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Controlling a dynamical system is to give an input that will change the system towards a desired 
state, assuring different constraints such as noise rejection, uncertainty mitigation and 
robustness.  To this extent, two approaches oppose each other : model-based control (linear 
control theory, ERA/OKID, etc), pioneered by Norbert Wiener (1894-1964) and machine 
learning control. Model-based control victories are mainly in opposition and phasor control, 
and examples including MIMO control and frequency crosstalk are dim.  
To override the intrinsic limitations of model-based control, a new approach is considered 
building on recent innovations in artificial intelligence : machine learning control. 
Machine Learning Control (MLC, [4]) is a model-free control method based on genetic 
programming and building on the pioneering work of Dracopoulous [5]. It’s a biologically-
inspired method that mimics the Darwinian evolution to build fitter controllers, in the same 
way the bald eagle evolved through millions of years to be able to fly under gusty conditions. 
The cornerstone is the formulation of the control problem as a function optimization problem; 
such non-convex problem can then be solved thanks to MLC. 
MLC strength relies on its ability to build nonlinear control laws reproducing known control 
methods including model-based (ERA/OKID), open-loop strategies (multi-frequency forcing) 
and closed-loop strategies (phasor control, ARMAX) and also linear and nonlinear 
combinations of them.  
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Model-based control vs Machine learning control 

The Fluidic Pinball : a control benchmark (2D incompressible, Re=100)  

The fluidic pinball is a cluster of three cylinders — whose centers form an equilateral triangle — 
immersed in an incoming flow. It is a simple configuration that encapsulates key features that are at 
the heart of engineering problems such as time-delays and frequency crosstalks [1].  
The key assets of the fluidic pinball are : 
 Successive bifurcations revealing rich dynamics, similar to real flows [2]. 
 MIMO (Multiple-Input Multiple-Output) control thanks to 15 velocity probes downstream and 
the independent rotation of the three cylinders (see figure above). 
 Thanks to control the fluidic pinball can reproduce up to six wake suppression mechanisms from 
literature (see six figures on the right). Low frequency and high frequency forcing  reveal key enabler 
for control : frequency crosstalks [4]. 
The aim of this work is to develop a self-learning control method able to take into account the 
nonlinear interactions between the modes to optimize a given objective : Machine Learning Control. 
 

Low frequency forcing 

Boat-tailing 

Base-bleeding 

High frequency forcing 

Magnus effect 

Reverse Magnus effect 

xMLC success lies in the fact that it is able to rediscover 
results from literature and combines them to even better 
performance. 
Thanks to a meta-parameter optimization of the MLC 
algorithm and an implicit complexity penalization, the 
learning process has been accelerated by a factor 3.  
Future developments seek to improve the learning rate by a 
factor 10, allowing multi-parameter testing for experiments 
and simulations with the potential to reveal hidden control 
mechanisms unreachable with model-based approaches. 
This new approach constitutes a change of paradigm where 
optimal solutions are first derived in an unsupervised 
manner and where understanding and modeling comes 
afterwards. 

Norbert Wiener 
1894-1964 

Bald eagle 
33 millions years ago - Now 

MLC applied to the Fluidic Pinball Define the search space YX 

Best control law 

44.3% net drag power reduction > 42.7% (best boat-tailing) 

This control law saves 46% net drag power! 

After 100 individuals — from the yellow set — that 
evolved through 10 generations, xMLC gave an 
even better control law, managing 46.0% net drag 
power reduction. 
The control law found is a non-trivial one built 
upon flow information ensuring some robustness 
in the control. This solution found with xMLC 
combines two strategy from literature : boat-
tailing (two back cylinders) and phasor control 
(front cylinder) . 
Moreover, among the fifteen sensors given to 
xMLC, only one of them has been selected for the 
control. In this sense, xMLC works as a sensor 
optimizer. 
Figures on the right show flow snapshots, phase 
portrait based on CL, CD, and PSD of CL. for the 
natural flow (— black), best boat-tailing solution         
( - - blue) and xMLC (— red). 
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U∞ 

Re = 100 Unforced flow 

J =net drag power 

   = drag power + actuation power 

Our MLC code (xMLC) has been benchmarked on the fluidic 
pinball. The control problem considered is the reduction of 
the net drag power, and in order to minimize J in equation 
(1), we must first define the search space YX also known as 
the space of control laws.  

(1) 

The figure on the right is an Euler diagram of several search spaces explored, they comprise multi-frequency forcing (red 
set), direct feedback control (blue set) and a mix of the two (green set). xMLC has been tested on these sets and gave the 
control law on the right, outperforming previous results. However the control law is independent of time and lives in the 
purple set. To further explore the dynamics, time-delayed sensors have been added to the search space (yellow set) to 
take into account the flow advection.  
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