of the unit 1 ` ψptq so that 1 ` ψptq “ uptqn where uptq is again
invertible in Cttu. Now we make the change of parameter t1 “ tuptq so that
ϕ1pt1q “ t1n . Now by making a linear change of the form zi ´ ai z1 on the
coordinates z2, . . . , zN we may assume that z1 is the only variable where
the lowest exponent n appears. Geometrically this means that our curve is
tangent to the z1-axis at the origin: its set-theoretic tangent cone is the z1-
axis. Similarly, by making now a non linear change of coordinates of the form

zi ´
ř

apiq
k

zk1 we may assume that the first exponent appearing in each ϕk pt1q
is not divisible by n. This is geometrically more subtle and corresponds to
Hironaka’s maximal contact. Since t1 is now our uniformizing parameter, we
call it t henceforth.
Let us now compare z1 “ tn with one of the other coordinates, which we may
write (up to a homothetic change of variables) zi “ ϕiptq “ tbi ` ¨ ¨ ¨ . It may
be that the exponents appearing in ϕiptq and n are not coprime. As we shall
see below it means that the projection of our curve to the pz1, ziq-plane is not
reduced. If that is the case, we may begin by dividing all the exponents by
their greatest common divisor. The interesting case is therefore that of two
series expansions tn, ϕptq with coprime exponents: we are in the case N “ 2
of a plane branch to which we now turn.

The case of a plane branch. As we saw, after a change of coordinates
and of uniformizing parameter, we can describe our plane branch by: z1 “

tn, z2 “ ϕptq P Cttu where the smallest exponent of t in ϕptq is not divisible
by n. This smallest exponent is traditionally denoted by β1. We take the
g.c.d. of n and β1; set e1 “ pn, β1q ă n. If e1 “ 1, the series ϕptq is of the
form tβ1 `

ř

kě1 ak tβ1`k . If e1 ą 1, since the exponents are coprime, there
has to be a smallest exponent β2 in the series ϕptq which is not divisible by
e1. Then we set e2 “ pe1, β2q ă e1, and we continue in this manner. Since
n ą e1 ą e2 ą ¨ ¨ ¨ there exists an integer g such that eg “ peg´1, βgq “ 1.
Finally we have the following structure for ϕptq: its expansion is decomposed
into segments corresponding to the divisibility properties of the exponents.
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z2 “ t β1`

s1
ÿ

k“1

aβ1`ke1 t
β1`ke1`aβ2 t

β2`

s2
ÿ

k“1

aβ2`ke2 t
β2`ke2`¨ ¨ ¨`aβ j t

β j`

s j
ÿ

k“1

aβ j`ke j t
β j`ke j`

¨ ¨ ¨ ` aβg t
βg `

8
ÿ

k“1

aβg`k t
βg`k ,

where all aβi are ‰ 0 and each sum has to stop before the g.c.d. of the
exponents drops and only the last segment is possibly infinite. The set of
integers n, β1, β2, . . . , βg , which is often also denoted by β0, β1, β2, . . . , βg , is
called the Puiseux characteristic of the branch and the βi , or sometimes the
βi
n , are called the characteristic exponents. It determines and is determined by

the embedded topological type of the branch (see [Za1, §7], [Za3, Theorem 2.1,
pg. 983], [Lej73]). This means that if two germs of plane branches pX1, 0q and
pX2, 0q have the same Puiseux characteristic there exists a homeomorphism
pU1, 0q Ñ pU2, 0q of neighborhoods of the origin mapping the representative
X1 Ă U1 to X2 Ă U2, and conversely. The two germs are also said to be
equisingular. We shall meet this Puiseux characteristic again after Example
1.4.25 below, where we shall see that it determines not only the topology but
also the biLipschitz geometry of the branch.

After what we have seen, the expansion above can be reinterpreted as a

Newton expansion in terms of t “ z
1
n

1 , but here we have to choose a n-th root

of z1. The algebraic interpretation is that ϕpz
1
n

1 q P Cttz1uutz
1
n

1 u determines
a cyclic extension of the field Cttz1uu of meromorphic functions in z1 with

Galois group equal to the group µn of n-th roots of 1. The n series ϕpωz
1
n

1 q, ω P

µn , are the roots of a unitary polynomial
ś

ωPµn

`

z2 ´ ϕpωz
1
n

1 q
˘

P Ctz1urz2s

whose vanishing is an equation for our germ of curve in the sense we shall
see in the next section.
The structure of the series gives rise to a filtration of the Galois group:

µn Ą µe1 Ą µe2 Ą ¨ ¨ ¨ Ą µeg “ t1u,

with the characteristic property that if we set n “ e0 and denote by νt the
t-adic order of a series, then for 1 ď k ď g, we have that

ω P µek´1zµek ðñ νt pϕpωtq ´ ϕptqq “ βk .

Let us now refine the structure according to [Za2, Chapters III, IV,V]. The
parametrization of a branch by tn, yptq as above presents its analytic algebra
OX,0 as a subalgebra of Cttu. The t-adic orders of the series in t which are in
OX,0 form a numerical semigroup Γ Ă N since one can multiply them and stay
in OX,0. Since the exponents are coprime the complement of Γ in N is finite
(Dickson’s Lemma) and the semigroup Γ is finitely generated. The smallest
element c of N such that all integers ě c are in Γ is called the conductor
of the semigroup. It is not difficult to verify (see [Za2, Chapter III, Lemma
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1.1]) that if the order of a series ξptq P OX,0 is ą β1, then ξptq P xx, yy2, and
therefore if the order s of ξptq is in Γ we can make a change of coordinates
x1 “ x, y1 “ y ´ ξptq to eliminate a term in ts from the expansion of yptq.
Using this, and the fact that by definition any element of Γ is the order of a
series in OX,0, Zariski proved in [Za2, Chapter III, Proposition 1.2]:

Proposition 1.0.1 (Zariski) 1) Assume that n ą 2. Then one has c ě β1`1.
Let s1, . . . , sq be the integers of the set tβ1`1, . . . , cu which do not belong to Γ.
The branch pX, 0q is analytically isomorphic to a branch given parametrically
by:

x1ptq “ tn, y1ptq “ tβ1 `
q
ÿ

i“1

a1si t
si .

2) If n “ 2 then β1 is odd since our germ is irreducible and the conductor is
β1; our curve is analytically isomorphic to xptq “ t2, yptq “ tβ1 .

Zariski calls this a short representation. There are more simplifications of the
expansion of yptq one can make without changing the analytic type. See [Za2,
Chapters III, IV,V].

The next thing we need to know is that the semigroup Γ determines and
is determined by the Puiseux characteristic of the branch: it is a complete
invariant of the equisingularity class. See [Za2, Chap. II, §3]. In particular,
in the short expansion, the coefficients of the tβi are ‰ 0.

With this description of branches, we are able to describe the contact of
two branches, which plays a key role in the characterization of the topological
(and biLipschitz) type of a reduced germ of plane curve.

We shall see below how, conversely, the image of a parametrization can be
defined by equations.
The modern presentation of the parametrization of a curve goes through the
normalization, which is the topic of the next section.
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1.1 Normalization

The property of being normal has an algebraic aspect which has to do
with integral extension of rings.

Definition 1.1.1 Let R Ă S be rings.

• The inclusion R Ă S is called a finite extension if S is a finitely generated
R´module.

• An element s P S is called integral over R if and only if it satisfies an equation

sh ` a1sh´1 ` ¨ ¨ ¨ ` ah´1s ` ah “ 0

with all ai P R. The extension is called integral if every element s P S is
integral over R. (Just as in field theory, if the extension R Ă S is finite it is
integral. See [De-P00, Lemma 1.5.2])

• The ring R is said to be integrally closed in S if every element in S which is
integral over R already belongs to R.

• The ring R is called normal if it is reduced and integrally closed in its total
quotient ring QpRq.

Suppose that R is a reduced ring. Recall that the set of non-zero divisors
of a ring R is a multiplicatively closed set and the corresponding ring of frac-
tions QpRq is called the total ring of fractions. It has the property that the
canonical morphism R Ñ QpRq is injective.

The normalization of R is defined as the set R of all elements of QpRq
which are integral over R. It is a reduced ring, integrally closed in QpRq and
whose total ring of fractions coincides with QpRq. In particular, the normal-
ization R is a normal ring. Moreover, for the rings appearing in analytic or
algebraic geometry, the extension R Ă R is finite in the sense that R is a
finitely generated R-module.2

So what about if we start with the analytic algebra OX,0 of a germ of
analytic space pX, 0q Ă pCN , 0q? We will say that the germ pX, 0q is normal if
OX,0 is a normal ring.

2 It is interesting to note that the term ”integral” comes from algebraic number theory
in the tradition of Dedekind and the definition of the ring of integers of an algebraic
number field, while the term ”normal” was used by Zariski (see [Za]) in the course
of his studies in birational geometry and resolution of singularities to designate an
algebraic variety which could not be presented as the image of a different one by
a finite birational map. This is why the terms ”integral closure in the total ring of
fractions” and ”normalization” are used in algebraic or analytic geometry as names
for the algebraic and geometric aspects of the same operation.
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• Unique factorization domains are normal ([De-P00, Thm 1.5.5]) so the
ring of power series Ctz1, . . . , znu and the corresponding smooth germ
pCN , 0q are normal.

• Noetherian normal local rings are integral domains ([De-P00, Thm 1.5.7]),
so a normal germ pX, 0q is irreducible.

• Suppose pX, 0q is irreducible. Since OX,0 and its normalization have the
same total ring of fractions, which in this case is a field, it follows from
what we have just seen that OX,0 is a local noetherian domain. Moreover,
by [De-P00, Cor. 3.325] it is an analytic algebra and so we can associate
to it a normal germ pX, 0q. In particular we have:

OX,0 “ OX,0.

• Splitting of normalization ([De-P00, Thm. 1.5.20]) tells us that that if we
have the irreducible decomposition

pX, 0q “ pX1, 0q Y . . . Y pXs, 0q,

then the normalization OX,0 is equal to a direct sum of analytic algebras
which are the normalizations of the analytic algebras OXi,0 corresponding
to the irreducible components pXi, 0q:

OX,0 “

s
à

i“1

OXi,0.

Note that this implies that pX, 0q and pX, 0q have the same dimension.

A multi-germ of analytic spaces pX, xq is a finite disjoint union:

pX, xq :“ pX1, x1q \ pX2, x2q \ . . . \ pXr, xr q

of germs of analytic spaces. The ring OX,x by definition is equal to
Àr

i“1 OXi,xi .
The multigerm pX, xq is called normal if OX,x is a normal ring.

Let pY, yq “ pY1, y1q \ . . . \ pYs, ysq be another multi-germ. A map ϕ :
pX, xq Ñ pY, yq of multi-germs is given by a system of maps

ϕi : pXi, xiq Ñ pYαpiq, yαpiqq, i P t1, . . . , ru, αpiq P t1, . . . , su.

Such a map ϕ induces, and is induced by, a C´algebra map ϕ˚ : OY,y Ñ OX,x .

Definition 1.1.2 Let pX, xq be a germ of analytic space. A normalization of
pX, xq is a normal multi-germ pX, xq together with a finite, generically 1-1
map

n : pX, xq Ñ pX, xq.

With this definition at hand, for any germ of analytic space pX, 0q with
irreducible decomposition
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pX, 0q “ pX1, 0q Y . . . Y pXs, 0q,

we can now obtain a normal multigerm

pX, xq “ pX1, x1q \ . . . \ pXs, xsq

with associated normal ring

OX,0 “

s
à

i“1

OXi,0 “

s
à

i“1

OXi,xi
,

and it is not hard to prove that the inclusion map OX,0 ãÑ OX,0 induces a
finite and generically 1-1 map, proving thus the existence of normalization
([De-P00, Thm 4.4.8]). Note that, geometrically, the normalization of a germ
separates the irreducible components and normalizes each of them separately.

Example 1.1.3 Let pX, 0q Ă pC2, 0q be the germ of plane curve defined by
f px, yq “ x2 ´ y2. It has two irreducible components pX1, 0q and pX2, 0q with
associated analytic algebras

OX1,0 “ Ctx, yu{xx ´ yy OX2,0 “ Ctx, yu{xx ` yy.

These two germs are smooth, in particular they are normal and we have:

OX,0 “
Ctx, yu
xx2 ´ y2y

ÝÑ
Ctx, yu
xx ´ yy

à Ctx, yu
xx ` yy

“ OX,0

f ÞÝÑ p f ` xx ´ yy, f ` xx ` yyq

Since the germs are smooth and of dimension 1, their analytic algebras are
isomorphic to the ring of convergent power series Cttu:

Ctx, yu{xx ´ yy Ñ Cttu x ÞÑ t, y ÞÑ t

Ctx, yu{xx ` yy Ñ Ctuu x ÞÑ u, y ÞÑ ´u

This means that the resulting normalization map

n : pC, 0q \ pC, 0q Ñ pX, 0q

is the parametrization of each of the branches t1 ÞÑ pt, tq and t2 ÞÑ pu,´uq.

It is useful to consider a function-theoretic interpretation of normal spaces.
A general result tells us that in a smooth germ pCd, 0q if you have a meromor-
phic function which is (locally) bounded then it is actually holomorphic (See
for example [Gr-F02, IV.4]). The algebraic version is that a locally bounded
meromorphic function h satisfies an integral dependence relation of the form:

hm ` c1hm´1 ` ¨ ¨ ¨ ` cm “ 0; cj P On :“ Ctz1, . . . , znu,
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and since On is normal then h P On .
Now there are many more analytic spaces for which OX,x is normal than just
the non singular ones.

Definition 1.1.4 Given a reduced germ of analytic space pX, xq, we call a
function f : XzSing X Ñ C weakly holomorphic at x P X if :

• f is holomorphic on XzSing X in a neighborhood of x.
• f is (locally) bounded near x.

A function is weakly holomorphic on X if it is so at every point.

The key point is proving that the germs at x P X of weakly holomorphic
functions on X form a ring which is canonically isomorphic to the normal-
ization of OX,x . That is, f is weakly holomorphic on X if and only if it is
meromorphic and satisfies an integral dependence relation. This gives us the
following characterization:

Theorem 1.1.5 [De-P00, Thm 4.4.15]

1) Let pX, xq be a germ of reduced analytic space. Then a function f is weakly
holomorphic on X if and only if f is in the integral closure of OX,x in its
total ring of quotients.

2) The integral closure of OX,x in its total ring of quotients is a direct sum of
analytic algebras.

3) The reduced germ pX, xq is normal if and only if every weakly holomorphic
function germ can be extended to a holomorphic function.

Remark 1.1.6 Since this fact is fundamental for what follows, here is an idea
of why boundedness and polynomial equation are related: The roots of a
polynomial are bounded in terms of its coefficients, so a solution of a poly-
nomial equation with holomorphic coefficients is bounded because holomor-
phic functions are. In the other direction, let h “

f
g , with f , g P mpX,0q

be our meromorphic function, let pY, 0q Ă pX, 0q be the subset defined by
the ideal x f , gyOpX,0q, and consider the analytic subspace X 1 of X ˆ P1pCq
which is the closure of the graph of the map XzY Ñ P1pCq defined by
x ÞÑ p f pxq : gpxqq P P1pCq. It is contained in the hypersurface of X ˆ P1pCq
defined by T2 f pxq ´ T1gpxq “ 0 where pT1 : T2q are projective coordinates
on P1. The first projection induces a holomorphic map e : X 1 Ñ X (we are
blowing-up the ideal x f , gy). The fiber over 0 is a complex analytic subspace
of P1pCq and therefore is either P1pCq or a finite subset of it. If our mero-
morphic function is bounded, the point p1 : 0q P P1pCq is not in the fiber,
so that by the Weierstrass preparation Theorem (see Theorem 1.1.8 below),
for a small enough representative X of the germ pX, 0q the map X 1 Ñ X is
finite and X 1 has to be a hypersurface in X ˆ C: its equation is our integral
dependence relation.
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Example 1.1.7 For the germ pX, 0q Ă pC2, 0q defined by xy “ 0 we have

OX,0 “ Ctxu ‘ Ctyu.

The function f “ p1, 0q, meaning it is the constant function 1 on the x axis and
the constant function 0 on the y axis, is holomorphic on XzSing X “ Xzt0u
and is certainly bounded so it is weakly holomorphic. Note that it can not be
continuously extended to pX, 0q. As a meromorphic function it can be written
as

f px, yq “
x

x ` y
.

Let us wrap up this discussion on normal spaces and normalization by
stating several important properties of which you can find detailed expositions
in [Loj91], [G-L-S07] and [Kau83].

1. If X is reduced, the non normal locus is the set of points x P X where
the local algebra OX,x is not normal; it is the complement of the normal
locus and is a closed analytic subspace contained in the singular locus
SingX of X . It is defined by the conductor sheaf which is the annihilator
of the coherent OX -module OX{OX and thus a coherent sheaf of ideals.

2. If T is a normal space and X is reduced then any map T Ñ X which does
not map any irreducible component of T to the non-normal locus of X
factors uniquely through the normalization n : X Ñ X .

3. If X is normal then dim SingpXq ď dim X ´ 2 (Singular locus of codimen-
sion at least 2).

4. If X is normal, the polar locus of a meromorphic function is either of
codimension 1 or empty.

Going back to the curve case, a classical result of commutative algebra
([De-P00, Thm 4.4.9]) states that a Noetherian local ring of dimension one is
normal if and only if it is regular. This implies that if pX, 0q “

Ťr
i“1pXi, 0q Ă

pCN , 0q is a germ of analytic curve with r branches then the normal ring

OX,0 is isomorphic to a direct sum of r copies of Cttu and the correspond-
ing normalization map is equal to the parametrization of each branch, thus
recovering the description in (1.1).
For plane curves, this result can also be seen using algebraic field extensions,
but first we need a couple of definitions and the Weierstrass preparation The-
orem. A convergent power series f P Ctz1, . . . , zN u is called regular of order
b in zN if the power series f p0, . . . , 0, zN q in the variable zN has a zero of
order b. A simple calculation shows that if f is of order b in the sense that
f P xz1, . . . , zN ybzxz1, . . . , zN yb`1, then after a general linear change of coordi-
nates, f is regular of order b in zN (see [De-P00, Lemma 3.2.2]). Geometrically
this means that if we consider the germ of hypersurface pX, 0q Ă pCN´1ˆC, 0q
defined by f and the first projection p : X Ñ CN´1, then for a small enough
representative the fiber p´1p0q is the single point 0.
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Theorem 1.1.8 (Weierstrass Preparation Theorem) (see [De-P00, Thm
3.2.4])
Let f P Ctz1, . . . , zN u be regular of order b in zN . Then there exists a unique
monic polynomial P P Ctz1, . . . , zN´1urzN s

Ppz1, . . . , zN q “ zbN ` a1pz1, . . . , zN´1qzb´1
N ` ¨ ¨ ¨ ` aN pz1, . . . , zN´1q

with aip0q “ 0, and a unit u P Ctz1, . . . , zN u such that we have the equality
of convergent power series

f “ uP.

As a consequence of this result we deduce two important facts: if we choose
adequate coordinates such that f “ uP then it is equivalent to seek solutions
of f pz1, . . . , zN q “ 0 and of Ppz1, . . . , zN q “ 0. As a geometric consequence of
this we get that if we consider the first projection as before and p´1p0q “ t0u,
then for any point q “ pq1, . . . , qN´1q P CN´1 sufficiently close to the origin
the points of the fiber p´1pqq correspond to the roots of the polynomial of
degree b

Ppq1, . . . , qN´1, zN q “ zbN ` a1pq1, . . . , qN´1qzb´1
N ` ¨ ¨ ¨ ` aN pq1, . . . , qN´1q,

and so all nearby fibers are also finite. More generally one uses this result to
prove that if a complex analytic map p : X 1 Ñ X is such that for some point
0 P X we have that p´1p0q is a finite set, then there exists a neighborhood
U of 0 in X such that the restricted map p´1pUq Ñ U is finite. See [De-P00,
Thm 3.4.24].

For curve singularities, there is a classical invariant which measures how far
the singularity is from being normal, or non singular. It has several geometric
interpretations, the classical one being ”diminution of genus”, and we shall
see more about it below.

Definition 1.1.9 Let pX, 0q be a reduced curve singularity. Its δ invariant is

δ “ dimC
OX,0

OX,0
.

This quotient is a finite dimensional vector space because it is the stalk
of a coherent sheaf supported at the origin. For plane, and more generally
Gorenstein, branches we have the equality c “ 2δ, where c is the conductor
defined before Proposition 1.0.1. See [Za2, Chap. II, §1].

Going back to the plane curve case, that is curves pX, 0q Ă pC2, 0q defined
by a convergent power series f P Ctx, yu, or according to the Weierstrass
preparation Theorem and possibly after a linear change of coordinates, by a
polynomial P P Ctxurys. Now from an algebraic point of view, consider the
field of fractions Cttxuu of the integral domain Ctxu; the irreducible polyno-
mial yn ´ x P Cttxuurys defines an algebraic extension of degree n of Cttxuu,
denoted by Cttx

1
n uu, which is a Galois extension with Galois group equal

to the group µn of n-th roots of unity in C. The action of µn is exactly the
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change in determination of x
1
n determined by x

1
n ÞÑ ωx

1
n for ω P µn . A series

of the form y “
ř

ai x
i
n such that the greatest common divisor of n and all

the exponents i which effectively appear is 1 gives n different series as ω runs
through µn .

Suppose now that our polynomial P is an irreducible element of Ctxurys
of degree n. Then the Newton polygon method (see for example [Tei07],

[Che78], or [Br-K86, Section 8.3]) provides a series ypx1{mq P Ctx
1
n u such

that Ppx, ypx
1
n qq “ 0 and we have the equality:

Ppx, yq “
ź

ωPµn

´

y ´ ypωx
1
n q

¯

.

In particular we have that

Cttxuu˚ :“
ď

nPN

Cttx
1
n uu

is an algebraically closed field (See [Wal78, IV.3] or [Che78, Thm 8.2.1]),
and so every polynomial P P Ctxurys has all its roots in Cttxuu˚. Finally, the
relation with the parametrizations given by the normalization is the following,
if

ypx
1
n q P Ctx

1
n u Ă Cttxuu˚

is a root of Ppx, yq, then by taking x “ tn we get the parametrization

t ÞÑ ptn, yptqq.

Let us finish this section by looking at plane projections from an alge-
braic perspective. For simplicity suppose pX, 0q Ă pCN , 0q is a reduced and
irreducible germ of complex analytic curve with N ě 3. Let us write the
associated analytic algebra

OX,0 “
Ctz1, . . . , zN u

I
,

where I is a prime ideal, and so OX,0 is an integral domain. If we choose a
sufficiently general coordinate system (or if you prefer after a general linear
coordinate change) the Noether normalization Theorem ([De-P00, Corollary
3.3.19]) tells us that we have a finite ring extension Ctz1u ãÑ OX,0. This
implies that the we have an algebraic field extension

Cttz1uu Ă Quot pOX,0q ,

and by the primitive element Theorem there exists an element f P OX,0 such
that Quot pOX,0q “ Cttz1uur f s.
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So if we denote by Ctz1, f u the analytic algebra obtained as the quotient
of Ctx, yu by the kernel of the map Ctx, yu Ñ OX,0 defined by x ÞÑ z1 ` J,
y ÞÑ f then we have finite ring extensions with the same field of fractions

Ctz1, f u ãÑ OX,0 ãÑ Cttu.

Now Ctz1, f u is the analytic algebra of a plane curve pX1, 0q Ă pC
2, 0q and

it has the same normalization as OX,0. We have used the primitive element
Theorem as a substitute for the proof of the existence of a projection CN Ñ

C2 sufficiently general for it to induce a “ bimeromorphic” map pX, 0q Ñ
pX1, 0q. However the primitive element Theorem does not tell us much about
the geometric nature of the projection. That is the object of the following
sections.
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1.2 Fitting Ideals - A good structure for the image of a
finite map

In this section, following [Tei73, §3] and [Rim72, Definition 5.6], [Tei77,
§5], we will give the definitions of Fitting ideals, which we will use later to
give a definition of the image, as a complex analytic space, of a finite map
between complex analytic spaces.

Let A be a ring, and let M be an A-module of finite presentation, that is,
there is an exact sequence, called a presentation of M:

Aq Ψ
ÝÑ Ap ÝÑ M ÝÑ 0,

where p, q P N. For each integer j we associate to M the ideal FjpMq of
A generated by the pp ´ jq ˆ pp ´ jq minors of the matrix (with entries in
A) representing Ψ. Here we need the convention that if there are no pp ´
jq ˆ pp ´ jq minors because j is too large, i.e., j ě p, then FjpMq “ A (the
empty determinant is equal to 1) and if, at the other extreme, p´ j ą q, set
FjpMq “ 0 (the ideal generated by the empty set is 0).

A Theorem of Fitting (see [To72, Chap. I, §2], [Eis95, Chap. 20, §2]) asserts
that the ideals FjpMq depend only on the A-module M and not on the choice
of a presentation. We call FjpMq the j-th Fitting ideal of M.

More generally, if pX,OX q is a ringed space, and M a coherent sheaf of
OX -modules, we can define a sheaf of ideals FipMq of OX , by defining FipMq
locally as above, and then by uniqueness the ideals found locally patch up into
a sheaf of ideals. Remark also that since FipMq is locally finitely generated,
FipMq will be a coherent sheaf of ideals as soon as OX is coherent, which is
the case for a complex analytic space by Oka’s Theorem (see [Loj91, Chap.
VI, 1.3]).

Let now f : pX,OX q Ñ pY,OY q be a map of complex analytic spaces. We
would like to define the image of f as a complex analytic subspace of pY,OY q.
This is not always possible, and in particular if one hopes to get a closed
complex subspace of Y it is better to assume f is proper, and here we will
consider only the case where f is finite (that is, proper with finite fibres).

The first sheaf of ideals that comes to mind as a candidate to define f pXq
is the sheaf of functions g on Y such that g ˝ f “ 0 on X , i.e., the annihilator
sheaf of the sheaf of OY -modules f˚OX , which is coherent by a theorem of
Grauert-Remmert:

AnnOY p f˚pOX qq “ sheaftfunctions g on Y such that g ¨ f˚OX “ 0 u.

This is not a good choice because its formation does not commute with
base extension, as we will show by an example below (Example 1.2.3).

The second option is the 0th Fitting ideal of f˚OX , which set theoretically
also defines the image of f , since as a set the subspace of Y defined by it
is ty P Y | dimCp f˚OX q ą 0u “ ty P Y | p f˚OX qy ‰ 0u. Indeed, since the
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OY -module f˚OX is coherent, it has locally on suitable open sets U of Y a
presentation by an exact equence of OY pUq-modules:

OY pUqq
Ψ
ÝÑ OY pUqp ÝÑ f˚OX pUq ÝÑ p0q.

The sheaf of ideals F0p f˚OX q is then generated on U by the pˆ p minors of
a matrix representing Ψ.

Since both the formation of direct images and the formation of Fitting
ideals commute with base change (see proposition 1.2.2 below), this definition
of the image will also have this property. So we set:

Definition 1.2.1 Let f : X Ñ Y be a finite morphism of complex analytic
spaces. The image imp f q of f is the subspace of Y defined by the coherent
sheaf of ideals F0p f˚OX q. It is sometimes called the Fitting image of f to
distinguish it from the one defined by the annihilator.

Proposition 1.2.21. The formation of imp f q commutes with base change:
Given a complex analytic map φ : T Ñ Y , consider the map fT : X ˆY T Ñ T
obtained by base extension, where XˆY T is the fiber product. Then imp fT q “
φ´1pimp f qq as analytic spaces.

2. We have the inclusion F0p f˚OX q Ă Annp f˚OX q and the equality
a

F0p f˚OX q “
a

Annp f˚OX q.

Proof 1) Since OX is a finitely generated OY -module the OT -module OXˆYT

is equal to OX bOY OT and if M is a finitely presented A-module as above
and A Ñ B is a map of algebras, then

Bq ΨbA1
ÝÑ Bp ÝÑ M bA B ÝÑ 0

is a presentation of M bA B as a B-module and the matrix of Ψ bA 1 is the
matrix of Ψ so that FjpM bA Bq “ FjpMq.B.
2) The inclusion follows directly from Cramer’s rule and the equality from the
definition of the Fitting ideal as defining the set of points where the cokernel
of the second arrow is not zero. ˝

Example 1.2.3 Let f : pC, 0q Ñ pC2, 0q be given by x “ t2k , y “ t3k for some
integer k. The set-theoretic image of f is the curve y2´ x3 “ 0. However, we
wish to obtain an ideal defining a space supported on that curve, but possibly
with nilpotent functions. Let us compute F0p f˚pOCq0 as the 0-th Fitting ideal
of Cttu considered as Ctx, yu-module via the map of rings Ctx, yu Ñ Cttu
sending x to t2k and y to t3k . We must write a presentation of Cttu as Ctx, yu-
module. Let e0 “ 1, e1 “ t, . . . , e2k´1 “ t2k´1. It is easily seen that they form
a system of generators of Cttu as Ctx, yu-module, and that between them we
have the following 2k relations:

xek ´ ye0 “ 0, x2e0 ´ yek “ 0
xek`1 ´ ye1 “ 0, x2e1 ´ yek`1 “ 0

...
...

xe2k´1 ´ yek´1 “ 0, x2ek´1 ´ ye2k´1 “ 0
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which are independent. Hence we have a sequence of Ctx, yu-modules:

0 ÝÑ
2k´1
à

i“0

Ctx, yuei
ψ
ÝÑ

2k´1
à

i“0

Ctx, yuei
ϕ
ÝÑ Cttu ÝÑ 0

with ϕpeiq “ t i , and ψ is given by the 2k ˆ 2k matrix

ψ “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

´y 0 ¨ ¨ ¨ 0 x 0 ¨ ¨ ¨ 0
0 ´y ¨ ¨ ¨ 0 0 x ¨ ¨ ¨ 0
...

. . .
...

. . . 0
0 0 ¨ ¨ ¨ ´y 0 0 ¨ ¨ ¨ x
x2 0 ¨ ¨ ¨ 0 ´y 0 ¨ ¨ ¨ 0
0 x2 ¨ ¨ ¨ 0 0 ´y ¨ ¨ ¨ 0
...

. . .
...

. . . 0
0 0 ¨ ¨ ¨ x2 0 0 ¨ ¨ ¨ ´y

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

It is not hard to see that the sequence is exact, which means that the inde-
pendent relations we have found must generate all relations between the ei .
Indeed, there is a general reason why Cttu must have a resolution of length 1
as Ctx, yu-module: the Ctx, yu-module Cttu is of homological dimension one
(see [Mo-P89]) and therefore the module of relations between the ei is a free

submodule of
À2k´1

i“0 Ctx, yu and thus of rank ď 2k ´ 1.
By permuting rows and columns of ψ one checks that detpψq “ py2´ x3qk

i.e., we have shown that

F0p f˚OCq0 “ py2 ´ x3qkCtx, yu

Let us now calculate AnnCtx,yuCttu; the annihilator is just the kernel of
the map Ctx, yu Ñ Cttu, which is the ideal generated by py2 ´ x3q, certainly
different from our Fitting ideal if k ą 1.

Let us now make a base change by restricting our map over the x-axis, i.e.,
by the inclusion ty “ 0u Ă pC2, 0q or algebraically by Ctx, yu Ñ Ctxu sending
y to 0. Then the annihilator of Cttu

Â

Ctx,yu Ctxu “ Cttu{pt3k q viewed as

Ctxu-module is px2qCtxu while the image in Ctxu of py2 ´ x3qCtx, yu is
px3qCtxu. This shows that the formation of the annihilator does not commute
with base change.

1.2.1 Equations versus Parametrizations

As we said in subsection 1.0.1, a germ of curve pX0, 0q, abstractly, is a germ
of a purely 1-dimensional analytic space, hence it is described by an analytic
algebra OX0,0 of pure dimension 1. Geometrically, pX0, 0q can be effectively
given in two ways:
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By equations: By giving an ideal I “ x f1, . . . , fmy in Ctx1, . . . , xN u such that
OX0,0 » Ctx1, . . . , xN u{I. Saying that OX0,0 is purely one-dimensional means
that the ideal x0y has a primary decomposition x0y “ Q1 X . . . X Qr where
?

Qi “ Pi is a minimal prime ideal in OX0,0, and dimpOX0,0{Piq “ 1 for
i “ 1, . . . , r.

By a parametrization: By giving ourselves a germ of finite map p :
Ůr

i“1pC, 0q Ñ
pCN , 0q.

Here one has to be very careful: except when n “ 2, it is not true, even
if r “ 1 and p is generically 1-to-1 so that the image (given by the Fitting
structure) of this mapping is a reduced curve: it will have “embedded com-
ponents” concentrated at the singular points, as will be shown in Example
1.2.4. The analysis of this phenomenon is beyond the scope of these notes.
The case where n “ 2 is explained in Proposition 1.2.6 in the next section.

Example 1.2.4 Consider the curve pX0, 0q parametrized by nptq “ pt4, t6, t7q
which is a complete intersection (with the reduced structure) with ideal

xy2 ´ x3, z2 ´ x2yyCtx, y, zu.

We have that Cttu is generated as a Ctx, y, zu-module by e0 “ 1, e1 “ t,
e2 “ t2 and e3 “ t3 and it is not difficult to see that the relations are described
by the following matrix

Ψ “

»

—

—

—

—

—

—

—

—

—

—

–

y 0 ´x 0
0 y 0 ´x
´x2 0 y 0

0 ´x2 0 y

z 0 0 ´x
´x2 z 0 0

0 ´x2 z 0
0 0 ´x2 z

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

that is, Ψ is the matrix of a presentation

Ctx, y, zu8 Ψ
ÝÑ Ctx, y, zu4 ÝÑ Cttu ÝÑ 0.

of the Ctx, y, zu-module Cttu. Computing the 4ˆ 4 minors of Ψ we find that:

F0pCttuq “ xy2 ´ x3, z2 ´ x2yy X xz2, xy3, y4, xy2z ´
x4z, y3z, x4y, x3y2, x3yz, x6, x5zyCtx, y, zu,

where
a

xz2, xy3, y4, xy2z ´ x4z, y3z, x4y, x3y2, x3yz, x6, x5zy “ xx, y, zyCtx, y, zu.
The ring Ctx, y, zu{F0pCttuq is not purely 1-dimensional: it has an embedded
component : an ideal of the primary decomposition of the ideal p0q which
defines a subspace of strictly lower dimension, in this case dimension zero.
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1.2.2 Deformations of equations vs. deformations of
parametrizations

In this subsection we consider deformations of a curve. We will follow the
presentation given in [Bu-G80]. The results in this subsection are due to B.
Teissier (see [Tei77]).

Let pX0, 0q Ă pC
N , 0q be a germ of a reduced curve and X0 Ă B0 a repre-

sentative, where B0 Ă CN is a small open ball with center 0. Let

ϕ0 : X0 “

r
ğ

j“1

D j Ñ X0 Ă B0,

ϕ0ptq “ pϕ0pt1q, . . . , ϕ0ptr qq , t “ pt1, . . . , tr q,

be a representative of the normalization of X0, where
r
ğ

j“1

D j is the disjoint

union of r open discs centered at the origin in C, ϕ0 is a r-uple of distinct maps
ϕ0|D j : pD j, 0q Ñ B0, and for each j the restriction ϕ0|D j is a homeomorphism

pD j, 0q Ñ pX j
0, 0q, where pX j

0, 0q is the j-th branch of pX0, 0q. It induces an

analytic isomorphism pD j, 0qzt0u Ñ pX j
0, 0qzt0u because an analytic map CÑ

C which is a homeomorphism is an isomorphism.

Definition 1.2.5 Let D Ă Cq be a small disc with center 0. A deformation
of the normalization of X0 is a holomorphic mapping

ϕ : X0 ˆD “
r
ğ

j“1

pD j ˆDq Ñ B0,

such that ϕpt, vq “ ϕ0ptq`vψpt, vq, t P X0, v P D and ψpt, vq “ pψpt1, vq, . . . , ψptr, vqq
with ψpt j, vq : pD jˆD, 0q Ñ B0. Note that we are dealing with representatives
of germs of deformations of germs.

Then for sufficiently small D j and D we have that φ “ pϕ, vq : X0 ˆ D Ñ
B0 ˆD is a finite mapping and therefore

X “ φpX0 ˆDq Ă B0 ˆD

is a q ` 1-dimensional analytic subset.

Proposition 1.2.6 Given a germ of finite map n :
Ůr

i“1pD j ˆ D, 0q Ñ
pC2, 0q ˆ D with D Ă Cq as above, corresponding to a map of analytic C-
algebras OCq,0tx, yu Ñ

Àr
i“1 OCq,0ttiu which is the identity on OCq,0 and

makes the second algebra a finite module over the first, the Fitting ideal
F0p

Àr
i“1 OCq,0ttiuq is a non zero principal ideal of OCq,0tx, yu.

Proof The argument goes back to [Tei73, Chap.III, 3.4] (see also [Tei77,
§5], [G-L-S07, Exercise 1.6.4], [Mo-P89, Proposition 3.1]): the depth of the



20 Arturo Giles Flores, Otoniel N. Silva, Bernard Teissier

OCq,0tx, yu-module
Àr

i“1 OCq,0ttiu is q ` 1 because it is Cohen-Macaulay
(see [G-L-S07, Theorem B.8.11]) of dimension q ` 1, so by the Auslander-
Buchsbaum formula its homological dimension is one (see (see [G-L-S07, The-
orem B.9.3]), which implies that its minimal presentations are exact sequences
of OCq,0tx, yu-modules

p0q Ñ OCq,0tx, yup Ñ OCq,0tx, yup Ñ
r
à

i“1

OCq,0ttiu Ñ p0q.

Therefore the 0-th Fitting ideal is generated by the determinant of a p ˆ p-
matrix.

See also [Mo-P89, Lemma 2.1]. ˝

Applying Proposition 1.2.6 with q “ 0, we see that none of the plane images
we consider has embedded components. The Fitting image of a parametriza-
tion is reduced if and only if for i “ 1, . . . , r the set of all exponents appearing
in the series xptiq or in yptiq is coprime. For given i, the gcd of those exponents
is the degree of the map pD, 0q Ñ pC2, 0q defined by xptiq, yptiq and it is also
the degree at which the equation f ipx, yq “ 0 of the reduced image curve is
raised to give a generator of the Fitting ideal of the Ctx, yu-module Cttiuq.
Compare with Example 1.2.3 and see [Mo-P89, Proposition 3.1] for a more
general result.

Going back to the case q ą 0, we see that if the parametrization for v “ 0
has a reduced image X0, then the hypersurface X in D ˆ C2 which is the
image of the parametrization is reduced. Otherwise, since it is the Fitting
image, applying the compatibility with base change to 0 P D, we find that
the special fiber X0 would not be reduced.
But then each fiber is reduced and its parametrization is an isomorphism
outside of the singularities; it is a bimeromorphic map.
This implies that the map p :

Ůr
i“1pD jˆD, 0ˆ0q Ñ pX, 0q is the normalization

of the hypersurface X because the source is normal, and the map p is finite
and bimeromorphic. It is a non singular normalization of the hypersurface X
which induces the normalization of each fiber of the projection map X Ñ D.
So we have proved:

Corollary 1.2.7 The parametrization of the total space of the family of plane
curves n : pX, 0q Ñ pD, 0q obtained by deforming the parametrization of the
germ of reduced plane curve pX0, 0q is a simultaneous normalization.

Moreover, we can observe that the OCq,0-modules OX,0 and OX,0 “
Àr

i“1 OCq,0ttiu
are flat. The first one because a hypersurface is Cohen-Macaulay (see [G-L-S07,
Theorem B.8.11]) and the second one because it is a sum of flat modules (see
[G-L-S07, Corollary I 1.88]).
We have the exact sequence of OCq,0-modules:

p0q Ñ OX,0 Ñ OX,0 Ñ
OX,0

OX,0
Ñ p0q,
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and the flatness of the first two modules implies that of the third.
Now by the Weierstrass Preparation Theorem, the singular locus of X is finite

over D, 0q and is the support of the OCq,0-module
OX,0

OX,0
, which is flat and thus

locally free. So the dimensions of its fibers over points v P D is constant.
Provided D and B0 are sufficiently small, this dimension is the sum of the δ
invariants (see Definition 1.1.9) of the finitely many singularities of the curve
Xv “ n´1pvq, which all tend to ) as v Ñ 0. So we have:

Corollary 1.2.8 In a small enough representative of family of reduced plane
curves obtained by deformation of the parametrization of the special fiber, the
sum of the δ invariants of the singularities of the fibers is constant.

We shall use this in the proof of Proposition 1.3.6 below.

We have just seen that the space X defined by deforming a parametrization
of a plane curve can also be described as the space defined by deforming an
equation for the reduced plane curve X0, since the equation for X has to
reduce to the equation for X0 when setting v “ 0. The situation is more
delicate for parametrized curves in CN with N ą 2, not only because of the
behavior of the Fitting ideal, but also because in general deforming equations
does not produce a flat family. The general definition of a deformation of
a germ pX0, 0q Ă pCN , 0q is a germ pX, 0q Ă pCN , 0q ˆ pS, 0q, flat over S
and defined by equations which, when restricted over 0 P S give a set of
equations of X0, up to isomorphism. It is therefore a reasonable question to
ask whether any such deformation can be obtained by a deformation of the
parametrization of X0 in the sense that X is the reduced image of such a
deformation.

The answer is a converse to Corollary 1.2.8, as follows:

Proposition 1.2.9 (See [Tei80, Theorème 1, page 80], and [G-L-S07, §2.6]
for plane curves) Let p : pX, 0q Ñ pS, 0q be a flat morphism where all the fibers
are reduced curves and S is non singular. Then, for suitable representatives,
the following conditions are equivalent:

• The normalization X is non singular, the composed map X n
Ñ X

p
Ñ S is flat

and for each s P S the map of fibers pXqs Ñ Xs is the normalization.
• The sum δs of the δ invariants of the singular points of the fibers Xs is

independent of s P S.

Since the map p ˝ n is flat with non singular fiber, at every point of X lying
above 0 P X , the space X is locally isomorphic over S to a product of a disk
by S. This shows that the map n is a deformation of the parametrization of
X0. The assumption that the fibers are reduced is necessary, as evidenced by
the following example.

Example 1.2.10 Consider the of curve X0 in C3 given by the equations x “
0, z2 ´ y3 “ 0. The normalization of X0 is given by
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ϕptq “ p0, t2, t3q.

Consider the deformation Φpv, tq “ pvt, t2, t3, vq. So, the reduced image Xred

of Φ is given by the following equations:

x2 ´ v2y “ 0, xy ´ vz “ 0, xz ´ vy2 “ 0, z2 ´ y3 “ 0.

Now, when we consider the projection f : Xred Ñ D, the fiber f´1p0q “ X0

is given by

x2 “ 0, xy “ 0, xz “ 0, z2 ´ y3 “ 0.

Note that it is not reduced at the origin, hence there is no deformation of the
equations x “ z2´ y3 “ 0 which defines Xred . One can understand this as fol-
lows: while the special fiber of our family of curves has embedding dimension
two, the general fiber has embedding dimension three. In an analytic family
the embedding dimension of the fibers can only increase by specialization so
that in our analytic family f : Xred Ñ D the ideal defining the special fiber
has in its primary decomposition an infinitesimal embedded component with
ideal xx2, y, zy sticking out of the x “ 0 plane, which makes the embedding
dimension of f´1p0q equal to three as it must be. This fact was stressed also
in [Tei77, §3, section 3.5].

More material on the plane curve case is found in [G-L-S07, Chap. II, §2].
There are generalizations of these results to the cases where the fibers may
be non reduced and have embedded components. There are definitions of the
invariant δ which apply to this more general situation. We refer the reader
to [L15] and the references therein.

Remark 1.2.11 We note that one can use Mond-Pellikaan’s algorithm in
[Mo-P89] to find a presentation matrix of a finite analytic map germ g :
pX, 0q Ñ pCd`1, 0q, where pX, xq is a germ of Cohen-Macaulay analytic space
of dimension d. For the computations one can use also the software Singular
[D-G-P-S] and the implementation of Mond-Pellikaan’s algorithm given by
Hernandes, Miranda, and Peñafort-Sanchis in [H-M-P18]. At the web page
of Miranda [Mir19] one can find a Singular library to compute presentation
matrices based on the results of [H-M-P18].
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1.3 General projections

For a reduced and equidimensional germ of complex analytic variety pX, 0q Ă
pCN , 0q Whitney gave 6 possible definitions of tangent vectors ([Whi65]), the
sets of which constitute tangent cones:

C1pX, 0q Ă C2pX, 0q Ă C3pX, 0q Ă C4pX, 0q Ă C5pX, 0q Ă C6pX, 0q,

and when the germ pX, 0q is smooth they all coincide with the tangent space
T0X .

What is usually known as the tangent cone CX,0 is what Whitney defined
as the cone C3pX, 0q and is constructed by taking limits of secants through
the origin. This means that if we take a representative pX, 0q Ă pCN , 0q then a
vector v P CN is in C3pX, 0q if there exists a sequence of points tpiu Ă Xzt0u
tending to 0 and a sequence of complex numbers tλiu Ă C˚ such that

λipi Ñ v.

Algebraically it is constructed by blowing up the point

e0 : Bl0X Ñ X

and the fiber over the origin is the projectivized tangent cone e´1
0 p0q “

PC3pX, 0q. In particular it is a pure d-dimensional algebraic cone where d
is the dimension of pX, 0q.

If pX, 0q is a curve then the cone C3pX, 0q is a finite number of lines, one
for each branch of X . By abuse of language they are called the tangents to X
at 0. Of course different branches may have the same tangent.

Definition 1.3.1 A linear projection π : pCN , 0q Ñ pCM, 0q with kernel D is
called C3-general (with respect to X) if it is transversal to the tangent cone.
That is

D X C3pX, 0q “ t0u.

Note that by the Weierstrass Preparation Theorem (see 1.1.8 and [De-P00,
Thm 3.4.24]) the condition is equivalent to the fact that the map

π|C3pX, 0q : C3pX, 0q Ñ C3pC
M, 0q “ TCM ,0

is finite (proper with finite fibers), which implies M ě d. The restriction of a
C3-general projection to X

π|X : pX, 0q Ñ pCM, 0q

satisfies π´1p0q “ t0u since otherwise the tangent cone to π´1p0q, which is
contained in C3pX, 0q, would be contained in D. Again by the Weierstrass
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Preparation Theorem, this is equivalent to π|X being a finite map. However
the finiteness of π|X does not imply that the projection is C3-general; consider
the projection of y3 ´ x2 “ 0 to the x-axis.

Since C3pX, 0q is of dimension d, almost all (an open dense set of) linear
projections π : pCN , 0q Ñ pCd`1, 0q are C3-general for pX, 0q. Since we assume
X to be equidimensional, this tells us that πpXq Ă Cd`1 is a hypersurface. In
the curve case (d=1) this guarantees the existence of linear projections with
image a plane curve.

By [Chi89, Cor. 8.2] we have that C3pπpXq, 0q “ π pC3pX, 0qq in Cd`1. We
leave it as an exercise for the reader to verify that this last equality is an
equality of Fitting images. Hint: use the specialization spaces X and Y to
the tangent cones for X and Cd`1 respectively (see [Gi-T18, §2, 2.4]) and the
fact that the natural map X Ñ Y is finite by the Weierstrass Preparation
Theorem because the genericity assumption is equivalent to the finiteness of
the map C3pX, 0q Ñ TCd`1,0, and apply [Mo-P89, Prop. 1.6].

Finally, a projection π : pCN , 0q Ñ pCd, 0q is C3-general for pX, 0q if and
only if the map C3pX, 0q Ñ C3pC

d, 0q “ TCd,0 which it induces is finite and
surjective, and thus a ramified covering. These C3-general maps all induce
on pX, 0q ramified analytic coverings pX, 0q Ñ pCd, 0q of degree equal to the
multiplicity of pX, 0q.

The cone C4pX, 0q is constructed by taking limits of tangent vectors at
smooth points. One can prove that it is equivalent to taking limits at 0 in
the appropriate Grasmannian of tangent spaces at non singular points of X
and so it is determined by the fiber over 0 of the Semple-Nash modification
of a representative X of pX, 0q. Of course there is an analogous definition of
a C4-general linear projection and they do have interesting equisingularity
properties. However, since in the curve case the cones C3 and C4 coincide we
will skip this part and ask the interested reader to look at [Chi89], [Stu72a]
and [Stu72b].

The cone C5pX, 0q is constructed by taking limits of secants. This means
that if we take a representative X Ă CN then a vector v P CN is in C5pX, 0q
if there exist sequences of pairs of distinct points tpiu, tqiu Ă Xzt0u tending
to 0 as i Ñ8 and a sequence of complex numbers tλiu Ă C˚ such that

λippi ´ qiq Ñ v.

To prove that C5pX, 0q is an algebraic cone and have a bound for its dimension,
take a small representative X Ă Cn consider the (closed) diagonal embedding
δ : X ãÑ X ˆ X and blow up its image ∆:

e∆ : Bl∆pX ˆ Xq Ñ X ˆ X .

If we choose coordinates pz1, . . . , zN ,w1, . . . ,wN q of the ambient space C2N ,
then we can obtain the space Bl∆pX ˆ Xq as the closure of the graph of the
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secant map defined away from the diagonal ∆ by:

X ˆ Xz∆ ÝÑ PN´1

pz,wq ÞÝÑ rz1 ´ w1 : ¨ ¨ ¨ : zN ´ wN s.

So we have Bl∆pXˆXq as a closed subspace of the product XˆXˆPN´1, the
map e∆ is induced by the projection to XˆX , and the exceptional fiber is the
divisor D :“ e´1

∆
p∆q Ă ∆ˆPN´1 which comes with a map D Ñ ∆ such that for

every point pq, qq P ∆ the fiber is the projective subvariety corresponding to
the projectivization of the C5-cone of X at q, that is PC5pX, qq. This is roughly
the way Whitney proved that the C5-cone is an algebraic variety in [Whi65,
Th. 5.1]. Now C5pXq is the analytic space obtained by deprojectivization of
the (fibers of) the divisor D and ψ corresponds to the pullback of e∆ by δ:

X ˆ CN Ą C5pXq //

ψ

��

Bl∆pX ˆ Xq

e∆

��
X

δ
// X ˆ X

where the upper arrow is defined only outside of X ˆ t0u. Note that the
dimension of C5pXq is 2d, and the dimension of ψ´1ppq “ C5pX, pq for a
smooth point p P X is equal to d since in this case we have C5pX, pq “ TpX .
By the semicontinuity of the dimensions of the fibers of an analytic morphism,
this implies that:

d ď dim C5pX, 0q ď 2d

Definition 1.3.2 A linear projection π : pCN , 0q Ñ pCM, 0q with kernel D
is called generic (or C5-general) with respect to X if it is transversal to the
cone C5pX, 0q. That is

D X C5pX, 0q “ t0u.

In other words, no limit at 0 of secants to X is contained in D.
Note that a generic projection is in particular C3-general and C4-general.

Proposition 1.3.3 Let pX, 0q Ă pCN , 0q be a reduced equidimensional germ
of complex analytic variety of dimension d and π : pCN , 0q Ñ pCM, 0q a linear
projection.

a) If π is generic then the restriction to X induces a homeomorphism with its
image.

b) pX, 0q is smooth if and only if dim C5pX, 0q “ d

Proof First of all note that the transversality to the cone C5pX, 0q implies
that the restriction π|X is injective for a small enough representative of X .
But then the induced map π|X : X Ñ CM is injective, continous and the map
X Ñ πpXq is open since π is and so it should be a homeomorphism of X with
its image πpXq.



26 Arturo Giles Flores, Otoniel N. Silva, Bernard Teissier

Now for bq: sufficiency is clear since pX, 0q smooth implies C5pX, 0q “ T0X and
so it is of dimension d. Conversely, if the dimension of C5pX, 0q is d there exist
generic linear projections of X to Cd . By aq this gives us a homeomorphism
between pX, 0q and pCd, 0q. Note that π is also C3-general so it induces a ram-
ified covering of degree equal to the multiplicity of pX, 0q, but the injectivity
gives us multiplicity 1 and so pX, 0q is smooth. ˝

For more on this and more general results see [Stu72a],[Stu77] and [Chi89,
Section 9.4]

An important thing to notice is that in the reducible case the cone C5pX, 0q
contains but is not equal to the union of the C5-cones of its irreducible com-
ponents. For instance if pX,0q is a curve consisting of two smooth branches
X1 and X2 then both cones C5pXi, 0q are one-dimensional but since pX, 0q is
singular then by the previous result C5pX, 0q can not have dimension 1.

So now we have that if pX, 0q is singular then d ` 1 ď dim C5pX, 0q ď 2d,
and for curves this gives dim C5pX, 0q “ 2. This guarantees the existence of
generic projections of curves to C2.

Corollary 1.3.4 Let pX, 0q Ă pCN , 0q be a germ of reduced analytic curve.
Then almost all (an open dense set of) linear projections π : pCN , 0q Ñ
pC2, 0q are generic and their Fitting images πpXq Ă C2 are reduced plane
curves homeomorphic to X . Moreover, π induces an analytic isomorphism
Xzt0u Ñ πpXqzt0u.

Proof This follows from Proposition 1.2.6 and the fact that an analytic map
CÑ C which is a homeomorphism is an isomorphism. ˝

1.3.1 The case of dimension 1.

In the case of curves we have the following important results:

Proposition 1.3.5 (see [B-G-G80, Prop IV.1])
Let pX, 0q Ă pCN , 0q be a germ of reduced analytic curve. If pX, 0q is sin-
gular then the cone C5pX, 0q is a finite union of 2-planes each one of them
containing at least one tangent line to pX, 0q.

Proof We will only give an idea of the proof.
By Proposition 1.3.3 the cone C5pX, 0q is two dimensional and by the blowup
construction it has a finite number of irreducible components. So what one
has to prove is that all the irreducible components are 2-planes. Again, by
this blowup construction, any (direction of) line contained in C5pX, 0q can be
picked off by lifting an arc
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pψ1, ψ2q : pC, 0q Ñ pX ˆ X, p0, 0qq

to Bl∆pX ˆ Xq like pψ1ptq, ψ2ptq, rψ1ptq ´ ψ2ptqsq. Now each ψiptq is an arc
pC, 0q Ñ pX, 0q and can be obtained using the parametrization of one of the
branches of pX, 0q. Once you see this, what you have to do is consider the
different cases and work out the calculations.

The first case is when pX, 0q Ă pCN , 0q is irreducible of multiplicity n so ac-
cording to subsection 1.0.2, in suitable coordinates we have a parametrization
of the form:

ϕptq “

˜

tn,
ÿ

iąn

a2, i t i, . . . ,
ÿ

iąn

aN, i t i
¸

with the tangent line being the z1-axis r1 : 0 : ¨ ¨ ¨ : 0s. For every n-th root of
unity ω ‰ 1 the lifted arc

t ÞÑ pϕptq, ϕpωtq, rϕptq ´ ϕpωtqsq P X ˆ X ˆ PN´1

will define a limit line `ω P P
N´1 as t Ñ 0 which is distinct from the z1 axis

and if you define Hω as the 2-plane generated by the z1-axis and the line in
CN corresponding to `ω , then you can prove that

C5pX, 0q “ Hω1 Y . . . Y Hωn´1,

by verifying that any line obtained by lifting an arc is contained in one of
these 2-planes. We note that they are not necessarily all different.

For the reducible case it is enough to consider two branches pX, 0q “
pX1, 0q Y pX2, 0q. In this case you have that the C5-cone of each irreducible
component pXi, 0q will be contained in C5pX, 0q but you will have additional
components that come from the configuration of these two branches. For
instance if they have different tangent lines `1 and `2 then all you have to
add is the plane H12 generated by these two lines.i.e.,

C5pX, 0q “ C5pX1, 0q Y C5pX2, 0q Y H12.

When the two branches are tangent (have the same tangent line) then you
have to play a game very similar to the irreducible case by reparametrizing
your branches in such a way as to travel through them at the same “speed”
and using roots of unity to find lines `ω in the C5pX, 0q that are different
from the tangent line and these will give you the additional 2-planes. i.e.,:

C5pX, 0q “ C5pX1, 0q Y C5pX2, 0q Y Hω1 Y . . . Y Hωk
. ˝

Proposition 1.3.6 (see [B-G-G80, Prop IV.2])
Let pX, 0q Ă pCN , 0q be a germ of reduced analytic curve, and let Ω Ă GpN ´
2, Nq be the non-empty Zariski open set of the Grassmannian of pN´2q-planes
of CN which are transversal to C5pX, 0q. Then:
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a) For H P Ω the plane curve pπH pXq, 0q is reduced and of constant topological
(equisingularity) type with Milnor number µ0.

b) If H R Ω then one of the following statements is verified:

– 0 is not an isolated point of H X X .
– 0 is an isolated point of H X X but the curve pπH pXq, 0q is not reduced.
– 0 is an isolated point of H X X , the curve pπH pXq, 0q is reduced but its

Milnor number is greater than µ0.

Proof Let W 1 Ă GpN ´ 2, Nq be the open subset of the the Grassmannian
of pN ´ 2q-planes of CN defined by the condition that H P W 1 if and only if
0 P CN is an isolated point of H X X . Let W Ă C2N with coordinate system
pa1, . . . , aN , b1, . . . , bN q be the associated open subset, where d “ pa, bq P W
if and only if the linear forms

a1z1 ` ¨ ¨ ¨ ` aN zN and b1z1 ` ¨ ¨ ¨ ` bN zN

are linearly independent and the N ´ 2 plane Hd Ă CN they define is in W 1.
Let πd be the linear projection

πd : CN ÝÑ C2

pz1, . . . , zN q ÞÑ pa1z1 ` ¨ ¨ ¨ ` aN zN , b1z1 ` ¨ ¨ ¨ ` bN zN q

Note that for d P W the germ πd : pX, 0q Ñ pC2, 0q is finite, and if we denote
by pπdpXq, 0q Ă pC2, 0q the image germ with the Fitting structure then by
[Mo-P89, Lemma 2.1] it is a (not necessarily reduced, but without embedded
component, by Proposition 1.2.6) plane curve.

We put all these projections in an analytic family by considering the map

Π : CN ˆW ÝÑ C2 ˆW

pz1, . . . , zN , dq ÞÑ pπdpz1, . . . , zN q, dq

Note that for every d P W the map germ

Π : pX ˆW, p0, dqq Ñ
`

C2 ˆW, p0, dq
˘

is finite. And since the analytic algebra OXˆW ,p0,dq is Cohen-Macaulay again
by [Mo-P89, Lemma 2.1] we have a germ of hypersurface pΠpX ,̂Wq, p0, dqq Ă
`

C2 ˆW, p0, dq
˘

. By projecting to W Ă C2N we obtain (by [G-L-S07, Thm
B.8.11]) a flat map:

G : pΠpX ˆWq, p0, dqq Ñ pW, dq.

Since the Fitting structure commutes with base change we have that the germ
`

G´1pdq, p0, dq
˘

is isomorphic to pπdpXq, 0q, and so we have a flat deformation
of pπdpXq, 0q where all the fibers are plane curves.
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Note that if ϕ : pC, 0q Ñ pCN , 0q, t ÞÑ pϕ1ptq, . . . , ϕN ptqq is the normal-
ization of a branch of pX, 0q then the plane curve pπdpXq, 0q is parametrized
by:

t ÞÑ pa1ϕ1ptq ` ¨ ¨ ¨ ` aNϕN ptq, b1ϕ1ptq ` ¨ ¨ ¨ ` bNϕN ptqq ,

and by varying d we get that the deformation space of G admits a parametriza-
tion in family.
Proof of a): When Hd is transversal to C5pX, 0q then for every d1 in a small
neighborhood of d the pn´2q-plane Hd1 is also transversal to C5pX, 0q and all
the corresponding projections πd1 are therefore generic. By Corollary 1.3.4
this tells us that πd1 : Xzt0u Ñ G´1pd1qzt0u is an analytic isomorphism for
every d1 sufficiently close to d. This implies:

• All the curves in the family G´1pd1q have the same number of branches as X .
• The parametrization in family is actually a normalization in family and by

Corollary 1.2.8, or [Tei77, §3], see also [G-L-S07, II, Thm 2.56] the family is
δ constant.

By the Milnor formula µ “ 2δ ´ r ` 1 the family G : pΠpX ,̂Wq, p0, dqq Ñ
pW, dq is µ-constant and thus equisingular by [L-R76] or [B-G-G80, Thm II.4].

Proof of b): For Hd P WzΩ we have that the map

πd : pX, 0q Ñ pC2, 0q

is finite but if it is generically k to 1 then by [Mo-P89, Prop. 3.1] the Fitting
structure of (πdpXq, 0q is not reduced.
When πd is generically 1 ´ 1 then pπdpXq, 0q is reduced but by assumption
there is a line ` Ă HdXC5pX, 0q. Take a sequence of secants `k going through
the points xk, yk P Xzt0u such that `k converges (in direction) to `, since Ω
is Zariski open we can find a sequence dk tending to d such that Hdk

P Ω

and it contains (the direction of) `k . Note that πdk
p`k q “ qk ‰ 0 and so

the plane curve pG´1pdk q, qk q is singular which implies that µ ppπdpXq, 0qq ą
µ ppπdk

pXq, 0qq. ˝

Example 1.3.7 Let pX, 0q Ă pC3, 0q the germ of irreducible curve parametrized
by

t ÞÑ pt4, t5, t7q

then the tangent cone C3pX, 0q is the z1-axis.
By taking other arcs t ÞÑ pt4, ωt5, ω3t7q were ω P µ4zt1u and taking the limit
as t Ñ 0 of the difference p0 : p1´ωqt5 : p1´ω3qt7q we get the z2´ axis as a
limit of secants and we can deduce that the cone C5pX, 0q is the z1z2-plane.
For d “ p1, 0, 0, 0, 1, 0q the corresponding projection

πdpz1, z2, z3q “ pz1, z2q

is C5-general and its image πdpX, 0q Ă pC2, 0q is the reduced plane curve
y4 ´ x5 “ 0 with Milnor number µ “ 12.
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On the other hand For d0 “ p1, 0, 0, 0, 0, 1q the corresponding projection

πd0pz1, z2, z3q “ pz1, z3q

is not C5-general and its image πd0pX, 0q Ă pC
2, 0q is the reduced plane curve

y4 ´ x7 “ 0 with Milnor number µ “ 18.
By taking dα “ p1, 0, 0, 0,´α2, 1q we get a sequence of C5-general projections
πdα converging to πd0

πdα pz1, z2, z3q “ pz1, z3 ´ α2z2q

Note that the plane curve Xα :“ πdα pXq has a singular point in pα4, 0q com-
ing from the image of the secant going through the points pα4, α5, α7q and
pα4,´α5,´α7q in X . Moreover as α tends to 0 these secants dα “ r0 : 1 : α2s

converge to the z2-axis r0 : 1 : 0s in P2 which is precisely the intersection
Hd0 X C5pX, 0q.
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1.4 Main result

We have just seen that all (C5-)generic plane projections of a reduced analytic
curve are equisingular. Now our objective is to prove that all equisingular
germs of reduced plane curves are generic projections of a single space curve.
As we shall see, given a reduced plane curve pX, 0q Ă pC2, 0q this space curve
corresponds to the one dimensional analytic algebra which is the Lipschitz
saturation Os

X,0 of OX,0 in the sense of [P-T69]. In doing so we will also give

another reason why a) of Proposition 1.3.6 is true, since we shall see that
a projection π is generic for a space curve pX, 0q Ă pCN , 0q if and only if
it induces an isomorphism of the saturated algebras Os

X,0 and Os
πpXq,0

. In

particular, two germs of reduced plane curves are equisingular (topologically
equivalent) if and only if their saturations are analytically isomorphic.
In order to define these saturations we need the theory of integral closure of
ideals.

1.4.1 Integral closure of ideals

Our main references for this subsection are, [Lej-T08], [Lip82], [Tei73] and
[Hu-S06].

Definition 1.4.1 Let I be an ideal in a ring R. An element r P R is said to be
integral over I if there exists an integer h and elements a j P I j , j “ 1, . . . , h,
such that

rh ` a1rh´1 ` a2rh´2 ` ¨ ¨ ¨ ` ah´1r ` ah “ 0.

The set of all elements of R that are integral over I is an ideal called the
integral closure of I and denoted by I. We say that I is integrally closed
if I “ I. If I Ă J are ideals we say that J is integral over I if J Ă I.

Remark 1.4.2 The following properties are easily verified:

1. I Ă I. For each r P I choose n “ 1 and a1 “ ´r.
2. If I Ă J are ideals then I Ă J since an integral dependence equation for r

over I is also an an integral dependence equation for r over J.
3. I Ă

?
I since the integral dependence equation implies rn P xa1, . . . , any Ă I.

4. Radical ideals are integrally closed.
5. If ϕ : R Ñ S is a ring morphism and I Ă S is an integrally closed ideal of S

then ϕ´1pIq is an integrally closed ideal of R.

A related concept is that of reduction: For ideals J Ă I Ă R we say that
J is a reduction of I if there exists a non-negative integer n such that
In`1 “ JIn . This implies that I “ J. We can express integral dependence
using equalities of ideals and modules.
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Proposition 1.4.3 (see [Lej-T08, Chapter 1], [Hu-S06, Prop 1.1.7, Cor. 1.1.8
& Cor. 1.2.2]) For any element r P R and ideal I Ă R. The following are
equivalent:

a) r P I.

b) There exists an integer k such that pI ` rqk “ I pI ` rqk´1.
c) I is a reduction of I` ă r ą.
d) There exists a finitely generated R´module M such that r M Ă I M and if

there exists a P R such that aM “ 0, then there exists an integer ` such that
ar` “ 0. .

A very important corollary of this Proposition is that I Ă R is an integrally
closed ideal of R and you can find a complete proof of this fact in [Hu-S06,
Cor. 1.3.1].

We have that I Ă I Ă
?

I, but in fact the integral closure is much “closer”
to I than to the radical and a very good family of examples in which it is easy
to calculate and compare is that of monomial ideals in Ctz1, . . . , zdu, which
are the ideals generated by monomials. We begin with an example:

Example 1.4.4 For the ideal I “ xx4, xy2, y3yCtx, yu we have that

I “ xx4, x3y, xy2, y3y

and ?
I “ xx, yy.

The exponent set of I consists of all integer lattice points in the yellow region
below:

exp.x

exp.y

(4,0)

(0,3)

(1,2)

(3,1)

x4

y3

xy2

x3y

Fig. 1.1 The point p3, 1q representing the monomial x3y is in the convex hull of the
yellow region, whose integral points represent monomials in I . The integral depen-
dence relation is px3yq2 ´ x5 .xy2 “ 0.
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Similarly, in Ctz1, . . . , zdu we have xzn1, . . . , zn
d
y “ xz1, . . . , zdyn .

The exponent vector of a monomial m “ zm1

1 ¨ ¨ ¨ zmd

d
is pm1, . . . ,mdq P N

d . For
any monomial ideal I, the set of all exponent vectors of all the monomials in
I is called the exponent set of I. Since a monomial m is in I if and only if
it is a multiple in Ctz1, . . . , zdu of one of the monomial generators of I, the
exponent set of I consists of all those points of Nd which are componentwise
greater or equal than the exponent vector of one of the monomial generators
of I. Moreover one can prove that I is monomial and its exponent set is equal
to all the integer lattice points in the convex hull of the set of exponents of
elements of I. (See [Tei04, §3, §4], [Tei82, Chap.1, §2], [Hu-S06, Props 1.4.2
& 1.4.6]).

To understand how this theory can be used in the setting of complex
analytic geometry the following result is fundamental.

Theorem 1.4.5 ([Lej-T08, Thm 2.1, p. 799]) Let X be a reduced complex
analytic space. Let Y Ă X be a closed, nowhere dense, analytic subspace of
X , and x a point in Y . Let I Ă OX be the coherent ideal defining Y , and let
J Ă OX be another coherent ideal. Let I (resp. J) be the stalk of I (resp.
J ) at x. Then the following statements are equivalent:

1. J Ă I,
2. For every germ of morphism φ : pC, 0q Ñ pX, xq

φ˚J ¨ OC,0 Ă φ˚I ¨ OC,0,

3. For every morphism π : X 1 Ñ X such that X 1 is a normal analytic space, π
is proper and surjective, and I ¨OX 1 is locally invertible, there exists an open
subset U Ă X containing x, such that:

J ¨ OX 1 |π
´1pUq Ď I ¨ OX 1 |π

´1pUq,

3˚. If Π : BlIX Ñ X denotes the normalized blowup of X along I, then there
exists an open subset U Ă X containing x, such that:

J ¨ O
BlIX

|Π´1pUq Ď I ¨ O
BlIX

|Π´1pUq,

4. Let V Ă X be a neighborhood of x, where both J and I are generated by their
global sections. Then for every system of generators g1, . . . , gm of ΓpV,Iq and
every f P ΓpV,J q, there exist a neighborhood V 1 of x in V and a constant C
such that:

| f pyq| ď C sup
i“1, ...,m

|gipyq|

for every y P V 1.

Let us take a closer look at statement 2: For any arc ϕ : pC, 0q Ñ pX, 0q Ă
pCN , 0q we have a corresponding morphism of analytic algebras
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ϕ˚ : OX,0 “ Ctz1, . . . , zN u{a ÝÑ Cttu

zi ` a ÞÑ ϕiptq “ tmiuiptq

where mi ě 1 and uiptq is a unit in Cttu. So if I Ă OX,0 is an ideal then
ϕ˚pIqOC,0 “ xtkyCttu for some integer k and an element g P OX,0 is in I if
and only if for any such arc ϕptq the order of the series g pϕ1ptq, . . . , ϕN ptqq is
greater or equal than this k.
The fact that the normalized blowing-up map is proper implies that the
condition of statement 2 needs to be verified only for finitely many arcs. Since
the general statement is somewhat cumbersome, let us illustrate how this
works in the case where the ideal I a complete intersection defining the origin
in pX, 0q. Let I “ xh1, . . . , hdy Ă OX,0. The blowing up Bl I X of I in X is the

subspace of XˆPd´1 defined by the d´1 equations h1
T1
“

h2
T2
“ ¨ ¨ ¨ “

hd

Td
, again

a complete intersection. The fiber of the natural projection Bl I X Ñ Pd´1

over a point t P Pd´1 with coordinates pt1 : t2 : ¨ ¨ ¨ : tdq is a curve in Bl I X
which is isomorphic to its image in X defined by the equations hi t j´h j ti “ 0.
So we can view Bl I X as a family of curves Ct on X parametrized by Pd´1,
which is the exceptional divisor of the map Bl I X Ñ X . When we pass to
the normalization n : Bl I X Ñ Bl I X , by general Theorems on normalization
(see Proposition 1.2.9 and use the fact that by generic flatness there is a
dense open U Ă Pd´1 where δ is constant), there exists a Zariski dense
open subset U Ă Pd´1 such that n´1pUq is a non singular divisor in a non
singular space n´1ppX ˆ Uq X Bl I Xq, and for each point t P U the map n
induces a normalisation of the curve Ct . This normalization is then a union
of disks, one for each irreducible component of Ct , and each disk transversal
to n´1pPd´1q in n´1ppX ˆUqX Bl I Xq. Because a meromorphic function on a
normal space is holomorphic if it has no poles in codimension one, to verify
that an element g P OX,0 is in I, it suffices to verify that for some t P U, the
order of vanishing of g along each arc parametrizing a branch of Ct is larger
than the order of vanishing of the ideal I. Because of what we have just seen,
the order of vanishing along these arcs will, after lifting to Bl I X , translate as
the order of vanishing along some irreducible component of the exceptional
divisor in Bl I X . Since the ideal I is locally principal on Bl I X , to prove that
g P I it suffices to prove that after lifting to Bl I X the function g becomes a
multiple of the local equations of the exceptional divisor. But the polar set
of the quotient of g by that equation is contained in that exceptional divisor
and the inequalities of orders imply that there are no poles at a general point
of each irreducible component. Because Bl I X is normal, there are no poles
anywhere and on Bl I X the pull back of the function g is indeed in the pull
back of the ideal I so that g is in I.

We shall use this below to describe the saturation.

With this at hand we can now characterize C3-general projections in terms
of integral closure of ideals. Let pX, 0q Ă pCN , 0q be a reduced germ of analytic
space of pure dimension d. Let us choose coordinates z1, . . . , zN on CN , denote
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by L the linear subspace of CN defined by z1 “ ¨ ¨ ¨ “ zd “ 0 and let a be the
ideal of OX,0 generated by the images of z1, . . . , zd .

Proposition 1.4.6 The restriction to pX, 0q

π|pX, 0q : pX, 0q Ñ pCd, 0q pz1, . . . , zN q ÞÑ pz1, . . . , zdq

of the linear projection π with kernel L is C3-general if and only if a “ m

where m “ xz1, . . . , zN yOX,0 is the maximal ideal of the analytic algebra OX,0.

Proof Recall that π is C3-general if and only if C3pX, 0q X L “ t0u. Let
` “ ra1 : ¨ ¨ ¨ : aN s P PN´1 be a line in the (projectivized) tangent cone
C3pX, 0q, then ` Ć L if and only if ai ‰ 0 for some i P t1, . . . , du. Note that
any arc ϕ : pC, 0q Ñ pX, 0q determines a line in C3pX, 0q, the limit as t Ñ 0 of

t ÝÑ rϕ1ptq : ¨ ¨ ¨ : ϕN ptqs P PN´1,

and conversely any line in the tangent cone can be obtained through an arc
since it corresponds to a point in the fiber over 0 of the blowing-up Bl0X Ñ X .
On the other hand, for every arc ϕ : pC, 0q Ñ pX, 0q we have that

ϕ˚paqOC,0 “ xϕ1ptq, . . . , ϕdptqyCttu “ xtkyCttu,

where k “ mintord0ϕiptq | i “ 1, . . . , du. Finally ai ‰ 0 for some i P t1, . . . , du
if and only if for all j P td ` 1, . . . , Nu

ord0ϕ jptq ě k “ mintord0ϕiptq | i “ 1, . . . , du

if and only if ϕ˚pz jq P ϕ˚paqOC,0 if and only if z j P a for all j P td`1, . . . , Nu,
that is, a “ m. ˝

By a linear change of coordinates in CN we can always place ourselves in
the setting of the previous result. But the theory of integral closure also gives
us an algebraic way to prove that for a given germ pX, 0q of pure dimension
d almost all linear projections π : pCN , 0q Ñ pCd, 0q are C3-general as stated
in the following result (For a proof see [Mat89, Thm 14.14])

Theorem 1.4.7 (Rees-Samuel) Let OX,0 be a d-dimensional analytic algebra

with maximal ideal m “ xz1, . . . , zN y. Then if yi “
řN

j“1 λi j z j for 1 ď i ď d
are d “sufficiently general” C-linear combinations of z1, . . . , zn the ideal a “
xy1, . . . , ydy satisfies a “ m.

We can take this one step further by considering another important aspect
of this theory, namely its relation with multiplicity. For a local Noetherian
ring pR,mq and an m´primary ideal a Ă R we can define a Hilbert Samuel
function

k P N ÞÑ dimR{mR{ak .
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The result is that for large enough k the Hilbert-Samuel function behaves like
a polynomial of degree equal to the dimension of R and its leading coefficient
is of the form epaqkd{d!, where epaq is a positive integer called the multiplicity
of the ideal a. In the case R is the analytic algebra OX,0 of a germ pX, 0q and
a “ m it IS the multiplicity of the germ. (See [De-P00, Section 4.2])

Theorem 1.4.8 (Rees)(see [Ree61, Thm 3.2],[Hu-S06, Thm 11.3.1])
Let pOX,0,mq be a reduced and equidimensional analytic algebra and a Ă b

two m´primary ideals. Then a “ b if and only if epaq “ epbq.

A geometric interpretation of this result is described by Lipman in [Lip82].
Let pX, 0q be a germ of reduced and equidimensional singularity of dimension
d with associated analytic algebra pOX,0,mq. Every m´primary ideal is gen-
erated by at least d elements, and every d´tuple p f1, . . . , fdq of elements of
m defines a map-germ F : pX, 0q Ñ pCd, 0q.

Now, the ideal a “ x f1, . . . , fdy is m´primary if and only if F is finite. As
we have mentioned before you can prove that such an F : pX, 0q Ñ pCd, 0q
is then a ramified analytic cover of degree equal to epaq and by Rees’ Theo-
rem this degree will be the multiplicity of pX, 0q (“ epmqq if and only if a “ m.

Moreover using Nakayama’s Lemma one checks that a is a reduction of m
(equivalently a “ m) if and only if in the graded C´algebra

grmO “
à

kě0

m
k{mk`1, with m0 “ O

(which is the homogeneous coordinate ring of the projectivized tangent cone

PC3pX, 0q see [Gi-T18, Section 2.4]) the images f i of the f i in m{m2 generate
an irrelevant ideal (that is, an ideal containing all elements of grmO of suffi-
ciently large degree so that its zero locus in projective space is empty).

What this last condition means is that first of all the f i are linearly inde-
pendent over C, so that there is an embedding of the germ pX, 0q into pCN , 0q
for some N and a linear projection π : pCN , 0q Ñ pCd, 0q such that its restric-
tion to pX, 0q is germwise the F associated above to p f1, . . . , fdq and secondly,
since a “ m by Proposition 1.4.6 the projection π is C3-general.

We end this section by establishing a result analogous to Proposition 1.4.6
but with respect to generic projections of curves.

Definition 1.4.9 Let ϕ1 : R Ñ A1 and ϕ2 : R Ñ A2 be morphisms of C-
analytic algebras. There is a unique C-analytic algebra, denoted A1NbR A2,
together with morphisms θi : Ai Ñ A1NbR A2, i “ 1, 2, such that θ1 ˝ ϕ1 “

θ2 ˝ ϕ2 and for every pair of morphisms of C-analytic algebras ψ1 : A1 Ñ B,
ψ2 : A2 Ñ B satisfying ψ1 ˝ ϕ1 “ ψ2 ˝ ϕ2 there is a unique morphism of
C-analytic algebras ψ : A1NbR A2 Ñ B making the whole diagram commute.
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The algebra A1NbR A2 is called the analytic tensor product of A1 and A2 over
R.

A1

θ1

##

ψ1

��
R

ϕ1

??

ϕ2 ��

A1NbR A2
ψ // B

A2

θ2

;;

ψ2

EE

Geometrically this analytic tensor product is the operation on the ana-
lytic algebras that corresponds to the fibre product of analytic spaces. Given
holomorphic maps φ1 : pX1, p1q Ñ pY, qq and φ2 : pX2, p2q Ñ pY, qq we have
the fibre product:

X1 ˆY X2

Π2

��

Π1 // X1

φ1

��
X2 φ2

// Y

which induces the corresponding diagram of analytic algebras

OY,q

ϕ2

��

ϕ1 // OX1,p1

��
OX2,p2

// OX1ˆY X2,pp1,p2q

that is, the analytic algebra OX1ˆY X2,pp1,p2q is isomorphic to OX1,p1
NbOY ,qOX2,p2 .

Remark 1.4.10 See [Gr-P07, Def 1.28, Example 1.46.1 & Lemma 1.89] and
[Ada12].

1. When R “ C in the definition, the analytic tensor product OX1,p1
NbCOX2,p2

is the analytic algebra corresponding to the product germ pX1 ˆ X2, pp1, p2qq.
Moreover if OX1,p1 “ Ctzu{I and OX2,p2 “ Ctwu{J with z “ pz1, . . . , zN q and
w “ pw1, . . . ,wM q then

OX1,p1
NbCOX2,p2 “

Ctz,wu

xICtz,wu ` JCtz,wuy
.

2. In general if pX1, p1q Ă pC
N , 0q, pX2, p2q Ă pC

M, 0q and pY, qq Ă pCk, 0q with
OY,q “ Cty1, . . . , yku{K , denoting by yk pzq (resp. yk pwq a representative in
Ctzu (resp. Ctwu) of the image of yk in OX1,p1 (resp. OX2,p2 by the structure
maps OY,q Ñ OXi,pi i “ 1, 2, then
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OX1,p1
NbOY ,qOX2,p2 “

Ctzu

I
NbOY ,q

Ctwu

J

–
Ctz,wu

ICtz,wu ` JCtz,wu ` xy1pzq ´ y1pwq, . . . , yk pzq ´ yk pwqyCtz,wu
.

Let pX, 0q Ă pCN , 0q be a germ of reduced singular curve. By Proposition
1.3.5 the C5 cone is a finite union of 2-planes of Cn

C5pX, 0q “ H1 Y . . . Y Hr .

If we let π : pCN , 0q Ñ pC2, 0q denote the linear projection to the first two
coordinates pz1, . . . , zN q ÞÑ pz1, z2q then π is generic if and only if πpHiq “ C2

for i “ 1, . . . , r. Recall that the construction of C5pX, 0q goes through the
blowup of the diagonal of X ˆ X , so let I∆ Ă OXˆX,p0,0q be the ideal defining
this diagonal

I∆ “ xz1 ´ w1, . . . , zN ´ wN yOXˆX,p0,0q.

Proposition 1.4.11 Let I∆2 Ă OXˆX,p0,0q be the ideal coming from the pro-
jection π, that is, I∆2 “ xz1 ´ w1, z2 ´ w2yOXˆX,p0,0q. Then π is generic if

and only if I∆2 “ I∆.

Proof The proof is now very similar to the C3-general case, and since I∆2 Ă

I∆ all we have to prove is that genericity is equivalent to the inclusion I∆ Ă I∆2 .
Let L “ Vpz1, z2q be the kernel of π. Then π is generic if and only if

C5pX, 0q X L “ t0u. Let ` “ ra1 : ¨ ¨ ¨ : aN s P PN´1 be a line in the (projec-
tivized) cone C5pX, 0q, then ` Ć L if and only if ai ‰ 0 for some i P t1, 2u.
This time the lines in C5pX, 0q are determined by taking the limit as t Ñ 0
of the secants associated to pairs of arcs pϕ, ψq : pC, 0q Ñ pX ˆ X, p0, 0qq

t ÝÑ rϕ1ptq ´ ψ1ptq : ¨ ¨ ¨ : ϕN ptq ´ ψN ptqs P PN´1

Again for every such pair of arcs pϕ, ψq : pC, 0q Ñ pX ˆ X, p0, 0qq we have that

pϕ, ψq˚pI∆2qOC,0 “ xϕ1ptq ´ ψ1ptq, ϕ2ptq ´ ψ2ptqyCttu “ xtkyCttu

where k “ mintord0pϕ1ptq ´ ψ1ptqq, ord0pϕ2ptq ´ ψ2ptqqu. Finally ai ‰ 0 for
some i P t1, 2u if and only if for all j P t3, . . . , Nu

ord0pϕ jptq ´ ψ jptqq ě k “ mintord0pϕ1ptq ´ ψ1ptqq, ord0pϕ2ptq ´ ψ2ptqqu

if and only if pϕ, ψq˚pz j ´ w jq P pϕ, ψq
˚pI∆2qOC,0 if and only if z j ´ w j P I∆2

for all j P t3, . . . , Nu, that is, I∆ Ă I∆2 . ˝
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1.4.2 Lipschitz Saturation

Let n˚ : OX,0 ãÑ OX,0 be the integral closure of a reduced complex analytic

algebra which is a quotient of Ctz1, . . . , zN u. Recall that OX,0 is a direct sum
of normal analytic algebras (in particular integral domains), one for each
irreducible component of the germ pX, 0q. By Definition 1.4.9 the following
commutative diagram determines a unique morphism Ψ of direct sums of
analytic algebras:

OX,0

θ1

%%

ψ1

��
C

22

,,

// OX,0

==

!!

OX,0NbCOX,0
Ψ // OX,0NbOX,0OX,0

OX,0

θ2

99

ψ2

CC

where θ1p f q “ fNbC1 and θ2p f q “ 1NbC f . Note that the map Ψ : OX,0NbCOX,0 Ñ

OX,0NbOX,0OX,0 is the morphism of sums of analytic algebras correspond-

ing to the inclusion
´

X ˆX X, p0, 0q
¯

ãÑ

´

X ˆ X, p0, 0q
¯

. By remark 1.4.10

if we denote by n : pX, 0q Ñ pX, 0q the normalization map and OX,0 “
Àr

i“1 Ctt iu{Jipt iq with t i “ pt i,1, . . . , t i,mi
q, then

OX,0NbCOX,0 “
à

i, j

Ctt i, u ju

xJipt iq, Jjpu jqy

and Ψ is a surjection with kernel

I∆ “ xz1NbC1´ 1NbCz1, . . . , zNNbC1´ 1NbCzN yOX,0NbCOX,0.

Definition 1.4.12 Let I∆ be the kernel of the morphism Ψ above. We define
the Lipschitz saturation Os

X,0 of OX,0 as the algebra

Os
X,0 :“

!

f P OX,0 | θ1p f q ´ θ2p f q P I∆
)

“

!

f P OX,0 | fNbC1´ 1NbC f P I∆
)

.

Example 1.4.13 Let pX, 0q Ă pC3, 0q be the irreducible curve with normaliza-
tion map:
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η : pC, 0q ÝÑ pX, 0q

t ÞÑ pt4, t6, t7q

In this setting the map Ψ above is

Ψ : OX,0NbCOX,0 Ñ OX,0NbOX,0OX,0

Ψ : Ctt, uu ÝÑ
Ctt, uu

xt4 ´ u4, t6 ´ u6, t7 ´ u7y
.

The maps θi are just inclusions, Cttu ãÑ Ctt, uu, Ctuu ãÑ Ctt, uu and the ideal

I∆ “ xt4´u4, t6´u6, t7´u7y. By definition Os
X,0 :“

!

f P Cttu | f ptq ´ f puq P I∆
)

and note that OX,0 Ă O
s
X,0. For example t5 P Cttu is in Os

X,0 if and only if

t5´u5 is in I∆. By taking the arc φpτq “ pτ,´τq we have that φ˚I∆OC,0 “ xτ7y

and φ˚pt5 ´ u5q “ 2τ5 R φ˚I∆OC,0, so by Theorem 1.4.5-2 the element

t5 P Cttu “ OX,0 is not in the Lipschitz saturation Os
X,0. For this partic-

ular arc we have φ˚pt9 ´ u9q “ 2τ9 P φ˚I∆OC,0, and one can actually prove
that t9 P Os

X,0. As we shall see later on, in fact Os
X,0 “ Ctt4, t6, t7, t9u.

We are going to show that the Lipschitz saturation Os
X,0 is always an ana-

lytic algebra, even if the germ pX, 0q is not irreducible. To begin to understand
why this is true, let’s look at the irreducible case. Define the map

α : OX,0 Ñ OX,0NbCOX,0

f ÞÑ θ1p f q ´ θ2p f q “ f pzq ´ f pwq

It is not a ring map, however if n˚ : OX,0 ãÑ OX,0 denotes the inclusion com-
ing from the normalization map n : X Ñ X then αpn˚pOX,0qq “ αpn˚pmX,0qq

and I “ KerΨ “ xαpn˚pmX,0qqy.

By Definition 1.4.9 OX,0NbOX,0OX,0 is an OX,0-algebra, in particular an

OX,0-module. However, an interesting point is that since n : X Ñ X is a finite
map, by [Gr-P07, Lemma 1.89] this algebra is isomorphic to the algebraic

tensor product OX,0 bOX,0 OX,0, so for instance

Ctt, uu
xt2 ´ u2, t3 ´ u3y

– Cttu bCtt2, t3u Ctuu

Lemma 1.4.14 The map

Ψ ˝ α : OX,0 ÝÑ OX,0NbOX,0OX,0

is a morphism of OX,0-modules.

Proof Indeed for r P OX,0 and f P OX,0:
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r f α
ÞÑ rpzq f pzq ´ rpwq f pwq Ψ

ÞÑ rpzq f pzq ´ rpwq f pwq ` I

but rpzq “ rpwq modpIq so rpzq f pzq´rpwq f pwq “ prpzq` Iqp f pzq´ f pwq` Iq “
rpΨ ˝ αqp f q.

By definition I∆ is an ideal of OX,0NbCOX,0 and since Ψ is a surjective

ring homomorphism we have that ΨpI∆q Ă OX,0NbOX,0OX,0 is an ideal, in
particular it is an OX,0-module. But this implies that

pΨ ˝ αq´1
pΨpI∆qq “ α´1pI∆q “ Os

X,0 Ă OX,0

is an OX,0-module. ˝

Lemma 1.4.15 The Lipschitz saturation Os
X,0 is an OX,0-algebra and a di-

rect sum of analytic algebras.

Proof Since Os
X,0 is a submodule of the Noetherian module OX,0, it is a

finitely generated OX,0-module. Even more, you can easily check that Os
X,0

is closed under multiplication, so it is an OX,0-algebra and by [De-P00, Cor.
3.3.25 & 3.3.26] this implies that Os

X,0 is a direct sum of analytic algebras.

Indeed, take f1, f2 P Os
X,0 then pΨ ˝ αqp f1q “ f1pzq ´ f1pwq ` I∆ P ΨpI∆q,

but it is an ideal so p f2pzq ` I∆qp f1pzq ´ f1pwq ` I∆q P ΨpI∆q. Analogously
p f1pwq ` I∆qp f2pzq ´ f2pwq ` I∆q P ΨpI∆q by taking their sum we get that
pΨ ˝ αqp f1 f2q “ f1pzq f2pzq ´ f1pwq f2pwq ` I∆ P ΨpI∆q which implies that
f1 f2 P Os

X,0 as claimed. ˝

Before proving that Os
X,0 is actually an analytic algebra we would like

to give an idea of how things work in the non-irreducible case so suppose
there are two irreducible components pX, 0q “ pX1, 0q Y pX2, 0q. As we said

before X is then a multigerm pX1, pq \ pX2, qq and OX,0 “ OX1,0
À

OX2,0 “

OX1,p

À

OX2,q
. Since the analytic tensor product should be the algebraic

counterpart of the fibre product then we should consider/define

OX,0NbOX,0OX,0 “

OX1,p
NbOX,0OX1,p

‘OX1,p
NbOX,0OX2,q

‘OX2,q
NbOX,0OX1,p

‘OX2,q
NbOX,0OX2,q

and analogously for OX,0NbCOX,0. By componentwise taking the ring maps
Ψi j coming from the universal property of the irreducible case, for example:

Ψ12 : OX1,p
NbCOX2,q

Ñ OX1,p
NbOX,0OX2,q

we get the ring map Ψ as before with kernel I∆ “ I11 ‘ I12 ‘ I21 ‘ I22. The
map α should now be defined as
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α : OX,0 ÝÑ OX,0NbCOX,0

p f1, f2q ÞÑ p f1pzq ´ f1pwq, f1pzq ´ f2pwq, f2pzq ´ f1pwq, f2pzq ´ f2pwqq

and we get the same definition for the Lipschitz saturation

Os
X,0 :“

!

f “ p f1, f2q P OX,0 | αp f q P I∆
)

.

More importantly both Lemmas remain valid. Note that in this context of two
irreducible components we have αp f q P I∆ if and only if f1pzq ´ f1pwq P I11,
f1pzq ´ f2pwq P I12, f2pzq ´ f1pwq P I21 and f2pzq ´ f2pwq P I22.

Proposition 1.4.16 (See [P-T69, Theorem 1.2], [Tei82, Prop. 6.1.1]) The
algebra Os

X,0 is the ring of germs of meromorphic functions on pX, 0q which
are locally Lipschitz with respect to the ambient metric.

Proof Recall that OX,0 is the ring of meromorphic functions on pX, 0q that
are locally bounded and a Lipschitz meromorphic function is locally bounded.
Now if h P Os

X,0 we need to prove that there exists a real positive constant

C ą 0 such that for every couple px1, x2q P XzSing X ˆ XzSing X (in a small
enough representative) we have

|hpx1q ´ hpx2q| ď C||x1 ´ x2||.

Let n : X Ñ X Ă Cn be the normalization map. In the irreducible case where
OX,0 “ Ctz1, . . . , zN u{x f1, . . . , f sy and OX,0 “ Ctt1, . . . , tmu{Jptq, the map n
induces a morphism of analytic algebras which may be described by

n˚ : OX,0 ÝÑ OX,0

zi ÞÑ zipt1, . . . , tmq “ ziptq

and refering to the maps α and Ψ as above we have that

I∆ “ KerΨ “ xz1ptq ´ z1puq, . . . , zN ptq ´ zN puqy.

By definition, h P Os
X,0 if αphq “ hptq´ hpuq P I∆ and by Theorem 1.4.5 there

exists a constant C such that

|hptq ´ hpuq| ď C sup |ziptq ´ zipuq| “ C||zptq ´ zpuq||,

with pzptq, zpuqq P XˆX and so h is Lipschitz. Reading the proof in the oppo-
site sense gives that a meromorphic, locally Lipschitz function h is necessarily
in Os

X,0.

If pX, 0q has r irreducible components then X is a multigerm and then

we have r maps nk : pXk, xk q Ñ pXk, 0q Ă pX, 0q with coordinate functions

z1ptk q, . . . , zN ptk q. Then for h “ ph1, . . . , hr q P OX,0 we have that αphq “
´

hipt iqNb1´ 1Nbh jpu jq

¯

i, j
P
Ài, j“r

i, j“1 OXi,0
NbCOX j ,0, and
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I∆ “
i, j“r
à

i, j“1

Ii j with Ii j “ xz1pt iqNb1´1Nbz1pu j q, . . . , zN pt iqNb1´1NbzN pu j qyOXi ,0
NbCOX j ,0

and αphq P I∆ if and only if hipt iqNb1´ 1Nbh jpu jq P Ii j for all pi, jq.
So in the spirit of Example 1.1.7 the “coordinate” hi of h indicates you how
to evaluate h in points of the corresponding irreducible component pXi, 0q of
pX, 0q and for i ‰ j the condition hipt iqNb1´ 1Nbh jpu jq P Ii j tells you that the
Lipschitz condition must also be satisfied when you take points in different
irreducible components. ˝

Corollary 1.4.17 (See [P-T69, Corollary 1.3]) Let pX, 0q Ă pCN , 0q be a re-
duced germ of complex analytic singularity. The ring Os

X,0 is an analytic
algebra.

Proof We already proved in Lemma 1.4.15 that Os
X,0 is a direct sum of

analytic algebras, but if there were more than one, the function p1, 0, . . . , 0q P
Os

X,0 would not be Lipschitz, contradicting Proposition 1.4.16. ˝

From Lemma 1.4.15 we have injective ring morphisms

OX,0 ãÑ Os
X,0 ãÑ OX,0.

Since OX,0 is contained in the total ring of fractions QpOX,0q, the total ring
of fractions of the Lipschitz saturation Os

X,0 coincides with QpOX,0q and
by transitivity of integral dependence the normalizations also coincides i.e.,
Os

X,0 “ OX,0. In terms of holomorphic maps we have:

X ns
ÝÑ X s ζ

ÝÑ X,

where X s is the germ of complex analytic singularity corresponding to the
analytic algebra Os

X,0, the map ns : X Ñ X s is the normalization map of

X s , ζ : pX s, 0q Ñ pX, 0q is finite and induces an isomorphism outside the
non-normal locus of X , and n “ ζ ˝ ns : X Ñ X is the normalization map of
X .

Definition 1.4.18 The germ pX s, 0q together with the finite map ζ : pX s, 0q Ñ
pX, 0q is called the Lipschitz saturation of pX, 0q.

Lemma 1.4.19 Let pX, 0q Ă pCn, 0q be a reduced germ of complex analytic

singularity, then
´

Os
X,0

¯s
“ Os

X,0.

Proof Following the notation of Lemma 1.4.14 we have the maps:

OX,0 ãÑ Os
X,o ãÑ OX,0

α
ÝÑ OX,0NbCOX,0,

and this induces a map
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OX,0NbOX,0OX,0 –
OX,0NbCOX,0

xαpOX,0qy
ÝÑ

OX,0NbCOX,0

xαpOs
X,0qy

– OX,0NbOs
X,0
OX,0

that makes the following diagram commute

OX,0NbCOX,0

Ψs

((
Ψ

��
OX,0NbOX,0OX,0

// OX,0NbOs
X,0
OX,0

If we denote I∆ “ KerΨ and I∆s “ KerΨs we have I∆ Ă I∆s . Now by definition
we have Os

X,0 “ th P OX,0 | αphq P I∆u so αpOs
X,0q Ă I∆ which implies I∆ “ I∆s

and so
´

Os
X,0

¯s
“ th P OX,0 | αphq P I∆s “ I∆u “ Os

X,0. ˝

1.4.3 The case of dimension 1

Let pX, 0q Ă pC2, 0q be a germ of reduced plane curve, and ζ : pX s, 0q Ñ
pX, 0q Ă pC2, 0q the finite map given by the Lipschitz saturation of pX, 0q.
What we want to emphasize is that this map can always be realized as a
linear projection on suitable representatives. Indeed, any representative of
pX s, 0q Ă pCm, 0q can be re-embedded as the graph of ζ in Cm`2, namely
by the map X s Ñ C2 ˆ Cm : p ÞÑ pζ1ppq, ζ2ppq, pq. The map ζ is now the
projection of pX s, 0q to pX, 0q by the first two coordinates: pz1, . . . , zm`2q ÞÑ

pz1, z2q.

Proposition 1.4.20 (See [Tei82, Proposition 6.2.1]) For a germ of reduced
plane curve pX, 0q Ă pC2, 0q the Lipschitz saturation map ζ : pX s, 0q Ñ pX, 0q
is a generic projection.

Proof Suppose first that pX, 0q is irreducible, in this case we have the holo-
morphic maps

pC, 0q
ηs
ÝÑ pX s, 0q Ă pCm`2, 0q

ζ
ÝÑ pX, 0q Ă pC2, 0q

t ÞÑ pz1ptq, z2ptq, z3ptq, . . . , zm`2ptqq ÞÑ pz1ptq, z2ptqq

By Proposition 1.4.11 we have to prove that the ideals I∆s “ xz1´w1, . . . , zm`2´

wm`2y and I∆s
2
“ xz1 ´ w1, z2 ´ w2y have the same integral closure in

OX sˆX s,p0,0q. In this coordinate system we have the normalization map

η˚s : OX s,0 ãÑ OX,0 given by

Ctz1, . . . , zm`2u

I
ãÝÑ Cttu
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zi ÞÑ ziptq i “ 1, 2 ; z j`2 ÞÑ z j`2ptq j “ 1, . . .m,

which induces the morphism

θ : OX sˆX s,p0,0q “
Ctz1, . . . , zm`2,w1, . . . ,wm`2u

Ipzq ` Ipwq
ãÝÑ Ctt, uu “ OX,0NbCOX,0

zi ÞÑ ziptq i “ 1, 2 ; z j`2 ÞÑ z j`2ptq j “ 1, . . .m

wi ÞÑ zipuq i “ 1, 2 ; w j`2 ÞÑ z j`2puq j “ 1, . . .m.

But from the proof of Lemma 1.4.19 we have that the ideals I∆s
2
“ xz1ptq ´

z1puq, z2ptq ´ z2puqy and
I∆s “ xz1ptq´ z1puq, z2ptq´ z2puq, z3ptq´ z3puq, . . . , zm`2ptq´ zm`2puqy have the
same integral closure in Ctt, uu and so by remark 1.4.2-5 the ideals θ´1pI∆s q

and θ´1pI∆s
2
q have the same integral closure in OX sˆX s,p0,0q, which is what

we wanted.

In the reducible case the proof works exactly the same way, it is just a
lot messier to write down. The only thing you have to keep track off is the
following. Suppose pX, 0q has two irreducible components pX1, 0qYpX2, 0q then

pX s, 0q also has two irreducible components and OX,0 – Ctt1u ‘ Ctt2u. This

implies that the normalization map η˚s : OX s,0 ãÑ OX,0 is given by

Ctz1, . . . , zm`2u

I
ãÝÑ Ctt1u ‘ Ctt2u

zi ÞÑ pzipt1q, zipt2qq i “ 1, 2 ; z j`2 ÞÑ pz j`2pt1q, z j`2pt2qq j “ 1, . . .m

In this case OX,0NbCOX,0 – Ctt1, u1u ‘ Ctt1, u2u ‘ Ctt2, u1u ‘ Ctt2, u2u and
the induced morphism θ looks like:

θ : OX sˆX s,p0,0q “
Ctz1, . . . , zm`2,w1, . . . ,wm`2u

Ipzq ` Ipwq
ãÝÑ OX,0NbCOX,0

zi ÞÑ pzipt1q, zipt1q, zipt2q, zipt2qq i “ 1, 2

z j`2 ÞÑ pz j`2pt1q, z j`2pt1q, z j`2pt2q, z j`2pt2qq j “ 1, . . .m

wi ÞÑ pzipu1q, zipu2q, zipu1q, zipu2qq i “ 1, 2

w j`2 ÞÑ z j`2pu1q, z j`2pu2q, z j`2pu1q, z j`2pu2qq j “ 1, . . .m,

then you have the map α as in the proof of Proposition 1.4.16 and the rest
follows through. ˝

Remark 1.4.211. Since the Lipschitz saturation map ζ : pX s, 0q Ñ pX, 0q is a
generic projection the multiplicity of pX s, 0q is equal to the multiplicity of
pX, 0q.

2. Except if the plane branch pX, 0q is non singular, the map pX, 0q Ñ pX, 0q is
never obtained as a generic projection since the multiplicity changes. How-
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ever, among all germs pX 1, 0q which dominate pX, 0q and are dominated by
pX, 0q, and in addition are such that the map pX 1, 0q Ñ pX, 0q can be repre-
sented by a generic linear projection, there is a unique one, up to isomor-
phism, which dominates all the others: it is the saturation.

Corollary 1.4.22 Let pX, 0q Ă pC2, 0q be a reduced plane curve. The Lips-
chitz saturation map ζ : pX s, 0q Ñ pX, 0q is a biLipschitz homeomorphism.

Proof We already know that a generic projection induces a homeomor-
phism with its image (Prop. 1.3.3), so by Proposition 1.4.20 the map ζ is
a homeorphism and since it is the restriction to X s of the linear projection
pz1, . . . , zm`2q ÞÑ pz1, z2q it is Lipschitz. The inverse of ζ can be described on
each irreducible component Xk by

pz1ptk q, z2ptk qq ÞÑ pz1ptk q, z2ptk q, z3ptk q, . . . , zm`2ptk qq,

and since for all j P t1, . . . ,mu, z j`2ptq P Os
X,0 Proposition 1.4.16 tells us that

it is also Lipschitz. ˝

Our main result now follows from the following result.

Theorem 1.4.23 (See [P-T69, §4], [B-G-G80, Prop. VI.3.2]) Let OX,0 be the
analytic algebra of a germ of reduced plane curve pX, 0q Ă pC2, 0q. The Lip-
schitz saturation Os

X,0 determines and is determined by the characteristic

exponents of its branches (irreducible components) and the intersection mul-
tiplicities mi j “ pXi, X jq of each pair of branches. In particular the saturated
curve pX s, 0q is an invariant (up to isomorphism) of the equisingularity class
of pX, 0q.

This implies that every member of the equisingularity class of a germ of
reduced plane curve pX, 0q Ă pC2, 0q can be obtained by a generic projection
of the Lipschitz saturation pX s, 0q of any one of them. The proof of the
Proposition involves a lot of calculations and can be found in the references.
For this reason we would rather describe how to calculate the saturated curve
pX s, 0q. Let us start with the irreducible case:

Definition 1.4.24 Let h P Cttu be a power series with coprime exponents.
If

h “
8
ÿ

j“0

a j t j,

we define the set of exponents of f as Exp f q “ t j P N | a j ‰ 0u. And for a
germ of analytically irreducible plane curve pX, 0q Ă pC2, 0q we define the set
of exponents of OX,0 as

EpOX,0q “
ď

hPm

Exphq,
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where m is the maximal ideal of OX,0. Note that the semigroup ΓpXq of the
plane branch pX, 0q is contained in EpOX,0q.(See [Tei07, Section 8]).

If pX, 0q Ă pC2, 0q is irreducible then:

1. For every j P EpOX,0q we have that t j P Os
X,0.

2. The analytic algebra Os
X,0 is monomial, in particular:

Os
X,0 “ Ctt j | j P EpOs

X,0qu.

For a numerical semigroup (i.e., a subsemigroup of pN,`q with finite com-
plement) there is the concept of saturated semigroup (see [Ro-G09, Chapter
3, Section 2]) which is defined as follows:

For A Ă N and a P Azt0u define

dApaq “ gcdtx P A | x ď au.

Then a non-empty subset A Ă N such that 0 P A and gcdpAq “ 1 is a
saturated numerical semigroup if and only if a` kdApaq P A for all a P Azt0u
and k P N.

The reader can verify that the condition indeed implies that A is a semigroup
and that the intersection of two saturated semigroups is again saturated, so
that any A Ă N such that 0 P A and gcdpAq “ 1 is contained in a smallest
saturated semigroup.

Example 1.4.25 Let pX, 0q Ă pC2, 0q be the cusp singularity defined by y2 ´

x3 “ 0. Its normalization map is t ÞÑ pt2, t3q and so its semigroup is generated
by x2, 3y. Since ΓpXq “ Nzt1u then EpOX,0q “ ΓpXq is a saturated numerical
semigroup.

This definition also tells us how to obtain the smallest saturated semigroup
containing any A Ă N with 0 P A and gcdpAq “ 1, for example the set of
exponents EpOX,0q.
Let e0 “ β0 “ min tx P Au and define

ĂA0 :“ AY β0 ¨N.

In the case of EpOX,0q we have that e0 “ β0 is the multiplicity of pX, 0q.
Let β1 :“ mintx P A | e0 does not divide xu and e1 “ gcdtβ0, β1u; note that
e1 “ dApβ1q. Again define

ĂA1 :“ ĂA0 Y tβ1 ` ke1 | k P Nu.

Continuing this way we obtain two sequences of natural numbers e0 ą e1 ą

¨ ¨ ¨ ą eg “ 1 “ gcdpAq and β0 ă β1 ă ¨ ¨ ¨ ă βg and an associated se-

quence of subsets of ĂA0 Ă ĂA1 Ă ¨ ¨ ¨ Ă ĂAg Ă N where βi`1 :“ mintx P
A | ei does not divide xu, ei :“ gcdtβ0, . . . , βiu “ dApβiq and
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ĆAi`1 :“ĂAi Y tβi`1 ` kei`1 | k P Nu.

Note that rA :“ ĂAg is a saturated semigroup which is completely determined
by its characteristic sequence tβ0, . . . , βgu. Moreover if t ÞÑ

`

tn,
ř

iěn ai t i
˘

is
a Puiseux parametrization of the plane branch pX, 0q Ă pC2, 0q, the charac-
teristic sequence of EpOX,0q is the set of characteristic exponents of pX, 0q
and so it determines its equisingularity class.

Proposition 1.4.26 (Pham-Teissier), see [P-T69, §4], [B-G-G80, Thm VI.1.6]
For a germ of irreducible plane curve singularity pX, 0q Ă pC2, 0q the Lipschitz
saturation Os

X,0 is given by

Os
X,0 “ Cttp | p P ČEpOX,0qu.

In particular E
´

Os
X,0

¯

“ ČEpOX,0q.

Let us give a sketch of the proof: we start from a structured parametrization
ptn, yptqq of our branch X as in subsection 1.0.2 and we have to study integral
dependence over the ideal I∆ “ pt ´ uqN :“ xtn ´ un, yptq ´ ypuqy Ă Ctt, uu.
Here N is the primary ideal x t

n´un

t´u ,
yptq´ypuq

t´u yCtt, uu. According to what we
saw after Theorem 1.4.5, to verify that gptq´ gpuq is integral over I, which is

the same as
gptq´gpuq

t´u being integral over N , it suffices to verify that its order

along any of the branches of a plane curve CT Ă C2 defined by T1
tn´un

t´u ´

T2
yptq´ypuq

t´u “ 0 is larger than that of the ideal I for T “ pT1 : T2q in the

open set U Ă P1. Now we claim that the open set U is T1 ‰ 0. Indeed,
since the order of yptq is ą n all the plane curves CT with T1 ‰ 0 have a
tangent cone consisting of n ´ 1 lines in general position. It is not difficult
then to show (see [Tei73, Chap. II, Lemma 2.6, Proposition 2.7]) that they
are equisingular with their tangent cone, and therefore are all equisingular,
with simultaneous normalization. So the curve tn´un

t´u “ 0 is in U, and its
branches are the lines u “ ωt, ω P µnzt1u, which means that a function
gptq P Cttu is in the saturation if and only if we have

ordt pgptq ´ gpωtqq ě ordt pyptq ´ ypωtqq for all ω P µnzt1u.

The result now follows easily from what we saw at the end of subsection 1.0.2
about the orders of the yptq ´ ypωtq.
It may be interesting to remark here that this construction gives an intrinsic
(coordinate free) definition of the Puiseux characteristic as the set of valua-
tions (orders of vanishing) of the ideal N along the irreducible components
of the exceptional divisor of the normalized blowing up of N in X ˆ X . For
more details, see [P-T69, §4] and [B-G-G80, Thm VI.1.6].

Remark 1.4.27 It is shown in [Tei80, 5.2] that the multiplicity, in the sense we
saw after Theorem 1.4.7, of the primary idealN is equal to twice the invariant



1 biLipschitz geometry of complex curves: an algebraic approach 49

δ which appears in Propositions 1.2.9 and 1.3.6. It is also shown there that δ is
the maximum number of different singular points (then necessarily ordinary
double points) which can appear when deforming the parametrization of the
plane branch. Both results extends to reducible curves. One can define an
analogous ideal N for a non-plane branch but then, in view of Theorem 1.4.8
and Proposition 1.4.11, its multiplicity is twice the δ invariant of a generic

plane projection and no longer the classical dimC
OX,0

OX,0
in this case.

Example 1.4.28 Let pX, 0q Ă pC2, 0q be the plane branch with normalization
map:

η : pC, 0q ÝÑ pX, 0q

t ÞÑ pt4, t6 ` t7q

Then the exponent set EpOX,0q contains the semigroup ΓpXq “ x4, 6, 13yN
but by definition it also contains 7. Now β1 “ 6 and e1 “ 2 so

ĂE1 “ EpOX,0q Y t6` 2k | k P Nu.

In the next step β2 “ 7 and e2 “ 1 so g “ 2 and we get the saturated
semigroup

ĂE2 “ ĂE1 Y t7` k | k P Nu.

Note that ČEpOX,0q “ x4, 6, 7, 9yN and so we have the normalization map for
the Lipschitz saturation pX s, 0q Ă pC4, 0q given by:

ηs : pC, 0q ÝÑ pX s, 0q

t ÞÑ pt4, t6, t7, t9q

By making the change of coordinates in pC4, 0q, px, y, z,wq ÞÑ px, y ` z, z,wq
we can view the Lipschitz saturation map

ζ : pX s, 0q Ñ pX, 0q

as the projection on the first two coordinates as before.

Remark 1.4.29 (see [Tei82, Chap. I, Theorem 6.3.1], [B-G-G80, Appendice])
A more concrete way of seeing that all plane branches with the same Puiseux
characteristic are generic plane projections of a single space curve is to go back
to the notations of subsection 1.0.2 to write down explicitly the saturation of
a plane branch pX, 0q with given characteristic pn, β1, . . . , βgq: it is isomorphic
to the monomial curve with analytic algebra

Cttn, t2n, . . . , t β1, t β1`e1, . . . , t β2, t β2`e2, . . . , t β3, . . . , t βg , t βg`1, . . .u,

where n “ e0 “ β0 as above. The semigroup generated by these exponents,

which are those of ČEpOX,0q, is finitely generated by Dickson’s Lemma and
because the Puiseux exponents are coprime its complement in N is finite. For
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more details on the saturation of semigroups we refer to [Ro-G09, Chapter
3, Section 2].
As we saw in subsection 1.0.2, up to isomorphism, the image of this mono-
mial curve by a generic linear projection can be parametrized by x “

tn, y “
ř

pP ČEpOX,0qztnu
aptp . Now we see that the generic projections are

precisely those which are such that the coefficient of tn is ‰ 0 and for
p “ β1, . . . , βg we have ap ‰ 0, which means that the projection has charac-
teristic pn, β1, . . . , βgq.

Remark that, except if n “ 2, the semigroup of integers generated by the
exponents of the monomials belonging to the saturation Os

X,0 is different from
the semigroup Γ we saw in subsection 1.0.2. This has the interesting conse-
quence that the specialization of a plane branch to the monomial curve with
the same semigroup, which is Whitney equisingular (see [Gi-T18, Remark
4.1]; the argument there can be generalized to any plane branch), is not in
general biLipschitz trivial.

When pX, 0q is not irreducible it is a bit more complicated, nevertheless the
Lipschitz saturation Os

X,0 can be described in the following way:

Theorem 1.4.30 (see [P-T69, §4] and [B-G-G80, Thm VI.2.2]) Let OX,0 be
the analytic algebra of a reduced plane curve pX, 0q “ pX1, 0q Y . . . Y pXr, 0q

with normalization OX,0 “ Ctt1u ‘ ¨ ¨ ¨ ‘ Cttru. We may assume that the

image of x in OX,0 is
`

tn1

1 , . . . , tnr
r

˘

where ni is the multiplicity of the branch
pXi, 0q. Let µ be the least common multiple of tn1, . . . , nru. Then the element

h “ ph1, . . . , hr q P OX,0 is in the Lipschitz saturation Os
X,0 if and only if the

following two conditions are satisfied:

1. For every j P t1, . . . , ru we have that h j P O
s
X j ,0

.

2. For every µ-th root of unity ε and every couple i ‰ j we have the inequality

mi, j,εphq ě mi, j,ε :“ inf
gPOX,0

!

ντ

´

gipτ
µ{ni q ´ g jprετs

µ{n j q

¯)

,

where mi, j,εphq “ ντ
`

hipτ
µ{ni q ´ h jprετs

µ{n j q
˘

and ντ is the valuation of Ctτu
given by the order of the series. The number mi, j,ε depends only on the char-
acteristic exponents and the intersection multiplicity of the branches Xi and
X j .

Example 1.4.31 Let pX, 0q “ pX1, 0qYpX2, 0q be the plane curve with normal-
ization map:

η : pC, 0q \ pC, 0q ÝÑ pX, 0q

t1 ÞÑ pt41, t
6
1 ` t71q

t2 ÞÑ pt32, t
5
2q
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In the previous example we already calculated the Lipschitz saturation
Os

X1,0
“ Ctt41, t

6
1, t

7
1, t

9
1u and following the algorithm we get the Lipschitz satu-

ration Os
X2,0

“ Ctt32, t
5
2, t

7
2u. Since the branches are tangent, their intersection

multiplicity is greater than the product of their multiplicities and is equal to
the order of the series in t1 obtained by substituting the parametrization of
pX1, 0q in the equation y3´x5 “ 0 defining pX2, 0q. In this case it is equal to 18.

By definition µ “ lcmt3, 4u “ 12 and it is not hard to prove that for any
12´th root of unity ε

m1,2,ε “ ντ
`

y1pτ
3q ´ y2prετs

4q
˘

“ ντ
`

τ18 ` τ21 ´ ε8τ20
˘

“ 18.

So from the Theorem 1.4.30 we have that h “ ph1pt1q, h2pt2qq is in Os
X,0 if

and only if h1pt1q P Os
X1,0

, h2pt2q P Os
X2,0

and m1,2,εphq ě 18. For example if

h “ pt41, t
5
2q then

m1,2,εphq “ ντ
`

pτ3q4 ´ prετs4q5
˘

“ ντpτ
12 ´ ε8τ20q “ 12 ñ h R Os

X,0.

On the other hand if h “ pt61 ` t71, t
5
2q then

m1,2,εphq “ ντ
`

pτ3q6 ` pτ3q7 ´ prετs4q5
˘

“ ντpτ
18 ` τ21 ´ ε8τ20q “ 18 ñ h P Os

X,0.

We will end this section with the following consequence of the Theorem:

Corollary 1.4.32 (see [B-G-G80, VI.3.7]) Let pX, 0q “ pX1, 0q Y . . .Y pXr, 0q

be a reduced plane curve with normalization OX,0 “ Ctt1u ‘ ¨ ¨ ¨ ‘ Cttru. If

Π j : OX,0 Ñ Ctt ju denotes the canonical projection to the j´th factor then

Π jpO
s
X,0q “ O

s
X j ,0

.

1.4.4 Application to local polar curves

Let pX, 0q Ă pCN , 0q be a reduced equidimensional germ of complex analytic
space. Consider linear projections π : CN Ñ C2 and the critical locus of π
restricted to the smooth part X0 of X . It is proved in [L-T81], where the
theory of (absolute)3 local polar varieties was initiated, that for a Zariski

3 This precision refers to a distinction between absolute and relative polar varieties,
which is not relevant here but should be mentioned to avoid confusions. See [Tei82,
Chap. IV, p. 417]
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dense open set U in the space GpN, N ´ 2q of linear projection, this critical
locus is either empty or a reduced curve. The closure of this curve in X is
an (absolute) polar curve of X and is denoted by Pd´1pX, πq where d is the
dimension of X . It is also denoted by Pd´1pX, Dq, where D “ kerπ. These
curves play an important role in the local study of singularities, and especially
in the study of the Lipschitz geometry of surfaces. See [L-T81], [Tei82, Chap.
IV] and [N-P1] for more details.

Of course, if it is not empty, Pd´1pX, πq varies with the projection π P U
and a priori it could be that π remains constantly a non generic projection
for Pd´1pX, πq. That seems unlikely but still we need a proof for the following:

Theorem 1.4.33 (See [Tei82, Chap. V, Lemme 1.2.2]) Given pX, 0q Ă pCN , 0q
as above and assuming that Pd´1pX, πq is a reduced curve for π P U Ă

GpN, N ´ 2q, there exists a non empty Zariski open set V Ă U such that
for π P V , the projection π : CN Ñ C2 is a generic projection for the curve
Pd´1pX, πq Ă CN .

The proof, which we only sketch, gives an example of the notion of Lipschitz
equisaturation , which is found in [P-T69, §6]. Fixing coordinates z1, . . . , zN
on CN and x, y on C2, we can parametrize by C2pN´2q a dense open set of
the space of linear projections CN Ñ C2 as follows:

x “ z1 `

N
ÿ

3

ai zi, y “ z2 `

N
ÿ

3

bi zi , pa, bq P C2pN´2q.

To simplify notations while keeping the ideas, we assume that X is a hyper-
surface defined by f pz1, . . . , zN q “ 0. One can also consult [B-H80, Lemme
3.7] which gives the proof for isolated singularities of surfaces in C3.
For any series hpz1, . . . , zN q P Ctz1, . . . , zN u let us denote by ha,b the series

ha,bpz, a, bq “ hpx ´
N
ÿ

3

ai zi, y ´
N
ÿ

3

bi zi, z3, . . . , zN q.

The equation fa,b “ 0 defines a germ of hypersurface Z in CN ˆC2pN´2q and

if we consider thefamily of projections πa,b : CN ˆ C2pN´2q Ñ C2 ˆ C2pN´2q

defined by

x ÞÑ z1 `

N
ÿ

3

ai zi, y ÞÑ z2 `

N
ÿ

3

bi zi, a ÞÑ a, b ÞÑ b,

and the closure of its critical locus on the non singular part of Z, we obtain
a subspace which, over a Zariski open subset of C2pN´2q, contains the family
of polar curves associated to the family of projections πa,b . Over a possibly

smaller Zariski open subset V of C2pN´2q this family of curves is equisingular
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in the sense that it has a simultaneous parametrization. The number r of
irreducible components of Z at points of t0u ˆ V Ă CN ˆ V is constant and
after choosing as origin of C2pN´2q a point of V we can parametrize each
irreducible component in a neighborhood of t0u ˆ t0u by:

z1 “ tn`
`
, z2 “ υpt`, a, bq, zi “ ζipt`, a, bq,

with υpt`, a, bq, ζipt`, a, bq P Ctt`, a, bu for i “ 3, . . . , N . The normalization of

OZ,0 being OZ,0 “
śr

i“1 Ctt`, a, bu.
By definition of Z we have for each ` “ 1, . . . , r the identity in Ctt`, a, bu

f ptn`´
N
ÿ

3

aiζipt`, a, bq, υpt`, a, bq´
N
ÿ

3

aiζipt`, a, bq, ζ3pt`, a, bq, . . . , ζN pt`, a, bqq ” 0.

Differentiating fa,b “ 0 with respect to zi gives the following equations on
Z:

´ai

B fa,b
Bz1

´ bi
B fa,b
Bz2

`
B fa,b
Bzi

” 0,

for i “ 3, . . . , N . which by definition are satisfied on the polar curve.
Differentiating the first identity with respect to bk and taking into account

the second set of identities, we obtain that the equation

ˆ

ζk pt`, a, bq ´
Bυpt`, a, bq
Bbk

˙

B fa,b
Bz2

“ 0

must be satisfied in each Ctt`, a, bu. By general transversality results found in

[L-T81, Cor. 4.1.6] and [Tei82, Chap. IV, 5.1],
B fa,b
Bz2

does not vanish because

it would entail a lack of C3 transversality (see Definition 1.3.1) of the polar
curve with the kernel of the projection which defines it. So we must have on
Z the identity zk “ Bυ

Bbk
.

By [Tei82, Proposition 6.4.2], after perhaps shrinking V to a smaller Zariski
open dense subset V1 of C2pN´2q we have that over V1 the family Z1 of plane
curves given parametrically by the parametrizations x “ tn`, y “ υpt`, a, bq,
which consists of the plane projections of our polar curves, is equisaturated.
This implies that the derivations B

Bbk
of Cta, bu extend to derivations Dk of

OZ1,p0,vq “ OZ,p0,vq “
śr

i“1 Ctt`, a, bu into itself which preserve the relative
saturated ring (see [P-T69]). Since of course the functions υpt`, a, bq belong

to the relative saturation of OZ1,p0,vq, so do the ζk pt`, a, bqq which are their
images by Dk . But ζk belonging to this relative saturation means precisely
that for v P V1, the saturations of the rings OZ1pvq and OZpvq of the fibers over
v of Z and Z1 are equal for v P V1, which is the condition for C5 genericity
according to Proposition 1.4.11.

The fact that the plane projection of a generic polar curve by the map
which defines it is generic plays an important role in the following three do-
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mains: the comparison of Zariski equisingularity and Whitney equisingularity
for surfaces (see [B-H80], [N-P1]), the comparison of Zariski equisingularity
and Lipschitz equisingularity for surfaces (see [N-P1], [PaP]), the numerical
characterization of Whitney equisingularity (see [Tei82, Chap. V]) and the
valuative study of the metric geometry of surface singularities in view of their
biLipschitz classification (see [B-F-P]).
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B-F-P. André Belotto da Silva, Lorenzo Fantini, Anne Pichon, Inner geometry of
complex surfaces: a valuative approach. Submitted; see arXiv:1905.01677v1
[math.AG] May 2019.

Br-K86. Egbert Brieskorn & Horst Knörrer, Plane algebraic curves,
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A presentation matrix algorithm for f˚OX,x , Topology and its Applications,
234: 440–451, 2018.

Hu-S06. Craig Huneke & Irena Swanson, Integral closure of ideals, rings and mod-
ules, London Mathematical Society Lecture Note Series, n˝ 336, Cambridge
University Press, 2006.

Kau83. Ludger Kaup & Burchard Kaup, Holomorphic functions of several vari-
ables. An introduction to the fundamental theory , De Gruyter Studies in
Mathematics, 1983.
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et équisingularité, Ann. Fac. Sci. Toulouse Math. (6), 4: 781–859, 2008.

Lip82. Joseph Lipman, Equimultiplicity, reduction and blowing up, Commutative
algebra: analytical methods, Conf. Fairfax/Va. 1979, Lect. Notes Pure Appl.
Math. 68, 111-147, 1982.

Loj91. Stanis law  Lojasiewicz Introduction to complex analytic geometry ,
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larités des Surfaces, Lecture Notes in Mathematics n˝ 777. Springer, Berlin,
72 – 146, 1980.

Tei82. Bernard Teissier, Variétés polaires. II: Multiplicités polaires, sections
planes et conditions de Whitney, Algebraic geometry, Proc. int. Conf., La
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